rt/emul/mini/src/main/java/java/lang/Double.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Tue, 26 Feb 2013 16:54:16 +0100
changeset 772 d382dacfd73f
parent 752 emul/mini/src/main/java/java/lang/Double.java@cc3871bdd83c
child 778 6f8683517f1f
permissions -rw-r--r--
Moving modules around so the runtime is under one master pom and can be built without building other modules that are in the repository
jaroslav@67
     1
/*
jaroslav@67
     2
 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
jaroslav@67
     3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
jaroslav@67
     4
 *
jaroslav@67
     5
 * This code is free software; you can redistribute it and/or modify it
jaroslav@67
     6
 * under the terms of the GNU General Public License version 2 only, as
jaroslav@67
     7
 * published by the Free Software Foundation.  Oracle designates this
jaroslav@67
     8
 * particular file as subject to the "Classpath" exception as provided
jaroslav@67
     9
 * by Oracle in the LICENSE file that accompanied this code.
jaroslav@67
    10
 *
jaroslav@67
    11
 * This code is distributed in the hope that it will be useful, but WITHOUT
jaroslav@67
    12
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
jaroslav@67
    13
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
jaroslav@67
    14
 * version 2 for more details (a copy is included in the LICENSE file that
jaroslav@67
    15
 * accompanied this code).
jaroslav@67
    16
 *
jaroslav@67
    17
 * You should have received a copy of the GNU General Public License version
jaroslav@67
    18
 * 2 along with this work; if not, write to the Free Software Foundation,
jaroslav@67
    19
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
jaroslav@67
    20
 *
jaroslav@67
    21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
jaroslav@67
    22
 * or visit www.oracle.com if you need additional information or have any
jaroslav@67
    23
 * questions.
jaroslav@67
    24
 */
jaroslav@67
    25
jaroslav@67
    26
package java.lang;
jaroslav@67
    27
jaroslav@114
    28
import org.apidesign.bck2brwsr.core.JavaScriptBody;
jaroslav@114
    29
jaroslav@67
    30
/**
jaroslav@67
    31
 * The {@code Double} class wraps a value of the primitive type
jaroslav@67
    32
 * {@code double} in an object. An object of type
jaroslav@67
    33
 * {@code Double} contains a single field whose type is
jaroslav@67
    34
 * {@code double}.
jaroslav@67
    35
 *
jaroslav@67
    36
 * <p>In addition, this class provides several methods for converting a
jaroslav@67
    37
 * {@code double} to a {@code String} and a
jaroslav@67
    38
 * {@code String} to a {@code double}, as well as other
jaroslav@67
    39
 * constants and methods useful when dealing with a
jaroslav@67
    40
 * {@code double}.
jaroslav@67
    41
 *
jaroslav@67
    42
 * @author  Lee Boynton
jaroslav@67
    43
 * @author  Arthur van Hoff
jaroslav@67
    44
 * @author  Joseph D. Darcy
jaroslav@67
    45
 * @since JDK1.0
jaroslav@67
    46
 */
jaroslav@67
    47
public final class Double extends Number implements Comparable<Double> {
jaroslav@67
    48
    /**
jaroslav@67
    49
     * A constant holding the positive infinity of type
jaroslav@67
    50
     * {@code double}. It is equal to the value returned by
jaroslav@67
    51
     * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
jaroslav@67
    52
     */
jaroslav@67
    53
    public static final double POSITIVE_INFINITY = 1.0 / 0.0;
jaroslav@67
    54
jaroslav@67
    55
    /**
jaroslav@67
    56
     * A constant holding the negative infinity of type
jaroslav@67
    57
     * {@code double}. It is equal to the value returned by
jaroslav@67
    58
     * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
jaroslav@67
    59
     */
jaroslav@67
    60
    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
jaroslav@67
    61
jaroslav@67
    62
    /**
jaroslav@67
    63
     * A constant holding a Not-a-Number (NaN) value of type
jaroslav@67
    64
     * {@code double}. It is equivalent to the value returned by
jaroslav@67
    65
     * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
jaroslav@67
    66
     */
jaroslav@67
    67
    public static final double NaN = 0.0d / 0.0;
jaroslav@67
    68
jaroslav@67
    69
    /**
jaroslav@67
    70
     * A constant holding the largest positive finite value of type
jaroslav@67
    71
     * {@code double},
jaroslav@67
    72
     * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
jaroslav@67
    73
     * the hexadecimal floating-point literal
jaroslav@67
    74
     * {@code 0x1.fffffffffffffP+1023} and also equal to
jaroslav@67
    75
     * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
jaroslav@67
    76
     */
jaroslav@67
    77
    public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
jaroslav@67
    78
jaroslav@67
    79
    /**
jaroslav@67
    80
     * A constant holding the smallest positive normal value of type
jaroslav@67
    81
     * {@code double}, 2<sup>-1022</sup>.  It is equal to the
jaroslav@67
    82
     * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
jaroslav@67
    83
     * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
jaroslav@67
    84
     *
jaroslav@67
    85
     * @since 1.6
jaroslav@67
    86
     */
jaroslav@67
    87
    public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
jaroslav@67
    88
jaroslav@67
    89
    /**
jaroslav@67
    90
     * A constant holding the smallest positive nonzero value of type
jaroslav@67
    91
     * {@code double}, 2<sup>-1074</sup>. It is equal to the
jaroslav@67
    92
     * hexadecimal floating-point literal
jaroslav@67
    93
     * {@code 0x0.0000000000001P-1022} and also equal to
jaroslav@67
    94
     * {@code Double.longBitsToDouble(0x1L)}.
jaroslav@67
    95
     */
jaroslav@67
    96
    public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
jaroslav@67
    97
jaroslav@67
    98
    /**
jaroslav@67
    99
     * Maximum exponent a finite {@code double} variable may have.
jaroslav@67
   100
     * It is equal to the value returned by
jaroslav@67
   101
     * {@code Math.getExponent(Double.MAX_VALUE)}.
jaroslav@67
   102
     *
jaroslav@67
   103
     * @since 1.6
jaroslav@67
   104
     */
jaroslav@67
   105
    public static final int MAX_EXPONENT = 1023;
jaroslav@67
   106
jaroslav@67
   107
    /**
jaroslav@67
   108
     * Minimum exponent a normalized {@code double} variable may
jaroslav@67
   109
     * have.  It is equal to the value returned by
jaroslav@67
   110
     * {@code Math.getExponent(Double.MIN_NORMAL)}.
jaroslav@67
   111
     *
jaroslav@67
   112
     * @since 1.6
jaroslav@67
   113
     */
jaroslav@67
   114
    public static final int MIN_EXPONENT = -1022;
jaroslav@67
   115
jaroslav@67
   116
    /**
jaroslav@67
   117
     * The number of bits used to represent a {@code double} value.
jaroslav@67
   118
     *
jaroslav@67
   119
     * @since 1.5
jaroslav@67
   120
     */
jaroslav@67
   121
    public static final int SIZE = 64;
jaroslav@67
   122
jaroslav@67
   123
    /**
jaroslav@67
   124
     * The {@code Class} instance representing the primitive type
jaroslav@67
   125
     * {@code double}.
jaroslav@67
   126
     *
jaroslav@67
   127
     * @since JDK1.1
jaroslav@67
   128
     */
jaroslav@67
   129
    public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
jaroslav@67
   130
jaroslav@67
   131
    /**
jaroslav@67
   132
     * Returns a string representation of the {@code double}
jaroslav@67
   133
     * argument. All characters mentioned below are ASCII characters.
jaroslav@67
   134
     * <ul>
jaroslav@67
   135
     * <li>If the argument is NaN, the result is the string
jaroslav@67
   136
     *     "{@code NaN}".
jaroslav@67
   137
     * <li>Otherwise, the result is a string that represents the sign and
jaroslav@67
   138
     * magnitude (absolute value) of the argument. If the sign is negative,
jaroslav@67
   139
     * the first character of the result is '{@code -}'
jaroslav@67
   140
     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
jaroslav@67
   141
     * appears in the result. As for the magnitude <i>m</i>:
jaroslav@67
   142
     * <ul>
jaroslav@67
   143
     * <li>If <i>m</i> is infinity, it is represented by the characters
jaroslav@67
   144
     * {@code "Infinity"}; thus, positive infinity produces the result
jaroslav@67
   145
     * {@code "Infinity"} and negative infinity produces the result
jaroslav@67
   146
     * {@code "-Infinity"}.
jaroslav@67
   147
     *
jaroslav@67
   148
     * <li>If <i>m</i> is zero, it is represented by the characters
jaroslav@67
   149
     * {@code "0.0"}; thus, negative zero produces the result
jaroslav@67
   150
     * {@code "-0.0"} and positive zero produces the result
jaroslav@67
   151
     * {@code "0.0"}.
jaroslav@67
   152
     *
jaroslav@67
   153
     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
jaroslav@67
   154
     * than 10<sup>7</sup>, then it is represented as the integer part of
jaroslav@67
   155
     * <i>m</i>, in decimal form with no leading zeroes, followed by
jaroslav@67
   156
     * '{@code .}' (<code>'&#92;u002E'</code>), followed by one or
jaroslav@67
   157
     * more decimal digits representing the fractional part of <i>m</i>.
jaroslav@67
   158
     *
jaroslav@67
   159
     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
jaroslav@67
   160
     * equal to 10<sup>7</sup>, then it is represented in so-called
jaroslav@67
   161
     * "computerized scientific notation." Let <i>n</i> be the unique
jaroslav@67
   162
     * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
jaroslav@67
   163
     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
jaroslav@67
   164
     * mathematically exact quotient of <i>m</i> and
jaroslav@67
   165
     * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
jaroslav@67
   166
     * magnitude is then represented as the integer part of <i>a</i>,
jaroslav@67
   167
     * as a single decimal digit, followed by '{@code .}'
jaroslav@67
   168
     * (<code>'&#92;u002E'</code>), followed by decimal digits
jaroslav@67
   169
     * representing the fractional part of <i>a</i>, followed by the
jaroslav@67
   170
     * letter '{@code E}' (<code>'&#92;u0045'</code>), followed
jaroslav@67
   171
     * by a representation of <i>n</i> as a decimal integer, as
jaroslav@67
   172
     * produced by the method {@link Integer#toString(int)}.
jaroslav@67
   173
     * </ul>
jaroslav@67
   174
     * </ul>
jaroslav@67
   175
     * How many digits must be printed for the fractional part of
jaroslav@67
   176
     * <i>m</i> or <i>a</i>? There must be at least one digit to represent
jaroslav@67
   177
     * the fractional part, and beyond that as many, but only as many, more
jaroslav@67
   178
     * digits as are needed to uniquely distinguish the argument value from
jaroslav@67
   179
     * adjacent values of type {@code double}. That is, suppose that
jaroslav@67
   180
     * <i>x</i> is the exact mathematical value represented by the decimal
jaroslav@67
   181
     * representation produced by this method for a finite nonzero argument
jaroslav@67
   182
     * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
jaroslav@67
   183
     * to <i>x</i>; or if two {@code double} values are equally close
jaroslav@67
   184
     * to <i>x</i>, then <i>d</i> must be one of them and the least
jaroslav@67
   185
     * significant bit of the significand of <i>d</i> must be {@code 0}.
jaroslav@67
   186
     *
jaroslav@67
   187
     * <p>To create localized string representations of a floating-point
jaroslav@67
   188
     * value, use subclasses of {@link java.text.NumberFormat}.
jaroslav@67
   189
     *
jaroslav@67
   190
     * @param   d   the {@code double} to be converted.
jaroslav@67
   191
     * @return a string representation of the argument.
jaroslav@67
   192
     */
jaroslav@187
   193
    @JavaScriptBody(args="d", body="var r = d.toString();"
lubomir@752
   194
        + "if (isFinite(d) && (r.indexOf('.') === -1)) r = r + '.0';"
jaroslav@187
   195
        + "return r;")
jaroslav@67
   196
    public static String toString(double d) {
jaroslav@84
   197
        throw new UnsupportedOperationException();
jaroslav@67
   198
    }
jaroslav@67
   199
jaroslav@67
   200
    /**
jaroslav@67
   201
     * Returns a hexadecimal string representation of the
jaroslav@67
   202
     * {@code double} argument. All characters mentioned below
jaroslav@67
   203
     * are ASCII characters.
jaroslav@67
   204
     *
jaroslav@67
   205
     * <ul>
jaroslav@67
   206
     * <li>If the argument is NaN, the result is the string
jaroslav@67
   207
     *     "{@code NaN}".
jaroslav@67
   208
     * <li>Otherwise, the result is a string that represents the sign
jaroslav@67
   209
     * and magnitude of the argument. If the sign is negative, the
jaroslav@67
   210
     * first character of the result is '{@code -}'
jaroslav@67
   211
     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign
jaroslav@67
   212
     * character appears in the result. As for the magnitude <i>m</i>:
jaroslav@67
   213
     *
jaroslav@67
   214
     * <ul>
jaroslav@67
   215
     * <li>If <i>m</i> is infinity, it is represented by the string
jaroslav@67
   216
     * {@code "Infinity"}; thus, positive infinity produces the
jaroslav@67
   217
     * result {@code "Infinity"} and negative infinity produces
jaroslav@67
   218
     * the result {@code "-Infinity"}.
jaroslav@67
   219
     *
jaroslav@67
   220
     * <li>If <i>m</i> is zero, it is represented by the string
jaroslav@67
   221
     * {@code "0x0.0p0"}; thus, negative zero produces the result
jaroslav@67
   222
     * {@code "-0x0.0p0"} and positive zero produces the result
jaroslav@67
   223
     * {@code "0x0.0p0"}.
jaroslav@67
   224
     *
jaroslav@67
   225
     * <li>If <i>m</i> is a {@code double} value with a
jaroslav@67
   226
     * normalized representation, substrings are used to represent the
jaroslav@67
   227
     * significand and exponent fields.  The significand is
jaroslav@67
   228
     * represented by the characters {@code "0x1."}
jaroslav@67
   229
     * followed by a lowercase hexadecimal representation of the rest
jaroslav@67
   230
     * of the significand as a fraction.  Trailing zeros in the
jaroslav@67
   231
     * hexadecimal representation are removed unless all the digits
jaroslav@67
   232
     * are zero, in which case a single zero is used. Next, the
jaroslav@67
   233
     * exponent is represented by {@code "p"} followed
jaroslav@67
   234
     * by a decimal string of the unbiased exponent as if produced by
jaroslav@67
   235
     * a call to {@link Integer#toString(int) Integer.toString} on the
jaroslav@67
   236
     * exponent value.
jaroslav@67
   237
     *
jaroslav@67
   238
     * <li>If <i>m</i> is a {@code double} value with a subnormal
jaroslav@67
   239
     * representation, the significand is represented by the
jaroslav@67
   240
     * characters {@code "0x0."} followed by a
jaroslav@67
   241
     * hexadecimal representation of the rest of the significand as a
jaroslav@67
   242
     * fraction.  Trailing zeros in the hexadecimal representation are
jaroslav@67
   243
     * removed. Next, the exponent is represented by
jaroslav@67
   244
     * {@code "p-1022"}.  Note that there must be at
jaroslav@67
   245
     * least one nonzero digit in a subnormal significand.
jaroslav@67
   246
     *
jaroslav@67
   247
     * </ul>
jaroslav@67
   248
     *
jaroslav@67
   249
     * </ul>
jaroslav@67
   250
     *
jaroslav@67
   251
     * <table border>
jaroslav@67
   252
     * <caption><h3>Examples</h3></caption>
jaroslav@67
   253
     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
jaroslav@67
   254
     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
jaroslav@67
   255
     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
jaroslav@67
   256
     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
jaroslav@67
   257
     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
jaroslav@67
   258
     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
jaroslav@67
   259
     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
jaroslav@67
   260
     * <tr><td>{@code Double.MAX_VALUE}</td>
jaroslav@67
   261
     *     <td>{@code 0x1.fffffffffffffp1023}</td>
jaroslav@67
   262
     * <tr><td>{@code Minimum Normal Value}</td>
jaroslav@67
   263
     *     <td>{@code 0x1.0p-1022}</td>
jaroslav@67
   264
     * <tr><td>{@code Maximum Subnormal Value}</td>
jaroslav@67
   265
     *     <td>{@code 0x0.fffffffffffffp-1022}</td>
jaroslav@67
   266
     * <tr><td>{@code Double.MIN_VALUE}</td>
jaroslav@67
   267
     *     <td>{@code 0x0.0000000000001p-1022}</td>
jaroslav@67
   268
     * </table>
jaroslav@67
   269
     * @param   d   the {@code double} to be converted.
jaroslav@67
   270
     * @return a hex string representation of the argument.
jaroslav@67
   271
     * @since 1.5
jaroslav@67
   272
     * @author Joseph D. Darcy
jaroslav@67
   273
     */
jaroslav@67
   274
    public static String toHexString(double d) {
jaroslav@84
   275
        throw new UnsupportedOperationException();
jaroslav@84
   276
//        /*
jaroslav@84
   277
//         * Modeled after the "a" conversion specifier in C99, section
jaroslav@84
   278
//         * 7.19.6.1; however, the output of this method is more
jaroslav@84
   279
//         * tightly specified.
jaroslav@84
   280
//         */
jaroslav@84
   281
//        if (!FpUtils.isFinite(d) )
jaroslav@84
   282
//            // For infinity and NaN, use the decimal output.
jaroslav@84
   283
//            return Double.toString(d);
jaroslav@84
   284
//        else {
jaroslav@84
   285
//            // Initialized to maximum size of output.
jaroslav@84
   286
//            StringBuffer answer = new StringBuffer(24);
jaroslav@84
   287
//
jaroslav@84
   288
//            if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative,
jaroslav@84
   289
//                answer.append("-");                  // so append sign info
jaroslav@84
   290
//
jaroslav@84
   291
//            answer.append("0x");
jaroslav@84
   292
//
jaroslav@84
   293
//            d = Math.abs(d);
jaroslav@84
   294
//
jaroslav@84
   295
//            if(d == 0.0) {
jaroslav@84
   296
//                answer.append("0.0p0");
jaroslav@84
   297
//            }
jaroslav@84
   298
//            else {
jaroslav@84
   299
//                boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
jaroslav@84
   300
//
jaroslav@84
   301
//                // Isolate significand bits and OR in a high-order bit
jaroslav@84
   302
//                // so that the string representation has a known
jaroslav@84
   303
//                // length.
jaroslav@84
   304
//                long signifBits = (Double.doubleToLongBits(d)
jaroslav@84
   305
//                                   & DoubleConsts.SIGNIF_BIT_MASK) |
jaroslav@84
   306
//                    0x1000000000000000L;
jaroslav@84
   307
//
jaroslav@84
   308
//                // Subnormal values have a 0 implicit bit; normal
jaroslav@84
   309
//                // values have a 1 implicit bit.
jaroslav@84
   310
//                answer.append(subnormal ? "0." : "1.");
jaroslav@84
   311
//
jaroslav@84
   312
//                // Isolate the low-order 13 digits of the hex
jaroslav@84
   313
//                // representation.  If all the digits are zero,
jaroslav@84
   314
//                // replace with a single 0; otherwise, remove all
jaroslav@84
   315
//                // trailing zeros.
jaroslav@84
   316
//                String signif = Long.toHexString(signifBits).substring(3,16);
jaroslav@84
   317
//                answer.append(signif.equals("0000000000000") ? // 13 zeros
jaroslav@84
   318
//                              "0":
jaroslav@84
   319
//                              signif.replaceFirst("0{1,12}$", ""));
jaroslav@84
   320
//
jaroslav@84
   321
//                // If the value is subnormal, use the E_min exponent
jaroslav@84
   322
//                // value for double; otherwise, extract and report d's
jaroslav@84
   323
//                // exponent (the representation of a subnormal uses
jaroslav@84
   324
//                // E_min -1).
jaroslav@84
   325
//                answer.append("p" + (subnormal ?
jaroslav@84
   326
//                               DoubleConsts.MIN_EXPONENT:
jaroslav@84
   327
//                               FpUtils.getExponent(d) ));
jaroslav@84
   328
//            }
jaroslav@84
   329
//            return answer.toString();
jaroslav@84
   330
//        }
jaroslav@67
   331
    }
jaroslav@67
   332
jaroslav@67
   333
    /**
jaroslav@67
   334
     * Returns a {@code Double} object holding the
jaroslav@67
   335
     * {@code double} value represented by the argument string
jaroslav@67
   336
     * {@code s}.
jaroslav@67
   337
     *
jaroslav@67
   338
     * <p>If {@code s} is {@code null}, then a
jaroslav@67
   339
     * {@code NullPointerException} is thrown.
jaroslav@67
   340
     *
jaroslav@67
   341
     * <p>Leading and trailing whitespace characters in {@code s}
jaroslav@67
   342
     * are ignored.  Whitespace is removed as if by the {@link
jaroslav@67
   343
     * String#trim} method; that is, both ASCII space and control
jaroslav@67
   344
     * characters are removed. The rest of {@code s} should
jaroslav@67
   345
     * constitute a <i>FloatValue</i> as described by the lexical
jaroslav@67
   346
     * syntax rules:
jaroslav@67
   347
     *
jaroslav@67
   348
     * <blockquote>
jaroslav@67
   349
     * <dl>
jaroslav@67
   350
     * <dt><i>FloatValue:</i>
jaroslav@67
   351
     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
jaroslav@67
   352
     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
jaroslav@67
   353
     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
jaroslav@67
   354
     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
jaroslav@67
   355
     * <dd><i>SignedInteger</i>
jaroslav@67
   356
     * </dl>
jaroslav@67
   357
     *
jaroslav@67
   358
     * <p>
jaroslav@67
   359
     *
jaroslav@67
   360
     * <dl>
jaroslav@67
   361
     * <dt><i>HexFloatingPointLiteral</i>:
jaroslav@67
   362
     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
jaroslav@67
   363
     * </dl>
jaroslav@67
   364
     *
jaroslav@67
   365
     * <p>
jaroslav@67
   366
     *
jaroslav@67
   367
     * <dl>
jaroslav@67
   368
     * <dt><i>HexSignificand:</i>
jaroslav@67
   369
     * <dd><i>HexNumeral</i>
jaroslav@67
   370
     * <dd><i>HexNumeral</i> {@code .}
jaroslav@67
   371
     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
jaroslav@67
   372
     *     </i>{@code .}<i> HexDigits</i>
jaroslav@67
   373
     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
jaroslav@67
   374
     *     </i>{@code .} <i>HexDigits</i>
jaroslav@67
   375
     * </dl>
jaroslav@67
   376
     *
jaroslav@67
   377
     * <p>
jaroslav@67
   378
     *
jaroslav@67
   379
     * <dl>
jaroslav@67
   380
     * <dt><i>BinaryExponent:</i>
jaroslav@67
   381
     * <dd><i>BinaryExponentIndicator SignedInteger</i>
jaroslav@67
   382
     * </dl>
jaroslav@67
   383
     *
jaroslav@67
   384
     * <p>
jaroslav@67
   385
     *
jaroslav@67
   386
     * <dl>
jaroslav@67
   387
     * <dt><i>BinaryExponentIndicator:</i>
jaroslav@67
   388
     * <dd>{@code p}
jaroslav@67
   389
     * <dd>{@code P}
jaroslav@67
   390
     * </dl>
jaroslav@67
   391
     *
jaroslav@67
   392
     * </blockquote>
jaroslav@67
   393
     *
jaroslav@67
   394
     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
jaroslav@67
   395
     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
jaroslav@67
   396
     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
jaroslav@67
   397
     * sections of
jaroslav@67
   398
     * <cite>The Java&trade; Language Specification</cite>,
jaroslav@67
   399
     * except that underscores are not accepted between digits.
jaroslav@67
   400
     * If {@code s} does not have the form of
jaroslav@67
   401
     * a <i>FloatValue</i>, then a {@code NumberFormatException}
jaroslav@67
   402
     * is thrown. Otherwise, {@code s} is regarded as
jaroslav@67
   403
     * representing an exact decimal value in the usual
jaroslav@67
   404
     * "computerized scientific notation" or as an exact
jaroslav@67
   405
     * hexadecimal value; this exact numerical value is then
jaroslav@67
   406
     * conceptually converted to an "infinitely precise"
jaroslav@67
   407
     * binary value that is then rounded to type {@code double}
jaroslav@67
   408
     * by the usual round-to-nearest rule of IEEE 754 floating-point
jaroslav@67
   409
     * arithmetic, which includes preserving the sign of a zero
jaroslav@67
   410
     * value.
jaroslav@67
   411
     *
jaroslav@67
   412
     * Note that the round-to-nearest rule also implies overflow and
jaroslav@67
   413
     * underflow behaviour; if the exact value of {@code s} is large
jaroslav@67
   414
     * enough in magnitude (greater than or equal to ({@link
jaroslav@67
   415
     * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
jaroslav@67
   416
     * rounding to {@code double} will result in an infinity and if the
jaroslav@67
   417
     * exact value of {@code s} is small enough in magnitude (less
jaroslav@67
   418
     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
jaroslav@67
   419
     * result in a zero.
jaroslav@67
   420
     *
jaroslav@67
   421
     * Finally, after rounding a {@code Double} object representing
jaroslav@67
   422
     * this {@code double} value is returned.
jaroslav@67
   423
     *
jaroslav@67
   424
     * <p> To interpret localized string representations of a
jaroslav@67
   425
     * floating-point value, use subclasses of {@link
jaroslav@67
   426
     * java.text.NumberFormat}.
jaroslav@67
   427
     *
jaroslav@67
   428
     * <p>Note that trailing format specifiers, specifiers that
jaroslav@67
   429
     * determine the type of a floating-point literal
jaroslav@67
   430
     * ({@code 1.0f} is a {@code float} value;
jaroslav@67
   431
     * {@code 1.0d} is a {@code double} value), do
jaroslav@67
   432
     * <em>not</em> influence the results of this method.  In other
jaroslav@67
   433
     * words, the numerical value of the input string is converted
jaroslav@67
   434
     * directly to the target floating-point type.  The two-step
jaroslav@67
   435
     * sequence of conversions, string to {@code float} followed
jaroslav@67
   436
     * by {@code float} to {@code double}, is <em>not</em>
jaroslav@67
   437
     * equivalent to converting a string directly to
jaroslav@67
   438
     * {@code double}. For example, the {@code float}
jaroslav@67
   439
     * literal {@code 0.1f} is equal to the {@code double}
jaroslav@67
   440
     * value {@code 0.10000000149011612}; the {@code float}
jaroslav@67
   441
     * literal {@code 0.1f} represents a different numerical
jaroslav@67
   442
     * value than the {@code double} literal
jaroslav@67
   443
     * {@code 0.1}. (The numerical value 0.1 cannot be exactly
jaroslav@67
   444
     * represented in a binary floating-point number.)
jaroslav@67
   445
     *
jaroslav@67
   446
     * <p>To avoid calling this method on an invalid string and having
jaroslav@67
   447
     * a {@code NumberFormatException} be thrown, the regular
jaroslav@67
   448
     * expression below can be used to screen the input string:
jaroslav@67
   449
     *
jaroslav@67
   450
     * <code>
jaroslav@67
   451
     * <pre>
jaroslav@67
   452
     *  final String Digits     = "(\\p{Digit}+)";
jaroslav@67
   453
     *  final String HexDigits  = "(\\p{XDigit}+)";
jaroslav@67
   454
     *  // an exponent is 'e' or 'E' followed by an optionally
jaroslav@67
   455
     *  // signed decimal integer.
jaroslav@67
   456
     *  final String Exp        = "[eE][+-]?"+Digits;
jaroslav@67
   457
     *  final String fpRegex    =
jaroslav@67
   458
     *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
jaroslav@67
   459
     *       "[+-]?(" + // Optional sign character
jaroslav@67
   460
     *       "NaN|" +           // "NaN" string
jaroslav@67
   461
     *       "Infinity|" +      // "Infinity" string
jaroslav@67
   462
     *
jaroslav@67
   463
     *       // A decimal floating-point string representing a finite positive
jaroslav@67
   464
     *       // number without a leading sign has at most five basic pieces:
jaroslav@67
   465
     *       // Digits . Digits ExponentPart FloatTypeSuffix
jaroslav@67
   466
     *       //
jaroslav@67
   467
     *       // Since this method allows integer-only strings as input
jaroslav@67
   468
     *       // in addition to strings of floating-point literals, the
jaroslav@67
   469
     *       // two sub-patterns below are simplifications of the grammar
jaroslav@67
   470
     *       // productions from section 3.10.2 of
jaroslav@67
   471
     *       // <cite>The Java&trade; Language Specification</cite>.
jaroslav@67
   472
     *
jaroslav@67
   473
     *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
jaroslav@67
   474
     *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
jaroslav@67
   475
     *
jaroslav@67
   476
     *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
jaroslav@67
   477
     *       "(\\.("+Digits+")("+Exp+")?)|"+
jaroslav@67
   478
     *
jaroslav@67
   479
     *       // Hexadecimal strings
jaroslav@67
   480
     *       "((" +
jaroslav@67
   481
     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
jaroslav@67
   482
     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
jaroslav@67
   483
     *
jaroslav@67
   484
     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
jaroslav@67
   485
     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
jaroslav@67
   486
     *
jaroslav@67
   487
     *        ")[pP][+-]?" + Digits + "))" +
jaroslav@67
   488
     *       "[fFdD]?))" +
jaroslav@67
   489
     *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
jaroslav@67
   490
     *
jaroslav@67
   491
     *  if (Pattern.matches(fpRegex, myString))
jaroslav@67
   492
     *      Double.valueOf(myString); // Will not throw NumberFormatException
jaroslav@67
   493
     *  else {
jaroslav@67
   494
     *      // Perform suitable alternative action
jaroslav@67
   495
     *  }
jaroslav@67
   496
     * </pre>
jaroslav@67
   497
     * </code>
jaroslav@67
   498
     *
jaroslav@67
   499
     * @param      s   the string to be parsed.
jaroslav@67
   500
     * @return     a {@code Double} object holding the value
jaroslav@67
   501
     *             represented by the {@code String} argument.
jaroslav@67
   502
     * @throws     NumberFormatException  if the string does not contain a
jaroslav@67
   503
     *             parsable number.
jaroslav@67
   504
     */
jaroslav@114
   505
    @JavaScriptBody(args="s", body="return parseFloat(s);")
jaroslav@67
   506
    public static Double valueOf(String s) throws NumberFormatException {
jaroslav@84
   507
        throw new UnsupportedOperationException();
jaroslav@84
   508
//        return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
jaroslav@67
   509
    }
jaroslav@67
   510
jaroslav@67
   511
    /**
jaroslav@67
   512
     * Returns a {@code Double} instance representing the specified
jaroslav@67
   513
     * {@code double} value.
jaroslav@67
   514
     * If a new {@code Double} instance is not required, this method
jaroslav@67
   515
     * should generally be used in preference to the constructor
jaroslav@67
   516
     * {@link #Double(double)}, as this method is likely to yield
jaroslav@67
   517
     * significantly better space and time performance by caching
jaroslav@67
   518
     * frequently requested values.
jaroslav@67
   519
     *
jaroslav@67
   520
     * @param  d a double value.
jaroslav@67
   521
     * @return a {@code Double} instance representing {@code d}.
jaroslav@67
   522
     * @since  1.5
jaroslav@67
   523
     */
jaroslav@67
   524
    public static Double valueOf(double d) {
jaroslav@67
   525
        return new Double(d);
jaroslav@67
   526
    }
jaroslav@67
   527
jaroslav@67
   528
    /**
jaroslav@67
   529
     * Returns a new {@code double} initialized to the value
jaroslav@67
   530
     * represented by the specified {@code String}, as performed
jaroslav@67
   531
     * by the {@code valueOf} method of class
jaroslav@67
   532
     * {@code Double}.
jaroslav@67
   533
     *
jaroslav@67
   534
     * @param  s   the string to be parsed.
jaroslav@67
   535
     * @return the {@code double} value represented by the string
jaroslav@67
   536
     *         argument.
jaroslav@67
   537
     * @throws NullPointerException  if the string is null
jaroslav@67
   538
     * @throws NumberFormatException if the string does not contain
jaroslav@67
   539
     *         a parsable {@code double}.
jaroslav@67
   540
     * @see    java.lang.Double#valueOf(String)
jaroslav@67
   541
     * @since 1.2
jaroslav@67
   542
     */
jaroslav@114
   543
    @JavaScriptBody(args="s", body="return parseFloat(s);")
jaroslav@67
   544
    public static double parseDouble(String s) throws NumberFormatException {
jaroslav@84
   545
        throw new UnsupportedOperationException();
jaroslav@84
   546
//        return FloatingDecimal.readJavaFormatString(s).doubleValue();
jaroslav@67
   547
    }
jaroslav@67
   548
jaroslav@67
   549
    /**
jaroslav@67
   550
     * Returns {@code true} if the specified number is a
jaroslav@67
   551
     * Not-a-Number (NaN) value, {@code false} otherwise.
jaroslav@67
   552
     *
jaroslav@67
   553
     * @param   v   the value to be tested.
jaroslav@67
   554
     * @return  {@code true} if the value of the argument is NaN;
jaroslav@67
   555
     *          {@code false} otherwise.
jaroslav@67
   556
     */
jaroslav@67
   557
    static public boolean isNaN(double v) {
jaroslav@67
   558
        return (v != v);
jaroslav@67
   559
    }
jaroslav@67
   560
jaroslav@67
   561
    /**
jaroslav@67
   562
     * Returns {@code true} if the specified number is infinitely
jaroslav@67
   563
     * large in magnitude, {@code false} otherwise.
jaroslav@67
   564
     *
jaroslav@67
   565
     * @param   v   the value to be tested.
jaroslav@67
   566
     * @return  {@code true} if the value of the argument is positive
jaroslav@67
   567
     *          infinity or negative infinity; {@code false} otherwise.
jaroslav@67
   568
     */
jaroslav@67
   569
    static public boolean isInfinite(double v) {
jaroslav@67
   570
        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
jaroslav@67
   571
    }
jaroslav@67
   572
jaroslav@67
   573
    /**
jaroslav@67
   574
     * The value of the Double.
jaroslav@67
   575
     *
jaroslav@67
   576
     * @serial
jaroslav@67
   577
     */
jaroslav@67
   578
    private final double value;
jaroslav@67
   579
jaroslav@67
   580
    /**
jaroslav@67
   581
     * Constructs a newly allocated {@code Double} object that
jaroslav@67
   582
     * represents the primitive {@code double} argument.
jaroslav@67
   583
     *
jaroslav@67
   584
     * @param   value   the value to be represented by the {@code Double}.
jaroslav@67
   585
     */
jaroslav@67
   586
    public Double(double value) {
jaroslav@67
   587
        this.value = value;
jaroslav@67
   588
    }
jaroslav@67
   589
jaroslav@67
   590
    /**
jaroslav@67
   591
     * Constructs a newly allocated {@code Double} object that
jaroslav@67
   592
     * represents the floating-point value of type {@code double}
jaroslav@67
   593
     * represented by the string. The string is converted to a
jaroslav@67
   594
     * {@code double} value as if by the {@code valueOf} method.
jaroslav@67
   595
     *
jaroslav@67
   596
     * @param  s  a string to be converted to a {@code Double}.
jaroslav@67
   597
     * @throws    NumberFormatException  if the string does not contain a
jaroslav@67
   598
     *            parsable number.
jaroslav@67
   599
     * @see       java.lang.Double#valueOf(java.lang.String)
jaroslav@67
   600
     */
jaroslav@67
   601
    public Double(String s) throws NumberFormatException {
jaroslav@67
   602
        // REMIND: this is inefficient
jaroslav@67
   603
        this(valueOf(s).doubleValue());
jaroslav@67
   604
    }
jaroslav@67
   605
jaroslav@67
   606
    /**
jaroslav@67
   607
     * Returns {@code true} if this {@code Double} value is
jaroslav@67
   608
     * a Not-a-Number (NaN), {@code false} otherwise.
jaroslav@67
   609
     *
jaroslav@67
   610
     * @return  {@code true} if the value represented by this object is
jaroslav@67
   611
     *          NaN; {@code false} otherwise.
jaroslav@67
   612
     */
jaroslav@67
   613
    public boolean isNaN() {
jaroslav@67
   614
        return isNaN(value);
jaroslav@67
   615
    }
jaroslav@67
   616
jaroslav@67
   617
    /**
jaroslav@67
   618
     * Returns {@code true} if this {@code Double} value is
jaroslav@67
   619
     * infinitely large in magnitude, {@code false} otherwise.
jaroslav@67
   620
     *
jaroslav@67
   621
     * @return  {@code true} if the value represented by this object is
jaroslav@67
   622
     *          positive infinity or negative infinity;
jaroslav@67
   623
     *          {@code false} otherwise.
jaroslav@67
   624
     */
jaroslav@67
   625
    public boolean isInfinite() {
jaroslav@67
   626
        return isInfinite(value);
jaroslav@67
   627
    }
jaroslav@67
   628
jaroslav@67
   629
    /**
jaroslav@67
   630
     * Returns a string representation of this {@code Double} object.
jaroslav@67
   631
     * The primitive {@code double} value represented by this
jaroslav@67
   632
     * object is converted to a string exactly as if by the method
jaroslav@67
   633
     * {@code toString} of one argument.
jaroslav@67
   634
     *
jaroslav@67
   635
     * @return  a {@code String} representation of this object.
jaroslav@67
   636
     * @see java.lang.Double#toString(double)
jaroslav@67
   637
     */
jaroslav@67
   638
    public String toString() {
jaroslav@67
   639
        return toString(value);
jaroslav@67
   640
    }
jaroslav@67
   641
jaroslav@67
   642
    /**
jaroslav@67
   643
     * Returns the value of this {@code Double} as a {@code byte} (by
jaroslav@67
   644
     * casting to a {@code byte}).
jaroslav@67
   645
     *
jaroslav@67
   646
     * @return  the {@code double} value represented by this object
jaroslav@67
   647
     *          converted to type {@code byte}
jaroslav@67
   648
     * @since JDK1.1
jaroslav@67
   649
     */
jaroslav@67
   650
    public byte byteValue() {
jaroslav@67
   651
        return (byte)value;
jaroslav@67
   652
    }
jaroslav@67
   653
jaroslav@67
   654
    /**
jaroslav@67
   655
     * Returns the value of this {@code Double} as a
jaroslav@67
   656
     * {@code short} (by casting to a {@code short}).
jaroslav@67
   657
     *
jaroslav@67
   658
     * @return  the {@code double} value represented by this object
jaroslav@67
   659
     *          converted to type {@code short}
jaroslav@67
   660
     * @since JDK1.1
jaroslav@67
   661
     */
jaroslav@67
   662
    public short shortValue() {
jaroslav@67
   663
        return (short)value;
jaroslav@67
   664
    }
jaroslav@67
   665
jaroslav@67
   666
    /**
jaroslav@67
   667
     * Returns the value of this {@code Double} as an
jaroslav@67
   668
     * {@code int} (by casting to type {@code int}).
jaroslav@67
   669
     *
jaroslav@67
   670
     * @return  the {@code double} value represented by this object
jaroslav@67
   671
     *          converted to type {@code int}
jaroslav@67
   672
     */
jaroslav@67
   673
    public int intValue() {
jaroslav@67
   674
        return (int)value;
jaroslav@67
   675
    }
jaroslav@67
   676
jaroslav@67
   677
    /**
jaroslav@67
   678
     * Returns the value of this {@code Double} as a
jaroslav@67
   679
     * {@code long} (by casting to type {@code long}).
jaroslav@67
   680
     *
jaroslav@67
   681
     * @return  the {@code double} value represented by this object
jaroslav@67
   682
     *          converted to type {@code long}
jaroslav@67
   683
     */
jaroslav@67
   684
    public long longValue() {
jaroslav@67
   685
        return (long)value;
jaroslav@67
   686
    }
jaroslav@67
   687
jaroslav@67
   688
    /**
jaroslav@67
   689
     * Returns the {@code float} value of this
jaroslav@67
   690
     * {@code Double} object.
jaroslav@67
   691
     *
jaroslav@67
   692
     * @return  the {@code double} value represented by this object
jaroslav@67
   693
     *          converted to type {@code float}
jaroslav@67
   694
     * @since JDK1.0
jaroslav@67
   695
     */
jaroslav@67
   696
    public float floatValue() {
jaroslav@67
   697
        return (float)value;
jaroslav@67
   698
    }
jaroslav@67
   699
jaroslav@67
   700
    /**
jaroslav@67
   701
     * Returns the {@code double} value of this
jaroslav@67
   702
     * {@code Double} object.
jaroslav@67
   703
     *
jaroslav@67
   704
     * @return the {@code double} value represented by this object
jaroslav@67
   705
     */
jaroslav@67
   706
    public double doubleValue() {
jaroslav@67
   707
        return (double)value;
jaroslav@67
   708
    }
jaroslav@67
   709
jaroslav@67
   710
    /**
jaroslav@67
   711
     * Returns a hash code for this {@code Double} object. The
jaroslav@67
   712
     * result is the exclusive OR of the two halves of the
jaroslav@67
   713
     * {@code long} integer bit representation, exactly as
jaroslav@67
   714
     * produced by the method {@link #doubleToLongBits(double)}, of
jaroslav@67
   715
     * the primitive {@code double} value represented by this
jaroslav@67
   716
     * {@code Double} object. That is, the hash code is the value
jaroslav@67
   717
     * of the expression:
jaroslav@67
   718
     *
jaroslav@67
   719
     * <blockquote>
jaroslav@67
   720
     *  {@code (int)(v^(v>>>32))}
jaroslav@67
   721
     * </blockquote>
jaroslav@67
   722
     *
jaroslav@67
   723
     * where {@code v} is defined by:
jaroslav@67
   724
     *
jaroslav@67
   725
     * <blockquote>
jaroslav@67
   726
     *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
jaroslav@67
   727
     * </blockquote>
jaroslav@67
   728
     *
jaroslav@67
   729
     * @return  a {@code hash code} value for this object.
jaroslav@67
   730
     */
jaroslav@67
   731
    public int hashCode() {
jaroslav@67
   732
        long bits = doubleToLongBits(value);
jaroslav@67
   733
        return (int)(bits ^ (bits >>> 32));
jaroslav@67
   734
    }
jaroslav@67
   735
jaroslav@67
   736
    /**
jaroslav@67
   737
     * Compares this object against the specified object.  The result
jaroslav@67
   738
     * is {@code true} if and only if the argument is not
jaroslav@67
   739
     * {@code null} and is a {@code Double} object that
jaroslav@67
   740
     * represents a {@code double} that has the same value as the
jaroslav@67
   741
     * {@code double} represented by this object. For this
jaroslav@67
   742
     * purpose, two {@code double} values are considered to be
jaroslav@67
   743
     * the same if and only if the method {@link
jaroslav@67
   744
     * #doubleToLongBits(double)} returns the identical
jaroslav@67
   745
     * {@code long} value when applied to each.
jaroslav@67
   746
     *
jaroslav@67
   747
     * <p>Note that in most cases, for two instances of class
jaroslav@67
   748
     * {@code Double}, {@code d1} and {@code d2}, the
jaroslav@67
   749
     * value of {@code d1.equals(d2)} is {@code true} if and
jaroslav@67
   750
     * only if
jaroslav@67
   751
     *
jaroslav@67
   752
     * <blockquote>
jaroslav@67
   753
     *  {@code d1.doubleValue() == d2.doubleValue()}
jaroslav@67
   754
     * </blockquote>
jaroslav@67
   755
     *
jaroslav@67
   756
     * <p>also has the value {@code true}. However, there are two
jaroslav@67
   757
     * exceptions:
jaroslav@67
   758
     * <ul>
jaroslav@67
   759
     * <li>If {@code d1} and {@code d2} both represent
jaroslav@67
   760
     *     {@code Double.NaN}, then the {@code equals} method
jaroslav@67
   761
     *     returns {@code true}, even though
jaroslav@67
   762
     *     {@code Double.NaN==Double.NaN} has the value
jaroslav@67
   763
     *     {@code false}.
jaroslav@67
   764
     * <li>If {@code d1} represents {@code +0.0} while
jaroslav@67
   765
     *     {@code d2} represents {@code -0.0}, or vice versa,
jaroslav@67
   766
     *     the {@code equal} test has the value {@code false},
jaroslav@67
   767
     *     even though {@code +0.0==-0.0} has the value {@code true}.
jaroslav@67
   768
     * </ul>
jaroslav@67
   769
     * This definition allows hash tables to operate properly.
jaroslav@67
   770
     * @param   obj   the object to compare with.
jaroslav@67
   771
     * @return  {@code true} if the objects are the same;
jaroslav@67
   772
     *          {@code false} otherwise.
jaroslav@67
   773
     * @see java.lang.Double#doubleToLongBits(double)
jaroslav@67
   774
     */
jaroslav@67
   775
    public boolean equals(Object obj) {
jaroslav@67
   776
        return (obj instanceof Double)
jaroslav@497
   777
               && (((Double)obj).value) == value;
jaroslav@67
   778
    }
jaroslav@67
   779
jaroslav@67
   780
    /**
jaroslav@67
   781
     * Returns a representation of the specified floating-point value
jaroslav@67
   782
     * according to the IEEE 754 floating-point "double
jaroslav@67
   783
     * format" bit layout.
jaroslav@67
   784
     *
jaroslav@67
   785
     * <p>Bit 63 (the bit that is selected by the mask
jaroslav@67
   786
     * {@code 0x8000000000000000L}) represents the sign of the
jaroslav@67
   787
     * floating-point number. Bits
jaroslav@67
   788
     * 62-52 (the bits that are selected by the mask
jaroslav@67
   789
     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
jaroslav@67
   790
     * (the bits that are selected by the mask
jaroslav@67
   791
     * {@code 0x000fffffffffffffL}) represent the significand
jaroslav@67
   792
     * (sometimes called the mantissa) of the floating-point number.
jaroslav@67
   793
     *
jaroslav@67
   794
     * <p>If the argument is positive infinity, the result is
jaroslav@67
   795
     * {@code 0x7ff0000000000000L}.
jaroslav@67
   796
     *
jaroslav@67
   797
     * <p>If the argument is negative infinity, the result is
jaroslav@67
   798
     * {@code 0xfff0000000000000L}.
jaroslav@67
   799
     *
jaroslav@67
   800
     * <p>If the argument is NaN, the result is
jaroslav@67
   801
     * {@code 0x7ff8000000000000L}.
jaroslav@67
   802
     *
jaroslav@67
   803
     * <p>In all cases, the result is a {@code long} integer that, when
jaroslav@67
   804
     * given to the {@link #longBitsToDouble(long)} method, will produce a
jaroslav@67
   805
     * floating-point value the same as the argument to
jaroslav@67
   806
     * {@code doubleToLongBits} (except all NaN values are
jaroslav@67
   807
     * collapsed to a single "canonical" NaN value).
jaroslav@67
   808
     *
jaroslav@67
   809
     * @param   value   a {@code double} precision floating-point number.
jaroslav@67
   810
     * @return the bits that represent the floating-point number.
jaroslav@67
   811
     */
jaroslav@67
   812
    public static long doubleToLongBits(double value) {
jaroslav@84
   813
        throw new UnsupportedOperationException();
jaroslav@84
   814
//        long result = doubleToRawLongBits(value);
jaroslav@84
   815
//        // Check for NaN based on values of bit fields, maximum
jaroslav@84
   816
//        // exponent and nonzero significand.
jaroslav@84
   817
//        if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
jaroslav@84
   818
//              DoubleConsts.EXP_BIT_MASK) &&
jaroslav@84
   819
//             (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
jaroslav@84
   820
//            result = 0x7ff8000000000000L;
jaroslav@84
   821
//        return result;
jaroslav@67
   822
    }
jaroslav@67
   823
jaroslav@67
   824
    /**
jaroslav@67
   825
     * Returns a representation of the specified floating-point value
jaroslav@67
   826
     * according to the IEEE 754 floating-point "double
jaroslav@67
   827
     * format" bit layout, preserving Not-a-Number (NaN) values.
jaroslav@67
   828
     *
jaroslav@67
   829
     * <p>Bit 63 (the bit that is selected by the mask
jaroslav@67
   830
     * {@code 0x8000000000000000L}) represents the sign of the
jaroslav@67
   831
     * floating-point number. Bits
jaroslav@67
   832
     * 62-52 (the bits that are selected by the mask
jaroslav@67
   833
     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
jaroslav@67
   834
     * (the bits that are selected by the mask
jaroslav@67
   835
     * {@code 0x000fffffffffffffL}) represent the significand
jaroslav@67
   836
     * (sometimes called the mantissa) of the floating-point number.
jaroslav@67
   837
     *
jaroslav@67
   838
     * <p>If the argument is positive infinity, the result is
jaroslav@67
   839
     * {@code 0x7ff0000000000000L}.
jaroslav@67
   840
     *
jaroslav@67
   841
     * <p>If the argument is negative infinity, the result is
jaroslav@67
   842
     * {@code 0xfff0000000000000L}.
jaroslav@67
   843
     *
jaroslav@67
   844
     * <p>If the argument is NaN, the result is the {@code long}
jaroslav@67
   845
     * integer representing the actual NaN value.  Unlike the
jaroslav@67
   846
     * {@code doubleToLongBits} method,
jaroslav@67
   847
     * {@code doubleToRawLongBits} does not collapse all the bit
jaroslav@67
   848
     * patterns encoding a NaN to a single "canonical" NaN
jaroslav@67
   849
     * value.
jaroslav@67
   850
     *
jaroslav@67
   851
     * <p>In all cases, the result is a {@code long} integer that,
jaroslav@67
   852
     * when given to the {@link #longBitsToDouble(long)} method, will
jaroslav@67
   853
     * produce a floating-point value the same as the argument to
jaroslav@67
   854
     * {@code doubleToRawLongBits}.
jaroslav@67
   855
     *
jaroslav@67
   856
     * @param   value   a {@code double} precision floating-point number.
jaroslav@67
   857
     * @return the bits that represent the floating-point number.
jaroslav@67
   858
     * @since 1.3
jaroslav@67
   859
     */
jaroslav@67
   860
    public static native long doubleToRawLongBits(double value);
jaroslav@67
   861
jaroslav@67
   862
    /**
jaroslav@67
   863
     * Returns the {@code double} value corresponding to a given
jaroslav@67
   864
     * bit representation.
jaroslav@67
   865
     * The argument is considered to be a representation of a
jaroslav@67
   866
     * floating-point value according to the IEEE 754 floating-point
jaroslav@67
   867
     * "double format" bit layout.
jaroslav@67
   868
     *
jaroslav@67
   869
     * <p>If the argument is {@code 0x7ff0000000000000L}, the result
jaroslav@67
   870
     * is positive infinity.
jaroslav@67
   871
     *
jaroslav@67
   872
     * <p>If the argument is {@code 0xfff0000000000000L}, the result
jaroslav@67
   873
     * is negative infinity.
jaroslav@67
   874
     *
jaroslav@67
   875
     * <p>If the argument is any value in the range
jaroslav@67
   876
     * {@code 0x7ff0000000000001L} through
jaroslav@67
   877
     * {@code 0x7fffffffffffffffL} or in the range
jaroslav@67
   878
     * {@code 0xfff0000000000001L} through
jaroslav@67
   879
     * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
jaroslav@67
   880
     * 754 floating-point operation provided by Java can distinguish
jaroslav@67
   881
     * between two NaN values of the same type with different bit
jaroslav@67
   882
     * patterns.  Distinct values of NaN are only distinguishable by
jaroslav@67
   883
     * use of the {@code Double.doubleToRawLongBits} method.
jaroslav@67
   884
     *
jaroslav@67
   885
     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
jaroslav@67
   886
     * values that can be computed from the argument:
jaroslav@67
   887
     *
jaroslav@67
   888
     * <blockquote><pre>
jaroslav@67
   889
     * int s = ((bits &gt;&gt; 63) == 0) ? 1 : -1;
jaroslav@67
   890
     * int e = (int)((bits &gt;&gt; 52) & 0x7ffL);
jaroslav@67
   891
     * long m = (e == 0) ?
jaroslav@67
   892
     *                 (bits & 0xfffffffffffffL) &lt;&lt; 1 :
jaroslav@67
   893
     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
jaroslav@67
   894
     * </pre></blockquote>
jaroslav@67
   895
     *
jaroslav@67
   896
     * Then the floating-point result equals the value of the mathematical
jaroslav@67
   897
     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
jaroslav@67
   898
     *
jaroslav@67
   899
     * <p>Note that this method may not be able to return a
jaroslav@67
   900
     * {@code double} NaN with exactly same bit pattern as the
jaroslav@67
   901
     * {@code long} argument.  IEEE 754 distinguishes between two
jaroslav@67
   902
     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
jaroslav@67
   903
     * differences between the two kinds of NaN are generally not
jaroslav@67
   904
     * visible in Java.  Arithmetic operations on signaling NaNs turn
jaroslav@67
   905
     * them into quiet NaNs with a different, but often similar, bit
jaroslav@67
   906
     * pattern.  However, on some processors merely copying a
jaroslav@67
   907
     * signaling NaN also performs that conversion.  In particular,
jaroslav@67
   908
     * copying a signaling NaN to return it to the calling method
jaroslav@67
   909
     * may perform this conversion.  So {@code longBitsToDouble}
jaroslav@67
   910
     * may not be able to return a {@code double} with a
jaroslav@67
   911
     * signaling NaN bit pattern.  Consequently, for some
jaroslav@67
   912
     * {@code long} values,
jaroslav@67
   913
     * {@code doubleToRawLongBits(longBitsToDouble(start))} may
jaroslav@67
   914
     * <i>not</i> equal {@code start}.  Moreover, which
jaroslav@67
   915
     * particular bit patterns represent signaling NaNs is platform
jaroslav@67
   916
     * dependent; although all NaN bit patterns, quiet or signaling,
jaroslav@67
   917
     * must be in the NaN range identified above.
jaroslav@67
   918
     *
jaroslav@67
   919
     * @param   bits   any {@code long} integer.
jaroslav@67
   920
     * @return  the {@code double} floating-point value with the same
jaroslav@67
   921
     *          bit pattern.
jaroslav@67
   922
     */
jaroslav@67
   923
    public static native double longBitsToDouble(long bits);
jaroslav@67
   924
jaroslav@67
   925
    /**
jaroslav@67
   926
     * Compares two {@code Double} objects numerically.  There
jaroslav@67
   927
     * are two ways in which comparisons performed by this method
jaroslav@67
   928
     * differ from those performed by the Java language numerical
jaroslav@67
   929
     * comparison operators ({@code <, <=, ==, >=, >})
jaroslav@67
   930
     * when applied to primitive {@code double} values:
jaroslav@67
   931
     * <ul><li>
jaroslav@67
   932
     *          {@code Double.NaN} is considered by this method
jaroslav@67
   933
     *          to be equal to itself and greater than all other
jaroslav@67
   934
     *          {@code double} values (including
jaroslav@67
   935
     *          {@code Double.POSITIVE_INFINITY}).
jaroslav@67
   936
     * <li>
jaroslav@67
   937
     *          {@code 0.0d} is considered by this method to be greater
jaroslav@67
   938
     *          than {@code -0.0d}.
jaroslav@67
   939
     * </ul>
jaroslav@67
   940
     * This ensures that the <i>natural ordering</i> of
jaroslav@67
   941
     * {@code Double} objects imposed by this method is <i>consistent
jaroslav@67
   942
     * with equals</i>.
jaroslav@67
   943
     *
jaroslav@67
   944
     * @param   anotherDouble   the {@code Double} to be compared.
jaroslav@67
   945
     * @return  the value {@code 0} if {@code anotherDouble} is
jaroslav@67
   946
     *          numerically equal to this {@code Double}; a value
jaroslav@67
   947
     *          less than {@code 0} if this {@code Double}
jaroslav@67
   948
     *          is numerically less than {@code anotherDouble};
jaroslav@67
   949
     *          and a value greater than {@code 0} if this
jaroslav@67
   950
     *          {@code Double} is numerically greater than
jaroslav@67
   951
     *          {@code anotherDouble}.
jaroslav@67
   952
     *
jaroslav@67
   953
     * @since   1.2
jaroslav@67
   954
     */
jaroslav@67
   955
    public int compareTo(Double anotherDouble) {
jaroslav@67
   956
        return Double.compare(value, anotherDouble.value);
jaroslav@67
   957
    }
jaroslav@67
   958
jaroslav@67
   959
    /**
jaroslav@67
   960
     * Compares the two specified {@code double} values. The sign
jaroslav@67
   961
     * of the integer value returned is the same as that of the
jaroslav@67
   962
     * integer that would be returned by the call:
jaroslav@67
   963
     * <pre>
jaroslav@67
   964
     *    new Double(d1).compareTo(new Double(d2))
jaroslav@67
   965
     * </pre>
jaroslav@67
   966
     *
jaroslav@67
   967
     * @param   d1        the first {@code double} to compare
jaroslav@67
   968
     * @param   d2        the second {@code double} to compare
jaroslav@67
   969
     * @return  the value {@code 0} if {@code d1} is
jaroslav@67
   970
     *          numerically equal to {@code d2}; a value less than
jaroslav@67
   971
     *          {@code 0} if {@code d1} is numerically less than
jaroslav@67
   972
     *          {@code d2}; and a value greater than {@code 0}
jaroslav@67
   973
     *          if {@code d1} is numerically greater than
jaroslav@67
   974
     *          {@code d2}.
jaroslav@67
   975
     * @since 1.4
jaroslav@67
   976
     */
jaroslav@67
   977
    public static int compare(double d1, double d2) {
jaroslav@67
   978
        if (d1 < d2)
jaroslav@67
   979
            return -1;           // Neither val is NaN, thisVal is smaller
jaroslav@67
   980
        if (d1 > d2)
jaroslav@67
   981
            return 1;            // Neither val is NaN, thisVal is larger
jaroslav@67
   982
jaroslav@67
   983
        // Cannot use doubleToRawLongBits because of possibility of NaNs.
jaroslav@67
   984
        long thisBits    = Double.doubleToLongBits(d1);
jaroslav@67
   985
        long anotherBits = Double.doubleToLongBits(d2);
jaroslav@67
   986
jaroslav@67
   987
        return (thisBits == anotherBits ?  0 : // Values are equal
jaroslav@67
   988
                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
jaroslav@67
   989
                 1));                          // (0.0, -0.0) or (NaN, !NaN)
jaroslav@67
   990
    }
jaroslav@67
   991
jaroslav@67
   992
    /** use serialVersionUID from JDK 1.0.2 for interoperability */
jaroslav@67
   993
    private static final long serialVersionUID = -9172774392245257468L;
jaroslav@67
   994
}