emul/mini/src/main/java/java/lang/Float.java
branchemul
changeset 554 05224402145d
parent 187 391a5d25c0e1
child 752 cc3871bdd83c
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/emul/mini/src/main/java/java/lang/Float.java	Wed Jan 23 20:39:23 2013 +0100
     1.3 @@ -0,0 +1,905 @@
     1.4 +/*
     1.5 + * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.lang;
    1.30 +
    1.31 +import org.apidesign.bck2brwsr.core.JavaScriptBody;
    1.32 +
    1.33 +/**
    1.34 + * The {@code Float} class wraps a value of primitive type
    1.35 + * {@code float} in an object. An object of type
    1.36 + * {@code Float} contains a single field whose type is
    1.37 + * {@code float}.
    1.38 + *
    1.39 + * <p>In addition, this class provides several methods for converting a
    1.40 + * {@code float} to a {@code String} and a
    1.41 + * {@code String} to a {@code float}, as well as other
    1.42 + * constants and methods useful when dealing with a
    1.43 + * {@code float}.
    1.44 + *
    1.45 + * @author  Lee Boynton
    1.46 + * @author  Arthur van Hoff
    1.47 + * @author  Joseph D. Darcy
    1.48 + * @since JDK1.0
    1.49 + */
    1.50 +public final class Float extends Number implements Comparable<Float> {
    1.51 +    /**
    1.52 +     * A constant holding the positive infinity of type
    1.53 +     * {@code float}. It is equal to the value returned by
    1.54 +     * {@code Float.intBitsToFloat(0x7f800000)}.
    1.55 +     */
    1.56 +    public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
    1.57 +
    1.58 +    /**
    1.59 +     * A constant holding the negative infinity of type
    1.60 +     * {@code float}. It is equal to the value returned by
    1.61 +     * {@code Float.intBitsToFloat(0xff800000)}.
    1.62 +     */
    1.63 +    public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
    1.64 +
    1.65 +    /**
    1.66 +     * A constant holding a Not-a-Number (NaN) value of type
    1.67 +     * {@code float}.  It is equivalent to the value returned by
    1.68 +     * {@code Float.intBitsToFloat(0x7fc00000)}.
    1.69 +     */
    1.70 +    public static final float NaN = 0.0f / 0.0f;
    1.71 +
    1.72 +    /**
    1.73 +     * A constant holding the largest positive finite value of type
    1.74 +     * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
    1.75 +     * It is equal to the hexadecimal floating-point literal
    1.76 +     * {@code 0x1.fffffeP+127f} and also equal to
    1.77 +     * {@code Float.intBitsToFloat(0x7f7fffff)}.
    1.78 +     */
    1.79 +    public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
    1.80 +
    1.81 +    /**
    1.82 +     * A constant holding the smallest positive normal value of type
    1.83 +     * {@code float}, 2<sup>-126</sup>.  It is equal to the
    1.84 +     * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
    1.85 +     * equal to {@code Float.intBitsToFloat(0x00800000)}.
    1.86 +     *
    1.87 +     * @since 1.6
    1.88 +     */
    1.89 +    public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
    1.90 +
    1.91 +    /**
    1.92 +     * A constant holding the smallest positive nonzero value of type
    1.93 +     * {@code float}, 2<sup>-149</sup>. It is equal to the
    1.94 +     * hexadecimal floating-point literal {@code 0x0.000002P-126f}
    1.95 +     * and also equal to {@code Float.intBitsToFloat(0x1)}.
    1.96 +     */
    1.97 +    public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
    1.98 +
    1.99 +    /**
   1.100 +     * Maximum exponent a finite {@code float} variable may have.  It
   1.101 +     * is equal to the value returned by {@code
   1.102 +     * Math.getExponent(Float.MAX_VALUE)}.
   1.103 +     *
   1.104 +     * @since 1.6
   1.105 +     */
   1.106 +    public static final int MAX_EXPONENT = 127;
   1.107 +
   1.108 +    /**
   1.109 +     * Minimum exponent a normalized {@code float} variable may have.
   1.110 +     * It is equal to the value returned by {@code
   1.111 +     * Math.getExponent(Float.MIN_NORMAL)}.
   1.112 +     *
   1.113 +     * @since 1.6
   1.114 +     */
   1.115 +    public static final int MIN_EXPONENT = -126;
   1.116 +
   1.117 +    /**
   1.118 +     * The number of bits used to represent a {@code float} value.
   1.119 +     *
   1.120 +     * @since 1.5
   1.121 +     */
   1.122 +    public static final int SIZE = 32;
   1.123 +
   1.124 +    /**
   1.125 +     * The {@code Class} instance representing the primitive type
   1.126 +     * {@code float}.
   1.127 +     *
   1.128 +     * @since JDK1.1
   1.129 +     */
   1.130 +    public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
   1.131 +
   1.132 +    /**
   1.133 +     * Returns a string representation of the {@code float}
   1.134 +     * argument. All characters mentioned below are ASCII characters.
   1.135 +     * <ul>
   1.136 +     * <li>If the argument is NaN, the result is the string
   1.137 +     * "{@code NaN}".
   1.138 +     * <li>Otherwise, the result is a string that represents the sign and
   1.139 +     *     magnitude (absolute value) of the argument. If the sign is
   1.140 +     *     negative, the first character of the result is
   1.141 +     *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
   1.142 +     *     positive, no sign character appears in the result. As for
   1.143 +     *     the magnitude <i>m</i>:
   1.144 +     * <ul>
   1.145 +     * <li>If <i>m</i> is infinity, it is represented by the characters
   1.146 +     *     {@code "Infinity"}; thus, positive infinity produces
   1.147 +     *     the result {@code "Infinity"} and negative infinity
   1.148 +     *     produces the result {@code "-Infinity"}.
   1.149 +     * <li>If <i>m</i> is zero, it is represented by the characters
   1.150 +     *     {@code "0.0"}; thus, negative zero produces the result
   1.151 +     *     {@code "-0.0"} and positive zero produces the result
   1.152 +     *     {@code "0.0"}.
   1.153 +     * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
   1.154 +     *      less than 10<sup>7</sup>, then it is represented as the
   1.155 +     *      integer part of <i>m</i>, in decimal form with no leading
   1.156 +     *      zeroes, followed by '{@code .}'
   1.157 +     *      (<code>'&#92;u002E'</code>), followed by one or more
   1.158 +     *      decimal digits representing the fractional part of
   1.159 +     *      <i>m</i>.
   1.160 +     * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
   1.161 +     *      equal to 10<sup>7</sup>, then it is represented in
   1.162 +     *      so-called "computerized scientific notation." Let <i>n</i>
   1.163 +     *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
   1.164 +     *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
   1.165 +     *      be the mathematically exact quotient of <i>m</i> and
   1.166 +     *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
   1.167 +     *      The magnitude is then represented as the integer part of
   1.168 +     *      <i>a</i>, as a single decimal digit, followed by
   1.169 +     *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
   1.170 +     *      decimal digits representing the fractional part of
   1.171 +     *      <i>a</i>, followed by the letter '{@code E}'
   1.172 +     *      (<code>'&#92;u0045'</code>), followed by a representation
   1.173 +     *      of <i>n</i> as a decimal integer, as produced by the
   1.174 +     *      method {@link java.lang.Integer#toString(int)}.
   1.175 +     *
   1.176 +     * </ul>
   1.177 +     * </ul>
   1.178 +     * How many digits must be printed for the fractional part of
   1.179 +     * <i>m</i> or <i>a</i>? There must be at least one digit
   1.180 +     * to represent the fractional part, and beyond that as many, but
   1.181 +     * only as many, more digits as are needed to uniquely distinguish
   1.182 +     * the argument value from adjacent values of type
   1.183 +     * {@code float}. That is, suppose that <i>x</i> is the
   1.184 +     * exact mathematical value represented by the decimal
   1.185 +     * representation produced by this method for a finite nonzero
   1.186 +     * argument <i>f</i>. Then <i>f</i> must be the {@code float}
   1.187 +     * value nearest to <i>x</i>; or, if two {@code float} values are
   1.188 +     * equally close to <i>x</i>, then <i>f</i> must be one of
   1.189 +     * them and the least significant bit of the significand of
   1.190 +     * <i>f</i> must be {@code 0}.
   1.191 +     *
   1.192 +     * <p>To create localized string representations of a floating-point
   1.193 +     * value, use subclasses of {@link java.text.NumberFormat}.
   1.194 +     *
   1.195 +     * @param   f   the float to be converted.
   1.196 +     * @return a string representation of the argument.
   1.197 +     */
   1.198 +    public static String toString(float f) {
   1.199 +        return Double.toString(f);
   1.200 +    }
   1.201 +
   1.202 +    /**
   1.203 +     * Returns a hexadecimal string representation of the
   1.204 +     * {@code float} argument. All characters mentioned below are
   1.205 +     * ASCII characters.
   1.206 +     *
   1.207 +     * <ul>
   1.208 +     * <li>If the argument is NaN, the result is the string
   1.209 +     *     "{@code NaN}".
   1.210 +     * <li>Otherwise, the result is a string that represents the sign and
   1.211 +     * magnitude (absolute value) of the argument. If the sign is negative,
   1.212 +     * the first character of the result is '{@code -}'
   1.213 +     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
   1.214 +     * appears in the result. As for the magnitude <i>m</i>:
   1.215 +     *
   1.216 +     * <ul>
   1.217 +     * <li>If <i>m</i> is infinity, it is represented by the string
   1.218 +     * {@code "Infinity"}; thus, positive infinity produces the
   1.219 +     * result {@code "Infinity"} and negative infinity produces
   1.220 +     * the result {@code "-Infinity"}.
   1.221 +     *
   1.222 +     * <li>If <i>m</i> is zero, it is represented by the string
   1.223 +     * {@code "0x0.0p0"}; thus, negative zero produces the result
   1.224 +     * {@code "-0x0.0p0"} and positive zero produces the result
   1.225 +     * {@code "0x0.0p0"}.
   1.226 +     *
   1.227 +     * <li>If <i>m</i> is a {@code float} value with a
   1.228 +     * normalized representation, substrings are used to represent the
   1.229 +     * significand and exponent fields.  The significand is
   1.230 +     * represented by the characters {@code "0x1."}
   1.231 +     * followed by a lowercase hexadecimal representation of the rest
   1.232 +     * of the significand as a fraction.  Trailing zeros in the
   1.233 +     * hexadecimal representation are removed unless all the digits
   1.234 +     * are zero, in which case a single zero is used. Next, the
   1.235 +     * exponent is represented by {@code "p"} followed
   1.236 +     * by a decimal string of the unbiased exponent as if produced by
   1.237 +     * a call to {@link Integer#toString(int) Integer.toString} on the
   1.238 +     * exponent value.
   1.239 +     *
   1.240 +     * <li>If <i>m</i> is a {@code float} value with a subnormal
   1.241 +     * representation, the significand is represented by the
   1.242 +     * characters {@code "0x0."} followed by a
   1.243 +     * hexadecimal representation of the rest of the significand as a
   1.244 +     * fraction.  Trailing zeros in the hexadecimal representation are
   1.245 +     * removed. Next, the exponent is represented by
   1.246 +     * {@code "p-126"}.  Note that there must be at
   1.247 +     * least one nonzero digit in a subnormal significand.
   1.248 +     *
   1.249 +     * </ul>
   1.250 +     *
   1.251 +     * </ul>
   1.252 +     *
   1.253 +     * <table border>
   1.254 +     * <caption><h3>Examples</h3></caption>
   1.255 +     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
   1.256 +     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
   1.257 +     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
   1.258 +     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
   1.259 +     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
   1.260 +     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
   1.261 +     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
   1.262 +     * <tr><td>{@code Float.MAX_VALUE}</td>
   1.263 +     *     <td>{@code 0x1.fffffep127}</td>
   1.264 +     * <tr><td>{@code Minimum Normal Value}</td>
   1.265 +     *     <td>{@code 0x1.0p-126}</td>
   1.266 +     * <tr><td>{@code Maximum Subnormal Value}</td>
   1.267 +     *     <td>{@code 0x0.fffffep-126}</td>
   1.268 +     * <tr><td>{@code Float.MIN_VALUE}</td>
   1.269 +     *     <td>{@code 0x0.000002p-126}</td>
   1.270 +     * </table>
   1.271 +     * @param   f   the {@code float} to be converted.
   1.272 +     * @return a hex string representation of the argument.
   1.273 +     * @since 1.5
   1.274 +     * @author Joseph D. Darcy
   1.275 +     */
   1.276 +    public static String toHexString(float f) {
   1.277 +        throw new UnsupportedOperationException();
   1.278 +//        if (Math.abs(f) < FloatConsts.MIN_NORMAL
   1.279 +//            &&  f != 0.0f ) {// float subnormal
   1.280 +//            // Adjust exponent to create subnormal double, then
   1.281 +//            // replace subnormal double exponent with subnormal float
   1.282 +//            // exponent
   1.283 +//            String s = Double.toHexString(FpUtils.scalb((double)f,
   1.284 +//                                                        /* -1022+126 */
   1.285 +//                                                        DoubleConsts.MIN_EXPONENT-
   1.286 +//                                                        FloatConsts.MIN_EXPONENT));
   1.287 +//            return s.replaceFirst("p-1022$", "p-126");
   1.288 +//        }
   1.289 +//        else // double string will be the same as float string
   1.290 +//            return Double.toHexString(f);
   1.291 +    }
   1.292 +
   1.293 +    /**
   1.294 +     * Returns a {@code Float} object holding the
   1.295 +     * {@code float} value represented by the argument string
   1.296 +     * {@code s}.
   1.297 +     *
   1.298 +     * <p>If {@code s} is {@code null}, then a
   1.299 +     * {@code NullPointerException} is thrown.
   1.300 +     *
   1.301 +     * <p>Leading and trailing whitespace characters in {@code s}
   1.302 +     * are ignored.  Whitespace is removed as if by the {@link
   1.303 +     * String#trim} method; that is, both ASCII space and control
   1.304 +     * characters are removed. The rest of {@code s} should
   1.305 +     * constitute a <i>FloatValue</i> as described by the lexical
   1.306 +     * syntax rules:
   1.307 +     *
   1.308 +     * <blockquote>
   1.309 +     * <dl>
   1.310 +     * <dt><i>FloatValue:</i>
   1.311 +     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
   1.312 +     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
   1.313 +     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
   1.314 +     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
   1.315 +     * <dd><i>SignedInteger</i>
   1.316 +     * </dl>
   1.317 +     *
   1.318 +     * <p>
   1.319 +     *
   1.320 +     * <dl>
   1.321 +     * <dt><i>HexFloatingPointLiteral</i>:
   1.322 +     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
   1.323 +     * </dl>
   1.324 +     *
   1.325 +     * <p>
   1.326 +     *
   1.327 +     * <dl>
   1.328 +     * <dt><i>HexSignificand:</i>
   1.329 +     * <dd><i>HexNumeral</i>
   1.330 +     * <dd><i>HexNumeral</i> {@code .}
   1.331 +     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
   1.332 +     *     </i>{@code .}<i> HexDigits</i>
   1.333 +     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
   1.334 +     *     </i>{@code .} <i>HexDigits</i>
   1.335 +     * </dl>
   1.336 +     *
   1.337 +     * <p>
   1.338 +     *
   1.339 +     * <dl>
   1.340 +     * <dt><i>BinaryExponent:</i>
   1.341 +     * <dd><i>BinaryExponentIndicator SignedInteger</i>
   1.342 +     * </dl>
   1.343 +     *
   1.344 +     * <p>
   1.345 +     *
   1.346 +     * <dl>
   1.347 +     * <dt><i>BinaryExponentIndicator:</i>
   1.348 +     * <dd>{@code p}
   1.349 +     * <dd>{@code P}
   1.350 +     * </dl>
   1.351 +     *
   1.352 +     * </blockquote>
   1.353 +     *
   1.354 +     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
   1.355 +     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
   1.356 +     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
   1.357 +     * sections of
   1.358 +     * <cite>The Java&trade; Language Specification</cite>,
   1.359 +     * except that underscores are not accepted between digits.
   1.360 +     * If {@code s} does not have the form of
   1.361 +     * a <i>FloatValue</i>, then a {@code NumberFormatException}
   1.362 +     * is thrown. Otherwise, {@code s} is regarded as
   1.363 +     * representing an exact decimal value in the usual
   1.364 +     * "computerized scientific notation" or as an exact
   1.365 +     * hexadecimal value; this exact numerical value is then
   1.366 +     * conceptually converted to an "infinitely precise"
   1.367 +     * binary value that is then rounded to type {@code float}
   1.368 +     * by the usual round-to-nearest rule of IEEE 754 floating-point
   1.369 +     * arithmetic, which includes preserving the sign of a zero
   1.370 +     * value.
   1.371 +     *
   1.372 +     * Note that the round-to-nearest rule also implies overflow and
   1.373 +     * underflow behaviour; if the exact value of {@code s} is large
   1.374 +     * enough in magnitude (greater than or equal to ({@link
   1.375 +     * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
   1.376 +     * rounding to {@code float} will result in an infinity and if the
   1.377 +     * exact value of {@code s} is small enough in magnitude (less
   1.378 +     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
   1.379 +     * result in a zero.
   1.380 +     *
   1.381 +     * Finally, after rounding a {@code Float} object representing
   1.382 +     * this {@code float} value is returned.
   1.383 +     *
   1.384 +     * <p>To interpret localized string representations of a
   1.385 +     * floating-point value, use subclasses of {@link
   1.386 +     * java.text.NumberFormat}.
   1.387 +     *
   1.388 +     * <p>Note that trailing format specifiers, specifiers that
   1.389 +     * determine the type of a floating-point literal
   1.390 +     * ({@code 1.0f} is a {@code float} value;
   1.391 +     * {@code 1.0d} is a {@code double} value), do
   1.392 +     * <em>not</em> influence the results of this method.  In other
   1.393 +     * words, the numerical value of the input string is converted
   1.394 +     * directly to the target floating-point type.  In general, the
   1.395 +     * two-step sequence of conversions, string to {@code double}
   1.396 +     * followed by {@code double} to {@code float}, is
   1.397 +     * <em>not</em> equivalent to converting a string directly to
   1.398 +     * {@code float}.  For example, if first converted to an
   1.399 +     * intermediate {@code double} and then to
   1.400 +     * {@code float}, the string<br>
   1.401 +     * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
   1.402 +     * results in the {@code float} value
   1.403 +     * {@code 1.0000002f}; if the string is converted directly to
   1.404 +     * {@code float}, <code>1.000000<b>1</b>f</code> results.
   1.405 +     *
   1.406 +     * <p>To avoid calling this method on an invalid string and having
   1.407 +     * a {@code NumberFormatException} be thrown, the documentation
   1.408 +     * for {@link Double#valueOf Double.valueOf} lists a regular
   1.409 +     * expression which can be used to screen the input.
   1.410 +     *
   1.411 +     * @param   s   the string to be parsed.
   1.412 +     * @return  a {@code Float} object holding the value
   1.413 +     *          represented by the {@code String} argument.
   1.414 +     * @throws  NumberFormatException  if the string does not contain a
   1.415 +     *          parsable number.
   1.416 +     */
   1.417 +    public static Float valueOf(String s) throws NumberFormatException {
   1.418 +        throw new UnsupportedOperationException();
   1.419 +//        return new Float(FloatingDecimal.readJavaFormatString(s).floatValue());
   1.420 +    }
   1.421 +
   1.422 +    /**
   1.423 +     * Returns a {@code Float} instance representing the specified
   1.424 +     * {@code float} value.
   1.425 +     * If a new {@code Float} instance is not required, this method
   1.426 +     * should generally be used in preference to the constructor
   1.427 +     * {@link #Float(float)}, as this method is likely to yield
   1.428 +     * significantly better space and time performance by caching
   1.429 +     * frequently requested values.
   1.430 +     *
   1.431 +     * @param  f a float value.
   1.432 +     * @return a {@code Float} instance representing {@code f}.
   1.433 +     * @since  1.5
   1.434 +     */
   1.435 +    public static Float valueOf(float f) {
   1.436 +        return new Float(f);
   1.437 +    }
   1.438 +
   1.439 +    /**
   1.440 +     * Returns a new {@code float} initialized to the value
   1.441 +     * represented by the specified {@code String}, as performed
   1.442 +     * by the {@code valueOf} method of class {@code Float}.
   1.443 +     *
   1.444 +     * @param  s the string to be parsed.
   1.445 +     * @return the {@code float} value represented by the string
   1.446 +     *         argument.
   1.447 +     * @throws NullPointerException  if the string is null
   1.448 +     * @throws NumberFormatException if the string does not contain a
   1.449 +     *               parsable {@code float}.
   1.450 +     * @see    java.lang.Float#valueOf(String)
   1.451 +     * @since 1.2
   1.452 +     */
   1.453 +    public static float parseFloat(String s) throws NumberFormatException {
   1.454 +        throw new UnsupportedOperationException();
   1.455 +//        return FloatingDecimal.readJavaFormatString(s).floatValue();
   1.456 +    }
   1.457 +
   1.458 +    /**
   1.459 +     * Returns {@code true} if the specified number is a
   1.460 +     * Not-a-Number (NaN) value, {@code false} otherwise.
   1.461 +     *
   1.462 +     * @param   v   the value to be tested.
   1.463 +     * @return  {@code true} if the argument is NaN;
   1.464 +     *          {@code false} otherwise.
   1.465 +     */
   1.466 +    static public boolean isNaN(float v) {
   1.467 +        return (v != v);
   1.468 +    }
   1.469 +
   1.470 +    /**
   1.471 +     * Returns {@code true} if the specified number is infinitely
   1.472 +     * large in magnitude, {@code false} otherwise.
   1.473 +     *
   1.474 +     * @param   v   the value to be tested.
   1.475 +     * @return  {@code true} if the argument is positive infinity or
   1.476 +     *          negative infinity; {@code false} otherwise.
   1.477 +     */
   1.478 +    static public boolean isInfinite(float v) {
   1.479 +        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
   1.480 +    }
   1.481 +
   1.482 +    /**
   1.483 +     * The value of the Float.
   1.484 +     *
   1.485 +     * @serial
   1.486 +     */
   1.487 +    private final float value;
   1.488 +
   1.489 +    /**
   1.490 +     * Constructs a newly allocated {@code Float} object that
   1.491 +     * represents the primitive {@code float} argument.
   1.492 +     *
   1.493 +     * @param   value   the value to be represented by the {@code Float}.
   1.494 +     */
   1.495 +    public Float(float value) {
   1.496 +        this.value = value;
   1.497 +    }
   1.498 +
   1.499 +    /**
   1.500 +     * Constructs a newly allocated {@code Float} object that
   1.501 +     * represents the argument converted to type {@code float}.
   1.502 +     *
   1.503 +     * @param   value   the value to be represented by the {@code Float}.
   1.504 +     */
   1.505 +    public Float(double value) {
   1.506 +        this.value = (float)value;
   1.507 +    }
   1.508 +
   1.509 +    /**
   1.510 +     * Constructs a newly allocated {@code Float} object that
   1.511 +     * represents the floating-point value of type {@code float}
   1.512 +     * represented by the string. The string is converted to a
   1.513 +     * {@code float} value as if by the {@code valueOf} method.
   1.514 +     *
   1.515 +     * @param      s   a string to be converted to a {@code Float}.
   1.516 +     * @throws  NumberFormatException  if the string does not contain a
   1.517 +     *               parsable number.
   1.518 +     * @see        java.lang.Float#valueOf(java.lang.String)
   1.519 +     */
   1.520 +    public Float(String s) throws NumberFormatException {
   1.521 +        // REMIND: this is inefficient
   1.522 +        this(valueOf(s).floatValue());
   1.523 +    }
   1.524 +
   1.525 +    /**
   1.526 +     * Returns {@code true} if this {@code Float} value is a
   1.527 +     * Not-a-Number (NaN), {@code false} otherwise.
   1.528 +     *
   1.529 +     * @return  {@code true} if the value represented by this object is
   1.530 +     *          NaN; {@code false} otherwise.
   1.531 +     */
   1.532 +    public boolean isNaN() {
   1.533 +        return isNaN(value);
   1.534 +    }
   1.535 +
   1.536 +    /**
   1.537 +     * Returns {@code true} if this {@code Float} value is
   1.538 +     * infinitely large in magnitude, {@code false} otherwise.
   1.539 +     *
   1.540 +     * @return  {@code true} if the value represented by this object is
   1.541 +     *          positive infinity or negative infinity;
   1.542 +     *          {@code false} otherwise.
   1.543 +     */
   1.544 +    public boolean isInfinite() {
   1.545 +        return isInfinite(value);
   1.546 +    }
   1.547 +
   1.548 +    /**
   1.549 +     * Returns a string representation of this {@code Float} object.
   1.550 +     * The primitive {@code float} value represented by this object
   1.551 +     * is converted to a {@code String} exactly as if by the method
   1.552 +     * {@code toString} of one argument.
   1.553 +     *
   1.554 +     * @return  a {@code String} representation of this object.
   1.555 +     * @see java.lang.Float#toString(float)
   1.556 +     */
   1.557 +    public String toString() {
   1.558 +        return Float.toString(value);
   1.559 +    }
   1.560 +
   1.561 +    /**
   1.562 +     * Returns the value of this {@code Float} as a {@code byte} (by
   1.563 +     * casting to a {@code byte}).
   1.564 +     *
   1.565 +     * @return  the {@code float} value represented by this object
   1.566 +     *          converted to type {@code byte}
   1.567 +     */
   1.568 +    public byte byteValue() {
   1.569 +        return (byte)value;
   1.570 +    }
   1.571 +
   1.572 +    /**
   1.573 +     * Returns the value of this {@code Float} as a {@code short} (by
   1.574 +     * casting to a {@code short}).
   1.575 +     *
   1.576 +     * @return  the {@code float} value represented by this object
   1.577 +     *          converted to type {@code short}
   1.578 +     * @since JDK1.1
   1.579 +     */
   1.580 +    public short shortValue() {
   1.581 +        return (short)value;
   1.582 +    }
   1.583 +
   1.584 +    /**
   1.585 +     * Returns the value of this {@code Float} as an {@code int} (by
   1.586 +     * casting to type {@code int}).
   1.587 +     *
   1.588 +     * @return  the {@code float} value represented by this object
   1.589 +     *          converted to type {@code int}
   1.590 +     */
   1.591 +    public int intValue() {
   1.592 +        return (int)value;
   1.593 +    }
   1.594 +
   1.595 +    /**
   1.596 +     * Returns value of this {@code Float} as a {@code long} (by
   1.597 +     * casting to type {@code long}).
   1.598 +     *
   1.599 +     * @return  the {@code float} value represented by this object
   1.600 +     *          converted to type {@code long}
   1.601 +     */
   1.602 +    public long longValue() {
   1.603 +        return (long)value;
   1.604 +    }
   1.605 +
   1.606 +    /**
   1.607 +     * Returns the {@code float} value of this {@code Float} object.
   1.608 +     *
   1.609 +     * @return the {@code float} value represented by this object
   1.610 +     */
   1.611 +    public float floatValue() {
   1.612 +        return value;
   1.613 +    }
   1.614 +
   1.615 +    /**
   1.616 +     * Returns the {@code double} value of this {@code Float} object.
   1.617 +     *
   1.618 +     * @return the {@code float} value represented by this
   1.619 +     *         object is converted to type {@code double} and the
   1.620 +     *         result of the conversion is returned.
   1.621 +     */
   1.622 +    public double doubleValue() {
   1.623 +        return (double)value;
   1.624 +    }
   1.625 +
   1.626 +    /**
   1.627 +     * Returns a hash code for this {@code Float} object. The
   1.628 +     * result is the integer bit representation, exactly as produced
   1.629 +     * by the method {@link #floatToIntBits(float)}, of the primitive
   1.630 +     * {@code float} value represented by this {@code Float}
   1.631 +     * object.
   1.632 +     *
   1.633 +     * @return a hash code value for this object.
   1.634 +     */
   1.635 +    public int hashCode() {
   1.636 +        return floatToIntBits(value);
   1.637 +    }
   1.638 +
   1.639 +    /**
   1.640 +
   1.641 +     * Compares this object against the specified object.  The result
   1.642 +     * is {@code true} if and only if the argument is not
   1.643 +     * {@code null} and is a {@code Float} object that
   1.644 +     * represents a {@code float} with the same value as the
   1.645 +     * {@code float} represented by this object. For this
   1.646 +     * purpose, two {@code float} values are considered to be the
   1.647 +     * same if and only if the method {@link #floatToIntBits(float)}
   1.648 +     * returns the identical {@code int} value when applied to
   1.649 +     * each.
   1.650 +     *
   1.651 +     * <p>Note that in most cases, for two instances of class
   1.652 +     * {@code Float}, {@code f1} and {@code f2}, the value
   1.653 +     * of {@code f1.equals(f2)} is {@code true} if and only if
   1.654 +     *
   1.655 +     * <blockquote><pre>
   1.656 +     *   f1.floatValue() == f2.floatValue()
   1.657 +     * </pre></blockquote>
   1.658 +     *
   1.659 +     * <p>also has the value {@code true}. However, there are two exceptions:
   1.660 +     * <ul>
   1.661 +     * <li>If {@code f1} and {@code f2} both represent
   1.662 +     *     {@code Float.NaN}, then the {@code equals} method returns
   1.663 +     *     {@code true}, even though {@code Float.NaN==Float.NaN}
   1.664 +     *     has the value {@code false}.
   1.665 +     * <li>If {@code f1} represents {@code +0.0f} while
   1.666 +     *     {@code f2} represents {@code -0.0f}, or vice
   1.667 +     *     versa, the {@code equal} test has the value
   1.668 +     *     {@code false}, even though {@code 0.0f==-0.0f}
   1.669 +     *     has the value {@code true}.
   1.670 +     * </ul>
   1.671 +     *
   1.672 +     * This definition allows hash tables to operate properly.
   1.673 +     *
   1.674 +     * @param obj the object to be compared
   1.675 +     * @return  {@code true} if the objects are the same;
   1.676 +     *          {@code false} otherwise.
   1.677 +     * @see java.lang.Float#floatToIntBits(float)
   1.678 +     */
   1.679 +    public boolean equals(Object obj) {
   1.680 +        return (obj instanceof Float)
   1.681 +               && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
   1.682 +    }
   1.683 +
   1.684 +    /**
   1.685 +     * Returns a representation of the specified floating-point value
   1.686 +     * according to the IEEE 754 floating-point "single format" bit
   1.687 +     * layout.
   1.688 +     *
   1.689 +     * <p>Bit 31 (the bit that is selected by the mask
   1.690 +     * {@code 0x80000000}) represents the sign of the floating-point
   1.691 +     * number.
   1.692 +     * Bits 30-23 (the bits that are selected by the mask
   1.693 +     * {@code 0x7f800000}) represent the exponent.
   1.694 +     * Bits 22-0 (the bits that are selected by the mask
   1.695 +     * {@code 0x007fffff}) represent the significand (sometimes called
   1.696 +     * the mantissa) of the floating-point number.
   1.697 +     *
   1.698 +     * <p>If the argument is positive infinity, the result is
   1.699 +     * {@code 0x7f800000}.
   1.700 +     *
   1.701 +     * <p>If the argument is negative infinity, the result is
   1.702 +     * {@code 0xff800000}.
   1.703 +     *
   1.704 +     * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
   1.705 +     *
   1.706 +     * <p>In all cases, the result is an integer that, when given to the
   1.707 +     * {@link #intBitsToFloat(int)} method, will produce a floating-point
   1.708 +     * value the same as the argument to {@code floatToIntBits}
   1.709 +     * (except all NaN values are collapsed to a single
   1.710 +     * "canonical" NaN value).
   1.711 +     *
   1.712 +     * @param   value   a floating-point number.
   1.713 +     * @return the bits that represent the floating-point number.
   1.714 +     */
   1.715 +    public static int floatToIntBits(float value) {
   1.716 +        throw new UnsupportedOperationException();
   1.717 +//        int result = floatToRawIntBits(value);
   1.718 +//        // Check for NaN based on values of bit fields, maximum
   1.719 +//        // exponent and nonzero significand.
   1.720 +//        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
   1.721 +//              FloatConsts.EXP_BIT_MASK) &&
   1.722 +//             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
   1.723 +//            result = 0x7fc00000;
   1.724 +//        return result;
   1.725 +    }
   1.726 +
   1.727 +    /**
   1.728 +     * Returns a representation of the specified floating-point value
   1.729 +     * according to the IEEE 754 floating-point "single format" bit
   1.730 +     * layout, preserving Not-a-Number (NaN) values.
   1.731 +     *
   1.732 +     * <p>Bit 31 (the bit that is selected by the mask
   1.733 +     * {@code 0x80000000}) represents the sign of the floating-point
   1.734 +     * number.
   1.735 +     * Bits 30-23 (the bits that are selected by the mask
   1.736 +     * {@code 0x7f800000}) represent the exponent.
   1.737 +     * Bits 22-0 (the bits that are selected by the mask
   1.738 +     * {@code 0x007fffff}) represent the significand (sometimes called
   1.739 +     * the mantissa) of the floating-point number.
   1.740 +     *
   1.741 +     * <p>If the argument is positive infinity, the result is
   1.742 +     * {@code 0x7f800000}.
   1.743 +     *
   1.744 +     * <p>If the argument is negative infinity, the result is
   1.745 +     * {@code 0xff800000}.
   1.746 +     *
   1.747 +     * <p>If the argument is NaN, the result is the integer representing
   1.748 +     * the actual NaN value.  Unlike the {@code floatToIntBits}
   1.749 +     * method, {@code floatToRawIntBits} does not collapse all the
   1.750 +     * bit patterns encoding a NaN to a single "canonical"
   1.751 +     * NaN value.
   1.752 +     *
   1.753 +     * <p>In all cases, the result is an integer that, when given to the
   1.754 +     * {@link #intBitsToFloat(int)} method, will produce a
   1.755 +     * floating-point value the same as the argument to
   1.756 +     * {@code floatToRawIntBits}.
   1.757 +     *
   1.758 +     * @param   value   a floating-point number.
   1.759 +     * @return the bits that represent the floating-point number.
   1.760 +     * @since 1.3
   1.761 +     */
   1.762 +    public static native int floatToRawIntBits(float value);
   1.763 +
   1.764 +    /**
   1.765 +     * Returns the {@code float} value corresponding to a given
   1.766 +     * bit representation.
   1.767 +     * The argument is considered to be a representation of a
   1.768 +     * floating-point value according to the IEEE 754 floating-point
   1.769 +     * "single format" bit layout.
   1.770 +     *
   1.771 +     * <p>If the argument is {@code 0x7f800000}, the result is positive
   1.772 +     * infinity.
   1.773 +     *
   1.774 +     * <p>If the argument is {@code 0xff800000}, the result is negative
   1.775 +     * infinity.
   1.776 +     *
   1.777 +     * <p>If the argument is any value in the range
   1.778 +     * {@code 0x7f800001} through {@code 0x7fffffff} or in
   1.779 +     * the range {@code 0xff800001} through
   1.780 +     * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
   1.781 +     * floating-point operation provided by Java can distinguish
   1.782 +     * between two NaN values of the same type with different bit
   1.783 +     * patterns.  Distinct values of NaN are only distinguishable by
   1.784 +     * use of the {@code Float.floatToRawIntBits} method.
   1.785 +     *
   1.786 +     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
   1.787 +     * values that can be computed from the argument:
   1.788 +     *
   1.789 +     * <blockquote><pre>
   1.790 +     * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
   1.791 +     * int e = ((bits &gt;&gt; 23) & 0xff);
   1.792 +     * int m = (e == 0) ?
   1.793 +     *                 (bits & 0x7fffff) &lt;&lt; 1 :
   1.794 +     *                 (bits & 0x7fffff) | 0x800000;
   1.795 +     * </pre></blockquote>
   1.796 +     *
   1.797 +     * Then the floating-point result equals the value of the mathematical
   1.798 +     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
   1.799 +     *
   1.800 +     * <p>Note that this method may not be able to return a
   1.801 +     * {@code float} NaN with exactly same bit pattern as the
   1.802 +     * {@code int} argument.  IEEE 754 distinguishes between two
   1.803 +     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
   1.804 +     * differences between the two kinds of NaN are generally not
   1.805 +     * visible in Java.  Arithmetic operations on signaling NaNs turn
   1.806 +     * them into quiet NaNs with a different, but often similar, bit
   1.807 +     * pattern.  However, on some processors merely copying a
   1.808 +     * signaling NaN also performs that conversion.  In particular,
   1.809 +     * copying a signaling NaN to return it to the calling method may
   1.810 +     * perform this conversion.  So {@code intBitsToFloat} may
   1.811 +     * not be able to return a {@code float} with a signaling NaN
   1.812 +     * bit pattern.  Consequently, for some {@code int} values,
   1.813 +     * {@code floatToRawIntBits(intBitsToFloat(start))} may
   1.814 +     * <i>not</i> equal {@code start}.  Moreover, which
   1.815 +     * particular bit patterns represent signaling NaNs is platform
   1.816 +     * dependent; although all NaN bit patterns, quiet or signaling,
   1.817 +     * must be in the NaN range identified above.
   1.818 +     *
   1.819 +     * @param   bits   an integer.
   1.820 +     * @return  the {@code float} floating-point value with the same bit
   1.821 +     *          pattern.
   1.822 +     */
   1.823 +    @JavaScriptBody(args = "bits",
   1.824 +        body = 
   1.825 +          "if (bits === 0x7f800000) return Number.POSITIVE_INFINITY;\n"
   1.826 +        + "if (bits === 0xff800000) return Number.NEGATIVE_INFINITY;\n"
   1.827 +        + "if (bits >= 0x7f800001 && bits <= 0xffffffff) return Number.NaN;\n"
   1.828 +        + "var s = ((bits >> 31) == 0) ? 1 : -1;\n"
   1.829 +        + "var e = ((bits >> 23) & 0xff);\n"
   1.830 +        + "var m = (e == 0) ?\n"
   1.831 +        + "  (bits & 0x7fffff) << 1 :\n"
   1.832 +        + "  (bits & 0x7fffff) | 0x800000;\n"
   1.833 +        + "return s * m * Math.pow(2.0, e - 150);\n"
   1.834 +    )
   1.835 +    public static native float intBitsToFloat(int bits);
   1.836 +
   1.837 +    /**
   1.838 +     * Compares two {@code Float} objects numerically.  There are
   1.839 +     * two ways in which comparisons performed by this method differ
   1.840 +     * from those performed by the Java language numerical comparison
   1.841 +     * operators ({@code <, <=, ==, >=, >}) when
   1.842 +     * applied to primitive {@code float} values:
   1.843 +     *
   1.844 +     * <ul><li>
   1.845 +     *          {@code Float.NaN} is considered by this method to
   1.846 +     *          be equal to itself and greater than all other
   1.847 +     *          {@code float} values
   1.848 +     *          (including {@code Float.POSITIVE_INFINITY}).
   1.849 +     * <li>
   1.850 +     *          {@code 0.0f} is considered by this method to be greater
   1.851 +     *          than {@code -0.0f}.
   1.852 +     * </ul>
   1.853 +     *
   1.854 +     * This ensures that the <i>natural ordering</i> of {@code Float}
   1.855 +     * objects imposed by this method is <i>consistent with equals</i>.
   1.856 +     *
   1.857 +     * @param   anotherFloat   the {@code Float} to be compared.
   1.858 +     * @return  the value {@code 0} if {@code anotherFloat} is
   1.859 +     *          numerically equal to this {@code Float}; a value
   1.860 +     *          less than {@code 0} if this {@code Float}
   1.861 +     *          is numerically less than {@code anotherFloat};
   1.862 +     *          and a value greater than {@code 0} if this
   1.863 +     *          {@code Float} is numerically greater than
   1.864 +     *          {@code anotherFloat}.
   1.865 +     *
   1.866 +     * @since   1.2
   1.867 +     * @see Comparable#compareTo(Object)
   1.868 +     */
   1.869 +    public int compareTo(Float anotherFloat) {
   1.870 +        return Float.compare(value, anotherFloat.value);
   1.871 +    }
   1.872 +
   1.873 +    /**
   1.874 +     * Compares the two specified {@code float} values. The sign
   1.875 +     * of the integer value returned is the same as that of the
   1.876 +     * integer that would be returned by the call:
   1.877 +     * <pre>
   1.878 +     *    new Float(f1).compareTo(new Float(f2))
   1.879 +     * </pre>
   1.880 +     *
   1.881 +     * @param   f1        the first {@code float} to compare.
   1.882 +     * @param   f2        the second {@code float} to compare.
   1.883 +     * @return  the value {@code 0} if {@code f1} is
   1.884 +     *          numerically equal to {@code f2}; a value less than
   1.885 +     *          {@code 0} if {@code f1} is numerically less than
   1.886 +     *          {@code f2}; and a value greater than {@code 0}
   1.887 +     *          if {@code f1} is numerically greater than
   1.888 +     *          {@code f2}.
   1.889 +     * @since 1.4
   1.890 +     */
   1.891 +    public static int compare(float f1, float f2) {
   1.892 +        if (f1 < f2)
   1.893 +            return -1;           // Neither val is NaN, thisVal is smaller
   1.894 +        if (f1 > f2)
   1.895 +            return 1;            // Neither val is NaN, thisVal is larger
   1.896 +
   1.897 +        // Cannot use floatToRawIntBits because of possibility of NaNs.
   1.898 +        int thisBits    = Float.floatToIntBits(f1);
   1.899 +        int anotherBits = Float.floatToIntBits(f2);
   1.900 +
   1.901 +        return (thisBits == anotherBits ?  0 : // Values are equal
   1.902 +                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
   1.903 +                 1));                          // (0.0, -0.0) or (NaN, !NaN)
   1.904 +    }
   1.905 +
   1.906 +    /** use serialVersionUID from JDK 1.0.2 for interoperability */
   1.907 +    private static final long serialVersionUID = -2671257302660747028L;
   1.908 +}