rt/emul/compact/src/main/java/java/util/concurrent/ConcurrentLinkedQueue.java
branchjdk7-b147
changeset 1890 212417b74b72
child 1895 bfaf3300b7ba
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/util/concurrent/ConcurrentLinkedQueue.java	Sat Mar 19 10:46:31 2016 +0100
     1.3 @@ -0,0 +1,835 @@
     1.4 +/*
     1.5 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.6 + *
     1.7 + * This code is free software; you can redistribute it and/or modify it
     1.8 + * under the terms of the GNU General Public License version 2 only, as
     1.9 + * published by the Free Software Foundation.  Oracle designates this
    1.10 + * particular file as subject to the "Classpath" exception as provided
    1.11 + * by Oracle in the LICENSE file that accompanied this code.
    1.12 + *
    1.13 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.14 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.15 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.16 + * version 2 for more details (a copy is included in the LICENSE file that
    1.17 + * accompanied this code).
    1.18 + *
    1.19 + * You should have received a copy of the GNU General Public License version
    1.20 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.21 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.22 + *
    1.23 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.24 + * or visit www.oracle.com if you need additional information or have any
    1.25 + * questions.
    1.26 + */
    1.27 +
    1.28 +/*
    1.29 + * This file is available under and governed by the GNU General Public
    1.30 + * License version 2 only, as published by the Free Software Foundation.
    1.31 + * However, the following notice accompanied the original version of this
    1.32 + * file:
    1.33 + *
    1.34 + * Written by Doug Lea and Martin Buchholz with assistance from members of
    1.35 + * JCP JSR-166 Expert Group and released to the public domain, as explained
    1.36 + * at http://creativecommons.org/publicdomain/zero/1.0/
    1.37 + */
    1.38 +
    1.39 +package java.util.concurrent;
    1.40 +
    1.41 +import java.util.AbstractQueue;
    1.42 +import java.util.ArrayList;
    1.43 +import java.util.Collection;
    1.44 +import java.util.Iterator;
    1.45 +import java.util.NoSuchElementException;
    1.46 +import java.util.Queue;
    1.47 +
    1.48 +/**
    1.49 + * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
    1.50 + * This queue orders elements FIFO (first-in-first-out).
    1.51 + * The <em>head</em> of the queue is that element that has been on the
    1.52 + * queue the longest time.
    1.53 + * The <em>tail</em> of the queue is that element that has been on the
    1.54 + * queue the shortest time. New elements
    1.55 + * are inserted at the tail of the queue, and the queue retrieval
    1.56 + * operations obtain elements at the head of the queue.
    1.57 + * A {@code ConcurrentLinkedQueue} is an appropriate choice when
    1.58 + * many threads will share access to a common collection.
    1.59 + * Like most other concurrent collection implementations, this class
    1.60 + * does not permit the use of {@code null} elements.
    1.61 + *
    1.62 + * <p>This implementation employs an efficient &quot;wait-free&quot;
    1.63 + * algorithm based on one described in <a
    1.64 + * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
    1.65 + * Fast, and Practical Non-Blocking and Blocking Concurrent Queue
    1.66 + * Algorithms</a> by Maged M. Michael and Michael L. Scott.
    1.67 + *
    1.68 + * <p>Iterators are <i>weakly consistent</i>, returning elements
    1.69 + * reflecting the state of the queue at some point at or since the
    1.70 + * creation of the iterator.  They do <em>not</em> throw {@link
    1.71 + * java.util.ConcurrentModificationException}, and may proceed concurrently
    1.72 + * with other operations.  Elements contained in the queue since the creation
    1.73 + * of the iterator will be returned exactly once.
    1.74 + *
    1.75 + * <p>Beware that, unlike in most collections, the {@code size} method
    1.76 + * is <em>NOT</em> a constant-time operation. Because of the
    1.77 + * asynchronous nature of these queues, determining the current number
    1.78 + * of elements requires a traversal of the elements, and so may report
    1.79 + * inaccurate results if this collection is modified during traversal.
    1.80 + * Additionally, the bulk operations {@code addAll},
    1.81 + * {@code removeAll}, {@code retainAll}, {@code containsAll},
    1.82 + * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
    1.83 + * to be performed atomically. For example, an iterator operating
    1.84 + * concurrently with an {@code addAll} operation might view only some
    1.85 + * of the added elements.
    1.86 + *
    1.87 + * <p>This class and its iterator implement all of the <em>optional</em>
    1.88 + * methods of the {@link Queue} and {@link Iterator} interfaces.
    1.89 + *
    1.90 + * <p>Memory consistency effects: As with other concurrent
    1.91 + * collections, actions in a thread prior to placing an object into a
    1.92 + * {@code ConcurrentLinkedQueue}
    1.93 + * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
    1.94 + * actions subsequent to the access or removal of that element from
    1.95 + * the {@code ConcurrentLinkedQueue} in another thread.
    1.96 + *
    1.97 + * <p>This class is a member of the
    1.98 + * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    1.99 + * Java Collections Framework</a>.
   1.100 + *
   1.101 + * @since 1.5
   1.102 + * @author Doug Lea
   1.103 + * @param <E> the type of elements held in this collection
   1.104 + *
   1.105 + */
   1.106 +public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
   1.107 +        implements Queue<E>, java.io.Serializable {
   1.108 +    private static final long serialVersionUID = 196745693267521676L;
   1.109 +
   1.110 +    /*
   1.111 +     * This is a modification of the Michael & Scott algorithm,
   1.112 +     * adapted for a garbage-collected environment, with support for
   1.113 +     * interior node deletion (to support remove(Object)).  For
   1.114 +     * explanation, read the paper.
   1.115 +     *
   1.116 +     * Note that like most non-blocking algorithms in this package,
   1.117 +     * this implementation relies on the fact that in garbage
   1.118 +     * collected systems, there is no possibility of ABA problems due
   1.119 +     * to recycled nodes, so there is no need to use "counted
   1.120 +     * pointers" or related techniques seen in versions used in
   1.121 +     * non-GC'ed settings.
   1.122 +     *
   1.123 +     * The fundamental invariants are:
   1.124 +     * - There is exactly one (last) Node with a null next reference,
   1.125 +     *   which is CASed when enqueueing.  This last Node can be
   1.126 +     *   reached in O(1) time from tail, but tail is merely an
   1.127 +     *   optimization - it can always be reached in O(N) time from
   1.128 +     *   head as well.
   1.129 +     * - The elements contained in the queue are the non-null items in
   1.130 +     *   Nodes that are reachable from head.  CASing the item
   1.131 +     *   reference of a Node to null atomically removes it from the
   1.132 +     *   queue.  Reachability of all elements from head must remain
   1.133 +     *   true even in the case of concurrent modifications that cause
   1.134 +     *   head to advance.  A dequeued Node may remain in use
   1.135 +     *   indefinitely due to creation of an Iterator or simply a
   1.136 +     *   poll() that has lost its time slice.
   1.137 +     *
   1.138 +     * The above might appear to imply that all Nodes are GC-reachable
   1.139 +     * from a predecessor dequeued Node.  That would cause two problems:
   1.140 +     * - allow a rogue Iterator to cause unbounded memory retention
   1.141 +     * - cause cross-generational linking of old Nodes to new Nodes if
   1.142 +     *   a Node was tenured while live, which generational GCs have a
   1.143 +     *   hard time dealing with, causing repeated major collections.
   1.144 +     * However, only non-deleted Nodes need to be reachable from
   1.145 +     * dequeued Nodes, and reachability does not necessarily have to
   1.146 +     * be of the kind understood by the GC.  We use the trick of
   1.147 +     * linking a Node that has just been dequeued to itself.  Such a
   1.148 +     * self-link implicitly means to advance to head.
   1.149 +     *
   1.150 +     * Both head and tail are permitted to lag.  In fact, failing to
   1.151 +     * update them every time one could is a significant optimization
   1.152 +     * (fewer CASes). As with LinkedTransferQueue (see the internal
   1.153 +     * documentation for that class), we use a slack threshold of two;
   1.154 +     * that is, we update head/tail when the current pointer appears
   1.155 +     * to be two or more steps away from the first/last node.
   1.156 +     *
   1.157 +     * Since head and tail are updated concurrently and independently,
   1.158 +     * it is possible for tail to lag behind head (why not)?
   1.159 +     *
   1.160 +     * CASing a Node's item reference to null atomically removes the
   1.161 +     * element from the queue.  Iterators skip over Nodes with null
   1.162 +     * items.  Prior implementations of this class had a race between
   1.163 +     * poll() and remove(Object) where the same element would appear
   1.164 +     * to be successfully removed by two concurrent operations.  The
   1.165 +     * method remove(Object) also lazily unlinks deleted Nodes, but
   1.166 +     * this is merely an optimization.
   1.167 +     *
   1.168 +     * When constructing a Node (before enqueuing it) we avoid paying
   1.169 +     * for a volatile write to item by using Unsafe.putObject instead
   1.170 +     * of a normal write.  This allows the cost of enqueue to be
   1.171 +     * "one-and-a-half" CASes.
   1.172 +     *
   1.173 +     * Both head and tail may or may not point to a Node with a
   1.174 +     * non-null item.  If the queue is empty, all items must of course
   1.175 +     * be null.  Upon creation, both head and tail refer to a dummy
   1.176 +     * Node with null item.  Both head and tail are only updated using
   1.177 +     * CAS, so they never regress, although again this is merely an
   1.178 +     * optimization.
   1.179 +     */
   1.180 +
   1.181 +    private static class Node<E> {
   1.182 +        volatile E item;
   1.183 +        volatile Node<E> next;
   1.184 +
   1.185 +        /**
   1.186 +         * Constructs a new node.  Uses relaxed write because item can
   1.187 +         * only be seen after publication via casNext.
   1.188 +         */
   1.189 +        Node(E item) {
   1.190 +            UNSAFE.putObject(this, itemOffset, item);
   1.191 +        }
   1.192 +
   1.193 +        boolean casItem(E cmp, E val) {
   1.194 +            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
   1.195 +        }
   1.196 +
   1.197 +        void lazySetNext(Node<E> val) {
   1.198 +            UNSAFE.putOrderedObject(this, nextOffset, val);
   1.199 +        }
   1.200 +
   1.201 +        boolean casNext(Node<E> cmp, Node<E> val) {
   1.202 +            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
   1.203 +        }
   1.204 +
   1.205 +        // Unsafe mechanics
   1.206 +
   1.207 +        private static final sun.misc.Unsafe UNSAFE;
   1.208 +        private static final long itemOffset;
   1.209 +        private static final long nextOffset;
   1.210 +
   1.211 +        static {
   1.212 +            try {
   1.213 +                UNSAFE = sun.misc.Unsafe.getUnsafe();
   1.214 +                Class k = Node.class;
   1.215 +                itemOffset = UNSAFE.objectFieldOffset
   1.216 +                    (k.getDeclaredField("item"));
   1.217 +                nextOffset = UNSAFE.objectFieldOffset
   1.218 +                    (k.getDeclaredField("next"));
   1.219 +            } catch (Exception e) {
   1.220 +                throw new Error(e);
   1.221 +            }
   1.222 +        }
   1.223 +    }
   1.224 +
   1.225 +    /**
   1.226 +     * A node from which the first live (non-deleted) node (if any)
   1.227 +     * can be reached in O(1) time.
   1.228 +     * Invariants:
   1.229 +     * - all live nodes are reachable from head via succ()
   1.230 +     * - head != null
   1.231 +     * - (tmp = head).next != tmp || tmp != head
   1.232 +     * Non-invariants:
   1.233 +     * - head.item may or may not be null.
   1.234 +     * - it is permitted for tail to lag behind head, that is, for tail
   1.235 +     *   to not be reachable from head!
   1.236 +     */
   1.237 +    private transient volatile Node<E> head;
   1.238 +
   1.239 +    /**
   1.240 +     * A node from which the last node on list (that is, the unique
   1.241 +     * node with node.next == null) can be reached in O(1) time.
   1.242 +     * Invariants:
   1.243 +     * - the last node is always reachable from tail via succ()
   1.244 +     * - tail != null
   1.245 +     * Non-invariants:
   1.246 +     * - tail.item may or may not be null.
   1.247 +     * - it is permitted for tail to lag behind head, that is, for tail
   1.248 +     *   to not be reachable from head!
   1.249 +     * - tail.next may or may not be self-pointing to tail.
   1.250 +     */
   1.251 +    private transient volatile Node<E> tail;
   1.252 +
   1.253 +
   1.254 +    /**
   1.255 +     * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
   1.256 +     */
   1.257 +    public ConcurrentLinkedQueue() {
   1.258 +        head = tail = new Node<E>(null);
   1.259 +    }
   1.260 +
   1.261 +    /**
   1.262 +     * Creates a {@code ConcurrentLinkedQueue}
   1.263 +     * initially containing the elements of the given collection,
   1.264 +     * added in traversal order of the collection's iterator.
   1.265 +     *
   1.266 +     * @param c the collection of elements to initially contain
   1.267 +     * @throws NullPointerException if the specified collection or any
   1.268 +     *         of its elements are null
   1.269 +     */
   1.270 +    public ConcurrentLinkedQueue(Collection<? extends E> c) {
   1.271 +        Node<E> h = null, t = null;
   1.272 +        for (E e : c) {
   1.273 +            checkNotNull(e);
   1.274 +            Node<E> newNode = new Node<E>(e);
   1.275 +            if (h == null)
   1.276 +                h = t = newNode;
   1.277 +            else {
   1.278 +                t.lazySetNext(newNode);
   1.279 +                t = newNode;
   1.280 +            }
   1.281 +        }
   1.282 +        if (h == null)
   1.283 +            h = t = new Node<E>(null);
   1.284 +        head = h;
   1.285 +        tail = t;
   1.286 +    }
   1.287 +
   1.288 +    // Have to override just to update the javadoc
   1.289 +
   1.290 +    /**
   1.291 +     * Inserts the specified element at the tail of this queue.
   1.292 +     * As the queue is unbounded, this method will never throw
   1.293 +     * {@link IllegalStateException} or return {@code false}.
   1.294 +     *
   1.295 +     * @return {@code true} (as specified by {@link Collection#add})
   1.296 +     * @throws NullPointerException if the specified element is null
   1.297 +     */
   1.298 +    public boolean add(E e) {
   1.299 +        return offer(e);
   1.300 +    }
   1.301 +
   1.302 +    /**
   1.303 +     * Try to CAS head to p. If successful, repoint old head to itself
   1.304 +     * as sentinel for succ(), below.
   1.305 +     */
   1.306 +    final void updateHead(Node<E> h, Node<E> p) {
   1.307 +        if (h != p && casHead(h, p))
   1.308 +            h.lazySetNext(h);
   1.309 +    }
   1.310 +
   1.311 +    /**
   1.312 +     * Returns the successor of p, or the head node if p.next has been
   1.313 +     * linked to self, which will only be true if traversing with a
   1.314 +     * stale pointer that is now off the list.
   1.315 +     */
   1.316 +    final Node<E> succ(Node<E> p) {
   1.317 +        Node<E> next = p.next;
   1.318 +        return (p == next) ? head : next;
   1.319 +    }
   1.320 +
   1.321 +    /**
   1.322 +     * Inserts the specified element at the tail of this queue.
   1.323 +     * As the queue is unbounded, this method will never return {@code false}.
   1.324 +     *
   1.325 +     * @return {@code true} (as specified by {@link Queue#offer})
   1.326 +     * @throws NullPointerException if the specified element is null
   1.327 +     */
   1.328 +    public boolean offer(E e) {
   1.329 +        checkNotNull(e);
   1.330 +        final Node<E> newNode = new Node<E>(e);
   1.331 +
   1.332 +        for (Node<E> t = tail, p = t;;) {
   1.333 +            Node<E> q = p.next;
   1.334 +            if (q == null) {
   1.335 +                // p is last node
   1.336 +                if (p.casNext(null, newNode)) {
   1.337 +                    // Successful CAS is the linearization point
   1.338 +                    // for e to become an element of this queue,
   1.339 +                    // and for newNode to become "live".
   1.340 +                    if (p != t) // hop two nodes at a time
   1.341 +                        casTail(t, newNode);  // Failure is OK.
   1.342 +                    return true;
   1.343 +                }
   1.344 +                // Lost CAS race to another thread; re-read next
   1.345 +            }
   1.346 +            else if (p == q)
   1.347 +                // We have fallen off list.  If tail is unchanged, it
   1.348 +                // will also be off-list, in which case we need to
   1.349 +                // jump to head, from which all live nodes are always
   1.350 +                // reachable.  Else the new tail is a better bet.
   1.351 +                p = (t != (t = tail)) ? t : head;
   1.352 +            else
   1.353 +                // Check for tail updates after two hops.
   1.354 +                p = (p != t && t != (t = tail)) ? t : q;
   1.355 +        }
   1.356 +    }
   1.357 +
   1.358 +    public E poll() {
   1.359 +        restartFromHead:
   1.360 +        for (;;) {
   1.361 +            for (Node<E> h = head, p = h, q;;) {
   1.362 +                E item = p.item;
   1.363 +
   1.364 +                if (item != null && p.casItem(item, null)) {
   1.365 +                    // Successful CAS is the linearization point
   1.366 +                    // for item to be removed from this queue.
   1.367 +                    if (p != h) // hop two nodes at a time
   1.368 +                        updateHead(h, ((q = p.next) != null) ? q : p);
   1.369 +                    return item;
   1.370 +                }
   1.371 +                else if ((q = p.next) == null) {
   1.372 +                    updateHead(h, p);
   1.373 +                    return null;
   1.374 +                }
   1.375 +                else if (p == q)
   1.376 +                    continue restartFromHead;
   1.377 +                else
   1.378 +                    p = q;
   1.379 +            }
   1.380 +        }
   1.381 +    }
   1.382 +
   1.383 +    public E peek() {
   1.384 +        restartFromHead:
   1.385 +        for (;;) {
   1.386 +            for (Node<E> h = head, p = h, q;;) {
   1.387 +                E item = p.item;
   1.388 +                if (item != null || (q = p.next) == null) {
   1.389 +                    updateHead(h, p);
   1.390 +                    return item;
   1.391 +                }
   1.392 +                else if (p == q)
   1.393 +                    continue restartFromHead;
   1.394 +                else
   1.395 +                    p = q;
   1.396 +            }
   1.397 +        }
   1.398 +    }
   1.399 +
   1.400 +    /**
   1.401 +     * Returns the first live (non-deleted) node on list, or null if none.
   1.402 +     * This is yet another variant of poll/peek; here returning the
   1.403 +     * first node, not element.  We could make peek() a wrapper around
   1.404 +     * first(), but that would cost an extra volatile read of item,
   1.405 +     * and the need to add a retry loop to deal with the possibility
   1.406 +     * of losing a race to a concurrent poll().
   1.407 +     */
   1.408 +    Node<E> first() {
   1.409 +        restartFromHead:
   1.410 +        for (;;) {
   1.411 +            for (Node<E> h = head, p = h, q;;) {
   1.412 +                boolean hasItem = (p.item != null);
   1.413 +                if (hasItem || (q = p.next) == null) {
   1.414 +                    updateHead(h, p);
   1.415 +                    return hasItem ? p : null;
   1.416 +                }
   1.417 +                else if (p == q)
   1.418 +                    continue restartFromHead;
   1.419 +                else
   1.420 +                    p = q;
   1.421 +            }
   1.422 +        }
   1.423 +    }
   1.424 +
   1.425 +    /**
   1.426 +     * Returns {@code true} if this queue contains no elements.
   1.427 +     *
   1.428 +     * @return {@code true} if this queue contains no elements
   1.429 +     */
   1.430 +    public boolean isEmpty() {
   1.431 +        return first() == null;
   1.432 +    }
   1.433 +
   1.434 +    /**
   1.435 +     * Returns the number of elements in this queue.  If this queue
   1.436 +     * contains more than {@code Integer.MAX_VALUE} elements, returns
   1.437 +     * {@code Integer.MAX_VALUE}.
   1.438 +     *
   1.439 +     * <p>Beware that, unlike in most collections, this method is
   1.440 +     * <em>NOT</em> a constant-time operation. Because of the
   1.441 +     * asynchronous nature of these queues, determining the current
   1.442 +     * number of elements requires an O(n) traversal.
   1.443 +     * Additionally, if elements are added or removed during execution
   1.444 +     * of this method, the returned result may be inaccurate.  Thus,
   1.445 +     * this method is typically not very useful in concurrent
   1.446 +     * applications.
   1.447 +     *
   1.448 +     * @return the number of elements in this queue
   1.449 +     */
   1.450 +    public int size() {
   1.451 +        int count = 0;
   1.452 +        for (Node<E> p = first(); p != null; p = succ(p))
   1.453 +            if (p.item != null)
   1.454 +                // Collection.size() spec says to max out
   1.455 +                if (++count == Integer.MAX_VALUE)
   1.456 +                    break;
   1.457 +        return count;
   1.458 +    }
   1.459 +
   1.460 +    /**
   1.461 +     * Returns {@code true} if this queue contains the specified element.
   1.462 +     * More formally, returns {@code true} if and only if this queue contains
   1.463 +     * at least one element {@code e} such that {@code o.equals(e)}.
   1.464 +     *
   1.465 +     * @param o object to be checked for containment in this queue
   1.466 +     * @return {@code true} if this queue contains the specified element
   1.467 +     */
   1.468 +    public boolean contains(Object o) {
   1.469 +        if (o == null) return false;
   1.470 +        for (Node<E> p = first(); p != null; p = succ(p)) {
   1.471 +            E item = p.item;
   1.472 +            if (item != null && o.equals(item))
   1.473 +                return true;
   1.474 +        }
   1.475 +        return false;
   1.476 +    }
   1.477 +
   1.478 +    /**
   1.479 +     * Removes a single instance of the specified element from this queue,
   1.480 +     * if it is present.  More formally, removes an element {@code e} such
   1.481 +     * that {@code o.equals(e)}, if this queue contains one or more such
   1.482 +     * elements.
   1.483 +     * Returns {@code true} if this queue contained the specified element
   1.484 +     * (or equivalently, if this queue changed as a result of the call).
   1.485 +     *
   1.486 +     * @param o element to be removed from this queue, if present
   1.487 +     * @return {@code true} if this queue changed as a result of the call
   1.488 +     */
   1.489 +    public boolean remove(Object o) {
   1.490 +        if (o == null) return false;
   1.491 +        Node<E> pred = null;
   1.492 +        for (Node<E> p = first(); p != null; p = succ(p)) {
   1.493 +            E item = p.item;
   1.494 +            if (item != null &&
   1.495 +                o.equals(item) &&
   1.496 +                p.casItem(item, null)) {
   1.497 +                Node<E> next = succ(p);
   1.498 +                if (pred != null && next != null)
   1.499 +                    pred.casNext(p, next);
   1.500 +                return true;
   1.501 +            }
   1.502 +            pred = p;
   1.503 +        }
   1.504 +        return false;
   1.505 +    }
   1.506 +
   1.507 +    /**
   1.508 +     * Appends all of the elements in the specified collection to the end of
   1.509 +     * this queue, in the order that they are returned by the specified
   1.510 +     * collection's iterator.  Attempts to {@code addAll} of a queue to
   1.511 +     * itself result in {@code IllegalArgumentException}.
   1.512 +     *
   1.513 +     * @param c the elements to be inserted into this queue
   1.514 +     * @return {@code true} if this queue changed as a result of the call
   1.515 +     * @throws NullPointerException if the specified collection or any
   1.516 +     *         of its elements are null
   1.517 +     * @throws IllegalArgumentException if the collection is this queue
   1.518 +     */
   1.519 +    public boolean addAll(Collection<? extends E> c) {
   1.520 +        if (c == this)
   1.521 +            // As historically specified in AbstractQueue#addAll
   1.522 +            throw new IllegalArgumentException();
   1.523 +
   1.524 +        // Copy c into a private chain of Nodes
   1.525 +        Node<E> beginningOfTheEnd = null, last = null;
   1.526 +        for (E e : c) {
   1.527 +            checkNotNull(e);
   1.528 +            Node<E> newNode = new Node<E>(e);
   1.529 +            if (beginningOfTheEnd == null)
   1.530 +                beginningOfTheEnd = last = newNode;
   1.531 +            else {
   1.532 +                last.lazySetNext(newNode);
   1.533 +                last = newNode;
   1.534 +            }
   1.535 +        }
   1.536 +        if (beginningOfTheEnd == null)
   1.537 +            return false;
   1.538 +
   1.539 +        // Atomically append the chain at the tail of this collection
   1.540 +        for (Node<E> t = tail, p = t;;) {
   1.541 +            Node<E> q = p.next;
   1.542 +            if (q == null) {
   1.543 +                // p is last node
   1.544 +                if (p.casNext(null, beginningOfTheEnd)) {
   1.545 +                    // Successful CAS is the linearization point
   1.546 +                    // for all elements to be added to this queue.
   1.547 +                    if (!casTail(t, last)) {
   1.548 +                        // Try a little harder to update tail,
   1.549 +                        // since we may be adding many elements.
   1.550 +                        t = tail;
   1.551 +                        if (last.next == null)
   1.552 +                            casTail(t, last);
   1.553 +                    }
   1.554 +                    return true;
   1.555 +                }
   1.556 +                // Lost CAS race to another thread; re-read next
   1.557 +            }
   1.558 +            else if (p == q)
   1.559 +                // We have fallen off list.  If tail is unchanged, it
   1.560 +                // will also be off-list, in which case we need to
   1.561 +                // jump to head, from which all live nodes are always
   1.562 +                // reachable.  Else the new tail is a better bet.
   1.563 +                p = (t != (t = tail)) ? t : head;
   1.564 +            else
   1.565 +                // Check for tail updates after two hops.
   1.566 +                p = (p != t && t != (t = tail)) ? t : q;
   1.567 +        }
   1.568 +    }
   1.569 +
   1.570 +    /**
   1.571 +     * Returns an array containing all of the elements in this queue, in
   1.572 +     * proper sequence.
   1.573 +     *
   1.574 +     * <p>The returned array will be "safe" in that no references to it are
   1.575 +     * maintained by this queue.  (In other words, this method must allocate
   1.576 +     * a new array).  The caller is thus free to modify the returned array.
   1.577 +     *
   1.578 +     * <p>This method acts as bridge between array-based and collection-based
   1.579 +     * APIs.
   1.580 +     *
   1.581 +     * @return an array containing all of the elements in this queue
   1.582 +     */
   1.583 +    public Object[] toArray() {
   1.584 +        // Use ArrayList to deal with resizing.
   1.585 +        ArrayList<E> al = new ArrayList<E>();
   1.586 +        for (Node<E> p = first(); p != null; p = succ(p)) {
   1.587 +            E item = p.item;
   1.588 +            if (item != null)
   1.589 +                al.add(item);
   1.590 +        }
   1.591 +        return al.toArray();
   1.592 +    }
   1.593 +
   1.594 +    /**
   1.595 +     * Returns an array containing all of the elements in this queue, in
   1.596 +     * proper sequence; the runtime type of the returned array is that of
   1.597 +     * the specified array.  If the queue fits in the specified array, it
   1.598 +     * is returned therein.  Otherwise, a new array is allocated with the
   1.599 +     * runtime type of the specified array and the size of this queue.
   1.600 +     *
   1.601 +     * <p>If this queue fits in the specified array with room to spare
   1.602 +     * (i.e., the array has more elements than this queue), the element in
   1.603 +     * the array immediately following the end of the queue is set to
   1.604 +     * {@code null}.
   1.605 +     *
   1.606 +     * <p>Like the {@link #toArray()} method, this method acts as bridge between
   1.607 +     * array-based and collection-based APIs.  Further, this method allows
   1.608 +     * precise control over the runtime type of the output array, and may,
   1.609 +     * under certain circumstances, be used to save allocation costs.
   1.610 +     *
   1.611 +     * <p>Suppose {@code x} is a queue known to contain only strings.
   1.612 +     * The following code can be used to dump the queue into a newly
   1.613 +     * allocated array of {@code String}:
   1.614 +     *
   1.615 +     * <pre>
   1.616 +     *     String[] y = x.toArray(new String[0]);</pre>
   1.617 +     *
   1.618 +     * Note that {@code toArray(new Object[0])} is identical in function to
   1.619 +     * {@code toArray()}.
   1.620 +     *
   1.621 +     * @param a the array into which the elements of the queue are to
   1.622 +     *          be stored, if it is big enough; otherwise, a new array of the
   1.623 +     *          same runtime type is allocated for this purpose
   1.624 +     * @return an array containing all of the elements in this queue
   1.625 +     * @throws ArrayStoreException if the runtime type of the specified array
   1.626 +     *         is not a supertype of the runtime type of every element in
   1.627 +     *         this queue
   1.628 +     * @throws NullPointerException if the specified array is null
   1.629 +     */
   1.630 +    @SuppressWarnings("unchecked")
   1.631 +    public <T> T[] toArray(T[] a) {
   1.632 +        // try to use sent-in array
   1.633 +        int k = 0;
   1.634 +        Node<E> p;
   1.635 +        for (p = first(); p != null && k < a.length; p = succ(p)) {
   1.636 +            E item = p.item;
   1.637 +            if (item != null)
   1.638 +                a[k++] = (T)item;
   1.639 +        }
   1.640 +        if (p == null) {
   1.641 +            if (k < a.length)
   1.642 +                a[k] = null;
   1.643 +            return a;
   1.644 +        }
   1.645 +
   1.646 +        // If won't fit, use ArrayList version
   1.647 +        ArrayList<E> al = new ArrayList<E>();
   1.648 +        for (Node<E> q = first(); q != null; q = succ(q)) {
   1.649 +            E item = q.item;
   1.650 +            if (item != null)
   1.651 +                al.add(item);
   1.652 +        }
   1.653 +        return al.toArray(a);
   1.654 +    }
   1.655 +
   1.656 +    /**
   1.657 +     * Returns an iterator over the elements in this queue in proper sequence.
   1.658 +     * The elements will be returned in order from first (head) to last (tail).
   1.659 +     *
   1.660 +     * <p>The returned iterator is a "weakly consistent" iterator that
   1.661 +     * will never throw {@link java.util.ConcurrentModificationException
   1.662 +     * ConcurrentModificationException}, and guarantees to traverse
   1.663 +     * elements as they existed upon construction of the iterator, and
   1.664 +     * may (but is not guaranteed to) reflect any modifications
   1.665 +     * subsequent to construction.
   1.666 +     *
   1.667 +     * @return an iterator over the elements in this queue in proper sequence
   1.668 +     */
   1.669 +    public Iterator<E> iterator() {
   1.670 +        return new Itr();
   1.671 +    }
   1.672 +
   1.673 +    private class Itr implements Iterator<E> {
   1.674 +        /**
   1.675 +         * Next node to return item for.
   1.676 +         */
   1.677 +        private Node<E> nextNode;
   1.678 +
   1.679 +        /**
   1.680 +         * nextItem holds on to item fields because once we claim
   1.681 +         * that an element exists in hasNext(), we must return it in
   1.682 +         * the following next() call even if it was in the process of
   1.683 +         * being removed when hasNext() was called.
   1.684 +         */
   1.685 +        private E nextItem;
   1.686 +
   1.687 +        /**
   1.688 +         * Node of the last returned item, to support remove.
   1.689 +         */
   1.690 +        private Node<E> lastRet;
   1.691 +
   1.692 +        Itr() {
   1.693 +            advance();
   1.694 +        }
   1.695 +
   1.696 +        /**
   1.697 +         * Moves to next valid node and returns item to return for
   1.698 +         * next(), or null if no such.
   1.699 +         */
   1.700 +        private E advance() {
   1.701 +            lastRet = nextNode;
   1.702 +            E x = nextItem;
   1.703 +
   1.704 +            Node<E> pred, p;
   1.705 +            if (nextNode == null) {
   1.706 +                p = first();
   1.707 +                pred = null;
   1.708 +            } else {
   1.709 +                pred = nextNode;
   1.710 +                p = succ(nextNode);
   1.711 +            }
   1.712 +
   1.713 +            for (;;) {
   1.714 +                if (p == null) {
   1.715 +                    nextNode = null;
   1.716 +                    nextItem = null;
   1.717 +                    return x;
   1.718 +                }
   1.719 +                E item = p.item;
   1.720 +                if (item != null) {
   1.721 +                    nextNode = p;
   1.722 +                    nextItem = item;
   1.723 +                    return x;
   1.724 +                } else {
   1.725 +                    // skip over nulls
   1.726 +                    Node<E> next = succ(p);
   1.727 +                    if (pred != null && next != null)
   1.728 +                        pred.casNext(p, next);
   1.729 +                    p = next;
   1.730 +                }
   1.731 +            }
   1.732 +        }
   1.733 +
   1.734 +        public boolean hasNext() {
   1.735 +            return nextNode != null;
   1.736 +        }
   1.737 +
   1.738 +        public E next() {
   1.739 +            if (nextNode == null) throw new NoSuchElementException();
   1.740 +            return advance();
   1.741 +        }
   1.742 +
   1.743 +        public void remove() {
   1.744 +            Node<E> l = lastRet;
   1.745 +            if (l == null) throw new IllegalStateException();
   1.746 +            // rely on a future traversal to relink.
   1.747 +            l.item = null;
   1.748 +            lastRet = null;
   1.749 +        }
   1.750 +    }
   1.751 +
   1.752 +    /**
   1.753 +     * Saves the state to a stream (that is, serializes it).
   1.754 +     *
   1.755 +     * @serialData All of the elements (each an {@code E}) in
   1.756 +     * the proper order, followed by a null
   1.757 +     * @param s the stream
   1.758 +     */
   1.759 +    private void writeObject(java.io.ObjectOutputStream s)
   1.760 +        throws java.io.IOException {
   1.761 +
   1.762 +        // Write out any hidden stuff
   1.763 +        s.defaultWriteObject();
   1.764 +
   1.765 +        // Write out all elements in the proper order.
   1.766 +        for (Node<E> p = first(); p != null; p = succ(p)) {
   1.767 +            Object item = p.item;
   1.768 +            if (item != null)
   1.769 +                s.writeObject(item);
   1.770 +        }
   1.771 +
   1.772 +        // Use trailing null as sentinel
   1.773 +        s.writeObject(null);
   1.774 +    }
   1.775 +
   1.776 +    /**
   1.777 +     * Reconstitutes the instance from a stream (that is, deserializes it).
   1.778 +     * @param s the stream
   1.779 +     */
   1.780 +    private void readObject(java.io.ObjectInputStream s)
   1.781 +        throws java.io.IOException, ClassNotFoundException {
   1.782 +        s.defaultReadObject();
   1.783 +
   1.784 +        // Read in elements until trailing null sentinel found
   1.785 +        Node<E> h = null, t = null;
   1.786 +        Object item;
   1.787 +        while ((item = s.readObject()) != null) {
   1.788 +            @SuppressWarnings("unchecked")
   1.789 +            Node<E> newNode = new Node<E>((E) item);
   1.790 +            if (h == null)
   1.791 +                h = t = newNode;
   1.792 +            else {
   1.793 +                t.lazySetNext(newNode);
   1.794 +                t = newNode;
   1.795 +            }
   1.796 +        }
   1.797 +        if (h == null)
   1.798 +            h = t = new Node<E>(null);
   1.799 +        head = h;
   1.800 +        tail = t;
   1.801 +    }
   1.802 +
   1.803 +    /**
   1.804 +     * Throws NullPointerException if argument is null.
   1.805 +     *
   1.806 +     * @param v the element
   1.807 +     */
   1.808 +    private static void checkNotNull(Object v) {
   1.809 +        if (v == null)
   1.810 +            throw new NullPointerException();
   1.811 +    }
   1.812 +
   1.813 +    private boolean casTail(Node<E> cmp, Node<E> val) {
   1.814 +        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
   1.815 +    }
   1.816 +
   1.817 +    private boolean casHead(Node<E> cmp, Node<E> val) {
   1.818 +        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
   1.819 +    }
   1.820 +
   1.821 +    // Unsafe mechanics
   1.822 +
   1.823 +    private static final sun.misc.Unsafe UNSAFE;
   1.824 +    private static final long headOffset;
   1.825 +    private static final long tailOffset;
   1.826 +    static {
   1.827 +        try {
   1.828 +            UNSAFE = sun.misc.Unsafe.getUnsafe();
   1.829 +            Class k = ConcurrentLinkedQueue.class;
   1.830 +            headOffset = UNSAFE.objectFieldOffset
   1.831 +                (k.getDeclaredField("head"));
   1.832 +            tailOffset = UNSAFE.objectFieldOffset
   1.833 +                (k.getDeclaredField("tail"));
   1.834 +        } catch (Exception e) {
   1.835 +            throw new Error(e);
   1.836 +        }
   1.837 +    }
   1.838 +}