rt/emul/compact/src/main/java/java/util/concurrent/LinkedBlockingQueue.java
branchjdk7-b147
changeset 1890 212417b74b72
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/util/concurrent/LinkedBlockingQueue.java	Sat Mar 19 10:46:31 2016 +0100
     1.3 @@ -0,0 +1,910 @@
     1.4 +/*
     1.5 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.6 + *
     1.7 + * This code is free software; you can redistribute it and/or modify it
     1.8 + * under the terms of the GNU General Public License version 2 only, as
     1.9 + * published by the Free Software Foundation.  Oracle designates this
    1.10 + * particular file as subject to the "Classpath" exception as provided
    1.11 + * by Oracle in the LICENSE file that accompanied this code.
    1.12 + *
    1.13 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.14 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.15 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.16 + * version 2 for more details (a copy is included in the LICENSE file that
    1.17 + * accompanied this code).
    1.18 + *
    1.19 + * You should have received a copy of the GNU General Public License version
    1.20 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.21 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.22 + *
    1.23 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.24 + * or visit www.oracle.com if you need additional information or have any
    1.25 + * questions.
    1.26 + */
    1.27 +
    1.28 +/*
    1.29 + * This file is available under and governed by the GNU General Public
    1.30 + * License version 2 only, as published by the Free Software Foundation.
    1.31 + * However, the following notice accompanied the original version of this
    1.32 + * file:
    1.33 + *
    1.34 + * Written by Doug Lea with assistance from members of JCP JSR-166
    1.35 + * Expert Group and released to the public domain, as explained at
    1.36 + * http://creativecommons.org/publicdomain/zero/1.0/
    1.37 + */
    1.38 +
    1.39 +package java.util.concurrent;
    1.40 +
    1.41 +import java.util.concurrent.atomic.AtomicInteger;
    1.42 +import java.util.concurrent.locks.Condition;
    1.43 +import java.util.concurrent.locks.ReentrantLock;
    1.44 +import java.util.AbstractQueue;
    1.45 +import java.util.Collection;
    1.46 +import java.util.Iterator;
    1.47 +import java.util.NoSuchElementException;
    1.48 +
    1.49 +/**
    1.50 + * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
    1.51 + * linked nodes.
    1.52 + * This queue orders elements FIFO (first-in-first-out).
    1.53 + * The <em>head</em> of the queue is that element that has been on the
    1.54 + * queue the longest time.
    1.55 + * The <em>tail</em> of the queue is that element that has been on the
    1.56 + * queue the shortest time. New elements
    1.57 + * are inserted at the tail of the queue, and the queue retrieval
    1.58 + * operations obtain elements at the head of the queue.
    1.59 + * Linked queues typically have higher throughput than array-based queues but
    1.60 + * less predictable performance in most concurrent applications.
    1.61 + *
    1.62 + * <p> The optional capacity bound constructor argument serves as a
    1.63 + * way to prevent excessive queue expansion. The capacity, if unspecified,
    1.64 + * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
    1.65 + * dynamically created upon each insertion unless this would bring the
    1.66 + * queue above capacity.
    1.67 + *
    1.68 + * <p>This class and its iterator implement all of the
    1.69 + * <em>optional</em> methods of the {@link Collection} and {@link
    1.70 + * Iterator} interfaces.
    1.71 + *
    1.72 + * <p>This class is a member of the
    1.73 + * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    1.74 + * Java Collections Framework</a>.
    1.75 + *
    1.76 + * @since 1.5
    1.77 + * @author Doug Lea
    1.78 + * @param <E> the type of elements held in this collection
    1.79 + *
    1.80 + */
    1.81 +public class LinkedBlockingQueue<E> extends AbstractQueue<E>
    1.82 +        implements BlockingQueue<E>, java.io.Serializable {
    1.83 +    private static final long serialVersionUID = -6903933977591709194L;
    1.84 +
    1.85 +    /*
    1.86 +     * A variant of the "two lock queue" algorithm.  The putLock gates
    1.87 +     * entry to put (and offer), and has an associated condition for
    1.88 +     * waiting puts.  Similarly for the takeLock.  The "count" field
    1.89 +     * that they both rely on is maintained as an atomic to avoid
    1.90 +     * needing to get both locks in most cases. Also, to minimize need
    1.91 +     * for puts to get takeLock and vice-versa, cascading notifies are
    1.92 +     * used. When a put notices that it has enabled at least one take,
    1.93 +     * it signals taker. That taker in turn signals others if more
    1.94 +     * items have been entered since the signal. And symmetrically for
    1.95 +     * takes signalling puts. Operations such as remove(Object) and
    1.96 +     * iterators acquire both locks.
    1.97 +     *
    1.98 +     * Visibility between writers and readers is provided as follows:
    1.99 +     *
   1.100 +     * Whenever an element is enqueued, the putLock is acquired and
   1.101 +     * count updated.  A subsequent reader guarantees visibility to the
   1.102 +     * enqueued Node by either acquiring the putLock (via fullyLock)
   1.103 +     * or by acquiring the takeLock, and then reading n = count.get();
   1.104 +     * this gives visibility to the first n items.
   1.105 +     *
   1.106 +     * To implement weakly consistent iterators, it appears we need to
   1.107 +     * keep all Nodes GC-reachable from a predecessor dequeued Node.
   1.108 +     * That would cause two problems:
   1.109 +     * - allow a rogue Iterator to cause unbounded memory retention
   1.110 +     * - cause cross-generational linking of old Nodes to new Nodes if
   1.111 +     *   a Node was tenured while live, which generational GCs have a
   1.112 +     *   hard time dealing with, causing repeated major collections.
   1.113 +     * However, only non-deleted Nodes need to be reachable from
   1.114 +     * dequeued Nodes, and reachability does not necessarily have to
   1.115 +     * be of the kind understood by the GC.  We use the trick of
   1.116 +     * linking a Node that has just been dequeued to itself.  Such a
   1.117 +     * self-link implicitly means to advance to head.next.
   1.118 +     */
   1.119 +
   1.120 +    /**
   1.121 +     * Linked list node class
   1.122 +     */
   1.123 +    static class Node<E> {
   1.124 +        E item;
   1.125 +
   1.126 +        /**
   1.127 +         * One of:
   1.128 +         * - the real successor Node
   1.129 +         * - this Node, meaning the successor is head.next
   1.130 +         * - null, meaning there is no successor (this is the last node)
   1.131 +         */
   1.132 +        Node<E> next;
   1.133 +
   1.134 +        Node(E x) { item = x; }
   1.135 +    }
   1.136 +
   1.137 +    /** The capacity bound, or Integer.MAX_VALUE if none */
   1.138 +    private final int capacity;
   1.139 +
   1.140 +    /** Current number of elements */
   1.141 +    private final AtomicInteger count = new AtomicInteger(0);
   1.142 +
   1.143 +    /**
   1.144 +     * Head of linked list.
   1.145 +     * Invariant: head.item == null
   1.146 +     */
   1.147 +    private transient Node<E> head;
   1.148 +
   1.149 +    /**
   1.150 +     * Tail of linked list.
   1.151 +     * Invariant: last.next == null
   1.152 +     */
   1.153 +    private transient Node<E> last;
   1.154 +
   1.155 +    /** Lock held by take, poll, etc */
   1.156 +    private final ReentrantLock takeLock = new ReentrantLock();
   1.157 +
   1.158 +    /** Wait queue for waiting takes */
   1.159 +    private final Condition notEmpty = takeLock.newCondition();
   1.160 +
   1.161 +    /** Lock held by put, offer, etc */
   1.162 +    private final ReentrantLock putLock = new ReentrantLock();
   1.163 +
   1.164 +    /** Wait queue for waiting puts */
   1.165 +    private final Condition notFull = putLock.newCondition();
   1.166 +
   1.167 +    /**
   1.168 +     * Signals a waiting take. Called only from put/offer (which do not
   1.169 +     * otherwise ordinarily lock takeLock.)
   1.170 +     */
   1.171 +    private void signalNotEmpty() {
   1.172 +        final ReentrantLock takeLock = this.takeLock;
   1.173 +        takeLock.lock();
   1.174 +        try {
   1.175 +            notEmpty.signal();
   1.176 +        } finally {
   1.177 +            takeLock.unlock();
   1.178 +        }
   1.179 +    }
   1.180 +
   1.181 +    /**
   1.182 +     * Signals a waiting put. Called only from take/poll.
   1.183 +     */
   1.184 +    private void signalNotFull() {
   1.185 +        final ReentrantLock putLock = this.putLock;
   1.186 +        putLock.lock();
   1.187 +        try {
   1.188 +            notFull.signal();
   1.189 +        } finally {
   1.190 +            putLock.unlock();
   1.191 +        }
   1.192 +    }
   1.193 +
   1.194 +    /**
   1.195 +     * Links node at end of queue.
   1.196 +     *
   1.197 +     * @param node the node
   1.198 +     */
   1.199 +    private void enqueue(Node<E> node) {
   1.200 +        // assert putLock.isHeldByCurrentThread();
   1.201 +        // assert last.next == null;
   1.202 +        last = last.next = node;
   1.203 +    }
   1.204 +
   1.205 +    /**
   1.206 +     * Removes a node from head of queue.
   1.207 +     *
   1.208 +     * @return the node
   1.209 +     */
   1.210 +    private E dequeue() {
   1.211 +        // assert takeLock.isHeldByCurrentThread();
   1.212 +        // assert head.item == null;
   1.213 +        Node<E> h = head;
   1.214 +        Node<E> first = h.next;
   1.215 +        h.next = h; // help GC
   1.216 +        head = first;
   1.217 +        E x = first.item;
   1.218 +        first.item = null;
   1.219 +        return x;
   1.220 +    }
   1.221 +
   1.222 +    /**
   1.223 +     * Lock to prevent both puts and takes.
   1.224 +     */
   1.225 +    void fullyLock() {
   1.226 +        putLock.lock();
   1.227 +        takeLock.lock();
   1.228 +    }
   1.229 +
   1.230 +    /**
   1.231 +     * Unlock to allow both puts and takes.
   1.232 +     */
   1.233 +    void fullyUnlock() {
   1.234 +        takeLock.unlock();
   1.235 +        putLock.unlock();
   1.236 +    }
   1.237 +
   1.238 +//     /**
   1.239 +//      * Tells whether both locks are held by current thread.
   1.240 +//      */
   1.241 +//     boolean isFullyLocked() {
   1.242 +//         return (putLock.isHeldByCurrentThread() &&
   1.243 +//                 takeLock.isHeldByCurrentThread());
   1.244 +//     }
   1.245 +
   1.246 +    /**
   1.247 +     * Creates a {@code LinkedBlockingQueue} with a capacity of
   1.248 +     * {@link Integer#MAX_VALUE}.
   1.249 +     */
   1.250 +    public LinkedBlockingQueue() {
   1.251 +        this(Integer.MAX_VALUE);
   1.252 +    }
   1.253 +
   1.254 +    /**
   1.255 +     * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
   1.256 +     *
   1.257 +     * @param capacity the capacity of this queue
   1.258 +     * @throws IllegalArgumentException if {@code capacity} is not greater
   1.259 +     *         than zero
   1.260 +     */
   1.261 +    public LinkedBlockingQueue(int capacity) {
   1.262 +        if (capacity <= 0) throw new IllegalArgumentException();
   1.263 +        this.capacity = capacity;
   1.264 +        last = head = new Node<E>(null);
   1.265 +    }
   1.266 +
   1.267 +    /**
   1.268 +     * Creates a {@code LinkedBlockingQueue} with a capacity of
   1.269 +     * {@link Integer#MAX_VALUE}, initially containing the elements of the
   1.270 +     * given collection,
   1.271 +     * added in traversal order of the collection's iterator.
   1.272 +     *
   1.273 +     * @param c the collection of elements to initially contain
   1.274 +     * @throws NullPointerException if the specified collection or any
   1.275 +     *         of its elements are null
   1.276 +     */
   1.277 +    public LinkedBlockingQueue(Collection<? extends E> c) {
   1.278 +        this(Integer.MAX_VALUE);
   1.279 +        final ReentrantLock putLock = this.putLock;
   1.280 +        putLock.lock(); // Never contended, but necessary for visibility
   1.281 +        try {
   1.282 +            int n = 0;
   1.283 +            for (E e : c) {
   1.284 +                if (e == null)
   1.285 +                    throw new NullPointerException();
   1.286 +                if (n == capacity)
   1.287 +                    throw new IllegalStateException("Queue full");
   1.288 +                enqueue(new Node<E>(e));
   1.289 +                ++n;
   1.290 +            }
   1.291 +            count.set(n);
   1.292 +        } finally {
   1.293 +            putLock.unlock();
   1.294 +        }
   1.295 +    }
   1.296 +
   1.297 +
   1.298 +    // this doc comment is overridden to remove the reference to collections
   1.299 +    // greater in size than Integer.MAX_VALUE
   1.300 +    /**
   1.301 +     * Returns the number of elements in this queue.
   1.302 +     *
   1.303 +     * @return the number of elements in this queue
   1.304 +     */
   1.305 +    public int size() {
   1.306 +        return count.get();
   1.307 +    }
   1.308 +
   1.309 +    // this doc comment is a modified copy of the inherited doc comment,
   1.310 +    // without the reference to unlimited queues.
   1.311 +    /**
   1.312 +     * Returns the number of additional elements that this queue can ideally
   1.313 +     * (in the absence of memory or resource constraints) accept without
   1.314 +     * blocking. This is always equal to the initial capacity of this queue
   1.315 +     * less the current {@code size} of this queue.
   1.316 +     *
   1.317 +     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
   1.318 +     * an element will succeed by inspecting {@code remainingCapacity}
   1.319 +     * because it may be the case that another thread is about to
   1.320 +     * insert or remove an element.
   1.321 +     */
   1.322 +    public int remainingCapacity() {
   1.323 +        return capacity - count.get();
   1.324 +    }
   1.325 +
   1.326 +    /**
   1.327 +     * Inserts the specified element at the tail of this queue, waiting if
   1.328 +     * necessary for space to become available.
   1.329 +     *
   1.330 +     * @throws InterruptedException {@inheritDoc}
   1.331 +     * @throws NullPointerException {@inheritDoc}
   1.332 +     */
   1.333 +    public void put(E e) throws InterruptedException {
   1.334 +        if (e == null) throw new NullPointerException();
   1.335 +        // Note: convention in all put/take/etc is to preset local var
   1.336 +        // holding count negative to indicate failure unless set.
   1.337 +        int c = -1;
   1.338 +        Node<E> node = new Node(e);
   1.339 +        final ReentrantLock putLock = this.putLock;
   1.340 +        final AtomicInteger count = this.count;
   1.341 +        putLock.lockInterruptibly();
   1.342 +        try {
   1.343 +            /*
   1.344 +             * Note that count is used in wait guard even though it is
   1.345 +             * not protected by lock. This works because count can
   1.346 +             * only decrease at this point (all other puts are shut
   1.347 +             * out by lock), and we (or some other waiting put) are
   1.348 +             * signalled if it ever changes from capacity. Similarly
   1.349 +             * for all other uses of count in other wait guards.
   1.350 +             */
   1.351 +            while (count.get() == capacity) {
   1.352 +                notFull.await();
   1.353 +            }
   1.354 +            enqueue(node);
   1.355 +            c = count.getAndIncrement();
   1.356 +            if (c + 1 < capacity)
   1.357 +                notFull.signal();
   1.358 +        } finally {
   1.359 +            putLock.unlock();
   1.360 +        }
   1.361 +        if (c == 0)
   1.362 +            signalNotEmpty();
   1.363 +    }
   1.364 +
   1.365 +    /**
   1.366 +     * Inserts the specified element at the tail of this queue, waiting if
   1.367 +     * necessary up to the specified wait time for space to become available.
   1.368 +     *
   1.369 +     * @return {@code true} if successful, or {@code false} if
   1.370 +     *         the specified waiting time elapses before space is available.
   1.371 +     * @throws InterruptedException {@inheritDoc}
   1.372 +     * @throws NullPointerException {@inheritDoc}
   1.373 +     */
   1.374 +    public boolean offer(E e, long timeout, TimeUnit unit)
   1.375 +        throws InterruptedException {
   1.376 +
   1.377 +        if (e == null) throw new NullPointerException();
   1.378 +        long nanos = unit.toNanos(timeout);
   1.379 +        int c = -1;
   1.380 +        final ReentrantLock putLock = this.putLock;
   1.381 +        final AtomicInteger count = this.count;
   1.382 +        putLock.lockInterruptibly();
   1.383 +        try {
   1.384 +            while (count.get() == capacity) {
   1.385 +                if (nanos <= 0)
   1.386 +                    return false;
   1.387 +                nanos = notFull.awaitNanos(nanos);
   1.388 +            }
   1.389 +            enqueue(new Node<E>(e));
   1.390 +            c = count.getAndIncrement();
   1.391 +            if (c + 1 < capacity)
   1.392 +                notFull.signal();
   1.393 +        } finally {
   1.394 +            putLock.unlock();
   1.395 +        }
   1.396 +        if (c == 0)
   1.397 +            signalNotEmpty();
   1.398 +        return true;
   1.399 +    }
   1.400 +
   1.401 +    /**
   1.402 +     * Inserts the specified element at the tail of this queue if it is
   1.403 +     * possible to do so immediately without exceeding the queue's capacity,
   1.404 +     * returning {@code true} upon success and {@code false} if this queue
   1.405 +     * is full.
   1.406 +     * When using a capacity-restricted queue, this method is generally
   1.407 +     * preferable to method {@link BlockingQueue#add add}, which can fail to
   1.408 +     * insert an element only by throwing an exception.
   1.409 +     *
   1.410 +     * @throws NullPointerException if the specified element is null
   1.411 +     */
   1.412 +    public boolean offer(E e) {
   1.413 +        if (e == null) throw new NullPointerException();
   1.414 +        final AtomicInteger count = this.count;
   1.415 +        if (count.get() == capacity)
   1.416 +            return false;
   1.417 +        int c = -1;
   1.418 +        Node<E> node = new Node(e);
   1.419 +        final ReentrantLock putLock = this.putLock;
   1.420 +        putLock.lock();
   1.421 +        try {
   1.422 +            if (count.get() < capacity) {
   1.423 +                enqueue(node);
   1.424 +                c = count.getAndIncrement();
   1.425 +                if (c + 1 < capacity)
   1.426 +                    notFull.signal();
   1.427 +            }
   1.428 +        } finally {
   1.429 +            putLock.unlock();
   1.430 +        }
   1.431 +        if (c == 0)
   1.432 +            signalNotEmpty();
   1.433 +        return c >= 0;
   1.434 +    }
   1.435 +
   1.436 +
   1.437 +    public E take() throws InterruptedException {
   1.438 +        E x;
   1.439 +        int c = -1;
   1.440 +        final AtomicInteger count = this.count;
   1.441 +        final ReentrantLock takeLock = this.takeLock;
   1.442 +        takeLock.lockInterruptibly();
   1.443 +        try {
   1.444 +            while (count.get() == 0) {
   1.445 +                notEmpty.await();
   1.446 +            }
   1.447 +            x = dequeue();
   1.448 +            c = count.getAndDecrement();
   1.449 +            if (c > 1)
   1.450 +                notEmpty.signal();
   1.451 +        } finally {
   1.452 +            takeLock.unlock();
   1.453 +        }
   1.454 +        if (c == capacity)
   1.455 +            signalNotFull();
   1.456 +        return x;
   1.457 +    }
   1.458 +
   1.459 +    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
   1.460 +        E x = null;
   1.461 +        int c = -1;
   1.462 +        long nanos = unit.toNanos(timeout);
   1.463 +        final AtomicInteger count = this.count;
   1.464 +        final ReentrantLock takeLock = this.takeLock;
   1.465 +        takeLock.lockInterruptibly();
   1.466 +        try {
   1.467 +            while (count.get() == 0) {
   1.468 +                if (nanos <= 0)
   1.469 +                    return null;
   1.470 +                nanos = notEmpty.awaitNanos(nanos);
   1.471 +            }
   1.472 +            x = dequeue();
   1.473 +            c = count.getAndDecrement();
   1.474 +            if (c > 1)
   1.475 +                notEmpty.signal();
   1.476 +        } finally {
   1.477 +            takeLock.unlock();
   1.478 +        }
   1.479 +        if (c == capacity)
   1.480 +            signalNotFull();
   1.481 +        return x;
   1.482 +    }
   1.483 +
   1.484 +    public E poll() {
   1.485 +        final AtomicInteger count = this.count;
   1.486 +        if (count.get() == 0)
   1.487 +            return null;
   1.488 +        E x = null;
   1.489 +        int c = -1;
   1.490 +        final ReentrantLock takeLock = this.takeLock;
   1.491 +        takeLock.lock();
   1.492 +        try {
   1.493 +            if (count.get() > 0) {
   1.494 +                x = dequeue();
   1.495 +                c = count.getAndDecrement();
   1.496 +                if (c > 1)
   1.497 +                    notEmpty.signal();
   1.498 +            }
   1.499 +        } finally {
   1.500 +            takeLock.unlock();
   1.501 +        }
   1.502 +        if (c == capacity)
   1.503 +            signalNotFull();
   1.504 +        return x;
   1.505 +    }
   1.506 +
   1.507 +    public E peek() {
   1.508 +        if (count.get() == 0)
   1.509 +            return null;
   1.510 +        final ReentrantLock takeLock = this.takeLock;
   1.511 +        takeLock.lock();
   1.512 +        try {
   1.513 +            Node<E> first = head.next;
   1.514 +            if (first == null)
   1.515 +                return null;
   1.516 +            else
   1.517 +                return first.item;
   1.518 +        } finally {
   1.519 +            takeLock.unlock();
   1.520 +        }
   1.521 +    }
   1.522 +
   1.523 +    /**
   1.524 +     * Unlinks interior Node p with predecessor trail.
   1.525 +     */
   1.526 +    void unlink(Node<E> p, Node<E> trail) {
   1.527 +        // assert isFullyLocked();
   1.528 +        // p.next is not changed, to allow iterators that are
   1.529 +        // traversing p to maintain their weak-consistency guarantee.
   1.530 +        p.item = null;
   1.531 +        trail.next = p.next;
   1.532 +        if (last == p)
   1.533 +            last = trail;
   1.534 +        if (count.getAndDecrement() == capacity)
   1.535 +            notFull.signal();
   1.536 +    }
   1.537 +
   1.538 +    /**
   1.539 +     * Removes a single instance of the specified element from this queue,
   1.540 +     * if it is present.  More formally, removes an element {@code e} such
   1.541 +     * that {@code o.equals(e)}, if this queue contains one or more such
   1.542 +     * elements.
   1.543 +     * Returns {@code true} if this queue contained the specified element
   1.544 +     * (or equivalently, if this queue changed as a result of the call).
   1.545 +     *
   1.546 +     * @param o element to be removed from this queue, if present
   1.547 +     * @return {@code true} if this queue changed as a result of the call
   1.548 +     */
   1.549 +    public boolean remove(Object o) {
   1.550 +        if (o == null) return false;
   1.551 +        fullyLock();
   1.552 +        try {
   1.553 +            for (Node<E> trail = head, p = trail.next;
   1.554 +                 p != null;
   1.555 +                 trail = p, p = p.next) {
   1.556 +                if (o.equals(p.item)) {
   1.557 +                    unlink(p, trail);
   1.558 +                    return true;
   1.559 +                }
   1.560 +            }
   1.561 +            return false;
   1.562 +        } finally {
   1.563 +            fullyUnlock();
   1.564 +        }
   1.565 +    }
   1.566 +
   1.567 +    /**
   1.568 +     * Returns {@code true} if this queue contains the specified element.
   1.569 +     * More formally, returns {@code true} if and only if this queue contains
   1.570 +     * at least one element {@code e} such that {@code o.equals(e)}.
   1.571 +     *
   1.572 +     * @param o object to be checked for containment in this queue
   1.573 +     * @return {@code true} if this queue contains the specified element
   1.574 +     */
   1.575 +    public boolean contains(Object o) {
   1.576 +        if (o == null) return false;
   1.577 +        fullyLock();
   1.578 +        try {
   1.579 +            for (Node<E> p = head.next; p != null; p = p.next)
   1.580 +                if (o.equals(p.item))
   1.581 +                    return true;
   1.582 +            return false;
   1.583 +        } finally {
   1.584 +            fullyUnlock();
   1.585 +        }
   1.586 +    }
   1.587 +
   1.588 +    /**
   1.589 +     * Returns an array containing all of the elements in this queue, in
   1.590 +     * proper sequence.
   1.591 +     *
   1.592 +     * <p>The returned array will be "safe" in that no references to it are
   1.593 +     * maintained by this queue.  (In other words, this method must allocate
   1.594 +     * a new array).  The caller is thus free to modify the returned array.
   1.595 +     *
   1.596 +     * <p>This method acts as bridge between array-based and collection-based
   1.597 +     * APIs.
   1.598 +     *
   1.599 +     * @return an array containing all of the elements in this queue
   1.600 +     */
   1.601 +    public Object[] toArray() {
   1.602 +        fullyLock();
   1.603 +        try {
   1.604 +            int size = count.get();
   1.605 +            Object[] a = new Object[size];
   1.606 +            int k = 0;
   1.607 +            for (Node<E> p = head.next; p != null; p = p.next)
   1.608 +                a[k++] = p.item;
   1.609 +            return a;
   1.610 +        } finally {
   1.611 +            fullyUnlock();
   1.612 +        }
   1.613 +    }
   1.614 +
   1.615 +    /**
   1.616 +     * Returns an array containing all of the elements in this queue, in
   1.617 +     * proper sequence; the runtime type of the returned array is that of
   1.618 +     * the specified array.  If the queue fits in the specified array, it
   1.619 +     * is returned therein.  Otherwise, a new array is allocated with the
   1.620 +     * runtime type of the specified array and the size of this queue.
   1.621 +     *
   1.622 +     * <p>If this queue fits in the specified array with room to spare
   1.623 +     * (i.e., the array has more elements than this queue), the element in
   1.624 +     * the array immediately following the end of the queue is set to
   1.625 +     * {@code null}.
   1.626 +     *
   1.627 +     * <p>Like the {@link #toArray()} method, this method acts as bridge between
   1.628 +     * array-based and collection-based APIs.  Further, this method allows
   1.629 +     * precise control over the runtime type of the output array, and may,
   1.630 +     * under certain circumstances, be used to save allocation costs.
   1.631 +     *
   1.632 +     * <p>Suppose {@code x} is a queue known to contain only strings.
   1.633 +     * The following code can be used to dump the queue into a newly
   1.634 +     * allocated array of {@code String}:
   1.635 +     *
   1.636 +     * <pre>
   1.637 +     *     String[] y = x.toArray(new String[0]);</pre>
   1.638 +     *
   1.639 +     * Note that {@code toArray(new Object[0])} is identical in function to
   1.640 +     * {@code toArray()}.
   1.641 +     *
   1.642 +     * @param a the array into which the elements of the queue are to
   1.643 +     *          be stored, if it is big enough; otherwise, a new array of the
   1.644 +     *          same runtime type is allocated for this purpose
   1.645 +     * @return an array containing all of the elements in this queue
   1.646 +     * @throws ArrayStoreException if the runtime type of the specified array
   1.647 +     *         is not a supertype of the runtime type of every element in
   1.648 +     *         this queue
   1.649 +     * @throws NullPointerException if the specified array is null
   1.650 +     */
   1.651 +    @SuppressWarnings("unchecked")
   1.652 +    public <T> T[] toArray(T[] a) {
   1.653 +        fullyLock();
   1.654 +        try {
   1.655 +            int size = count.get();
   1.656 +            if (a.length < size)
   1.657 +                a = (T[])java.lang.reflect.Array.newInstance
   1.658 +                    (a.getClass().getComponentType(), size);
   1.659 +
   1.660 +            int k = 0;
   1.661 +            for (Node<E> p = head.next; p != null; p = p.next)
   1.662 +                a[k++] = (T)p.item;
   1.663 +            if (a.length > k)
   1.664 +                a[k] = null;
   1.665 +            return a;
   1.666 +        } finally {
   1.667 +            fullyUnlock();
   1.668 +        }
   1.669 +    }
   1.670 +
   1.671 +    public String toString() {
   1.672 +        fullyLock();
   1.673 +        try {
   1.674 +            Node<E> p = head.next;
   1.675 +            if (p == null)
   1.676 +                return "[]";
   1.677 +
   1.678 +            StringBuilder sb = new StringBuilder();
   1.679 +            sb.append('[');
   1.680 +            for (;;) {
   1.681 +                E e = p.item;
   1.682 +                sb.append(e == this ? "(this Collection)" : e);
   1.683 +                p = p.next;
   1.684 +                if (p == null)
   1.685 +                    return sb.append(']').toString();
   1.686 +                sb.append(',').append(' ');
   1.687 +            }
   1.688 +        } finally {
   1.689 +            fullyUnlock();
   1.690 +        }
   1.691 +    }
   1.692 +
   1.693 +    /**
   1.694 +     * Atomically removes all of the elements from this queue.
   1.695 +     * The queue will be empty after this call returns.
   1.696 +     */
   1.697 +    public void clear() {
   1.698 +        fullyLock();
   1.699 +        try {
   1.700 +            for (Node<E> p, h = head; (p = h.next) != null; h = p) {
   1.701 +                h.next = h;
   1.702 +                p.item = null;
   1.703 +            }
   1.704 +            head = last;
   1.705 +            // assert head.item == null && head.next == null;
   1.706 +            if (count.getAndSet(0) == capacity)
   1.707 +                notFull.signal();
   1.708 +        } finally {
   1.709 +            fullyUnlock();
   1.710 +        }
   1.711 +    }
   1.712 +
   1.713 +    /**
   1.714 +     * @throws UnsupportedOperationException {@inheritDoc}
   1.715 +     * @throws ClassCastException            {@inheritDoc}
   1.716 +     * @throws NullPointerException          {@inheritDoc}
   1.717 +     * @throws IllegalArgumentException      {@inheritDoc}
   1.718 +     */
   1.719 +    public int drainTo(Collection<? super E> c) {
   1.720 +        return drainTo(c, Integer.MAX_VALUE);
   1.721 +    }
   1.722 +
   1.723 +    /**
   1.724 +     * @throws UnsupportedOperationException {@inheritDoc}
   1.725 +     * @throws ClassCastException            {@inheritDoc}
   1.726 +     * @throws NullPointerException          {@inheritDoc}
   1.727 +     * @throws IllegalArgumentException      {@inheritDoc}
   1.728 +     */
   1.729 +    public int drainTo(Collection<? super E> c, int maxElements) {
   1.730 +        if (c == null)
   1.731 +            throw new NullPointerException();
   1.732 +        if (c == this)
   1.733 +            throw new IllegalArgumentException();
   1.734 +        boolean signalNotFull = false;
   1.735 +        final ReentrantLock takeLock = this.takeLock;
   1.736 +        takeLock.lock();
   1.737 +        try {
   1.738 +            int n = Math.min(maxElements, count.get());
   1.739 +            // count.get provides visibility to first n Nodes
   1.740 +            Node<E> h = head;
   1.741 +            int i = 0;
   1.742 +            try {
   1.743 +                while (i < n) {
   1.744 +                    Node<E> p = h.next;
   1.745 +                    c.add(p.item);
   1.746 +                    p.item = null;
   1.747 +                    h.next = h;
   1.748 +                    h = p;
   1.749 +                    ++i;
   1.750 +                }
   1.751 +                return n;
   1.752 +            } finally {
   1.753 +                // Restore invariants even if c.add() threw
   1.754 +                if (i > 0) {
   1.755 +                    // assert h.item == null;
   1.756 +                    head = h;
   1.757 +                    signalNotFull = (count.getAndAdd(-i) == capacity);
   1.758 +                }
   1.759 +            }
   1.760 +        } finally {
   1.761 +            takeLock.unlock();
   1.762 +            if (signalNotFull)
   1.763 +                signalNotFull();
   1.764 +        }
   1.765 +    }
   1.766 +
   1.767 +    /**
   1.768 +     * Returns an iterator over the elements in this queue in proper sequence.
   1.769 +     * The elements will be returned in order from first (head) to last (tail).
   1.770 +     *
   1.771 +     * <p>The returned iterator is a "weakly consistent" iterator that
   1.772 +     * will never throw {@link java.util.ConcurrentModificationException
   1.773 +     * ConcurrentModificationException}, and guarantees to traverse
   1.774 +     * elements as they existed upon construction of the iterator, and
   1.775 +     * may (but is not guaranteed to) reflect any modifications
   1.776 +     * subsequent to construction.
   1.777 +     *
   1.778 +     * @return an iterator over the elements in this queue in proper sequence
   1.779 +     */
   1.780 +    public Iterator<E> iterator() {
   1.781 +      return new Itr();
   1.782 +    }
   1.783 +
   1.784 +    private class Itr implements Iterator<E> {
   1.785 +        /*
   1.786 +         * Basic weakly-consistent iterator.  At all times hold the next
   1.787 +         * item to hand out so that if hasNext() reports true, we will
   1.788 +         * still have it to return even if lost race with a take etc.
   1.789 +         */
   1.790 +        private Node<E> current;
   1.791 +        private Node<E> lastRet;
   1.792 +        private E currentElement;
   1.793 +
   1.794 +        Itr() {
   1.795 +            fullyLock();
   1.796 +            try {
   1.797 +                current = head.next;
   1.798 +                if (current != null)
   1.799 +                    currentElement = current.item;
   1.800 +            } finally {
   1.801 +                fullyUnlock();
   1.802 +            }
   1.803 +        }
   1.804 +
   1.805 +        public boolean hasNext() {
   1.806 +            return current != null;
   1.807 +        }
   1.808 +
   1.809 +        /**
   1.810 +         * Returns the next live successor of p, or null if no such.
   1.811 +         *
   1.812 +         * Unlike other traversal methods, iterators need to handle both:
   1.813 +         * - dequeued nodes (p.next == p)
   1.814 +         * - (possibly multiple) interior removed nodes (p.item == null)
   1.815 +         */
   1.816 +        private Node<E> nextNode(Node<E> p) {
   1.817 +            for (;;) {
   1.818 +                Node<E> s = p.next;
   1.819 +                if (s == p)
   1.820 +                    return head.next;
   1.821 +                if (s == null || s.item != null)
   1.822 +                    return s;
   1.823 +                p = s;
   1.824 +            }
   1.825 +        }
   1.826 +
   1.827 +        public E next() {
   1.828 +            fullyLock();
   1.829 +            try {
   1.830 +                if (current == null)
   1.831 +                    throw new NoSuchElementException();
   1.832 +                E x = currentElement;
   1.833 +                lastRet = current;
   1.834 +                current = nextNode(current);
   1.835 +                currentElement = (current == null) ? null : current.item;
   1.836 +                return x;
   1.837 +            } finally {
   1.838 +                fullyUnlock();
   1.839 +            }
   1.840 +        }
   1.841 +
   1.842 +        public void remove() {
   1.843 +            if (lastRet == null)
   1.844 +                throw new IllegalStateException();
   1.845 +            fullyLock();
   1.846 +            try {
   1.847 +                Node<E> node = lastRet;
   1.848 +                lastRet = null;
   1.849 +                for (Node<E> trail = head, p = trail.next;
   1.850 +                     p != null;
   1.851 +                     trail = p, p = p.next) {
   1.852 +                    if (p == node) {
   1.853 +                        unlink(p, trail);
   1.854 +                        break;
   1.855 +                    }
   1.856 +                }
   1.857 +            } finally {
   1.858 +                fullyUnlock();
   1.859 +            }
   1.860 +        }
   1.861 +    }
   1.862 +
   1.863 +    /**
   1.864 +     * Save the state to a stream (that is, serialize it).
   1.865 +     *
   1.866 +     * @serialData The capacity is emitted (int), followed by all of
   1.867 +     * its elements (each an {@code Object}) in the proper order,
   1.868 +     * followed by a null
   1.869 +     * @param s the stream
   1.870 +     */
   1.871 +    private void writeObject(java.io.ObjectOutputStream s)
   1.872 +        throws java.io.IOException {
   1.873 +
   1.874 +        fullyLock();
   1.875 +        try {
   1.876 +            // Write out any hidden stuff, plus capacity
   1.877 +            s.defaultWriteObject();
   1.878 +
   1.879 +            // Write out all elements in the proper order.
   1.880 +            for (Node<E> p = head.next; p != null; p = p.next)
   1.881 +                s.writeObject(p.item);
   1.882 +
   1.883 +            // Use trailing null as sentinel
   1.884 +            s.writeObject(null);
   1.885 +        } finally {
   1.886 +            fullyUnlock();
   1.887 +        }
   1.888 +    }
   1.889 +
   1.890 +    /**
   1.891 +     * Reconstitute this queue instance from a stream (that is,
   1.892 +     * deserialize it).
   1.893 +     *
   1.894 +     * @param s the stream
   1.895 +     */
   1.896 +    private void readObject(java.io.ObjectInputStream s)
   1.897 +        throws java.io.IOException, ClassNotFoundException {
   1.898 +        // Read in capacity, and any hidden stuff
   1.899 +        s.defaultReadObject();
   1.900 +
   1.901 +        count.set(0);
   1.902 +        last = head = new Node<E>(null);
   1.903 +
   1.904 +        // Read in all elements and place in queue
   1.905 +        for (;;) {
   1.906 +            @SuppressWarnings("unchecked")
   1.907 +            E item = (E)s.readObject();
   1.908 +            if (item == null)
   1.909 +                break;
   1.910 +            add(item);
   1.911 +        }
   1.912 +    }
   1.913 +}