rt/emul/compact/src/main/java/java/util/concurrent/SynchronousQueue.java
branchjdk7-b147
changeset 1890 212417b74b72
child 1895 bfaf3300b7ba
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/util/concurrent/SynchronousQueue.java	Sat Mar 19 10:46:31 2016 +0100
     1.3 @@ -0,0 +1,1196 @@
     1.4 +/*
     1.5 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.6 + *
     1.7 + * This code is free software; you can redistribute it and/or modify it
     1.8 + * under the terms of the GNU General Public License version 2 only, as
     1.9 + * published by the Free Software Foundation.  Oracle designates this
    1.10 + * particular file as subject to the "Classpath" exception as provided
    1.11 + * by Oracle in the LICENSE file that accompanied this code.
    1.12 + *
    1.13 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.14 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.15 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.16 + * version 2 for more details (a copy is included in the LICENSE file that
    1.17 + * accompanied this code).
    1.18 + *
    1.19 + * You should have received a copy of the GNU General Public License version
    1.20 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.21 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.22 + *
    1.23 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.24 + * or visit www.oracle.com if you need additional information or have any
    1.25 + * questions.
    1.26 + */
    1.27 +
    1.28 +/*
    1.29 + * This file is available under and governed by the GNU General Public
    1.30 + * License version 2 only, as published by the Free Software Foundation.
    1.31 + * However, the following notice accompanied the original version of this
    1.32 + * file:
    1.33 + *
    1.34 + * Written by Doug Lea, Bill Scherer, and Michael Scott with
    1.35 + * assistance from members of JCP JSR-166 Expert Group and released to
    1.36 + * the public domain, as explained at
    1.37 + * http://creativecommons.org/publicdomain/zero/1.0/
    1.38 + */
    1.39 +
    1.40 +package java.util.concurrent;
    1.41 +import java.util.concurrent.locks.*;
    1.42 +import java.util.concurrent.atomic.*;
    1.43 +import java.util.*;
    1.44 +
    1.45 +/**
    1.46 + * A {@linkplain BlockingQueue blocking queue} in which each insert
    1.47 + * operation must wait for a corresponding remove operation by another
    1.48 + * thread, and vice versa.  A synchronous queue does not have any
    1.49 + * internal capacity, not even a capacity of one.  You cannot
    1.50 + * <tt>peek</tt> at a synchronous queue because an element is only
    1.51 + * present when you try to remove it; you cannot insert an element
    1.52 + * (using any method) unless another thread is trying to remove it;
    1.53 + * you cannot iterate as there is nothing to iterate.  The
    1.54 + * <em>head</em> of the queue is the element that the first queued
    1.55 + * inserting thread is trying to add to the queue; if there is no such
    1.56 + * queued thread then no element is available for removal and
    1.57 + * <tt>poll()</tt> will return <tt>null</tt>.  For purposes of other
    1.58 + * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
    1.59 + * <tt>SynchronousQueue</tt> acts as an empty collection.  This queue
    1.60 + * does not permit <tt>null</tt> elements.
    1.61 + *
    1.62 + * <p>Synchronous queues are similar to rendezvous channels used in
    1.63 + * CSP and Ada. They are well suited for handoff designs, in which an
    1.64 + * object running in one thread must sync up with an object running
    1.65 + * in another thread in order to hand it some information, event, or
    1.66 + * task.
    1.67 + *
    1.68 + * <p> This class supports an optional fairness policy for ordering
    1.69 + * waiting producer and consumer threads.  By default, this ordering
    1.70 + * is not guaranteed. However, a queue constructed with fairness set
    1.71 + * to <tt>true</tt> grants threads access in FIFO order.
    1.72 + *
    1.73 + * <p>This class and its iterator implement all of the
    1.74 + * <em>optional</em> methods of the {@link Collection} and {@link
    1.75 + * Iterator} interfaces.
    1.76 + *
    1.77 + * <p>This class is a member of the
    1.78 + * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    1.79 + * Java Collections Framework</a>.
    1.80 + *
    1.81 + * @since 1.5
    1.82 + * @author Doug Lea and Bill Scherer and Michael Scott
    1.83 + * @param <E> the type of elements held in this collection
    1.84 + */
    1.85 +public class SynchronousQueue<E> extends AbstractQueue<E>
    1.86 +    implements BlockingQueue<E>, java.io.Serializable {
    1.87 +    private static final long serialVersionUID = -3223113410248163686L;
    1.88 +
    1.89 +    /*
    1.90 +     * This class implements extensions of the dual stack and dual
    1.91 +     * queue algorithms described in "Nonblocking Concurrent Objects
    1.92 +     * with Condition Synchronization", by W. N. Scherer III and
    1.93 +     * M. L. Scott.  18th Annual Conf. on Distributed Computing,
    1.94 +     * Oct. 2004 (see also
    1.95 +     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
    1.96 +     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
    1.97 +     * queue for fair mode. The performance of the two is generally
    1.98 +     * similar. Fifo usually supports higher throughput under
    1.99 +     * contention but Lifo maintains higher thread locality in common
   1.100 +     * applications.
   1.101 +     *
   1.102 +     * A dual queue (and similarly stack) is one that at any given
   1.103 +     * time either holds "data" -- items provided by put operations,
   1.104 +     * or "requests" -- slots representing take operations, or is
   1.105 +     * empty. A call to "fulfill" (i.e., a call requesting an item
   1.106 +     * from a queue holding data or vice versa) dequeues a
   1.107 +     * complementary node.  The most interesting feature of these
   1.108 +     * queues is that any operation can figure out which mode the
   1.109 +     * queue is in, and act accordingly without needing locks.
   1.110 +     *
   1.111 +     * Both the queue and stack extend abstract class Transferer
   1.112 +     * defining the single method transfer that does a put or a
   1.113 +     * take. These are unified into a single method because in dual
   1.114 +     * data structures, the put and take operations are symmetrical,
   1.115 +     * so nearly all code can be combined. The resulting transfer
   1.116 +     * methods are on the long side, but are easier to follow than
   1.117 +     * they would be if broken up into nearly-duplicated parts.
   1.118 +     *
   1.119 +     * The queue and stack data structures share many conceptual
   1.120 +     * similarities but very few concrete details. For simplicity,
   1.121 +     * they are kept distinct so that they can later evolve
   1.122 +     * separately.
   1.123 +     *
   1.124 +     * The algorithms here differ from the versions in the above paper
   1.125 +     * in extending them for use in synchronous queues, as well as
   1.126 +     * dealing with cancellation. The main differences include:
   1.127 +     *
   1.128 +     *  1. The original algorithms used bit-marked pointers, but
   1.129 +     *     the ones here use mode bits in nodes, leading to a number
   1.130 +     *     of further adaptations.
   1.131 +     *  2. SynchronousQueues must block threads waiting to become
   1.132 +     *     fulfilled.
   1.133 +     *  3. Support for cancellation via timeout and interrupts,
   1.134 +     *     including cleaning out cancelled nodes/threads
   1.135 +     *     from lists to avoid garbage retention and memory depletion.
   1.136 +     *
   1.137 +     * Blocking is mainly accomplished using LockSupport park/unpark,
   1.138 +     * except that nodes that appear to be the next ones to become
   1.139 +     * fulfilled first spin a bit (on multiprocessors only). On very
   1.140 +     * busy synchronous queues, spinning can dramatically improve
   1.141 +     * throughput. And on less busy ones, the amount of spinning is
   1.142 +     * small enough not to be noticeable.
   1.143 +     *
   1.144 +     * Cleaning is done in different ways in queues vs stacks.  For
   1.145 +     * queues, we can almost always remove a node immediately in O(1)
   1.146 +     * time (modulo retries for consistency checks) when it is
   1.147 +     * cancelled. But if it may be pinned as the current tail, it must
   1.148 +     * wait until some subsequent cancellation. For stacks, we need a
   1.149 +     * potentially O(n) traversal to be sure that we can remove the
   1.150 +     * node, but this can run concurrently with other threads
   1.151 +     * accessing the stack.
   1.152 +     *
   1.153 +     * While garbage collection takes care of most node reclamation
   1.154 +     * issues that otherwise complicate nonblocking algorithms, care
   1.155 +     * is taken to "forget" references to data, other nodes, and
   1.156 +     * threads that might be held on to long-term by blocked
   1.157 +     * threads. In cases where setting to null would otherwise
   1.158 +     * conflict with main algorithms, this is done by changing a
   1.159 +     * node's link to now point to the node itself. This doesn't arise
   1.160 +     * much for Stack nodes (because blocked threads do not hang on to
   1.161 +     * old head pointers), but references in Queue nodes must be
   1.162 +     * aggressively forgotten to avoid reachability of everything any
   1.163 +     * node has ever referred to since arrival.
   1.164 +     */
   1.165 +
   1.166 +    /**
   1.167 +     * Shared internal API for dual stacks and queues.
   1.168 +     */
   1.169 +    abstract static class Transferer {
   1.170 +        /**
   1.171 +         * Performs a put or take.
   1.172 +         *
   1.173 +         * @param e if non-null, the item to be handed to a consumer;
   1.174 +         *          if null, requests that transfer return an item
   1.175 +         *          offered by producer.
   1.176 +         * @param timed if this operation should timeout
   1.177 +         * @param nanos the timeout, in nanoseconds
   1.178 +         * @return if non-null, the item provided or received; if null,
   1.179 +         *         the operation failed due to timeout or interrupt --
   1.180 +         *         the caller can distinguish which of these occurred
   1.181 +         *         by checking Thread.interrupted.
   1.182 +         */
   1.183 +        abstract Object transfer(Object e, boolean timed, long nanos);
   1.184 +    }
   1.185 +
   1.186 +    /** The number of CPUs, for spin control */
   1.187 +    static final int NCPUS = Runtime.getRuntime().availableProcessors();
   1.188 +
   1.189 +    /**
   1.190 +     * The number of times to spin before blocking in timed waits.
   1.191 +     * The value is empirically derived -- it works well across a
   1.192 +     * variety of processors and OSes. Empirically, the best value
   1.193 +     * seems not to vary with number of CPUs (beyond 2) so is just
   1.194 +     * a constant.
   1.195 +     */
   1.196 +    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
   1.197 +
   1.198 +    /**
   1.199 +     * The number of times to spin before blocking in untimed waits.
   1.200 +     * This is greater than timed value because untimed waits spin
   1.201 +     * faster since they don't need to check times on each spin.
   1.202 +     */
   1.203 +    static final int maxUntimedSpins = maxTimedSpins * 16;
   1.204 +
   1.205 +    /**
   1.206 +     * The number of nanoseconds for which it is faster to spin
   1.207 +     * rather than to use timed park. A rough estimate suffices.
   1.208 +     */
   1.209 +    static final long spinForTimeoutThreshold = 1000L;
   1.210 +
   1.211 +    /** Dual stack */
   1.212 +    static final class TransferStack extends Transferer {
   1.213 +        /*
   1.214 +         * This extends Scherer-Scott dual stack algorithm, differing,
   1.215 +         * among other ways, by using "covering" nodes rather than
   1.216 +         * bit-marked pointers: Fulfilling operations push on marker
   1.217 +         * nodes (with FULFILLING bit set in mode) to reserve a spot
   1.218 +         * to match a waiting node.
   1.219 +         */
   1.220 +
   1.221 +        /* Modes for SNodes, ORed together in node fields */
   1.222 +        /** Node represents an unfulfilled consumer */
   1.223 +        static final int REQUEST    = 0;
   1.224 +        /** Node represents an unfulfilled producer */
   1.225 +        static final int DATA       = 1;
   1.226 +        /** Node is fulfilling another unfulfilled DATA or REQUEST */
   1.227 +        static final int FULFILLING = 2;
   1.228 +
   1.229 +        /** Return true if m has fulfilling bit set */
   1.230 +        static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
   1.231 +
   1.232 +        /** Node class for TransferStacks. */
   1.233 +        static final class SNode {
   1.234 +            volatile SNode next;        // next node in stack
   1.235 +            volatile SNode match;       // the node matched to this
   1.236 +            volatile Thread waiter;     // to control park/unpark
   1.237 +            Object item;                // data; or null for REQUESTs
   1.238 +            int mode;
   1.239 +            // Note: item and mode fields don't need to be volatile
   1.240 +            // since they are always written before, and read after,
   1.241 +            // other volatile/atomic operations.
   1.242 +
   1.243 +            SNode(Object item) {
   1.244 +                this.item = item;
   1.245 +            }
   1.246 +
   1.247 +            boolean casNext(SNode cmp, SNode val) {
   1.248 +                return cmp == next &&
   1.249 +                    UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
   1.250 +            }
   1.251 +
   1.252 +            /**
   1.253 +             * Tries to match node s to this node, if so, waking up thread.
   1.254 +             * Fulfillers call tryMatch to identify their waiters.
   1.255 +             * Waiters block until they have been matched.
   1.256 +             *
   1.257 +             * @param s the node to match
   1.258 +             * @return true if successfully matched to s
   1.259 +             */
   1.260 +            boolean tryMatch(SNode s) {
   1.261 +                if (match == null &&
   1.262 +                    UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
   1.263 +                    Thread w = waiter;
   1.264 +                    if (w != null) {    // waiters need at most one unpark
   1.265 +                        waiter = null;
   1.266 +                        LockSupport.unpark(w);
   1.267 +                    }
   1.268 +                    return true;
   1.269 +                }
   1.270 +                return match == s;
   1.271 +            }
   1.272 +
   1.273 +            /**
   1.274 +             * Tries to cancel a wait by matching node to itself.
   1.275 +             */
   1.276 +            void tryCancel() {
   1.277 +                UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
   1.278 +            }
   1.279 +
   1.280 +            boolean isCancelled() {
   1.281 +                return match == this;
   1.282 +            }
   1.283 +
   1.284 +            // Unsafe mechanics
   1.285 +            private static final sun.misc.Unsafe UNSAFE;
   1.286 +            private static final long matchOffset;
   1.287 +            private static final long nextOffset;
   1.288 +
   1.289 +            static {
   1.290 +                try {
   1.291 +                    UNSAFE = sun.misc.Unsafe.getUnsafe();
   1.292 +                    Class k = SNode.class;
   1.293 +                    matchOffset = UNSAFE.objectFieldOffset
   1.294 +                        (k.getDeclaredField("match"));
   1.295 +                    nextOffset = UNSAFE.objectFieldOffset
   1.296 +                        (k.getDeclaredField("next"));
   1.297 +                } catch (Exception e) {
   1.298 +                    throw new Error(e);
   1.299 +                }
   1.300 +            }
   1.301 +        }
   1.302 +
   1.303 +        /** The head (top) of the stack */
   1.304 +        volatile SNode head;
   1.305 +
   1.306 +        boolean casHead(SNode h, SNode nh) {
   1.307 +            return h == head &&
   1.308 +                UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
   1.309 +        }
   1.310 +
   1.311 +        /**
   1.312 +         * Creates or resets fields of a node. Called only from transfer
   1.313 +         * where the node to push on stack is lazily created and
   1.314 +         * reused when possible to help reduce intervals between reads
   1.315 +         * and CASes of head and to avoid surges of garbage when CASes
   1.316 +         * to push nodes fail due to contention.
   1.317 +         */
   1.318 +        static SNode snode(SNode s, Object e, SNode next, int mode) {
   1.319 +            if (s == null) s = new SNode(e);
   1.320 +            s.mode = mode;
   1.321 +            s.next = next;
   1.322 +            return s;
   1.323 +        }
   1.324 +
   1.325 +        /**
   1.326 +         * Puts or takes an item.
   1.327 +         */
   1.328 +        Object transfer(Object e, boolean timed, long nanos) {
   1.329 +            /*
   1.330 +             * Basic algorithm is to loop trying one of three actions:
   1.331 +             *
   1.332 +             * 1. If apparently empty or already containing nodes of same
   1.333 +             *    mode, try to push node on stack and wait for a match,
   1.334 +             *    returning it, or null if cancelled.
   1.335 +             *
   1.336 +             * 2. If apparently containing node of complementary mode,
   1.337 +             *    try to push a fulfilling node on to stack, match
   1.338 +             *    with corresponding waiting node, pop both from
   1.339 +             *    stack, and return matched item. The matching or
   1.340 +             *    unlinking might not actually be necessary because of
   1.341 +             *    other threads performing action 3:
   1.342 +             *
   1.343 +             * 3. If top of stack already holds another fulfilling node,
   1.344 +             *    help it out by doing its match and/or pop
   1.345 +             *    operations, and then continue. The code for helping
   1.346 +             *    is essentially the same as for fulfilling, except
   1.347 +             *    that it doesn't return the item.
   1.348 +             */
   1.349 +
   1.350 +            SNode s = null; // constructed/reused as needed
   1.351 +            int mode = (e == null) ? REQUEST : DATA;
   1.352 +
   1.353 +            for (;;) {
   1.354 +                SNode h = head;
   1.355 +                if (h == null || h.mode == mode) {  // empty or same-mode
   1.356 +                    if (timed && nanos <= 0) {      // can't wait
   1.357 +                        if (h != null && h.isCancelled())
   1.358 +                            casHead(h, h.next);     // pop cancelled node
   1.359 +                        else
   1.360 +                            return null;
   1.361 +                    } else if (casHead(h, s = snode(s, e, h, mode))) {
   1.362 +                        SNode m = awaitFulfill(s, timed, nanos);
   1.363 +                        if (m == s) {               // wait was cancelled
   1.364 +                            clean(s);
   1.365 +                            return null;
   1.366 +                        }
   1.367 +                        if ((h = head) != null && h.next == s)
   1.368 +                            casHead(h, s.next);     // help s's fulfiller
   1.369 +                        return (mode == REQUEST) ? m.item : s.item;
   1.370 +                    }
   1.371 +                } else if (!isFulfilling(h.mode)) { // try to fulfill
   1.372 +                    if (h.isCancelled())            // already cancelled
   1.373 +                        casHead(h, h.next);         // pop and retry
   1.374 +                    else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
   1.375 +                        for (;;) { // loop until matched or waiters disappear
   1.376 +                            SNode m = s.next;       // m is s's match
   1.377 +                            if (m == null) {        // all waiters are gone
   1.378 +                                casHead(s, null);   // pop fulfill node
   1.379 +                                s = null;           // use new node next time
   1.380 +                                break;              // restart main loop
   1.381 +                            }
   1.382 +                            SNode mn = m.next;
   1.383 +                            if (m.tryMatch(s)) {
   1.384 +                                casHead(s, mn);     // pop both s and m
   1.385 +                                return (mode == REQUEST) ? m.item : s.item;
   1.386 +                            } else                  // lost match
   1.387 +                                s.casNext(m, mn);   // help unlink
   1.388 +                        }
   1.389 +                    }
   1.390 +                } else {                            // help a fulfiller
   1.391 +                    SNode m = h.next;               // m is h's match
   1.392 +                    if (m == null)                  // waiter is gone
   1.393 +                        casHead(h, null);           // pop fulfilling node
   1.394 +                    else {
   1.395 +                        SNode mn = m.next;
   1.396 +                        if (m.tryMatch(h))          // help match
   1.397 +                            casHead(h, mn);         // pop both h and m
   1.398 +                        else                        // lost match
   1.399 +                            h.casNext(m, mn);       // help unlink
   1.400 +                    }
   1.401 +                }
   1.402 +            }
   1.403 +        }
   1.404 +
   1.405 +        /**
   1.406 +         * Spins/blocks until node s is matched by a fulfill operation.
   1.407 +         *
   1.408 +         * @param s the waiting node
   1.409 +         * @param timed true if timed wait
   1.410 +         * @param nanos timeout value
   1.411 +         * @return matched node, or s if cancelled
   1.412 +         */
   1.413 +        SNode awaitFulfill(SNode s, boolean timed, long nanos) {
   1.414 +            /*
   1.415 +             * When a node/thread is about to block, it sets its waiter
   1.416 +             * field and then rechecks state at least one more time
   1.417 +             * before actually parking, thus covering race vs
   1.418 +             * fulfiller noticing that waiter is non-null so should be
   1.419 +             * woken.
   1.420 +             *
   1.421 +             * When invoked by nodes that appear at the point of call
   1.422 +             * to be at the head of the stack, calls to park are
   1.423 +             * preceded by spins to avoid blocking when producers and
   1.424 +             * consumers are arriving very close in time.  This can
   1.425 +             * happen enough to bother only on multiprocessors.
   1.426 +             *
   1.427 +             * The order of checks for returning out of main loop
   1.428 +             * reflects fact that interrupts have precedence over
   1.429 +             * normal returns, which have precedence over
   1.430 +             * timeouts. (So, on timeout, one last check for match is
   1.431 +             * done before giving up.) Except that calls from untimed
   1.432 +             * SynchronousQueue.{poll/offer} don't check interrupts
   1.433 +             * and don't wait at all, so are trapped in transfer
   1.434 +             * method rather than calling awaitFulfill.
   1.435 +             */
   1.436 +            long lastTime = timed ? System.nanoTime() : 0;
   1.437 +            Thread w = Thread.currentThread();
   1.438 +            SNode h = head;
   1.439 +            int spins = (shouldSpin(s) ?
   1.440 +                         (timed ? maxTimedSpins : maxUntimedSpins) : 0);
   1.441 +            for (;;) {
   1.442 +                if (w.isInterrupted())
   1.443 +                    s.tryCancel();
   1.444 +                SNode m = s.match;
   1.445 +                if (m != null)
   1.446 +                    return m;
   1.447 +                if (timed) {
   1.448 +                    long now = System.nanoTime();
   1.449 +                    nanos -= now - lastTime;
   1.450 +                    lastTime = now;
   1.451 +                    if (nanos <= 0) {
   1.452 +                        s.tryCancel();
   1.453 +                        continue;
   1.454 +                    }
   1.455 +                }
   1.456 +                if (spins > 0)
   1.457 +                    spins = shouldSpin(s) ? (spins-1) : 0;
   1.458 +                else if (s.waiter == null)
   1.459 +                    s.waiter = w; // establish waiter so can park next iter
   1.460 +                else if (!timed)
   1.461 +                    LockSupport.park(this);
   1.462 +                else if (nanos > spinForTimeoutThreshold)
   1.463 +                    LockSupport.parkNanos(this, nanos);
   1.464 +            }
   1.465 +        }
   1.466 +
   1.467 +        /**
   1.468 +         * Returns true if node s is at head or there is an active
   1.469 +         * fulfiller.
   1.470 +         */
   1.471 +        boolean shouldSpin(SNode s) {
   1.472 +            SNode h = head;
   1.473 +            return (h == s || h == null || isFulfilling(h.mode));
   1.474 +        }
   1.475 +
   1.476 +        /**
   1.477 +         * Unlinks s from the stack.
   1.478 +         */
   1.479 +        void clean(SNode s) {
   1.480 +            s.item = null;   // forget item
   1.481 +            s.waiter = null; // forget thread
   1.482 +
   1.483 +            /*
   1.484 +             * At worst we may need to traverse entire stack to unlink
   1.485 +             * s. If there are multiple concurrent calls to clean, we
   1.486 +             * might not see s if another thread has already removed
   1.487 +             * it. But we can stop when we see any node known to
   1.488 +             * follow s. We use s.next unless it too is cancelled, in
   1.489 +             * which case we try the node one past. We don't check any
   1.490 +             * further because we don't want to doubly traverse just to
   1.491 +             * find sentinel.
   1.492 +             */
   1.493 +
   1.494 +            SNode past = s.next;
   1.495 +            if (past != null && past.isCancelled())
   1.496 +                past = past.next;
   1.497 +
   1.498 +            // Absorb cancelled nodes at head
   1.499 +            SNode p;
   1.500 +            while ((p = head) != null && p != past && p.isCancelled())
   1.501 +                casHead(p, p.next);
   1.502 +
   1.503 +            // Unsplice embedded nodes
   1.504 +            while (p != null && p != past) {
   1.505 +                SNode n = p.next;
   1.506 +                if (n != null && n.isCancelled())
   1.507 +                    p.casNext(n, n.next);
   1.508 +                else
   1.509 +                    p = n;
   1.510 +            }
   1.511 +        }
   1.512 +
   1.513 +        // Unsafe mechanics
   1.514 +        private static final sun.misc.Unsafe UNSAFE;
   1.515 +        private static final long headOffset;
   1.516 +        static {
   1.517 +            try {
   1.518 +                UNSAFE = sun.misc.Unsafe.getUnsafe();
   1.519 +                Class k = TransferStack.class;
   1.520 +                headOffset = UNSAFE.objectFieldOffset
   1.521 +                    (k.getDeclaredField("head"));
   1.522 +            } catch (Exception e) {
   1.523 +                throw new Error(e);
   1.524 +            }
   1.525 +        }
   1.526 +    }
   1.527 +
   1.528 +    /** Dual Queue */
   1.529 +    static final class TransferQueue extends Transferer {
   1.530 +        /*
   1.531 +         * This extends Scherer-Scott dual queue algorithm, differing,
   1.532 +         * among other ways, by using modes within nodes rather than
   1.533 +         * marked pointers. The algorithm is a little simpler than
   1.534 +         * that for stacks because fulfillers do not need explicit
   1.535 +         * nodes, and matching is done by CAS'ing QNode.item field
   1.536 +         * from non-null to null (for put) or vice versa (for take).
   1.537 +         */
   1.538 +
   1.539 +        /** Node class for TransferQueue. */
   1.540 +        static final class QNode {
   1.541 +            volatile QNode next;          // next node in queue
   1.542 +            volatile Object item;         // CAS'ed to or from null
   1.543 +            volatile Thread waiter;       // to control park/unpark
   1.544 +            final boolean isData;
   1.545 +
   1.546 +            QNode(Object item, boolean isData) {
   1.547 +                this.item = item;
   1.548 +                this.isData = isData;
   1.549 +            }
   1.550 +
   1.551 +            boolean casNext(QNode cmp, QNode val) {
   1.552 +                return next == cmp &&
   1.553 +                    UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
   1.554 +            }
   1.555 +
   1.556 +            boolean casItem(Object cmp, Object val) {
   1.557 +                return item == cmp &&
   1.558 +                    UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
   1.559 +            }
   1.560 +
   1.561 +            /**
   1.562 +             * Tries to cancel by CAS'ing ref to this as item.
   1.563 +             */
   1.564 +            void tryCancel(Object cmp) {
   1.565 +                UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
   1.566 +            }
   1.567 +
   1.568 +            boolean isCancelled() {
   1.569 +                return item == this;
   1.570 +            }
   1.571 +
   1.572 +            /**
   1.573 +             * Returns true if this node is known to be off the queue
   1.574 +             * because its next pointer has been forgotten due to
   1.575 +             * an advanceHead operation.
   1.576 +             */
   1.577 +            boolean isOffList() {
   1.578 +                return next == this;
   1.579 +            }
   1.580 +
   1.581 +            // Unsafe mechanics
   1.582 +            private static final sun.misc.Unsafe UNSAFE;
   1.583 +            private static final long itemOffset;
   1.584 +            private static final long nextOffset;
   1.585 +
   1.586 +            static {
   1.587 +                try {
   1.588 +                    UNSAFE = sun.misc.Unsafe.getUnsafe();
   1.589 +                    Class k = QNode.class;
   1.590 +                    itemOffset = UNSAFE.objectFieldOffset
   1.591 +                        (k.getDeclaredField("item"));
   1.592 +                    nextOffset = UNSAFE.objectFieldOffset
   1.593 +                        (k.getDeclaredField("next"));
   1.594 +                } catch (Exception e) {
   1.595 +                    throw new Error(e);
   1.596 +                }
   1.597 +            }
   1.598 +        }
   1.599 +
   1.600 +        /** Head of queue */
   1.601 +        transient volatile QNode head;
   1.602 +        /** Tail of queue */
   1.603 +        transient volatile QNode tail;
   1.604 +        /**
   1.605 +         * Reference to a cancelled node that might not yet have been
   1.606 +         * unlinked from queue because it was the last inserted node
   1.607 +         * when it cancelled.
   1.608 +         */
   1.609 +        transient volatile QNode cleanMe;
   1.610 +
   1.611 +        TransferQueue() {
   1.612 +            QNode h = new QNode(null, false); // initialize to dummy node.
   1.613 +            head = h;
   1.614 +            tail = h;
   1.615 +        }
   1.616 +
   1.617 +        /**
   1.618 +         * Tries to cas nh as new head; if successful, unlink
   1.619 +         * old head's next node to avoid garbage retention.
   1.620 +         */
   1.621 +        void advanceHead(QNode h, QNode nh) {
   1.622 +            if (h == head &&
   1.623 +                UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
   1.624 +                h.next = h; // forget old next
   1.625 +        }
   1.626 +
   1.627 +        /**
   1.628 +         * Tries to cas nt as new tail.
   1.629 +         */
   1.630 +        void advanceTail(QNode t, QNode nt) {
   1.631 +            if (tail == t)
   1.632 +                UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
   1.633 +        }
   1.634 +
   1.635 +        /**
   1.636 +         * Tries to CAS cleanMe slot.
   1.637 +         */
   1.638 +        boolean casCleanMe(QNode cmp, QNode val) {
   1.639 +            return cleanMe == cmp &&
   1.640 +                UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
   1.641 +        }
   1.642 +
   1.643 +        /**
   1.644 +         * Puts or takes an item.
   1.645 +         */
   1.646 +        Object transfer(Object e, boolean timed, long nanos) {
   1.647 +            /* Basic algorithm is to loop trying to take either of
   1.648 +             * two actions:
   1.649 +             *
   1.650 +             * 1. If queue apparently empty or holding same-mode nodes,
   1.651 +             *    try to add node to queue of waiters, wait to be
   1.652 +             *    fulfilled (or cancelled) and return matching item.
   1.653 +             *
   1.654 +             * 2. If queue apparently contains waiting items, and this
   1.655 +             *    call is of complementary mode, try to fulfill by CAS'ing
   1.656 +             *    item field of waiting node and dequeuing it, and then
   1.657 +             *    returning matching item.
   1.658 +             *
   1.659 +             * In each case, along the way, check for and try to help
   1.660 +             * advance head and tail on behalf of other stalled/slow
   1.661 +             * threads.
   1.662 +             *
   1.663 +             * The loop starts off with a null check guarding against
   1.664 +             * seeing uninitialized head or tail values. This never
   1.665 +             * happens in current SynchronousQueue, but could if
   1.666 +             * callers held non-volatile/final ref to the
   1.667 +             * transferer. The check is here anyway because it places
   1.668 +             * null checks at top of loop, which is usually faster
   1.669 +             * than having them implicitly interspersed.
   1.670 +             */
   1.671 +
   1.672 +            QNode s = null; // constructed/reused as needed
   1.673 +            boolean isData = (e != null);
   1.674 +
   1.675 +            for (;;) {
   1.676 +                QNode t = tail;
   1.677 +                QNode h = head;
   1.678 +                if (t == null || h == null)         // saw uninitialized value
   1.679 +                    continue;                       // spin
   1.680 +
   1.681 +                if (h == t || t.isData == isData) { // empty or same-mode
   1.682 +                    QNode tn = t.next;
   1.683 +                    if (t != tail)                  // inconsistent read
   1.684 +                        continue;
   1.685 +                    if (tn != null) {               // lagging tail
   1.686 +                        advanceTail(t, tn);
   1.687 +                        continue;
   1.688 +                    }
   1.689 +                    if (timed && nanos <= 0)        // can't wait
   1.690 +                        return null;
   1.691 +                    if (s == null)
   1.692 +                        s = new QNode(e, isData);
   1.693 +                    if (!t.casNext(null, s))        // failed to link in
   1.694 +                        continue;
   1.695 +
   1.696 +                    advanceTail(t, s);              // swing tail and wait
   1.697 +                    Object x = awaitFulfill(s, e, timed, nanos);
   1.698 +                    if (x == s) {                   // wait was cancelled
   1.699 +                        clean(t, s);
   1.700 +                        return null;
   1.701 +                    }
   1.702 +
   1.703 +                    if (!s.isOffList()) {           // not already unlinked
   1.704 +                        advanceHead(t, s);          // unlink if head
   1.705 +                        if (x != null)              // and forget fields
   1.706 +                            s.item = s;
   1.707 +                        s.waiter = null;
   1.708 +                    }
   1.709 +                    return (x != null) ? x : e;
   1.710 +
   1.711 +                } else {                            // complementary-mode
   1.712 +                    QNode m = h.next;               // node to fulfill
   1.713 +                    if (t != tail || m == null || h != head)
   1.714 +                        continue;                   // inconsistent read
   1.715 +
   1.716 +                    Object x = m.item;
   1.717 +                    if (isData == (x != null) ||    // m already fulfilled
   1.718 +                        x == m ||                   // m cancelled
   1.719 +                        !m.casItem(x, e)) {         // lost CAS
   1.720 +                        advanceHead(h, m);          // dequeue and retry
   1.721 +                        continue;
   1.722 +                    }
   1.723 +
   1.724 +                    advanceHead(h, m);              // successfully fulfilled
   1.725 +                    LockSupport.unpark(m.waiter);
   1.726 +                    return (x != null) ? x : e;
   1.727 +                }
   1.728 +            }
   1.729 +        }
   1.730 +
   1.731 +        /**
   1.732 +         * Spins/blocks until node s is fulfilled.
   1.733 +         *
   1.734 +         * @param s the waiting node
   1.735 +         * @param e the comparison value for checking match
   1.736 +         * @param timed true if timed wait
   1.737 +         * @param nanos timeout value
   1.738 +         * @return matched item, or s if cancelled
   1.739 +         */
   1.740 +        Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
   1.741 +            /* Same idea as TransferStack.awaitFulfill */
   1.742 +            long lastTime = timed ? System.nanoTime() : 0;
   1.743 +            Thread w = Thread.currentThread();
   1.744 +            int spins = ((head.next == s) ?
   1.745 +                         (timed ? maxTimedSpins : maxUntimedSpins) : 0);
   1.746 +            for (;;) {
   1.747 +                if (w.isInterrupted())
   1.748 +                    s.tryCancel(e);
   1.749 +                Object x = s.item;
   1.750 +                if (x != e)
   1.751 +                    return x;
   1.752 +                if (timed) {
   1.753 +                    long now = System.nanoTime();
   1.754 +                    nanos -= now - lastTime;
   1.755 +                    lastTime = now;
   1.756 +                    if (nanos <= 0) {
   1.757 +                        s.tryCancel(e);
   1.758 +                        continue;
   1.759 +                    }
   1.760 +                }
   1.761 +                if (spins > 0)
   1.762 +                    --spins;
   1.763 +                else if (s.waiter == null)
   1.764 +                    s.waiter = w;
   1.765 +                else if (!timed)
   1.766 +                    LockSupport.park(this);
   1.767 +                else if (nanos > spinForTimeoutThreshold)
   1.768 +                    LockSupport.parkNanos(this, nanos);
   1.769 +            }
   1.770 +        }
   1.771 +
   1.772 +        /**
   1.773 +         * Gets rid of cancelled node s with original predecessor pred.
   1.774 +         */
   1.775 +        void clean(QNode pred, QNode s) {
   1.776 +            s.waiter = null; // forget thread
   1.777 +            /*
   1.778 +             * At any given time, exactly one node on list cannot be
   1.779 +             * deleted -- the last inserted node. To accommodate this,
   1.780 +             * if we cannot delete s, we save its predecessor as
   1.781 +             * "cleanMe", deleting the previously saved version
   1.782 +             * first. At least one of node s or the node previously
   1.783 +             * saved can always be deleted, so this always terminates.
   1.784 +             */
   1.785 +            while (pred.next == s) { // Return early if already unlinked
   1.786 +                QNode h = head;
   1.787 +                QNode hn = h.next;   // Absorb cancelled first node as head
   1.788 +                if (hn != null && hn.isCancelled()) {
   1.789 +                    advanceHead(h, hn);
   1.790 +                    continue;
   1.791 +                }
   1.792 +                QNode t = tail;      // Ensure consistent read for tail
   1.793 +                if (t == h)
   1.794 +                    return;
   1.795 +                QNode tn = t.next;
   1.796 +                if (t != tail)
   1.797 +                    continue;
   1.798 +                if (tn != null) {
   1.799 +                    advanceTail(t, tn);
   1.800 +                    continue;
   1.801 +                }
   1.802 +                if (s != t) {        // If not tail, try to unsplice
   1.803 +                    QNode sn = s.next;
   1.804 +                    if (sn == s || pred.casNext(s, sn))
   1.805 +                        return;
   1.806 +                }
   1.807 +                QNode dp = cleanMe;
   1.808 +                if (dp != null) {    // Try unlinking previous cancelled node
   1.809 +                    QNode d = dp.next;
   1.810 +                    QNode dn;
   1.811 +                    if (d == null ||               // d is gone or
   1.812 +                        d == dp ||                 // d is off list or
   1.813 +                        !d.isCancelled() ||        // d not cancelled or
   1.814 +                        (d != t &&                 // d not tail and
   1.815 +                         (dn = d.next) != null &&  //   has successor
   1.816 +                         dn != d &&                //   that is on list
   1.817 +                         dp.casNext(d, dn)))       // d unspliced
   1.818 +                        casCleanMe(dp, null);
   1.819 +                    if (dp == pred)
   1.820 +                        return;      // s is already saved node
   1.821 +                } else if (casCleanMe(null, pred))
   1.822 +                    return;          // Postpone cleaning s
   1.823 +            }
   1.824 +        }
   1.825 +
   1.826 +        private static final sun.misc.Unsafe UNSAFE;
   1.827 +        private static final long headOffset;
   1.828 +        private static final long tailOffset;
   1.829 +        private static final long cleanMeOffset;
   1.830 +        static {
   1.831 +            try {
   1.832 +                UNSAFE = sun.misc.Unsafe.getUnsafe();
   1.833 +                Class k = TransferQueue.class;
   1.834 +                headOffset = UNSAFE.objectFieldOffset
   1.835 +                    (k.getDeclaredField("head"));
   1.836 +                tailOffset = UNSAFE.objectFieldOffset
   1.837 +                    (k.getDeclaredField("tail"));
   1.838 +                cleanMeOffset = UNSAFE.objectFieldOffset
   1.839 +                    (k.getDeclaredField("cleanMe"));
   1.840 +            } catch (Exception e) {
   1.841 +                throw new Error(e);
   1.842 +            }
   1.843 +        }
   1.844 +    }
   1.845 +
   1.846 +    /**
   1.847 +     * The transferer. Set only in constructor, but cannot be declared
   1.848 +     * as final without further complicating serialization.  Since
   1.849 +     * this is accessed only at most once per public method, there
   1.850 +     * isn't a noticeable performance penalty for using volatile
   1.851 +     * instead of final here.
   1.852 +     */
   1.853 +    private transient volatile Transferer transferer;
   1.854 +
   1.855 +    /**
   1.856 +     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
   1.857 +     */
   1.858 +    public SynchronousQueue() {
   1.859 +        this(false);
   1.860 +    }
   1.861 +
   1.862 +    /**
   1.863 +     * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
   1.864 +     *
   1.865 +     * @param fair if true, waiting threads contend in FIFO order for
   1.866 +     *        access; otherwise the order is unspecified.
   1.867 +     */
   1.868 +    public SynchronousQueue(boolean fair) {
   1.869 +        transferer = fair ? new TransferQueue() : new TransferStack();
   1.870 +    }
   1.871 +
   1.872 +    /**
   1.873 +     * Adds the specified element to this queue, waiting if necessary for
   1.874 +     * another thread to receive it.
   1.875 +     *
   1.876 +     * @throws InterruptedException {@inheritDoc}
   1.877 +     * @throws NullPointerException {@inheritDoc}
   1.878 +     */
   1.879 +    public void put(E o) throws InterruptedException {
   1.880 +        if (o == null) throw new NullPointerException();
   1.881 +        if (transferer.transfer(o, false, 0) == null) {
   1.882 +            Thread.interrupted();
   1.883 +            throw new InterruptedException();
   1.884 +        }
   1.885 +    }
   1.886 +
   1.887 +    /**
   1.888 +     * Inserts the specified element into this queue, waiting if necessary
   1.889 +     * up to the specified wait time for another thread to receive it.
   1.890 +     *
   1.891 +     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
   1.892 +     *         specified waiting time elapses before a consumer appears.
   1.893 +     * @throws InterruptedException {@inheritDoc}
   1.894 +     * @throws NullPointerException {@inheritDoc}
   1.895 +     */
   1.896 +    public boolean offer(E o, long timeout, TimeUnit unit)
   1.897 +        throws InterruptedException {
   1.898 +        if (o == null) throw new NullPointerException();
   1.899 +        if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
   1.900 +            return true;
   1.901 +        if (!Thread.interrupted())
   1.902 +            return false;
   1.903 +        throw new InterruptedException();
   1.904 +    }
   1.905 +
   1.906 +    /**
   1.907 +     * Inserts the specified element into this queue, if another thread is
   1.908 +     * waiting to receive it.
   1.909 +     *
   1.910 +     * @param e the element to add
   1.911 +     * @return <tt>true</tt> if the element was added to this queue, else
   1.912 +     *         <tt>false</tt>
   1.913 +     * @throws NullPointerException if the specified element is null
   1.914 +     */
   1.915 +    public boolean offer(E e) {
   1.916 +        if (e == null) throw new NullPointerException();
   1.917 +        return transferer.transfer(e, true, 0) != null;
   1.918 +    }
   1.919 +
   1.920 +    /**
   1.921 +     * Retrieves and removes the head of this queue, waiting if necessary
   1.922 +     * for another thread to insert it.
   1.923 +     *
   1.924 +     * @return the head of this queue
   1.925 +     * @throws InterruptedException {@inheritDoc}
   1.926 +     */
   1.927 +    public E take() throws InterruptedException {
   1.928 +        Object e = transferer.transfer(null, false, 0);
   1.929 +        if (e != null)
   1.930 +            return (E)e;
   1.931 +        Thread.interrupted();
   1.932 +        throw new InterruptedException();
   1.933 +    }
   1.934 +
   1.935 +    /**
   1.936 +     * Retrieves and removes the head of this queue, waiting
   1.937 +     * if necessary up to the specified wait time, for another thread
   1.938 +     * to insert it.
   1.939 +     *
   1.940 +     * @return the head of this queue, or <tt>null</tt> if the
   1.941 +     *         specified waiting time elapses before an element is present.
   1.942 +     * @throws InterruptedException {@inheritDoc}
   1.943 +     */
   1.944 +    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
   1.945 +        Object e = transferer.transfer(null, true, unit.toNanos(timeout));
   1.946 +        if (e != null || !Thread.interrupted())
   1.947 +            return (E)e;
   1.948 +        throw new InterruptedException();
   1.949 +    }
   1.950 +
   1.951 +    /**
   1.952 +     * Retrieves and removes the head of this queue, if another thread
   1.953 +     * is currently making an element available.
   1.954 +     *
   1.955 +     * @return the head of this queue, or <tt>null</tt> if no
   1.956 +     *         element is available.
   1.957 +     */
   1.958 +    public E poll() {
   1.959 +        return (E)transferer.transfer(null, true, 0);
   1.960 +    }
   1.961 +
   1.962 +    /**
   1.963 +     * Always returns <tt>true</tt>.
   1.964 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
   1.965 +     *
   1.966 +     * @return <tt>true</tt>
   1.967 +     */
   1.968 +    public boolean isEmpty() {
   1.969 +        return true;
   1.970 +    }
   1.971 +
   1.972 +    /**
   1.973 +     * Always returns zero.
   1.974 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
   1.975 +     *
   1.976 +     * @return zero.
   1.977 +     */
   1.978 +    public int size() {
   1.979 +        return 0;
   1.980 +    }
   1.981 +
   1.982 +    /**
   1.983 +     * Always returns zero.
   1.984 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
   1.985 +     *
   1.986 +     * @return zero.
   1.987 +     */
   1.988 +    public int remainingCapacity() {
   1.989 +        return 0;
   1.990 +    }
   1.991 +
   1.992 +    /**
   1.993 +     * Does nothing.
   1.994 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
   1.995 +     */
   1.996 +    public void clear() {
   1.997 +    }
   1.998 +
   1.999 +    /**
  1.1000 +     * Always returns <tt>false</tt>.
  1.1001 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
  1.1002 +     *
  1.1003 +     * @param o the element
  1.1004 +     * @return <tt>false</tt>
  1.1005 +     */
  1.1006 +    public boolean contains(Object o) {
  1.1007 +        return false;
  1.1008 +    }
  1.1009 +
  1.1010 +    /**
  1.1011 +     * Always returns <tt>false</tt>.
  1.1012 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
  1.1013 +     *
  1.1014 +     * @param o the element to remove
  1.1015 +     * @return <tt>false</tt>
  1.1016 +     */
  1.1017 +    public boolean remove(Object o) {
  1.1018 +        return false;
  1.1019 +    }
  1.1020 +
  1.1021 +    /**
  1.1022 +     * Returns <tt>false</tt> unless the given collection is empty.
  1.1023 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
  1.1024 +     *
  1.1025 +     * @param c the collection
  1.1026 +     * @return <tt>false</tt> unless given collection is empty
  1.1027 +     */
  1.1028 +    public boolean containsAll(Collection<?> c) {
  1.1029 +        return c.isEmpty();
  1.1030 +    }
  1.1031 +
  1.1032 +    /**
  1.1033 +     * Always returns <tt>false</tt>.
  1.1034 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
  1.1035 +     *
  1.1036 +     * @param c the collection
  1.1037 +     * @return <tt>false</tt>
  1.1038 +     */
  1.1039 +    public boolean removeAll(Collection<?> c) {
  1.1040 +        return false;
  1.1041 +    }
  1.1042 +
  1.1043 +    /**
  1.1044 +     * Always returns <tt>false</tt>.
  1.1045 +     * A <tt>SynchronousQueue</tt> has no internal capacity.
  1.1046 +     *
  1.1047 +     * @param c the collection
  1.1048 +     * @return <tt>false</tt>
  1.1049 +     */
  1.1050 +    public boolean retainAll(Collection<?> c) {
  1.1051 +        return false;
  1.1052 +    }
  1.1053 +
  1.1054 +    /**
  1.1055 +     * Always returns <tt>null</tt>.
  1.1056 +     * A <tt>SynchronousQueue</tt> does not return elements
  1.1057 +     * unless actively waited on.
  1.1058 +     *
  1.1059 +     * @return <tt>null</tt>
  1.1060 +     */
  1.1061 +    public E peek() {
  1.1062 +        return null;
  1.1063 +    }
  1.1064 +
  1.1065 +    /**
  1.1066 +     * Returns an empty iterator in which <tt>hasNext</tt> always returns
  1.1067 +     * <tt>false</tt>.
  1.1068 +     *
  1.1069 +     * @return an empty iterator
  1.1070 +     */
  1.1071 +    public Iterator<E> iterator() {
  1.1072 +        return Collections.emptyIterator();
  1.1073 +    }
  1.1074 +
  1.1075 +    /**
  1.1076 +     * Returns a zero-length array.
  1.1077 +     * @return a zero-length array
  1.1078 +     */
  1.1079 +    public Object[] toArray() {
  1.1080 +        return new Object[0];
  1.1081 +    }
  1.1082 +
  1.1083 +    /**
  1.1084 +     * Sets the zeroeth element of the specified array to <tt>null</tt>
  1.1085 +     * (if the array has non-zero length) and returns it.
  1.1086 +     *
  1.1087 +     * @param a the array
  1.1088 +     * @return the specified array
  1.1089 +     * @throws NullPointerException if the specified array is null
  1.1090 +     */
  1.1091 +    public <T> T[] toArray(T[] a) {
  1.1092 +        if (a.length > 0)
  1.1093 +            a[0] = null;
  1.1094 +        return a;
  1.1095 +    }
  1.1096 +
  1.1097 +    /**
  1.1098 +     * @throws UnsupportedOperationException {@inheritDoc}
  1.1099 +     * @throws ClassCastException            {@inheritDoc}
  1.1100 +     * @throws NullPointerException          {@inheritDoc}
  1.1101 +     * @throws IllegalArgumentException      {@inheritDoc}
  1.1102 +     */
  1.1103 +    public int drainTo(Collection<? super E> c) {
  1.1104 +        if (c == null)
  1.1105 +            throw new NullPointerException();
  1.1106 +        if (c == this)
  1.1107 +            throw new IllegalArgumentException();
  1.1108 +        int n = 0;
  1.1109 +        E e;
  1.1110 +        while ( (e = poll()) != null) {
  1.1111 +            c.add(e);
  1.1112 +            ++n;
  1.1113 +        }
  1.1114 +        return n;
  1.1115 +    }
  1.1116 +
  1.1117 +    /**
  1.1118 +     * @throws UnsupportedOperationException {@inheritDoc}
  1.1119 +     * @throws ClassCastException            {@inheritDoc}
  1.1120 +     * @throws NullPointerException          {@inheritDoc}
  1.1121 +     * @throws IllegalArgumentException      {@inheritDoc}
  1.1122 +     */
  1.1123 +    public int drainTo(Collection<? super E> c, int maxElements) {
  1.1124 +        if (c == null)
  1.1125 +            throw new NullPointerException();
  1.1126 +        if (c == this)
  1.1127 +            throw new IllegalArgumentException();
  1.1128 +        int n = 0;
  1.1129 +        E e;
  1.1130 +        while (n < maxElements && (e = poll()) != null) {
  1.1131 +            c.add(e);
  1.1132 +            ++n;
  1.1133 +        }
  1.1134 +        return n;
  1.1135 +    }
  1.1136 +
  1.1137 +    /*
  1.1138 +     * To cope with serialization strategy in the 1.5 version of
  1.1139 +     * SynchronousQueue, we declare some unused classes and fields
  1.1140 +     * that exist solely to enable serializability across versions.
  1.1141 +     * These fields are never used, so are initialized only if this
  1.1142 +     * object is ever serialized or deserialized.
  1.1143 +     */
  1.1144 +
  1.1145 +    static class WaitQueue implements java.io.Serializable { }
  1.1146 +    static class LifoWaitQueue extends WaitQueue {
  1.1147 +        private static final long serialVersionUID = -3633113410248163686L;
  1.1148 +    }
  1.1149 +    static class FifoWaitQueue extends WaitQueue {
  1.1150 +        private static final long serialVersionUID = -3623113410248163686L;
  1.1151 +    }
  1.1152 +    private ReentrantLock qlock;
  1.1153 +    private WaitQueue waitingProducers;
  1.1154 +    private WaitQueue waitingConsumers;
  1.1155 +
  1.1156 +    /**
  1.1157 +     * Save the state to a stream (that is, serialize it).
  1.1158 +     *
  1.1159 +     * @param s the stream
  1.1160 +     */
  1.1161 +    private void writeObject(java.io.ObjectOutputStream s)
  1.1162 +        throws java.io.IOException {
  1.1163 +        boolean fair = transferer instanceof TransferQueue;
  1.1164 +        if (fair) {
  1.1165 +            qlock = new ReentrantLock(true);
  1.1166 +            waitingProducers = new FifoWaitQueue();
  1.1167 +            waitingConsumers = new FifoWaitQueue();
  1.1168 +        }
  1.1169 +        else {
  1.1170 +            qlock = new ReentrantLock();
  1.1171 +            waitingProducers = new LifoWaitQueue();
  1.1172 +            waitingConsumers = new LifoWaitQueue();
  1.1173 +        }
  1.1174 +        s.defaultWriteObject();
  1.1175 +    }
  1.1176 +
  1.1177 +    private void readObject(final java.io.ObjectInputStream s)
  1.1178 +        throws java.io.IOException, ClassNotFoundException {
  1.1179 +        s.defaultReadObject();
  1.1180 +        if (waitingProducers instanceof FifoWaitQueue)
  1.1181 +            transferer = new TransferQueue();
  1.1182 +        else
  1.1183 +            transferer = new TransferStack();
  1.1184 +    }
  1.1185 +
  1.1186 +    // Unsafe mechanics
  1.1187 +    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
  1.1188 +                                  String field, Class<?> klazz) {
  1.1189 +        try {
  1.1190 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
  1.1191 +        } catch (NoSuchFieldException e) {
  1.1192 +            // Convert Exception to corresponding Error
  1.1193 +            NoSuchFieldError error = new NoSuchFieldError(field);
  1.1194 +            error.initCause(e);
  1.1195 +            throw error;
  1.1196 +        }
  1.1197 +    }
  1.1198 +
  1.1199 +}