emul/compact/src/main/java/java/util/LinkedHashMap.java
brancharithmetic
changeset 774 42bc1e89134d
parent 755 5652acd48509
parent 773 406faa8bc64f
child 778 6f8683517f1f
     1.1 --- a/emul/compact/src/main/java/java/util/LinkedHashMap.java	Mon Feb 25 19:00:08 2013 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,491 +0,0 @@
     1.4 -/*
     1.5 - * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 - *
     1.8 - * This code is free software; you can redistribute it and/or modify it
     1.9 - * under the terms of the GNU General Public License version 2 only, as
    1.10 - * published by the Free Software Foundation.  Oracle designates this
    1.11 - * particular file as subject to the "Classpath" exception as provided
    1.12 - * by Oracle in the LICENSE file that accompanied this code.
    1.13 - *
    1.14 - * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 - * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 - * version 2 for more details (a copy is included in the LICENSE file that
    1.18 - * accompanied this code).
    1.19 - *
    1.20 - * You should have received a copy of the GNU General Public License version
    1.21 - * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 - *
    1.24 - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 - * or visit www.oracle.com if you need additional information or have any
    1.26 - * questions.
    1.27 - */
    1.28 -
    1.29 -package java.util;
    1.30 -import java.io.*;
    1.31 -
    1.32 -/**
    1.33 - * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
    1.34 - * with predictable iteration order.  This implementation differs from
    1.35 - * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
    1.36 - * all of its entries.  This linked list defines the iteration ordering,
    1.37 - * which is normally the order in which keys were inserted into the map
    1.38 - * (<i>insertion-order</i>).  Note that insertion order is not affected
    1.39 - * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
    1.40 - * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
    1.41 - * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
    1.42 - * the invocation.)
    1.43 - *
    1.44 - * <p>This implementation spares its clients from the unspecified, generally
    1.45 - * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
    1.46 - * without incurring the increased cost associated with {@link TreeMap}.  It
    1.47 - * can be used to produce a copy of a map that has the same order as the
    1.48 - * original, regardless of the original map's implementation:
    1.49 - * <pre>
    1.50 - *     void foo(Map m) {
    1.51 - *         Map copy = new LinkedHashMap(m);
    1.52 - *         ...
    1.53 - *     }
    1.54 - * </pre>
    1.55 - * This technique is particularly useful if a module takes a map on input,
    1.56 - * copies it, and later returns results whose order is determined by that of
    1.57 - * the copy.  (Clients generally appreciate having things returned in the same
    1.58 - * order they were presented.)
    1.59 - *
    1.60 - * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
    1.61 - * provided to create a linked hash map whose order of iteration is the order
    1.62 - * in which its entries were last accessed, from least-recently accessed to
    1.63 - * most-recently (<i>access-order</i>).  This kind of map is well-suited to
    1.64 - * building LRU caches.  Invoking the <tt>put</tt> or <tt>get</tt> method
    1.65 - * results in an access to the corresponding entry (assuming it exists after
    1.66 - * the invocation completes).  The <tt>putAll</tt> method generates one entry
    1.67 - * access for each mapping in the specified map, in the order that key-value
    1.68 - * mappings are provided by the specified map's entry set iterator.  <i>No
    1.69 - * other methods generate entry accesses.</i> In particular, operations on
    1.70 - * collection-views do <i>not</i> affect the order of iteration of the backing
    1.71 - * map.
    1.72 - *
    1.73 - * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
    1.74 - * impose a policy for removing stale mappings automatically when new mappings
    1.75 - * are added to the map.
    1.76 - *
    1.77 - * <p>This class provides all of the optional <tt>Map</tt> operations, and
    1.78 - * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
    1.79 - * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
    1.80 - * <tt>remove</tt>), assuming the hash function disperses elements
    1.81 - * properly among the buckets.  Performance is likely to be just slightly
    1.82 - * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
    1.83 - * linked list, with one exception: Iteration over the collection-views
    1.84 - * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
    1.85 - * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
    1.86 - * is likely to be more expensive, requiring time proportional to its
    1.87 - * <i>capacity</i>.
    1.88 - *
    1.89 - * <p>A linked hash map has two parameters that affect its performance:
    1.90 - * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
    1.91 - * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
    1.92 - * excessively high value for initial capacity is less severe for this class
    1.93 - * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
    1.94 - * by capacity.
    1.95 - *
    1.96 - * <p><strong>Note that this implementation is not synchronized.</strong>
    1.97 - * If multiple threads access a linked hash map concurrently, and at least
    1.98 - * one of the threads modifies the map structurally, it <em>must</em> be
    1.99 - * synchronized externally.  This is typically accomplished by
   1.100 - * synchronizing on some object that naturally encapsulates the map.
   1.101 - *
   1.102 - * If no such object exists, the map should be "wrapped" using the
   1.103 - * {@link Collections#synchronizedMap Collections.synchronizedMap}
   1.104 - * method.  This is best done at creation time, to prevent accidental
   1.105 - * unsynchronized access to the map:<pre>
   1.106 - *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
   1.107 - *
   1.108 - * A structural modification is any operation that adds or deletes one or more
   1.109 - * mappings or, in the case of access-ordered linked hash maps, affects
   1.110 - * iteration order.  In insertion-ordered linked hash maps, merely changing
   1.111 - * the value associated with a key that is already contained in the map is not
   1.112 - * a structural modification.  <strong>In access-ordered linked hash maps,
   1.113 - * merely querying the map with <tt>get</tt> is a structural
   1.114 - * modification.</strong>)
   1.115 - *
   1.116 - * <p>The iterators returned by the <tt>iterator</tt> method of the collections
   1.117 - * returned by all of this class's collection view methods are
   1.118 - * <em>fail-fast</em>: if the map is structurally modified at any time after
   1.119 - * the iterator is created, in any way except through the iterator's own
   1.120 - * <tt>remove</tt> method, the iterator will throw a {@link
   1.121 - * ConcurrentModificationException}.  Thus, in the face of concurrent
   1.122 - * modification, the iterator fails quickly and cleanly, rather than risking
   1.123 - * arbitrary, non-deterministic behavior at an undetermined time in the future.
   1.124 - *
   1.125 - * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
   1.126 - * as it is, generally speaking, impossible to make any hard guarantees in the
   1.127 - * presence of unsynchronized concurrent modification.  Fail-fast iterators
   1.128 - * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
   1.129 - * Therefore, it would be wrong to write a program that depended on this
   1.130 - * exception for its correctness:   <i>the fail-fast behavior of iterators
   1.131 - * should be used only to detect bugs.</i>
   1.132 - *
   1.133 - * <p>This class is a member of the
   1.134 - * <a href="{@docRoot}/../technotes/guides/collections/index.html">
   1.135 - * Java Collections Framework</a>.
   1.136 - *
   1.137 - * @param <K> the type of keys maintained by this map
   1.138 - * @param <V> the type of mapped values
   1.139 - *
   1.140 - * @author  Josh Bloch
   1.141 - * @see     Object#hashCode()
   1.142 - * @see     Collection
   1.143 - * @see     Map
   1.144 - * @see     HashMap
   1.145 - * @see     TreeMap
   1.146 - * @see     Hashtable
   1.147 - * @since   1.4
   1.148 - */
   1.149 -
   1.150 -public class LinkedHashMap<K,V>
   1.151 -    extends HashMap<K,V>
   1.152 -    implements Map<K,V>
   1.153 -{
   1.154 -
   1.155 -    private static final long serialVersionUID = 3801124242820219131L;
   1.156 -
   1.157 -    /**
   1.158 -     * The head of the doubly linked list.
   1.159 -     */
   1.160 -    private transient Entry<K,V> header;
   1.161 -
   1.162 -    /**
   1.163 -     * The iteration ordering method for this linked hash map: <tt>true</tt>
   1.164 -     * for access-order, <tt>false</tt> for insertion-order.
   1.165 -     *
   1.166 -     * @serial
   1.167 -     */
   1.168 -    private final boolean accessOrder;
   1.169 -
   1.170 -    /**
   1.171 -     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   1.172 -     * with the specified initial capacity and load factor.
   1.173 -     *
   1.174 -     * @param  initialCapacity the initial capacity
   1.175 -     * @param  loadFactor      the load factor
   1.176 -     * @throws IllegalArgumentException if the initial capacity is negative
   1.177 -     *         or the load factor is nonpositive
   1.178 -     */
   1.179 -    public LinkedHashMap(int initialCapacity, float loadFactor) {
   1.180 -        super(initialCapacity, loadFactor);
   1.181 -        accessOrder = false;
   1.182 -    }
   1.183 -
   1.184 -    /**
   1.185 -     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   1.186 -     * with the specified initial capacity and a default load factor (0.75).
   1.187 -     *
   1.188 -     * @param  initialCapacity the initial capacity
   1.189 -     * @throws IllegalArgumentException if the initial capacity is negative
   1.190 -     */
   1.191 -    public LinkedHashMap(int initialCapacity) {
   1.192 -        super(initialCapacity);
   1.193 -        accessOrder = false;
   1.194 -    }
   1.195 -
   1.196 -    /**
   1.197 -     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   1.198 -     * with the default initial capacity (16) and load factor (0.75).
   1.199 -     */
   1.200 -    public LinkedHashMap() {
   1.201 -        super();
   1.202 -        accessOrder = false;
   1.203 -    }
   1.204 -
   1.205 -    /**
   1.206 -     * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
   1.207 -     * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
   1.208 -     * instance is created with a default load factor (0.75) and an initial
   1.209 -     * capacity sufficient to hold the mappings in the specified map.
   1.210 -     *
   1.211 -     * @param  m the map whose mappings are to be placed in this map
   1.212 -     * @throws NullPointerException if the specified map is null
   1.213 -     */
   1.214 -    public LinkedHashMap(Map<? extends K, ? extends V> m) {
   1.215 -        super(m);
   1.216 -        accessOrder = false;
   1.217 -    }
   1.218 -
   1.219 -    /**
   1.220 -     * Constructs an empty <tt>LinkedHashMap</tt> instance with the
   1.221 -     * specified initial capacity, load factor and ordering mode.
   1.222 -     *
   1.223 -     * @param  initialCapacity the initial capacity
   1.224 -     * @param  loadFactor      the load factor
   1.225 -     * @param  accessOrder     the ordering mode - <tt>true</tt> for
   1.226 -     *         access-order, <tt>false</tt> for insertion-order
   1.227 -     * @throws IllegalArgumentException if the initial capacity is negative
   1.228 -     *         or the load factor is nonpositive
   1.229 -     */
   1.230 -    public LinkedHashMap(int initialCapacity,
   1.231 -                         float loadFactor,
   1.232 -                         boolean accessOrder) {
   1.233 -        super(initialCapacity, loadFactor);
   1.234 -        this.accessOrder = accessOrder;
   1.235 -    }
   1.236 -
   1.237 -    /**
   1.238 -     * Called by superclass constructors and pseudoconstructors (clone,
   1.239 -     * readObject) before any entries are inserted into the map.  Initializes
   1.240 -     * the chain.
   1.241 -     */
   1.242 -    void init() {
   1.243 -        header = new Entry<>(-1, null, null, null);
   1.244 -        header.before = header.after = header;
   1.245 -    }
   1.246 -
   1.247 -    /**
   1.248 -     * Transfers all entries to new table array.  This method is called
   1.249 -     * by superclass resize.  It is overridden for performance, as it is
   1.250 -     * faster to iterate using our linked list.
   1.251 -     */
   1.252 -    void transfer(HashMap.Entry[] newTable) {
   1.253 -        int newCapacity = newTable.length;
   1.254 -        for (Entry<K,V> e = header.after; e != header; e = e.after) {
   1.255 -            int index = indexFor(e.hash, newCapacity);
   1.256 -            e.next = newTable[index];
   1.257 -            newTable[index] = e;
   1.258 -        }
   1.259 -    }
   1.260 -
   1.261 -
   1.262 -    /**
   1.263 -     * Returns <tt>true</tt> if this map maps one or more keys to the
   1.264 -     * specified value.
   1.265 -     *
   1.266 -     * @param value value whose presence in this map is to be tested
   1.267 -     * @return <tt>true</tt> if this map maps one or more keys to the
   1.268 -     *         specified value
   1.269 -     */
   1.270 -    public boolean containsValue(Object value) {
   1.271 -        // Overridden to take advantage of faster iterator
   1.272 -        if (value==null) {
   1.273 -            for (Entry e = header.after; e != header; e = e.after)
   1.274 -                if (e.value==null)
   1.275 -                    return true;
   1.276 -        } else {
   1.277 -            for (Entry e = header.after; e != header; e = e.after)
   1.278 -                if (value.equals(e.value))
   1.279 -                    return true;
   1.280 -        }
   1.281 -        return false;
   1.282 -    }
   1.283 -
   1.284 -    /**
   1.285 -     * Returns the value to which the specified key is mapped,
   1.286 -     * or {@code null} if this map contains no mapping for the key.
   1.287 -     *
   1.288 -     * <p>More formally, if this map contains a mapping from a key
   1.289 -     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
   1.290 -     * key.equals(k))}, then this method returns {@code v}; otherwise
   1.291 -     * it returns {@code null}.  (There can be at most one such mapping.)
   1.292 -     *
   1.293 -     * <p>A return value of {@code null} does not <i>necessarily</i>
   1.294 -     * indicate that the map contains no mapping for the key; it's also
   1.295 -     * possible that the map explicitly maps the key to {@code null}.
   1.296 -     * The {@link #containsKey containsKey} operation may be used to
   1.297 -     * distinguish these two cases.
   1.298 -     */
   1.299 -    public V get(Object key) {
   1.300 -        Entry<K,V> e = (Entry<K,V>)getEntry(key);
   1.301 -        if (e == null)
   1.302 -            return null;
   1.303 -        e.recordAccess(this);
   1.304 -        return e.value;
   1.305 -    }
   1.306 -
   1.307 -    /**
   1.308 -     * Removes all of the mappings from this map.
   1.309 -     * The map will be empty after this call returns.
   1.310 -     */
   1.311 -    public void clear() {
   1.312 -        super.clear();
   1.313 -        header.before = header.after = header;
   1.314 -    }
   1.315 -
   1.316 -    /**
   1.317 -     * LinkedHashMap entry.
   1.318 -     */
   1.319 -    private static class Entry<K,V> extends HashMap.Entry<K,V> {
   1.320 -        // These fields comprise the doubly linked list used for iteration.
   1.321 -        Entry<K,V> before, after;
   1.322 -
   1.323 -        Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
   1.324 -            super(hash, key, value, next);
   1.325 -        }
   1.326 -
   1.327 -        /**
   1.328 -         * Removes this entry from the linked list.
   1.329 -         */
   1.330 -        private void remove() {
   1.331 -            before.after = after;
   1.332 -            after.before = before;
   1.333 -        }
   1.334 -
   1.335 -        /**
   1.336 -         * Inserts this entry before the specified existing entry in the list.
   1.337 -         */
   1.338 -        private void addBefore(Entry<K,V> existingEntry) {
   1.339 -            after  = existingEntry;
   1.340 -            before = existingEntry.before;
   1.341 -            before.after = this;
   1.342 -            after.before = this;
   1.343 -        }
   1.344 -
   1.345 -        /**
   1.346 -         * This method is invoked by the superclass whenever the value
   1.347 -         * of a pre-existing entry is read by Map.get or modified by Map.set.
   1.348 -         * If the enclosing Map is access-ordered, it moves the entry
   1.349 -         * to the end of the list; otherwise, it does nothing.
   1.350 -         */
   1.351 -        void recordAccess(HashMap<K,V> m) {
   1.352 -            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
   1.353 -            if (lm.accessOrder) {
   1.354 -                lm.modCount++;
   1.355 -                remove();
   1.356 -                addBefore(lm.header);
   1.357 -            }
   1.358 -        }
   1.359 -
   1.360 -        void recordRemoval(HashMap<K,V> m) {
   1.361 -            remove();
   1.362 -        }
   1.363 -    }
   1.364 -
   1.365 -    private abstract class LinkedHashIterator<T> implements Iterator<T> {
   1.366 -        Entry<K,V> nextEntry    = header.after;
   1.367 -        Entry<K,V> lastReturned = null;
   1.368 -
   1.369 -        /**
   1.370 -         * The modCount value that the iterator believes that the backing
   1.371 -         * List should have.  If this expectation is violated, the iterator
   1.372 -         * has detected concurrent modification.
   1.373 -         */
   1.374 -        int expectedModCount = modCount;
   1.375 -
   1.376 -        public boolean hasNext() {
   1.377 -            return nextEntry != header;
   1.378 -        }
   1.379 -
   1.380 -        public void remove() {
   1.381 -            if (lastReturned == null)
   1.382 -                throw new IllegalStateException();
   1.383 -            if (modCount != expectedModCount)
   1.384 -                throw new ConcurrentModificationException();
   1.385 -
   1.386 -            LinkedHashMap.this.remove(lastReturned.key);
   1.387 -            lastReturned = null;
   1.388 -            expectedModCount = modCount;
   1.389 -        }
   1.390 -
   1.391 -        Entry<K,V> nextEntry() {
   1.392 -            if (modCount != expectedModCount)
   1.393 -                throw new ConcurrentModificationException();
   1.394 -            if (nextEntry == header)
   1.395 -                throw new NoSuchElementException();
   1.396 -
   1.397 -            Entry<K,V> e = lastReturned = nextEntry;
   1.398 -            nextEntry = e.after;
   1.399 -            return e;
   1.400 -        }
   1.401 -    }
   1.402 -
   1.403 -    private class KeyIterator extends LinkedHashIterator<K> {
   1.404 -        public K next() { return nextEntry().getKey(); }
   1.405 -    }
   1.406 -
   1.407 -    private class ValueIterator extends LinkedHashIterator<V> {
   1.408 -        public V next() { return nextEntry().value; }
   1.409 -    }
   1.410 -
   1.411 -    private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
   1.412 -        public Map.Entry<K,V> next() { return nextEntry(); }
   1.413 -    }
   1.414 -
   1.415 -    // These Overrides alter the behavior of superclass view iterator() methods
   1.416 -    Iterator<K> newKeyIterator()   { return new KeyIterator();   }
   1.417 -    Iterator<V> newValueIterator() { return new ValueIterator(); }
   1.418 -    Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
   1.419 -
   1.420 -    /**
   1.421 -     * This override alters behavior of superclass put method. It causes newly
   1.422 -     * allocated entry to get inserted at the end of the linked list and
   1.423 -     * removes the eldest entry if appropriate.
   1.424 -     */
   1.425 -    void addEntry(int hash, K key, V value, int bucketIndex) {
   1.426 -        createEntry(hash, key, value, bucketIndex);
   1.427 -
   1.428 -        // Remove eldest entry if instructed, else grow capacity if appropriate
   1.429 -        Entry<K,V> eldest = header.after;
   1.430 -        if (removeEldestEntry(eldest)) {
   1.431 -            removeEntryForKey(eldest.key);
   1.432 -        } else {
   1.433 -            if (size >= threshold)
   1.434 -                resize(2 * table.length);
   1.435 -        }
   1.436 -    }
   1.437 -
   1.438 -    /**
   1.439 -     * This override differs from addEntry in that it doesn't resize the
   1.440 -     * table or remove the eldest entry.
   1.441 -     */
   1.442 -    void createEntry(int hash, K key, V value, int bucketIndex) {
   1.443 -        HashMap.Entry<K,V> old = table[bucketIndex];
   1.444 -        Entry<K,V> e = new Entry<>(hash, key, value, old);
   1.445 -        table[bucketIndex] = e;
   1.446 -        e.addBefore(header);
   1.447 -        size++;
   1.448 -    }
   1.449 -
   1.450 -    /**
   1.451 -     * Returns <tt>true</tt> if this map should remove its eldest entry.
   1.452 -     * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
   1.453 -     * inserting a new entry into the map.  It provides the implementor
   1.454 -     * with the opportunity to remove the eldest entry each time a new one
   1.455 -     * is added.  This is useful if the map represents a cache: it allows
   1.456 -     * the map to reduce memory consumption by deleting stale entries.
   1.457 -     *
   1.458 -     * <p>Sample use: this override will allow the map to grow up to 100
   1.459 -     * entries and then delete the eldest entry each time a new entry is
   1.460 -     * added, maintaining a steady state of 100 entries.
   1.461 -     * <pre>
   1.462 -     *     private static final int MAX_ENTRIES = 100;
   1.463 -     *
   1.464 -     *     protected boolean removeEldestEntry(Map.Entry eldest) {
   1.465 -     *        return size() > MAX_ENTRIES;
   1.466 -     *     }
   1.467 -     * </pre>
   1.468 -     *
   1.469 -     * <p>This method typically does not modify the map in any way,
   1.470 -     * instead allowing the map to modify itself as directed by its
   1.471 -     * return value.  It <i>is</i> permitted for this method to modify
   1.472 -     * the map directly, but if it does so, it <i>must</i> return
   1.473 -     * <tt>false</tt> (indicating that the map should not attempt any
   1.474 -     * further modification).  The effects of returning <tt>true</tt>
   1.475 -     * after modifying the map from within this method are unspecified.
   1.476 -     *
   1.477 -     * <p>This implementation merely returns <tt>false</tt> (so that this
   1.478 -     * map acts like a normal map - the eldest element is never removed).
   1.479 -     *
   1.480 -     * @param    eldest The least recently inserted entry in the map, or if
   1.481 -     *           this is an access-ordered map, the least recently accessed
   1.482 -     *           entry.  This is the entry that will be removed it this
   1.483 -     *           method returns <tt>true</tt>.  If the map was empty prior
   1.484 -     *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
   1.485 -     *           in this invocation, this will be the entry that was just
   1.486 -     *           inserted; in other words, if the map contains a single
   1.487 -     *           entry, the eldest entry is also the newest.
   1.488 -     * @return   <tt>true</tt> if the eldest entry should be removed
   1.489 -     *           from the map; <tt>false</tt> if it should be retained.
   1.490 -     */
   1.491 -    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
   1.492 -        return false;
   1.493 -    }
   1.494 -}