emul/mini/src/main/java/java/lang/Double.java
brancharithmetic
changeset 774 42bc1e89134d
parent 755 5652acd48509
parent 773 406faa8bc64f
child 778 6f8683517f1f
     1.1 --- a/emul/mini/src/main/java/java/lang/Double.java	Mon Feb 25 19:00:08 2013 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,994 +0,0 @@
     1.4 -/*
     1.5 - * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 - *
     1.8 - * This code is free software; you can redistribute it and/or modify it
     1.9 - * under the terms of the GNU General Public License version 2 only, as
    1.10 - * published by the Free Software Foundation.  Oracle designates this
    1.11 - * particular file as subject to the "Classpath" exception as provided
    1.12 - * by Oracle in the LICENSE file that accompanied this code.
    1.13 - *
    1.14 - * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 - * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 - * version 2 for more details (a copy is included in the LICENSE file that
    1.18 - * accompanied this code).
    1.19 - *
    1.20 - * You should have received a copy of the GNU General Public License version
    1.21 - * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 - *
    1.24 - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 - * or visit www.oracle.com if you need additional information or have any
    1.26 - * questions.
    1.27 - */
    1.28 -
    1.29 -package java.lang;
    1.30 -
    1.31 -import org.apidesign.bck2brwsr.core.JavaScriptBody;
    1.32 -
    1.33 -/**
    1.34 - * The {@code Double} class wraps a value of the primitive type
    1.35 - * {@code double} in an object. An object of type
    1.36 - * {@code Double} contains a single field whose type is
    1.37 - * {@code double}.
    1.38 - *
    1.39 - * <p>In addition, this class provides several methods for converting a
    1.40 - * {@code double} to a {@code String} and a
    1.41 - * {@code String} to a {@code double}, as well as other
    1.42 - * constants and methods useful when dealing with a
    1.43 - * {@code double}.
    1.44 - *
    1.45 - * @author  Lee Boynton
    1.46 - * @author  Arthur van Hoff
    1.47 - * @author  Joseph D. Darcy
    1.48 - * @since JDK1.0
    1.49 - */
    1.50 -public final class Double extends Number implements Comparable<Double> {
    1.51 -    /**
    1.52 -     * A constant holding the positive infinity of type
    1.53 -     * {@code double}. It is equal to the value returned by
    1.54 -     * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
    1.55 -     */
    1.56 -    public static final double POSITIVE_INFINITY = 1.0 / 0.0;
    1.57 -
    1.58 -    /**
    1.59 -     * A constant holding the negative infinity of type
    1.60 -     * {@code double}. It is equal to the value returned by
    1.61 -     * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
    1.62 -     */
    1.63 -    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
    1.64 -
    1.65 -    /**
    1.66 -     * A constant holding a Not-a-Number (NaN) value of type
    1.67 -     * {@code double}. It is equivalent to the value returned by
    1.68 -     * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
    1.69 -     */
    1.70 -    public static final double NaN = 0.0d / 0.0;
    1.71 -
    1.72 -    /**
    1.73 -     * A constant holding the largest positive finite value of type
    1.74 -     * {@code double},
    1.75 -     * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
    1.76 -     * the hexadecimal floating-point literal
    1.77 -     * {@code 0x1.fffffffffffffP+1023} and also equal to
    1.78 -     * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
    1.79 -     */
    1.80 -    public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
    1.81 -
    1.82 -    /**
    1.83 -     * A constant holding the smallest positive normal value of type
    1.84 -     * {@code double}, 2<sup>-1022</sup>.  It is equal to the
    1.85 -     * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
    1.86 -     * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
    1.87 -     *
    1.88 -     * @since 1.6
    1.89 -     */
    1.90 -    public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
    1.91 -
    1.92 -    /**
    1.93 -     * A constant holding the smallest positive nonzero value of type
    1.94 -     * {@code double}, 2<sup>-1074</sup>. It is equal to the
    1.95 -     * hexadecimal floating-point literal
    1.96 -     * {@code 0x0.0000000000001P-1022} and also equal to
    1.97 -     * {@code Double.longBitsToDouble(0x1L)}.
    1.98 -     */
    1.99 -    public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
   1.100 -
   1.101 -    /**
   1.102 -     * Maximum exponent a finite {@code double} variable may have.
   1.103 -     * It is equal to the value returned by
   1.104 -     * {@code Math.getExponent(Double.MAX_VALUE)}.
   1.105 -     *
   1.106 -     * @since 1.6
   1.107 -     */
   1.108 -    public static final int MAX_EXPONENT = 1023;
   1.109 -
   1.110 -    /**
   1.111 -     * Minimum exponent a normalized {@code double} variable may
   1.112 -     * have.  It is equal to the value returned by
   1.113 -     * {@code Math.getExponent(Double.MIN_NORMAL)}.
   1.114 -     *
   1.115 -     * @since 1.6
   1.116 -     */
   1.117 -    public static final int MIN_EXPONENT = -1022;
   1.118 -
   1.119 -    /**
   1.120 -     * The number of bits used to represent a {@code double} value.
   1.121 -     *
   1.122 -     * @since 1.5
   1.123 -     */
   1.124 -    public static final int SIZE = 64;
   1.125 -
   1.126 -    /**
   1.127 -     * The {@code Class} instance representing the primitive type
   1.128 -     * {@code double}.
   1.129 -     *
   1.130 -     * @since JDK1.1
   1.131 -     */
   1.132 -    public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
   1.133 -
   1.134 -    /**
   1.135 -     * Returns a string representation of the {@code double}
   1.136 -     * argument. All characters mentioned below are ASCII characters.
   1.137 -     * <ul>
   1.138 -     * <li>If the argument is NaN, the result is the string
   1.139 -     *     "{@code NaN}".
   1.140 -     * <li>Otherwise, the result is a string that represents the sign and
   1.141 -     * magnitude (absolute value) of the argument. If the sign is negative,
   1.142 -     * the first character of the result is '{@code -}'
   1.143 -     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
   1.144 -     * appears in the result. As for the magnitude <i>m</i>:
   1.145 -     * <ul>
   1.146 -     * <li>If <i>m</i> is infinity, it is represented by the characters
   1.147 -     * {@code "Infinity"}; thus, positive infinity produces the result
   1.148 -     * {@code "Infinity"} and negative infinity produces the result
   1.149 -     * {@code "-Infinity"}.
   1.150 -     *
   1.151 -     * <li>If <i>m</i> is zero, it is represented by the characters
   1.152 -     * {@code "0.0"}; thus, negative zero produces the result
   1.153 -     * {@code "-0.0"} and positive zero produces the result
   1.154 -     * {@code "0.0"}.
   1.155 -     *
   1.156 -     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
   1.157 -     * than 10<sup>7</sup>, then it is represented as the integer part of
   1.158 -     * <i>m</i>, in decimal form with no leading zeroes, followed by
   1.159 -     * '{@code .}' (<code>'&#92;u002E'</code>), followed by one or
   1.160 -     * more decimal digits representing the fractional part of <i>m</i>.
   1.161 -     *
   1.162 -     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
   1.163 -     * equal to 10<sup>7</sup>, then it is represented in so-called
   1.164 -     * "computerized scientific notation." Let <i>n</i> be the unique
   1.165 -     * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
   1.166 -     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
   1.167 -     * mathematically exact quotient of <i>m</i> and
   1.168 -     * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
   1.169 -     * magnitude is then represented as the integer part of <i>a</i>,
   1.170 -     * as a single decimal digit, followed by '{@code .}'
   1.171 -     * (<code>'&#92;u002E'</code>), followed by decimal digits
   1.172 -     * representing the fractional part of <i>a</i>, followed by the
   1.173 -     * letter '{@code E}' (<code>'&#92;u0045'</code>), followed
   1.174 -     * by a representation of <i>n</i> as a decimal integer, as
   1.175 -     * produced by the method {@link Integer#toString(int)}.
   1.176 -     * </ul>
   1.177 -     * </ul>
   1.178 -     * How many digits must be printed for the fractional part of
   1.179 -     * <i>m</i> or <i>a</i>? There must be at least one digit to represent
   1.180 -     * the fractional part, and beyond that as many, but only as many, more
   1.181 -     * digits as are needed to uniquely distinguish the argument value from
   1.182 -     * adjacent values of type {@code double}. That is, suppose that
   1.183 -     * <i>x</i> is the exact mathematical value represented by the decimal
   1.184 -     * representation produced by this method for a finite nonzero argument
   1.185 -     * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
   1.186 -     * to <i>x</i>; or if two {@code double} values are equally close
   1.187 -     * to <i>x</i>, then <i>d</i> must be one of them and the least
   1.188 -     * significant bit of the significand of <i>d</i> must be {@code 0}.
   1.189 -     *
   1.190 -     * <p>To create localized string representations of a floating-point
   1.191 -     * value, use subclasses of {@link java.text.NumberFormat}.
   1.192 -     *
   1.193 -     * @param   d   the {@code double} to be converted.
   1.194 -     * @return a string representation of the argument.
   1.195 -     */
   1.196 -    @JavaScriptBody(args="d", body="var r = d.toString();"
   1.197 -        + "if (isFinite(d) && (r.indexOf('.') === -1)) r = r + '.0';"
   1.198 -        + "return r;")
   1.199 -    public static String toString(double d) {
   1.200 -        throw new UnsupportedOperationException();
   1.201 -    }
   1.202 -
   1.203 -    /**
   1.204 -     * Returns a hexadecimal string representation of the
   1.205 -     * {@code double} argument. All characters mentioned below
   1.206 -     * are ASCII characters.
   1.207 -     *
   1.208 -     * <ul>
   1.209 -     * <li>If the argument is NaN, the result is the string
   1.210 -     *     "{@code NaN}".
   1.211 -     * <li>Otherwise, the result is a string that represents the sign
   1.212 -     * and magnitude of the argument. If the sign is negative, the
   1.213 -     * first character of the result is '{@code -}'
   1.214 -     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign
   1.215 -     * character appears in the result. As for the magnitude <i>m</i>:
   1.216 -     *
   1.217 -     * <ul>
   1.218 -     * <li>If <i>m</i> is infinity, it is represented by the string
   1.219 -     * {@code "Infinity"}; thus, positive infinity produces the
   1.220 -     * result {@code "Infinity"} and negative infinity produces
   1.221 -     * the result {@code "-Infinity"}.
   1.222 -     *
   1.223 -     * <li>If <i>m</i> is zero, it is represented by the string
   1.224 -     * {@code "0x0.0p0"}; thus, negative zero produces the result
   1.225 -     * {@code "-0x0.0p0"} and positive zero produces the result
   1.226 -     * {@code "0x0.0p0"}.
   1.227 -     *
   1.228 -     * <li>If <i>m</i> is a {@code double} value with a
   1.229 -     * normalized representation, substrings are used to represent the
   1.230 -     * significand and exponent fields.  The significand is
   1.231 -     * represented by the characters {@code "0x1."}
   1.232 -     * followed by a lowercase hexadecimal representation of the rest
   1.233 -     * of the significand as a fraction.  Trailing zeros in the
   1.234 -     * hexadecimal representation are removed unless all the digits
   1.235 -     * are zero, in which case a single zero is used. Next, the
   1.236 -     * exponent is represented by {@code "p"} followed
   1.237 -     * by a decimal string of the unbiased exponent as if produced by
   1.238 -     * a call to {@link Integer#toString(int) Integer.toString} on the
   1.239 -     * exponent value.
   1.240 -     *
   1.241 -     * <li>If <i>m</i> is a {@code double} value with a subnormal
   1.242 -     * representation, the significand is represented by the
   1.243 -     * characters {@code "0x0."} followed by a
   1.244 -     * hexadecimal representation of the rest of the significand as a
   1.245 -     * fraction.  Trailing zeros in the hexadecimal representation are
   1.246 -     * removed. Next, the exponent is represented by
   1.247 -     * {@code "p-1022"}.  Note that there must be at
   1.248 -     * least one nonzero digit in a subnormal significand.
   1.249 -     *
   1.250 -     * </ul>
   1.251 -     *
   1.252 -     * </ul>
   1.253 -     *
   1.254 -     * <table border>
   1.255 -     * <caption><h3>Examples</h3></caption>
   1.256 -     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
   1.257 -     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
   1.258 -     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
   1.259 -     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
   1.260 -     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
   1.261 -     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
   1.262 -     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
   1.263 -     * <tr><td>{@code Double.MAX_VALUE}</td>
   1.264 -     *     <td>{@code 0x1.fffffffffffffp1023}</td>
   1.265 -     * <tr><td>{@code Minimum Normal Value}</td>
   1.266 -     *     <td>{@code 0x1.0p-1022}</td>
   1.267 -     * <tr><td>{@code Maximum Subnormal Value}</td>
   1.268 -     *     <td>{@code 0x0.fffffffffffffp-1022}</td>
   1.269 -     * <tr><td>{@code Double.MIN_VALUE}</td>
   1.270 -     *     <td>{@code 0x0.0000000000001p-1022}</td>
   1.271 -     * </table>
   1.272 -     * @param   d   the {@code double} to be converted.
   1.273 -     * @return a hex string representation of the argument.
   1.274 -     * @since 1.5
   1.275 -     * @author Joseph D. Darcy
   1.276 -     */
   1.277 -    public static String toHexString(double d) {
   1.278 -        throw new UnsupportedOperationException();
   1.279 -//        /*
   1.280 -//         * Modeled after the "a" conversion specifier in C99, section
   1.281 -//         * 7.19.6.1; however, the output of this method is more
   1.282 -//         * tightly specified.
   1.283 -//         */
   1.284 -//        if (!FpUtils.isFinite(d) )
   1.285 -//            // For infinity and NaN, use the decimal output.
   1.286 -//            return Double.toString(d);
   1.287 -//        else {
   1.288 -//            // Initialized to maximum size of output.
   1.289 -//            StringBuffer answer = new StringBuffer(24);
   1.290 -//
   1.291 -//            if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative,
   1.292 -//                answer.append("-");                  // so append sign info
   1.293 -//
   1.294 -//            answer.append("0x");
   1.295 -//
   1.296 -//            d = Math.abs(d);
   1.297 -//
   1.298 -//            if(d == 0.0) {
   1.299 -//                answer.append("0.0p0");
   1.300 -//            }
   1.301 -//            else {
   1.302 -//                boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
   1.303 -//
   1.304 -//                // Isolate significand bits and OR in a high-order bit
   1.305 -//                // so that the string representation has a known
   1.306 -//                // length.
   1.307 -//                long signifBits = (Double.doubleToLongBits(d)
   1.308 -//                                   & DoubleConsts.SIGNIF_BIT_MASK) |
   1.309 -//                    0x1000000000000000L;
   1.310 -//
   1.311 -//                // Subnormal values have a 0 implicit bit; normal
   1.312 -//                // values have a 1 implicit bit.
   1.313 -//                answer.append(subnormal ? "0." : "1.");
   1.314 -//
   1.315 -//                // Isolate the low-order 13 digits of the hex
   1.316 -//                // representation.  If all the digits are zero,
   1.317 -//                // replace with a single 0; otherwise, remove all
   1.318 -//                // trailing zeros.
   1.319 -//                String signif = Long.toHexString(signifBits).substring(3,16);
   1.320 -//                answer.append(signif.equals("0000000000000") ? // 13 zeros
   1.321 -//                              "0":
   1.322 -//                              signif.replaceFirst("0{1,12}$", ""));
   1.323 -//
   1.324 -//                // If the value is subnormal, use the E_min exponent
   1.325 -//                // value for double; otherwise, extract and report d's
   1.326 -//                // exponent (the representation of a subnormal uses
   1.327 -//                // E_min -1).
   1.328 -//                answer.append("p" + (subnormal ?
   1.329 -//                               DoubleConsts.MIN_EXPONENT:
   1.330 -//                               FpUtils.getExponent(d) ));
   1.331 -//            }
   1.332 -//            return answer.toString();
   1.333 -//        }
   1.334 -    }
   1.335 -
   1.336 -    /**
   1.337 -     * Returns a {@code Double} object holding the
   1.338 -     * {@code double} value represented by the argument string
   1.339 -     * {@code s}.
   1.340 -     *
   1.341 -     * <p>If {@code s} is {@code null}, then a
   1.342 -     * {@code NullPointerException} is thrown.
   1.343 -     *
   1.344 -     * <p>Leading and trailing whitespace characters in {@code s}
   1.345 -     * are ignored.  Whitespace is removed as if by the {@link
   1.346 -     * String#trim} method; that is, both ASCII space and control
   1.347 -     * characters are removed. The rest of {@code s} should
   1.348 -     * constitute a <i>FloatValue</i> as described by the lexical
   1.349 -     * syntax rules:
   1.350 -     *
   1.351 -     * <blockquote>
   1.352 -     * <dl>
   1.353 -     * <dt><i>FloatValue:</i>
   1.354 -     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
   1.355 -     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
   1.356 -     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
   1.357 -     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
   1.358 -     * <dd><i>SignedInteger</i>
   1.359 -     * </dl>
   1.360 -     *
   1.361 -     * <p>
   1.362 -     *
   1.363 -     * <dl>
   1.364 -     * <dt><i>HexFloatingPointLiteral</i>:
   1.365 -     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
   1.366 -     * </dl>
   1.367 -     *
   1.368 -     * <p>
   1.369 -     *
   1.370 -     * <dl>
   1.371 -     * <dt><i>HexSignificand:</i>
   1.372 -     * <dd><i>HexNumeral</i>
   1.373 -     * <dd><i>HexNumeral</i> {@code .}
   1.374 -     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
   1.375 -     *     </i>{@code .}<i> HexDigits</i>
   1.376 -     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
   1.377 -     *     </i>{@code .} <i>HexDigits</i>
   1.378 -     * </dl>
   1.379 -     *
   1.380 -     * <p>
   1.381 -     *
   1.382 -     * <dl>
   1.383 -     * <dt><i>BinaryExponent:</i>
   1.384 -     * <dd><i>BinaryExponentIndicator SignedInteger</i>
   1.385 -     * </dl>
   1.386 -     *
   1.387 -     * <p>
   1.388 -     *
   1.389 -     * <dl>
   1.390 -     * <dt><i>BinaryExponentIndicator:</i>
   1.391 -     * <dd>{@code p}
   1.392 -     * <dd>{@code P}
   1.393 -     * </dl>
   1.394 -     *
   1.395 -     * </blockquote>
   1.396 -     *
   1.397 -     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
   1.398 -     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
   1.399 -     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
   1.400 -     * sections of
   1.401 -     * <cite>The Java&trade; Language Specification</cite>,
   1.402 -     * except that underscores are not accepted between digits.
   1.403 -     * If {@code s} does not have the form of
   1.404 -     * a <i>FloatValue</i>, then a {@code NumberFormatException}
   1.405 -     * is thrown. Otherwise, {@code s} is regarded as
   1.406 -     * representing an exact decimal value in the usual
   1.407 -     * "computerized scientific notation" or as an exact
   1.408 -     * hexadecimal value; this exact numerical value is then
   1.409 -     * conceptually converted to an "infinitely precise"
   1.410 -     * binary value that is then rounded to type {@code double}
   1.411 -     * by the usual round-to-nearest rule of IEEE 754 floating-point
   1.412 -     * arithmetic, which includes preserving the sign of a zero
   1.413 -     * value.
   1.414 -     *
   1.415 -     * Note that the round-to-nearest rule also implies overflow and
   1.416 -     * underflow behaviour; if the exact value of {@code s} is large
   1.417 -     * enough in magnitude (greater than or equal to ({@link
   1.418 -     * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
   1.419 -     * rounding to {@code double} will result in an infinity and if the
   1.420 -     * exact value of {@code s} is small enough in magnitude (less
   1.421 -     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
   1.422 -     * result in a zero.
   1.423 -     *
   1.424 -     * Finally, after rounding a {@code Double} object representing
   1.425 -     * this {@code double} value is returned.
   1.426 -     *
   1.427 -     * <p> To interpret localized string representations of a
   1.428 -     * floating-point value, use subclasses of {@link
   1.429 -     * java.text.NumberFormat}.
   1.430 -     *
   1.431 -     * <p>Note that trailing format specifiers, specifiers that
   1.432 -     * determine the type of a floating-point literal
   1.433 -     * ({@code 1.0f} is a {@code float} value;
   1.434 -     * {@code 1.0d} is a {@code double} value), do
   1.435 -     * <em>not</em> influence the results of this method.  In other
   1.436 -     * words, the numerical value of the input string is converted
   1.437 -     * directly to the target floating-point type.  The two-step
   1.438 -     * sequence of conversions, string to {@code float} followed
   1.439 -     * by {@code float} to {@code double}, is <em>not</em>
   1.440 -     * equivalent to converting a string directly to
   1.441 -     * {@code double}. For example, the {@code float}
   1.442 -     * literal {@code 0.1f} is equal to the {@code double}
   1.443 -     * value {@code 0.10000000149011612}; the {@code float}
   1.444 -     * literal {@code 0.1f} represents a different numerical
   1.445 -     * value than the {@code double} literal
   1.446 -     * {@code 0.1}. (The numerical value 0.1 cannot be exactly
   1.447 -     * represented in a binary floating-point number.)
   1.448 -     *
   1.449 -     * <p>To avoid calling this method on an invalid string and having
   1.450 -     * a {@code NumberFormatException} be thrown, the regular
   1.451 -     * expression below can be used to screen the input string:
   1.452 -     *
   1.453 -     * <code>
   1.454 -     * <pre>
   1.455 -     *  final String Digits     = "(\\p{Digit}+)";
   1.456 -     *  final String HexDigits  = "(\\p{XDigit}+)";
   1.457 -     *  // an exponent is 'e' or 'E' followed by an optionally
   1.458 -     *  // signed decimal integer.
   1.459 -     *  final String Exp        = "[eE][+-]?"+Digits;
   1.460 -     *  final String fpRegex    =
   1.461 -     *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
   1.462 -     *       "[+-]?(" + // Optional sign character
   1.463 -     *       "NaN|" +           // "NaN" string
   1.464 -     *       "Infinity|" +      // "Infinity" string
   1.465 -     *
   1.466 -     *       // A decimal floating-point string representing a finite positive
   1.467 -     *       // number without a leading sign has at most five basic pieces:
   1.468 -     *       // Digits . Digits ExponentPart FloatTypeSuffix
   1.469 -     *       //
   1.470 -     *       // Since this method allows integer-only strings as input
   1.471 -     *       // in addition to strings of floating-point literals, the
   1.472 -     *       // two sub-patterns below are simplifications of the grammar
   1.473 -     *       // productions from section 3.10.2 of
   1.474 -     *       // <cite>The Java&trade; Language Specification</cite>.
   1.475 -     *
   1.476 -     *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
   1.477 -     *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
   1.478 -     *
   1.479 -     *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
   1.480 -     *       "(\\.("+Digits+")("+Exp+")?)|"+
   1.481 -     *
   1.482 -     *       // Hexadecimal strings
   1.483 -     *       "((" +
   1.484 -     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
   1.485 -     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
   1.486 -     *
   1.487 -     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
   1.488 -     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
   1.489 -     *
   1.490 -     *        ")[pP][+-]?" + Digits + "))" +
   1.491 -     *       "[fFdD]?))" +
   1.492 -     *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
   1.493 -     *
   1.494 -     *  if (Pattern.matches(fpRegex, myString))
   1.495 -     *      Double.valueOf(myString); // Will not throw NumberFormatException
   1.496 -     *  else {
   1.497 -     *      // Perform suitable alternative action
   1.498 -     *  }
   1.499 -     * </pre>
   1.500 -     * </code>
   1.501 -     *
   1.502 -     * @param      s   the string to be parsed.
   1.503 -     * @return     a {@code Double} object holding the value
   1.504 -     *             represented by the {@code String} argument.
   1.505 -     * @throws     NumberFormatException  if the string does not contain a
   1.506 -     *             parsable number.
   1.507 -     */
   1.508 -    @JavaScriptBody(args="s", body="return parseFloat(s);")
   1.509 -    public static Double valueOf(String s) throws NumberFormatException {
   1.510 -        throw new UnsupportedOperationException();
   1.511 -//        return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
   1.512 -    }
   1.513 -
   1.514 -    /**
   1.515 -     * Returns a {@code Double} instance representing the specified
   1.516 -     * {@code double} value.
   1.517 -     * If a new {@code Double} instance is not required, this method
   1.518 -     * should generally be used in preference to the constructor
   1.519 -     * {@link #Double(double)}, as this method is likely to yield
   1.520 -     * significantly better space and time performance by caching
   1.521 -     * frequently requested values.
   1.522 -     *
   1.523 -     * @param  d a double value.
   1.524 -     * @return a {@code Double} instance representing {@code d}.
   1.525 -     * @since  1.5
   1.526 -     */
   1.527 -    public static Double valueOf(double d) {
   1.528 -        return new Double(d);
   1.529 -    }
   1.530 -
   1.531 -    /**
   1.532 -     * Returns a new {@code double} initialized to the value
   1.533 -     * represented by the specified {@code String}, as performed
   1.534 -     * by the {@code valueOf} method of class
   1.535 -     * {@code Double}.
   1.536 -     *
   1.537 -     * @param  s   the string to be parsed.
   1.538 -     * @return the {@code double} value represented by the string
   1.539 -     *         argument.
   1.540 -     * @throws NullPointerException  if the string is null
   1.541 -     * @throws NumberFormatException if the string does not contain
   1.542 -     *         a parsable {@code double}.
   1.543 -     * @see    java.lang.Double#valueOf(String)
   1.544 -     * @since 1.2
   1.545 -     */
   1.546 -    @JavaScriptBody(args="s", body="return parseFloat(s);")
   1.547 -    public static double parseDouble(String s) throws NumberFormatException {
   1.548 -        throw new UnsupportedOperationException();
   1.549 -//        return FloatingDecimal.readJavaFormatString(s).doubleValue();
   1.550 -    }
   1.551 -
   1.552 -    /**
   1.553 -     * Returns {@code true} if the specified number is a
   1.554 -     * Not-a-Number (NaN) value, {@code false} otherwise.
   1.555 -     *
   1.556 -     * @param   v   the value to be tested.
   1.557 -     * @return  {@code true} if the value of the argument is NaN;
   1.558 -     *          {@code false} otherwise.
   1.559 -     */
   1.560 -    static public boolean isNaN(double v) {
   1.561 -        return (v != v);
   1.562 -    }
   1.563 -
   1.564 -    /**
   1.565 -     * Returns {@code true} if the specified number is infinitely
   1.566 -     * large in magnitude, {@code false} otherwise.
   1.567 -     *
   1.568 -     * @param   v   the value to be tested.
   1.569 -     * @return  {@code true} if the value of the argument is positive
   1.570 -     *          infinity or negative infinity; {@code false} otherwise.
   1.571 -     */
   1.572 -    static public boolean isInfinite(double v) {
   1.573 -        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
   1.574 -    }
   1.575 -
   1.576 -    /**
   1.577 -     * The value of the Double.
   1.578 -     *
   1.579 -     * @serial
   1.580 -     */
   1.581 -    private final double value;
   1.582 -
   1.583 -    /**
   1.584 -     * Constructs a newly allocated {@code Double} object that
   1.585 -     * represents the primitive {@code double} argument.
   1.586 -     *
   1.587 -     * @param   value   the value to be represented by the {@code Double}.
   1.588 -     */
   1.589 -    public Double(double value) {
   1.590 -        this.value = value;
   1.591 -    }
   1.592 -
   1.593 -    /**
   1.594 -     * Constructs a newly allocated {@code Double} object that
   1.595 -     * represents the floating-point value of type {@code double}
   1.596 -     * represented by the string. The string is converted to a
   1.597 -     * {@code double} value as if by the {@code valueOf} method.
   1.598 -     *
   1.599 -     * @param  s  a string to be converted to a {@code Double}.
   1.600 -     * @throws    NumberFormatException  if the string does not contain a
   1.601 -     *            parsable number.
   1.602 -     * @see       java.lang.Double#valueOf(java.lang.String)
   1.603 -     */
   1.604 -    public Double(String s) throws NumberFormatException {
   1.605 -        // REMIND: this is inefficient
   1.606 -        this(valueOf(s).doubleValue());
   1.607 -    }
   1.608 -
   1.609 -    /**
   1.610 -     * Returns {@code true} if this {@code Double} value is
   1.611 -     * a Not-a-Number (NaN), {@code false} otherwise.
   1.612 -     *
   1.613 -     * @return  {@code true} if the value represented by this object is
   1.614 -     *          NaN; {@code false} otherwise.
   1.615 -     */
   1.616 -    public boolean isNaN() {
   1.617 -        return isNaN(value);
   1.618 -    }
   1.619 -
   1.620 -    /**
   1.621 -     * Returns {@code true} if this {@code Double} value is
   1.622 -     * infinitely large in magnitude, {@code false} otherwise.
   1.623 -     *
   1.624 -     * @return  {@code true} if the value represented by this object is
   1.625 -     *          positive infinity or negative infinity;
   1.626 -     *          {@code false} otherwise.
   1.627 -     */
   1.628 -    public boolean isInfinite() {
   1.629 -        return isInfinite(value);
   1.630 -    }
   1.631 -
   1.632 -    /**
   1.633 -     * Returns a string representation of this {@code Double} object.
   1.634 -     * The primitive {@code double} value represented by this
   1.635 -     * object is converted to a string exactly as if by the method
   1.636 -     * {@code toString} of one argument.
   1.637 -     *
   1.638 -     * @return  a {@code String} representation of this object.
   1.639 -     * @see java.lang.Double#toString(double)
   1.640 -     */
   1.641 -    public String toString() {
   1.642 -        return toString(value);
   1.643 -    }
   1.644 -
   1.645 -    /**
   1.646 -     * Returns the value of this {@code Double} as a {@code byte} (by
   1.647 -     * casting to a {@code byte}).
   1.648 -     *
   1.649 -     * @return  the {@code double} value represented by this object
   1.650 -     *          converted to type {@code byte}
   1.651 -     * @since JDK1.1
   1.652 -     */
   1.653 -    public byte byteValue() {
   1.654 -        return (byte)value;
   1.655 -    }
   1.656 -
   1.657 -    /**
   1.658 -     * Returns the value of this {@code Double} as a
   1.659 -     * {@code short} (by casting to a {@code short}).
   1.660 -     *
   1.661 -     * @return  the {@code double} value represented by this object
   1.662 -     *          converted to type {@code short}
   1.663 -     * @since JDK1.1
   1.664 -     */
   1.665 -    public short shortValue() {
   1.666 -        return (short)value;
   1.667 -    }
   1.668 -
   1.669 -    /**
   1.670 -     * Returns the value of this {@code Double} as an
   1.671 -     * {@code int} (by casting to type {@code int}).
   1.672 -     *
   1.673 -     * @return  the {@code double} value represented by this object
   1.674 -     *          converted to type {@code int}
   1.675 -     */
   1.676 -    public int intValue() {
   1.677 -        return (int)value;
   1.678 -    }
   1.679 -
   1.680 -    /**
   1.681 -     * Returns the value of this {@code Double} as a
   1.682 -     * {@code long} (by casting to type {@code long}).
   1.683 -     *
   1.684 -     * @return  the {@code double} value represented by this object
   1.685 -     *          converted to type {@code long}
   1.686 -     */
   1.687 -    public long longValue() {
   1.688 -        return (long)value;
   1.689 -    }
   1.690 -
   1.691 -    /**
   1.692 -     * Returns the {@code float} value of this
   1.693 -     * {@code Double} object.
   1.694 -     *
   1.695 -     * @return  the {@code double} value represented by this object
   1.696 -     *          converted to type {@code float}
   1.697 -     * @since JDK1.0
   1.698 -     */
   1.699 -    public float floatValue() {
   1.700 -        return (float)value;
   1.701 -    }
   1.702 -
   1.703 -    /**
   1.704 -     * Returns the {@code double} value of this
   1.705 -     * {@code Double} object.
   1.706 -     *
   1.707 -     * @return the {@code double} value represented by this object
   1.708 -     */
   1.709 -    public double doubleValue() {
   1.710 -        return (double)value;
   1.711 -    }
   1.712 -
   1.713 -    /**
   1.714 -     * Returns a hash code for this {@code Double} object. The
   1.715 -     * result is the exclusive OR of the two halves of the
   1.716 -     * {@code long} integer bit representation, exactly as
   1.717 -     * produced by the method {@link #doubleToLongBits(double)}, of
   1.718 -     * the primitive {@code double} value represented by this
   1.719 -     * {@code Double} object. That is, the hash code is the value
   1.720 -     * of the expression:
   1.721 -     *
   1.722 -     * <blockquote>
   1.723 -     *  {@code (int)(v^(v>>>32))}
   1.724 -     * </blockquote>
   1.725 -     *
   1.726 -     * where {@code v} is defined by:
   1.727 -     *
   1.728 -     * <blockquote>
   1.729 -     *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
   1.730 -     * </blockquote>
   1.731 -     *
   1.732 -     * @return  a {@code hash code} value for this object.
   1.733 -     */
   1.734 -    public int hashCode() {
   1.735 -        long bits = doubleToLongBits(value);
   1.736 -        return (int)(bits ^ (bits >>> 32));
   1.737 -    }
   1.738 -
   1.739 -    /**
   1.740 -     * Compares this object against the specified object.  The result
   1.741 -     * is {@code true} if and only if the argument is not
   1.742 -     * {@code null} and is a {@code Double} object that
   1.743 -     * represents a {@code double} that has the same value as the
   1.744 -     * {@code double} represented by this object. For this
   1.745 -     * purpose, two {@code double} values are considered to be
   1.746 -     * the same if and only if the method {@link
   1.747 -     * #doubleToLongBits(double)} returns the identical
   1.748 -     * {@code long} value when applied to each.
   1.749 -     *
   1.750 -     * <p>Note that in most cases, for two instances of class
   1.751 -     * {@code Double}, {@code d1} and {@code d2}, the
   1.752 -     * value of {@code d1.equals(d2)} is {@code true} if and
   1.753 -     * only if
   1.754 -     *
   1.755 -     * <blockquote>
   1.756 -     *  {@code d1.doubleValue() == d2.doubleValue()}
   1.757 -     * </blockquote>
   1.758 -     *
   1.759 -     * <p>also has the value {@code true}. However, there are two
   1.760 -     * exceptions:
   1.761 -     * <ul>
   1.762 -     * <li>If {@code d1} and {@code d2} both represent
   1.763 -     *     {@code Double.NaN}, then the {@code equals} method
   1.764 -     *     returns {@code true}, even though
   1.765 -     *     {@code Double.NaN==Double.NaN} has the value
   1.766 -     *     {@code false}.
   1.767 -     * <li>If {@code d1} represents {@code +0.0} while
   1.768 -     *     {@code d2} represents {@code -0.0}, or vice versa,
   1.769 -     *     the {@code equal} test has the value {@code false},
   1.770 -     *     even though {@code +0.0==-0.0} has the value {@code true}.
   1.771 -     * </ul>
   1.772 -     * This definition allows hash tables to operate properly.
   1.773 -     * @param   obj   the object to compare with.
   1.774 -     * @return  {@code true} if the objects are the same;
   1.775 -     *          {@code false} otherwise.
   1.776 -     * @see java.lang.Double#doubleToLongBits(double)
   1.777 -     */
   1.778 -    public boolean equals(Object obj) {
   1.779 -        return (obj instanceof Double)
   1.780 -               && (((Double)obj).value) == value;
   1.781 -    }
   1.782 -
   1.783 -    /**
   1.784 -     * Returns a representation of the specified floating-point value
   1.785 -     * according to the IEEE 754 floating-point "double
   1.786 -     * format" bit layout.
   1.787 -     *
   1.788 -     * <p>Bit 63 (the bit that is selected by the mask
   1.789 -     * {@code 0x8000000000000000L}) represents the sign of the
   1.790 -     * floating-point number. Bits
   1.791 -     * 62-52 (the bits that are selected by the mask
   1.792 -     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
   1.793 -     * (the bits that are selected by the mask
   1.794 -     * {@code 0x000fffffffffffffL}) represent the significand
   1.795 -     * (sometimes called the mantissa) of the floating-point number.
   1.796 -     *
   1.797 -     * <p>If the argument is positive infinity, the result is
   1.798 -     * {@code 0x7ff0000000000000L}.
   1.799 -     *
   1.800 -     * <p>If the argument is negative infinity, the result is
   1.801 -     * {@code 0xfff0000000000000L}.
   1.802 -     *
   1.803 -     * <p>If the argument is NaN, the result is
   1.804 -     * {@code 0x7ff8000000000000L}.
   1.805 -     *
   1.806 -     * <p>In all cases, the result is a {@code long} integer that, when
   1.807 -     * given to the {@link #longBitsToDouble(long)} method, will produce a
   1.808 -     * floating-point value the same as the argument to
   1.809 -     * {@code doubleToLongBits} (except all NaN values are
   1.810 -     * collapsed to a single "canonical" NaN value).
   1.811 -     *
   1.812 -     * @param   value   a {@code double} precision floating-point number.
   1.813 -     * @return the bits that represent the floating-point number.
   1.814 -     */
   1.815 -    public static long doubleToLongBits(double value) {
   1.816 -        throw new UnsupportedOperationException();
   1.817 -//        long result = doubleToRawLongBits(value);
   1.818 -//        // Check for NaN based on values of bit fields, maximum
   1.819 -//        // exponent and nonzero significand.
   1.820 -//        if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
   1.821 -//              DoubleConsts.EXP_BIT_MASK) &&
   1.822 -//             (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
   1.823 -//            result = 0x7ff8000000000000L;
   1.824 -//        return result;
   1.825 -    }
   1.826 -
   1.827 -    /**
   1.828 -     * Returns a representation of the specified floating-point value
   1.829 -     * according to the IEEE 754 floating-point "double
   1.830 -     * format" bit layout, preserving Not-a-Number (NaN) values.
   1.831 -     *
   1.832 -     * <p>Bit 63 (the bit that is selected by the mask
   1.833 -     * {@code 0x8000000000000000L}) represents the sign of the
   1.834 -     * floating-point number. Bits
   1.835 -     * 62-52 (the bits that are selected by the mask
   1.836 -     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
   1.837 -     * (the bits that are selected by the mask
   1.838 -     * {@code 0x000fffffffffffffL}) represent the significand
   1.839 -     * (sometimes called the mantissa) of the floating-point number.
   1.840 -     *
   1.841 -     * <p>If the argument is positive infinity, the result is
   1.842 -     * {@code 0x7ff0000000000000L}.
   1.843 -     *
   1.844 -     * <p>If the argument is negative infinity, the result is
   1.845 -     * {@code 0xfff0000000000000L}.
   1.846 -     *
   1.847 -     * <p>If the argument is NaN, the result is the {@code long}
   1.848 -     * integer representing the actual NaN value.  Unlike the
   1.849 -     * {@code doubleToLongBits} method,
   1.850 -     * {@code doubleToRawLongBits} does not collapse all the bit
   1.851 -     * patterns encoding a NaN to a single "canonical" NaN
   1.852 -     * value.
   1.853 -     *
   1.854 -     * <p>In all cases, the result is a {@code long} integer that,
   1.855 -     * when given to the {@link #longBitsToDouble(long)} method, will
   1.856 -     * produce a floating-point value the same as the argument to
   1.857 -     * {@code doubleToRawLongBits}.
   1.858 -     *
   1.859 -     * @param   value   a {@code double} precision floating-point number.
   1.860 -     * @return the bits that represent the floating-point number.
   1.861 -     * @since 1.3
   1.862 -     */
   1.863 -    public static native long doubleToRawLongBits(double value);
   1.864 -
   1.865 -    /**
   1.866 -     * Returns the {@code double} value corresponding to a given
   1.867 -     * bit representation.
   1.868 -     * The argument is considered to be a representation of a
   1.869 -     * floating-point value according to the IEEE 754 floating-point
   1.870 -     * "double format" bit layout.
   1.871 -     *
   1.872 -     * <p>If the argument is {@code 0x7ff0000000000000L}, the result
   1.873 -     * is positive infinity.
   1.874 -     *
   1.875 -     * <p>If the argument is {@code 0xfff0000000000000L}, the result
   1.876 -     * is negative infinity.
   1.877 -     *
   1.878 -     * <p>If the argument is any value in the range
   1.879 -     * {@code 0x7ff0000000000001L} through
   1.880 -     * {@code 0x7fffffffffffffffL} or in the range
   1.881 -     * {@code 0xfff0000000000001L} through
   1.882 -     * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
   1.883 -     * 754 floating-point operation provided by Java can distinguish
   1.884 -     * between two NaN values of the same type with different bit
   1.885 -     * patterns.  Distinct values of NaN are only distinguishable by
   1.886 -     * use of the {@code Double.doubleToRawLongBits} method.
   1.887 -     *
   1.888 -     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
   1.889 -     * values that can be computed from the argument:
   1.890 -     *
   1.891 -     * <blockquote><pre>
   1.892 -     * int s = ((bits &gt;&gt; 63) == 0) ? 1 : -1;
   1.893 -     * int e = (int)((bits &gt;&gt; 52) & 0x7ffL);
   1.894 -     * long m = (e == 0) ?
   1.895 -     *                 (bits & 0xfffffffffffffL) &lt;&lt; 1 :
   1.896 -     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
   1.897 -     * </pre></blockquote>
   1.898 -     *
   1.899 -     * Then the floating-point result equals the value of the mathematical
   1.900 -     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
   1.901 -     *
   1.902 -     * <p>Note that this method may not be able to return a
   1.903 -     * {@code double} NaN with exactly same bit pattern as the
   1.904 -     * {@code long} argument.  IEEE 754 distinguishes between two
   1.905 -     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
   1.906 -     * differences between the two kinds of NaN are generally not
   1.907 -     * visible in Java.  Arithmetic operations on signaling NaNs turn
   1.908 -     * them into quiet NaNs with a different, but often similar, bit
   1.909 -     * pattern.  However, on some processors merely copying a
   1.910 -     * signaling NaN also performs that conversion.  In particular,
   1.911 -     * copying a signaling NaN to return it to the calling method
   1.912 -     * may perform this conversion.  So {@code longBitsToDouble}
   1.913 -     * may not be able to return a {@code double} with a
   1.914 -     * signaling NaN bit pattern.  Consequently, for some
   1.915 -     * {@code long} values,
   1.916 -     * {@code doubleToRawLongBits(longBitsToDouble(start))} may
   1.917 -     * <i>not</i> equal {@code start}.  Moreover, which
   1.918 -     * particular bit patterns represent signaling NaNs is platform
   1.919 -     * dependent; although all NaN bit patterns, quiet or signaling,
   1.920 -     * must be in the NaN range identified above.
   1.921 -     *
   1.922 -     * @param   bits   any {@code long} integer.
   1.923 -     * @return  the {@code double} floating-point value with the same
   1.924 -     *          bit pattern.
   1.925 -     */
   1.926 -    public static native double longBitsToDouble(long bits);
   1.927 -
   1.928 -    /**
   1.929 -     * Compares two {@code Double} objects numerically.  There
   1.930 -     * are two ways in which comparisons performed by this method
   1.931 -     * differ from those performed by the Java language numerical
   1.932 -     * comparison operators ({@code <, <=, ==, >=, >})
   1.933 -     * when applied to primitive {@code double} values:
   1.934 -     * <ul><li>
   1.935 -     *          {@code Double.NaN} is considered by this method
   1.936 -     *          to be equal to itself and greater than all other
   1.937 -     *          {@code double} values (including
   1.938 -     *          {@code Double.POSITIVE_INFINITY}).
   1.939 -     * <li>
   1.940 -     *          {@code 0.0d} is considered by this method to be greater
   1.941 -     *          than {@code -0.0d}.
   1.942 -     * </ul>
   1.943 -     * This ensures that the <i>natural ordering</i> of
   1.944 -     * {@code Double} objects imposed by this method is <i>consistent
   1.945 -     * with equals</i>.
   1.946 -     *
   1.947 -     * @param   anotherDouble   the {@code Double} to be compared.
   1.948 -     * @return  the value {@code 0} if {@code anotherDouble} is
   1.949 -     *          numerically equal to this {@code Double}; a value
   1.950 -     *          less than {@code 0} if this {@code Double}
   1.951 -     *          is numerically less than {@code anotherDouble};
   1.952 -     *          and a value greater than {@code 0} if this
   1.953 -     *          {@code Double} is numerically greater than
   1.954 -     *          {@code anotherDouble}.
   1.955 -     *
   1.956 -     * @since   1.2
   1.957 -     */
   1.958 -    public int compareTo(Double anotherDouble) {
   1.959 -        return Double.compare(value, anotherDouble.value);
   1.960 -    }
   1.961 -
   1.962 -    /**
   1.963 -     * Compares the two specified {@code double} values. The sign
   1.964 -     * of the integer value returned is the same as that of the
   1.965 -     * integer that would be returned by the call:
   1.966 -     * <pre>
   1.967 -     *    new Double(d1).compareTo(new Double(d2))
   1.968 -     * </pre>
   1.969 -     *
   1.970 -     * @param   d1        the first {@code double} to compare
   1.971 -     * @param   d2        the second {@code double} to compare
   1.972 -     * @return  the value {@code 0} if {@code d1} is
   1.973 -     *          numerically equal to {@code d2}; a value less than
   1.974 -     *          {@code 0} if {@code d1} is numerically less than
   1.975 -     *          {@code d2}; and a value greater than {@code 0}
   1.976 -     *          if {@code d1} is numerically greater than
   1.977 -     *          {@code d2}.
   1.978 -     * @since 1.4
   1.979 -     */
   1.980 -    public static int compare(double d1, double d2) {
   1.981 -        if (d1 < d2)
   1.982 -            return -1;           // Neither val is NaN, thisVal is smaller
   1.983 -        if (d1 > d2)
   1.984 -            return 1;            // Neither val is NaN, thisVal is larger
   1.985 -
   1.986 -        // Cannot use doubleToRawLongBits because of possibility of NaNs.
   1.987 -        long thisBits    = Double.doubleToLongBits(d1);
   1.988 -        long anotherBits = Double.doubleToLongBits(d2);
   1.989 -
   1.990 -        return (thisBits == anotherBits ?  0 : // Values are equal
   1.991 -                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
   1.992 -                 1));                          // (0.0, -0.0) or (NaN, !NaN)
   1.993 -    }
   1.994 -
   1.995 -    /** use serialVersionUID from JDK 1.0.2 for interoperability */
   1.996 -    private static final long serialVersionUID = -9172774392245257468L;
   1.997 -}