emul/compact/src/main/java/java/util/LinkedHashMap.java
branchjdk7-b147
changeset 557 5be31d9fa455
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/emul/compact/src/main/java/java/util/LinkedHashMap.java	Wed Jan 23 22:32:27 2013 +0100
     1.3 @@ -0,0 +1,491 @@
     1.4 +/*
     1.5 + * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.util;
    1.30 +import java.io.*;
    1.31 +
    1.32 +/**
    1.33 + * <p>Hash table and linked list implementation of the <tt>Map</tt> interface,
    1.34 + * with predictable iteration order.  This implementation differs from
    1.35 + * <tt>HashMap</tt> in that it maintains a doubly-linked list running through
    1.36 + * all of its entries.  This linked list defines the iteration ordering,
    1.37 + * which is normally the order in which keys were inserted into the map
    1.38 + * (<i>insertion-order</i>).  Note that insertion order is not affected
    1.39 + * if a key is <i>re-inserted</i> into the map.  (A key <tt>k</tt> is
    1.40 + * reinserted into a map <tt>m</tt> if <tt>m.put(k, v)</tt> is invoked when
    1.41 + * <tt>m.containsKey(k)</tt> would return <tt>true</tt> immediately prior to
    1.42 + * the invocation.)
    1.43 + *
    1.44 + * <p>This implementation spares its clients from the unspecified, generally
    1.45 + * chaotic ordering provided by {@link HashMap} (and {@link Hashtable}),
    1.46 + * without incurring the increased cost associated with {@link TreeMap}.  It
    1.47 + * can be used to produce a copy of a map that has the same order as the
    1.48 + * original, regardless of the original map's implementation:
    1.49 + * <pre>
    1.50 + *     void foo(Map m) {
    1.51 + *         Map copy = new LinkedHashMap(m);
    1.52 + *         ...
    1.53 + *     }
    1.54 + * </pre>
    1.55 + * This technique is particularly useful if a module takes a map on input,
    1.56 + * copies it, and later returns results whose order is determined by that of
    1.57 + * the copy.  (Clients generally appreciate having things returned in the same
    1.58 + * order they were presented.)
    1.59 + *
    1.60 + * <p>A special {@link #LinkedHashMap(int,float,boolean) constructor} is
    1.61 + * provided to create a linked hash map whose order of iteration is the order
    1.62 + * in which its entries were last accessed, from least-recently accessed to
    1.63 + * most-recently (<i>access-order</i>).  This kind of map is well-suited to
    1.64 + * building LRU caches.  Invoking the <tt>put</tt> or <tt>get</tt> method
    1.65 + * results in an access to the corresponding entry (assuming it exists after
    1.66 + * the invocation completes).  The <tt>putAll</tt> method generates one entry
    1.67 + * access for each mapping in the specified map, in the order that key-value
    1.68 + * mappings are provided by the specified map's entry set iterator.  <i>No
    1.69 + * other methods generate entry accesses.</i> In particular, operations on
    1.70 + * collection-views do <i>not</i> affect the order of iteration of the backing
    1.71 + * map.
    1.72 + *
    1.73 + * <p>The {@link #removeEldestEntry(Map.Entry)} method may be overridden to
    1.74 + * impose a policy for removing stale mappings automatically when new mappings
    1.75 + * are added to the map.
    1.76 + *
    1.77 + * <p>This class provides all of the optional <tt>Map</tt> operations, and
    1.78 + * permits null elements.  Like <tt>HashMap</tt>, it provides constant-time
    1.79 + * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
    1.80 + * <tt>remove</tt>), assuming the hash function disperses elements
    1.81 + * properly among the buckets.  Performance is likely to be just slightly
    1.82 + * below that of <tt>HashMap</tt>, due to the added expense of maintaining the
    1.83 + * linked list, with one exception: Iteration over the collection-views
    1.84 + * of a <tt>LinkedHashMap</tt> requires time proportional to the <i>size</i>
    1.85 + * of the map, regardless of its capacity.  Iteration over a <tt>HashMap</tt>
    1.86 + * is likely to be more expensive, requiring time proportional to its
    1.87 + * <i>capacity</i>.
    1.88 + *
    1.89 + * <p>A linked hash map has two parameters that affect its performance:
    1.90 + * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
    1.91 + * as for <tt>HashMap</tt>.  Note, however, that the penalty for choosing an
    1.92 + * excessively high value for initial capacity is less severe for this class
    1.93 + * than for <tt>HashMap</tt>, as iteration times for this class are unaffected
    1.94 + * by capacity.
    1.95 + *
    1.96 + * <p><strong>Note that this implementation is not synchronized.</strong>
    1.97 + * If multiple threads access a linked hash map concurrently, and at least
    1.98 + * one of the threads modifies the map structurally, it <em>must</em> be
    1.99 + * synchronized externally.  This is typically accomplished by
   1.100 + * synchronizing on some object that naturally encapsulates the map.
   1.101 + *
   1.102 + * If no such object exists, the map should be "wrapped" using the
   1.103 + * {@link Collections#synchronizedMap Collections.synchronizedMap}
   1.104 + * method.  This is best done at creation time, to prevent accidental
   1.105 + * unsynchronized access to the map:<pre>
   1.106 + *   Map m = Collections.synchronizedMap(new LinkedHashMap(...));</pre>
   1.107 + *
   1.108 + * A structural modification is any operation that adds or deletes one or more
   1.109 + * mappings or, in the case of access-ordered linked hash maps, affects
   1.110 + * iteration order.  In insertion-ordered linked hash maps, merely changing
   1.111 + * the value associated with a key that is already contained in the map is not
   1.112 + * a structural modification.  <strong>In access-ordered linked hash maps,
   1.113 + * merely querying the map with <tt>get</tt> is a structural
   1.114 + * modification.</strong>)
   1.115 + *
   1.116 + * <p>The iterators returned by the <tt>iterator</tt> method of the collections
   1.117 + * returned by all of this class's collection view methods are
   1.118 + * <em>fail-fast</em>: if the map is structurally modified at any time after
   1.119 + * the iterator is created, in any way except through the iterator's own
   1.120 + * <tt>remove</tt> method, the iterator will throw a {@link
   1.121 + * ConcurrentModificationException}.  Thus, in the face of concurrent
   1.122 + * modification, the iterator fails quickly and cleanly, rather than risking
   1.123 + * arbitrary, non-deterministic behavior at an undetermined time in the future.
   1.124 + *
   1.125 + * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
   1.126 + * as it is, generally speaking, impossible to make any hard guarantees in the
   1.127 + * presence of unsynchronized concurrent modification.  Fail-fast iterators
   1.128 + * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
   1.129 + * Therefore, it would be wrong to write a program that depended on this
   1.130 + * exception for its correctness:   <i>the fail-fast behavior of iterators
   1.131 + * should be used only to detect bugs.</i>
   1.132 + *
   1.133 + * <p>This class is a member of the
   1.134 + * <a href="{@docRoot}/../technotes/guides/collections/index.html">
   1.135 + * Java Collections Framework</a>.
   1.136 + *
   1.137 + * @param <K> the type of keys maintained by this map
   1.138 + * @param <V> the type of mapped values
   1.139 + *
   1.140 + * @author  Josh Bloch
   1.141 + * @see     Object#hashCode()
   1.142 + * @see     Collection
   1.143 + * @see     Map
   1.144 + * @see     HashMap
   1.145 + * @see     TreeMap
   1.146 + * @see     Hashtable
   1.147 + * @since   1.4
   1.148 + */
   1.149 +
   1.150 +public class LinkedHashMap<K,V>
   1.151 +    extends HashMap<K,V>
   1.152 +    implements Map<K,V>
   1.153 +{
   1.154 +
   1.155 +    private static final long serialVersionUID = 3801124242820219131L;
   1.156 +
   1.157 +    /**
   1.158 +     * The head of the doubly linked list.
   1.159 +     */
   1.160 +    private transient Entry<K,V> header;
   1.161 +
   1.162 +    /**
   1.163 +     * The iteration ordering method for this linked hash map: <tt>true</tt>
   1.164 +     * for access-order, <tt>false</tt> for insertion-order.
   1.165 +     *
   1.166 +     * @serial
   1.167 +     */
   1.168 +    private final boolean accessOrder;
   1.169 +
   1.170 +    /**
   1.171 +     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   1.172 +     * with the specified initial capacity and load factor.
   1.173 +     *
   1.174 +     * @param  initialCapacity the initial capacity
   1.175 +     * @param  loadFactor      the load factor
   1.176 +     * @throws IllegalArgumentException if the initial capacity is negative
   1.177 +     *         or the load factor is nonpositive
   1.178 +     */
   1.179 +    public LinkedHashMap(int initialCapacity, float loadFactor) {
   1.180 +        super(initialCapacity, loadFactor);
   1.181 +        accessOrder = false;
   1.182 +    }
   1.183 +
   1.184 +    /**
   1.185 +     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   1.186 +     * with the specified initial capacity and a default load factor (0.75).
   1.187 +     *
   1.188 +     * @param  initialCapacity the initial capacity
   1.189 +     * @throws IllegalArgumentException if the initial capacity is negative
   1.190 +     */
   1.191 +    public LinkedHashMap(int initialCapacity) {
   1.192 +        super(initialCapacity);
   1.193 +        accessOrder = false;
   1.194 +    }
   1.195 +
   1.196 +    /**
   1.197 +     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
   1.198 +     * with the default initial capacity (16) and load factor (0.75).
   1.199 +     */
   1.200 +    public LinkedHashMap() {
   1.201 +        super();
   1.202 +        accessOrder = false;
   1.203 +    }
   1.204 +
   1.205 +    /**
   1.206 +     * Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
   1.207 +     * the same mappings as the specified map.  The <tt>LinkedHashMap</tt>
   1.208 +     * instance is created with a default load factor (0.75) and an initial
   1.209 +     * capacity sufficient to hold the mappings in the specified map.
   1.210 +     *
   1.211 +     * @param  m the map whose mappings are to be placed in this map
   1.212 +     * @throws NullPointerException if the specified map is null
   1.213 +     */
   1.214 +    public LinkedHashMap(Map<? extends K, ? extends V> m) {
   1.215 +        super(m);
   1.216 +        accessOrder = false;
   1.217 +    }
   1.218 +
   1.219 +    /**
   1.220 +     * Constructs an empty <tt>LinkedHashMap</tt> instance with the
   1.221 +     * specified initial capacity, load factor and ordering mode.
   1.222 +     *
   1.223 +     * @param  initialCapacity the initial capacity
   1.224 +     * @param  loadFactor      the load factor
   1.225 +     * @param  accessOrder     the ordering mode - <tt>true</tt> for
   1.226 +     *         access-order, <tt>false</tt> for insertion-order
   1.227 +     * @throws IllegalArgumentException if the initial capacity is negative
   1.228 +     *         or the load factor is nonpositive
   1.229 +     */
   1.230 +    public LinkedHashMap(int initialCapacity,
   1.231 +                         float loadFactor,
   1.232 +                         boolean accessOrder) {
   1.233 +        super(initialCapacity, loadFactor);
   1.234 +        this.accessOrder = accessOrder;
   1.235 +    }
   1.236 +
   1.237 +    /**
   1.238 +     * Called by superclass constructors and pseudoconstructors (clone,
   1.239 +     * readObject) before any entries are inserted into the map.  Initializes
   1.240 +     * the chain.
   1.241 +     */
   1.242 +    void init() {
   1.243 +        header = new Entry<>(-1, null, null, null);
   1.244 +        header.before = header.after = header;
   1.245 +    }
   1.246 +
   1.247 +    /**
   1.248 +     * Transfers all entries to new table array.  This method is called
   1.249 +     * by superclass resize.  It is overridden for performance, as it is
   1.250 +     * faster to iterate using our linked list.
   1.251 +     */
   1.252 +    void transfer(HashMap.Entry[] newTable) {
   1.253 +        int newCapacity = newTable.length;
   1.254 +        for (Entry<K,V> e = header.after; e != header; e = e.after) {
   1.255 +            int index = indexFor(e.hash, newCapacity);
   1.256 +            e.next = newTable[index];
   1.257 +            newTable[index] = e;
   1.258 +        }
   1.259 +    }
   1.260 +
   1.261 +
   1.262 +    /**
   1.263 +     * Returns <tt>true</tt> if this map maps one or more keys to the
   1.264 +     * specified value.
   1.265 +     *
   1.266 +     * @param value value whose presence in this map is to be tested
   1.267 +     * @return <tt>true</tt> if this map maps one or more keys to the
   1.268 +     *         specified value
   1.269 +     */
   1.270 +    public boolean containsValue(Object value) {
   1.271 +        // Overridden to take advantage of faster iterator
   1.272 +        if (value==null) {
   1.273 +            for (Entry e = header.after; e != header; e = e.after)
   1.274 +                if (e.value==null)
   1.275 +                    return true;
   1.276 +        } else {
   1.277 +            for (Entry e = header.after; e != header; e = e.after)
   1.278 +                if (value.equals(e.value))
   1.279 +                    return true;
   1.280 +        }
   1.281 +        return false;
   1.282 +    }
   1.283 +
   1.284 +    /**
   1.285 +     * Returns the value to which the specified key is mapped,
   1.286 +     * or {@code null} if this map contains no mapping for the key.
   1.287 +     *
   1.288 +     * <p>More formally, if this map contains a mapping from a key
   1.289 +     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
   1.290 +     * key.equals(k))}, then this method returns {@code v}; otherwise
   1.291 +     * it returns {@code null}.  (There can be at most one such mapping.)
   1.292 +     *
   1.293 +     * <p>A return value of {@code null} does not <i>necessarily</i>
   1.294 +     * indicate that the map contains no mapping for the key; it's also
   1.295 +     * possible that the map explicitly maps the key to {@code null}.
   1.296 +     * The {@link #containsKey containsKey} operation may be used to
   1.297 +     * distinguish these two cases.
   1.298 +     */
   1.299 +    public V get(Object key) {
   1.300 +        Entry<K,V> e = (Entry<K,V>)getEntry(key);
   1.301 +        if (e == null)
   1.302 +            return null;
   1.303 +        e.recordAccess(this);
   1.304 +        return e.value;
   1.305 +    }
   1.306 +
   1.307 +    /**
   1.308 +     * Removes all of the mappings from this map.
   1.309 +     * The map will be empty after this call returns.
   1.310 +     */
   1.311 +    public void clear() {
   1.312 +        super.clear();
   1.313 +        header.before = header.after = header;
   1.314 +    }
   1.315 +
   1.316 +    /**
   1.317 +     * LinkedHashMap entry.
   1.318 +     */
   1.319 +    private static class Entry<K,V> extends HashMap.Entry<K,V> {
   1.320 +        // These fields comprise the doubly linked list used for iteration.
   1.321 +        Entry<K,V> before, after;
   1.322 +
   1.323 +        Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
   1.324 +            super(hash, key, value, next);
   1.325 +        }
   1.326 +
   1.327 +        /**
   1.328 +         * Removes this entry from the linked list.
   1.329 +         */
   1.330 +        private void remove() {
   1.331 +            before.after = after;
   1.332 +            after.before = before;
   1.333 +        }
   1.334 +
   1.335 +        /**
   1.336 +         * Inserts this entry before the specified existing entry in the list.
   1.337 +         */
   1.338 +        private void addBefore(Entry<K,V> existingEntry) {
   1.339 +            after  = existingEntry;
   1.340 +            before = existingEntry.before;
   1.341 +            before.after = this;
   1.342 +            after.before = this;
   1.343 +        }
   1.344 +
   1.345 +        /**
   1.346 +         * This method is invoked by the superclass whenever the value
   1.347 +         * of a pre-existing entry is read by Map.get or modified by Map.set.
   1.348 +         * If the enclosing Map is access-ordered, it moves the entry
   1.349 +         * to the end of the list; otherwise, it does nothing.
   1.350 +         */
   1.351 +        void recordAccess(HashMap<K,V> m) {
   1.352 +            LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
   1.353 +            if (lm.accessOrder) {
   1.354 +                lm.modCount++;
   1.355 +                remove();
   1.356 +                addBefore(lm.header);
   1.357 +            }
   1.358 +        }
   1.359 +
   1.360 +        void recordRemoval(HashMap<K,V> m) {
   1.361 +            remove();
   1.362 +        }
   1.363 +    }
   1.364 +
   1.365 +    private abstract class LinkedHashIterator<T> implements Iterator<T> {
   1.366 +        Entry<K,V> nextEntry    = header.after;
   1.367 +        Entry<K,V> lastReturned = null;
   1.368 +
   1.369 +        /**
   1.370 +         * The modCount value that the iterator believes that the backing
   1.371 +         * List should have.  If this expectation is violated, the iterator
   1.372 +         * has detected concurrent modification.
   1.373 +         */
   1.374 +        int expectedModCount = modCount;
   1.375 +
   1.376 +        public boolean hasNext() {
   1.377 +            return nextEntry != header;
   1.378 +        }
   1.379 +
   1.380 +        public void remove() {
   1.381 +            if (lastReturned == null)
   1.382 +                throw new IllegalStateException();
   1.383 +            if (modCount != expectedModCount)
   1.384 +                throw new ConcurrentModificationException();
   1.385 +
   1.386 +            LinkedHashMap.this.remove(lastReturned.key);
   1.387 +            lastReturned = null;
   1.388 +            expectedModCount = modCount;
   1.389 +        }
   1.390 +
   1.391 +        Entry<K,V> nextEntry() {
   1.392 +            if (modCount != expectedModCount)
   1.393 +                throw new ConcurrentModificationException();
   1.394 +            if (nextEntry == header)
   1.395 +                throw new NoSuchElementException();
   1.396 +
   1.397 +            Entry<K,V> e = lastReturned = nextEntry;
   1.398 +            nextEntry = e.after;
   1.399 +            return e;
   1.400 +        }
   1.401 +    }
   1.402 +
   1.403 +    private class KeyIterator extends LinkedHashIterator<K> {
   1.404 +        public K next() { return nextEntry().getKey(); }
   1.405 +    }
   1.406 +
   1.407 +    private class ValueIterator extends LinkedHashIterator<V> {
   1.408 +        public V next() { return nextEntry().value; }
   1.409 +    }
   1.410 +
   1.411 +    private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
   1.412 +        public Map.Entry<K,V> next() { return nextEntry(); }
   1.413 +    }
   1.414 +
   1.415 +    // These Overrides alter the behavior of superclass view iterator() methods
   1.416 +    Iterator<K> newKeyIterator()   { return new KeyIterator();   }
   1.417 +    Iterator<V> newValueIterator() { return new ValueIterator(); }
   1.418 +    Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
   1.419 +
   1.420 +    /**
   1.421 +     * This override alters behavior of superclass put method. It causes newly
   1.422 +     * allocated entry to get inserted at the end of the linked list and
   1.423 +     * removes the eldest entry if appropriate.
   1.424 +     */
   1.425 +    void addEntry(int hash, K key, V value, int bucketIndex) {
   1.426 +        createEntry(hash, key, value, bucketIndex);
   1.427 +
   1.428 +        // Remove eldest entry if instructed, else grow capacity if appropriate
   1.429 +        Entry<K,V> eldest = header.after;
   1.430 +        if (removeEldestEntry(eldest)) {
   1.431 +            removeEntryForKey(eldest.key);
   1.432 +        } else {
   1.433 +            if (size >= threshold)
   1.434 +                resize(2 * table.length);
   1.435 +        }
   1.436 +    }
   1.437 +
   1.438 +    /**
   1.439 +     * This override differs from addEntry in that it doesn't resize the
   1.440 +     * table or remove the eldest entry.
   1.441 +     */
   1.442 +    void createEntry(int hash, K key, V value, int bucketIndex) {
   1.443 +        HashMap.Entry<K,V> old = table[bucketIndex];
   1.444 +        Entry<K,V> e = new Entry<>(hash, key, value, old);
   1.445 +        table[bucketIndex] = e;
   1.446 +        e.addBefore(header);
   1.447 +        size++;
   1.448 +    }
   1.449 +
   1.450 +    /**
   1.451 +     * Returns <tt>true</tt> if this map should remove its eldest entry.
   1.452 +     * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
   1.453 +     * inserting a new entry into the map.  It provides the implementor
   1.454 +     * with the opportunity to remove the eldest entry each time a new one
   1.455 +     * is added.  This is useful if the map represents a cache: it allows
   1.456 +     * the map to reduce memory consumption by deleting stale entries.
   1.457 +     *
   1.458 +     * <p>Sample use: this override will allow the map to grow up to 100
   1.459 +     * entries and then delete the eldest entry each time a new entry is
   1.460 +     * added, maintaining a steady state of 100 entries.
   1.461 +     * <pre>
   1.462 +     *     private static final int MAX_ENTRIES = 100;
   1.463 +     *
   1.464 +     *     protected boolean removeEldestEntry(Map.Entry eldest) {
   1.465 +     *        return size() > MAX_ENTRIES;
   1.466 +     *     }
   1.467 +     * </pre>
   1.468 +     *
   1.469 +     * <p>This method typically does not modify the map in any way,
   1.470 +     * instead allowing the map to modify itself as directed by its
   1.471 +     * return value.  It <i>is</i> permitted for this method to modify
   1.472 +     * the map directly, but if it does so, it <i>must</i> return
   1.473 +     * <tt>false</tt> (indicating that the map should not attempt any
   1.474 +     * further modification).  The effects of returning <tt>true</tt>
   1.475 +     * after modifying the map from within this method are unspecified.
   1.476 +     *
   1.477 +     * <p>This implementation merely returns <tt>false</tt> (so that this
   1.478 +     * map acts like a normal map - the eldest element is never removed).
   1.479 +     *
   1.480 +     * @param    eldest The least recently inserted entry in the map, or if
   1.481 +     *           this is an access-ordered map, the least recently accessed
   1.482 +     *           entry.  This is the entry that will be removed it this
   1.483 +     *           method returns <tt>true</tt>.  If the map was empty prior
   1.484 +     *           to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
   1.485 +     *           in this invocation, this will be the entry that was just
   1.486 +     *           inserted; in other words, if the map contains a single
   1.487 +     *           entry, the eldest entry is also the newest.
   1.488 +     * @return   <tt>true</tt> if the eldest entry should be removed
   1.489 +     *           from the map; <tt>false</tt> if it should be retained.
   1.490 +     */
   1.491 +    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
   1.492 +        return false;
   1.493 +    }
   1.494 +}