emul/compact/src/main/java/java/util/WeakHashMap.java
branchjdk7-b147
changeset 1258 724f3e1ea53e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/emul/compact/src/main/java/java/util/WeakHashMap.java	Sat Sep 07 13:51:24 2013 +0200
     1.3 @@ -0,0 +1,972 @@
     1.4 +/*
     1.5 + * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.util;
    1.30 +import java.lang.ref.WeakReference;
    1.31 +import java.lang.ref.ReferenceQueue;
    1.32 +
    1.33 +
    1.34 +/**
    1.35 + * Hash table based implementation of the <tt>Map</tt> interface, with
    1.36 + * <em>weak keys</em>.
    1.37 + * An entry in a <tt>WeakHashMap</tt> will automatically be removed when
    1.38 + * its key is no longer in ordinary use.  More precisely, the presence of a
    1.39 + * mapping for a given key will not prevent the key from being discarded by the
    1.40 + * garbage collector, that is, made finalizable, finalized, and then reclaimed.
    1.41 + * When a key has been discarded its entry is effectively removed from the map,
    1.42 + * so this class behaves somewhat differently from other <tt>Map</tt>
    1.43 + * implementations.
    1.44 + *
    1.45 + * <p> Both null values and the null key are supported. This class has
    1.46 + * performance characteristics similar to those of the <tt>HashMap</tt>
    1.47 + * class, and has the same efficiency parameters of <em>initial capacity</em>
    1.48 + * and <em>load factor</em>.
    1.49 + *
    1.50 + * <p> Like most collection classes, this class is not synchronized.
    1.51 + * A synchronized <tt>WeakHashMap</tt> may be constructed using the
    1.52 + * {@link Collections#synchronizedMap Collections.synchronizedMap}
    1.53 + * method.
    1.54 + *
    1.55 + * <p> This class is intended primarily for use with key objects whose
    1.56 + * <tt>equals</tt> methods test for object identity using the
    1.57 + * <tt>==</tt> operator.  Once such a key is discarded it can never be
    1.58 + * recreated, so it is impossible to do a lookup of that key in a
    1.59 + * <tt>WeakHashMap</tt> at some later time and be surprised that its entry
    1.60 + * has been removed.  This class will work perfectly well with key objects
    1.61 + * whose <tt>equals</tt> methods are not based upon object identity, such
    1.62 + * as <tt>String</tt> instances.  With such recreatable key objects,
    1.63 + * however, the automatic removal of <tt>WeakHashMap</tt> entries whose
    1.64 + * keys have been discarded may prove to be confusing.
    1.65 + *
    1.66 + * <p> The behavior of the <tt>WeakHashMap</tt> class depends in part upon
    1.67 + * the actions of the garbage collector, so several familiar (though not
    1.68 + * required) <tt>Map</tt> invariants do not hold for this class.  Because
    1.69 + * the garbage collector may discard keys at any time, a
    1.70 + * <tt>WeakHashMap</tt> may behave as though an unknown thread is silently
    1.71 + * removing entries.  In particular, even if you synchronize on a
    1.72 + * <tt>WeakHashMap</tt> instance and invoke none of its mutator methods, it
    1.73 + * is possible for the <tt>size</tt> method to return smaller values over
    1.74 + * time, for the <tt>isEmpty</tt> method to return <tt>false</tt> and
    1.75 + * then <tt>true</tt>, for the <tt>containsKey</tt> method to return
    1.76 + * <tt>true</tt> and later <tt>false</tt> for a given key, for the
    1.77 + * <tt>get</tt> method to return a value for a given key but later return
    1.78 + * <tt>null</tt>, for the <tt>put</tt> method to return
    1.79 + * <tt>null</tt> and the <tt>remove</tt> method to return
    1.80 + * <tt>false</tt> for a key that previously appeared to be in the map, and
    1.81 + * for successive examinations of the key set, the value collection, and
    1.82 + * the entry set to yield successively smaller numbers of elements.
    1.83 + *
    1.84 + * <p> Each key object in a <tt>WeakHashMap</tt> is stored indirectly as
    1.85 + * the referent of a weak reference.  Therefore a key will automatically be
    1.86 + * removed only after the weak references to it, both inside and outside of the
    1.87 + * map, have been cleared by the garbage collector.
    1.88 + *
    1.89 + * <p> <strong>Implementation note:</strong> The value objects in a
    1.90 + * <tt>WeakHashMap</tt> are held by ordinary strong references.  Thus care
    1.91 + * should be taken to ensure that value objects do not strongly refer to their
    1.92 + * own keys, either directly or indirectly, since that will prevent the keys
    1.93 + * from being discarded.  Note that a value object may refer indirectly to its
    1.94 + * key via the <tt>WeakHashMap</tt> itself; that is, a value object may
    1.95 + * strongly refer to some other key object whose associated value object, in
    1.96 + * turn, strongly refers to the key of the first value object.  One way
    1.97 + * to deal with this is to wrap values themselves within
    1.98 + * <tt>WeakReferences</tt> before
    1.99 + * inserting, as in: <tt>m.put(key, new WeakReference(value))</tt>,
   1.100 + * and then unwrapping upon each <tt>get</tt>.
   1.101 + *
   1.102 + * <p>The iterators returned by the <tt>iterator</tt> method of the collections
   1.103 + * returned by all of this class's "collection view methods" are
   1.104 + * <i>fail-fast</i>: if the map is structurally modified at any time after the
   1.105 + * iterator is created, in any way except through the iterator's own
   1.106 + * <tt>remove</tt> method, the iterator will throw a {@link
   1.107 + * ConcurrentModificationException}.  Thus, in the face of concurrent
   1.108 + * modification, the iterator fails quickly and cleanly, rather than risking
   1.109 + * arbitrary, non-deterministic behavior at an undetermined time in the future.
   1.110 + *
   1.111 + * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
   1.112 + * as it is, generally speaking, impossible to make any hard guarantees in the
   1.113 + * presence of unsynchronized concurrent modification.  Fail-fast iterators
   1.114 + * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
   1.115 + * Therefore, it would be wrong to write a program that depended on this
   1.116 + * exception for its correctness:  <i>the fail-fast behavior of iterators
   1.117 + * should be used only to detect bugs.</i>
   1.118 + *
   1.119 + * <p>This class is a member of the
   1.120 + * <a href="{@docRoot}/../technotes/guides/collections/index.html">
   1.121 + * Java Collections Framework</a>.
   1.122 + *
   1.123 + * @param <K> the type of keys maintained by this map
   1.124 + * @param <V> the type of mapped values
   1.125 + *
   1.126 + * @author      Doug Lea
   1.127 + * @author      Josh Bloch
   1.128 + * @author      Mark Reinhold
   1.129 + * @since       1.2
   1.130 + * @see         java.util.HashMap
   1.131 + * @see         java.lang.ref.WeakReference
   1.132 + */
   1.133 +public class WeakHashMap<K,V>
   1.134 +    extends AbstractMap<K,V>
   1.135 +    implements Map<K,V> {
   1.136 +
   1.137 +    /**
   1.138 +     * The default initial capacity -- MUST be a power of two.
   1.139 +     */
   1.140 +    private static final int DEFAULT_INITIAL_CAPACITY = 16;
   1.141 +
   1.142 +    /**
   1.143 +     * The maximum capacity, used if a higher value is implicitly specified
   1.144 +     * by either of the constructors with arguments.
   1.145 +     * MUST be a power of two <= 1<<30.
   1.146 +     */
   1.147 +    private static final int MAXIMUM_CAPACITY = 1 << 30;
   1.148 +
   1.149 +    /**
   1.150 +     * The load factor used when none specified in constructor.
   1.151 +     */
   1.152 +    private static final float DEFAULT_LOAD_FACTOR = 0.75f;
   1.153 +
   1.154 +    /**
   1.155 +     * The table, resized as necessary. Length MUST Always be a power of two.
   1.156 +     */
   1.157 +    Entry<K,V>[] table;
   1.158 +
   1.159 +    /**
   1.160 +     * The number of key-value mappings contained in this weak hash map.
   1.161 +     */
   1.162 +    private int size;
   1.163 +
   1.164 +    /**
   1.165 +     * The next size value at which to resize (capacity * load factor).
   1.166 +     */
   1.167 +    private int threshold;
   1.168 +
   1.169 +    /**
   1.170 +     * The load factor for the hash table.
   1.171 +     */
   1.172 +    private final float loadFactor;
   1.173 +
   1.174 +    /**
   1.175 +     * Reference queue for cleared WeakEntries
   1.176 +     */
   1.177 +    private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
   1.178 +
   1.179 +    /**
   1.180 +     * The number of times this WeakHashMap has been structurally modified.
   1.181 +     * Structural modifications are those that change the number of
   1.182 +     * mappings in the map or otherwise modify its internal structure
   1.183 +     * (e.g., rehash).  This field is used to make iterators on
   1.184 +     * Collection-views of the map fail-fast.
   1.185 +     *
   1.186 +     * @see ConcurrentModificationException
   1.187 +     */
   1.188 +    int modCount;
   1.189 +
   1.190 +    @SuppressWarnings("unchecked")
   1.191 +    private Entry<K,V>[] newTable(int n) {
   1.192 +        return (Entry<K,V>[]) new Entry[n];
   1.193 +    }
   1.194 +
   1.195 +    /**
   1.196 +     * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
   1.197 +     * capacity and the given load factor.
   1.198 +     *
   1.199 +     * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
   1.200 +     * @param  loadFactor      The load factor of the <tt>WeakHashMap</tt>
   1.201 +     * @throws IllegalArgumentException if the initial capacity is negative,
   1.202 +     *         or if the load factor is nonpositive.
   1.203 +     */
   1.204 +    public WeakHashMap(int initialCapacity, float loadFactor) {
   1.205 +        if (initialCapacity < 0)
   1.206 +            throw new IllegalArgumentException("Illegal Initial Capacity: "+
   1.207 +                                               initialCapacity);
   1.208 +        if (initialCapacity > MAXIMUM_CAPACITY)
   1.209 +            initialCapacity = MAXIMUM_CAPACITY;
   1.210 +
   1.211 +        if (loadFactor <= 0 || Float.isNaN(loadFactor))
   1.212 +            throw new IllegalArgumentException("Illegal Load factor: "+
   1.213 +                                               loadFactor);
   1.214 +        int capacity = 1;
   1.215 +        while (capacity < initialCapacity)
   1.216 +            capacity <<= 1;
   1.217 +        table = newTable(capacity);
   1.218 +        this.loadFactor = loadFactor;
   1.219 +        threshold = (int)(capacity * loadFactor);
   1.220 +    }
   1.221 +
   1.222 +    /**
   1.223 +     * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
   1.224 +     * capacity and the default load factor (0.75).
   1.225 +     *
   1.226 +     * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
   1.227 +     * @throws IllegalArgumentException if the initial capacity is negative
   1.228 +     */
   1.229 +    public WeakHashMap(int initialCapacity) {
   1.230 +        this(initialCapacity, DEFAULT_LOAD_FACTOR);
   1.231 +    }
   1.232 +
   1.233 +    /**
   1.234 +     * Constructs a new, empty <tt>WeakHashMap</tt> with the default initial
   1.235 +     * capacity (16) and load factor (0.75).
   1.236 +     */
   1.237 +    public WeakHashMap() {
   1.238 +        this.loadFactor = DEFAULT_LOAD_FACTOR;
   1.239 +        threshold = DEFAULT_INITIAL_CAPACITY;
   1.240 +        table = newTable(DEFAULT_INITIAL_CAPACITY);
   1.241 +    }
   1.242 +
   1.243 +    /**
   1.244 +     * Constructs a new <tt>WeakHashMap</tt> with the same mappings as the
   1.245 +     * specified map.  The <tt>WeakHashMap</tt> is created with the default
   1.246 +     * load factor (0.75) and an initial capacity sufficient to hold the
   1.247 +     * mappings in the specified map.
   1.248 +     *
   1.249 +     * @param   m the map whose mappings are to be placed in this map
   1.250 +     * @throws  NullPointerException if the specified map is null
   1.251 +     * @since   1.3
   1.252 +     */
   1.253 +    public WeakHashMap(Map<? extends K, ? extends V> m) {
   1.254 +        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, 16),
   1.255 +             DEFAULT_LOAD_FACTOR);
   1.256 +        putAll(m);
   1.257 +    }
   1.258 +
   1.259 +    // internal utilities
   1.260 +
   1.261 +    /**
   1.262 +     * Value representing null keys inside tables.
   1.263 +     */
   1.264 +    private static final Object NULL_KEY = new Object();
   1.265 +
   1.266 +    /**
   1.267 +     * Use NULL_KEY for key if it is null.
   1.268 +     */
   1.269 +    private static Object maskNull(Object key) {
   1.270 +        return (key == null) ? NULL_KEY : key;
   1.271 +    }
   1.272 +
   1.273 +    /**
   1.274 +     * Returns internal representation of null key back to caller as null.
   1.275 +     */
   1.276 +    static Object unmaskNull(Object key) {
   1.277 +        return (key == NULL_KEY) ? null : key;
   1.278 +    }
   1.279 +
   1.280 +    /**
   1.281 +     * Checks for equality of non-null reference x and possibly-null y.  By
   1.282 +     * default uses Object.equals.
   1.283 +     */
   1.284 +    private static boolean eq(Object x, Object y) {
   1.285 +        return x == y || x.equals(y);
   1.286 +    }
   1.287 +
   1.288 +    /**
   1.289 +     * Returns index for hash code h.
   1.290 +     */
   1.291 +    private static int indexFor(int h, int length) {
   1.292 +        return h & (length-1);
   1.293 +    }
   1.294 +
   1.295 +    /**
   1.296 +     * Expunges stale entries from the table.
   1.297 +     */
   1.298 +    private void expungeStaleEntries() {
   1.299 +        for (Object x; (x = queue.poll()) != null; ) {
   1.300 +            synchronized (queue) {
   1.301 +                @SuppressWarnings("unchecked")
   1.302 +                    Entry<K,V> e = (Entry<K,V>) x;
   1.303 +                int i = indexFor(e.hash, table.length);
   1.304 +
   1.305 +                Entry<K,V> prev = table[i];
   1.306 +                Entry<K,V> p = prev;
   1.307 +                while (p != null) {
   1.308 +                    Entry<K,V> next = p.next;
   1.309 +                    if (p == e) {
   1.310 +                        if (prev == e)
   1.311 +                            table[i] = next;
   1.312 +                        else
   1.313 +                            prev.next = next;
   1.314 +                        // Must not null out e.next;
   1.315 +                        // stale entries may be in use by a HashIterator
   1.316 +                        e.value = null; // Help GC
   1.317 +                        size--;
   1.318 +                        break;
   1.319 +                    }
   1.320 +                    prev = p;
   1.321 +                    p = next;
   1.322 +                }
   1.323 +            }
   1.324 +        }
   1.325 +    }
   1.326 +
   1.327 +    /**
   1.328 +     * Returns the table after first expunging stale entries.
   1.329 +     */
   1.330 +    private Entry<K,V>[] getTable() {
   1.331 +        expungeStaleEntries();
   1.332 +        return table;
   1.333 +    }
   1.334 +
   1.335 +    /**
   1.336 +     * Returns the number of key-value mappings in this map.
   1.337 +     * This result is a snapshot, and may not reflect unprocessed
   1.338 +     * entries that will be removed before next attempted access
   1.339 +     * because they are no longer referenced.
   1.340 +     */
   1.341 +    public int size() {
   1.342 +        if (size == 0)
   1.343 +            return 0;
   1.344 +        expungeStaleEntries();
   1.345 +        return size;
   1.346 +    }
   1.347 +
   1.348 +    /**
   1.349 +     * Returns <tt>true</tt> if this map contains no key-value mappings.
   1.350 +     * This result is a snapshot, and may not reflect unprocessed
   1.351 +     * entries that will be removed before next attempted access
   1.352 +     * because they are no longer referenced.
   1.353 +     */
   1.354 +    public boolean isEmpty() {
   1.355 +        return size() == 0;
   1.356 +    }
   1.357 +
   1.358 +    /**
   1.359 +     * Returns the value to which the specified key is mapped,
   1.360 +     * or {@code null} if this map contains no mapping for the key.
   1.361 +     *
   1.362 +     * <p>More formally, if this map contains a mapping from a key
   1.363 +     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
   1.364 +     * key.equals(k))}, then this method returns {@code v}; otherwise
   1.365 +     * it returns {@code null}.  (There can be at most one such mapping.)
   1.366 +     *
   1.367 +     * <p>A return value of {@code null} does not <i>necessarily</i>
   1.368 +     * indicate that the map contains no mapping for the key; it's also
   1.369 +     * possible that the map explicitly maps the key to {@code null}.
   1.370 +     * The {@link #containsKey containsKey} operation may be used to
   1.371 +     * distinguish these two cases.
   1.372 +     *
   1.373 +     * @see #put(Object, Object)
   1.374 +     */
   1.375 +    public V get(Object key) {
   1.376 +        Object k = maskNull(key);
   1.377 +        int h = HashMap.hash(k.hashCode());
   1.378 +        Entry<K,V>[] tab = getTable();
   1.379 +        int index = indexFor(h, tab.length);
   1.380 +        Entry<K,V> e = tab[index];
   1.381 +        while (e != null) {
   1.382 +            if (e.hash == h && eq(k, e.get()))
   1.383 +                return e.value;
   1.384 +            e = e.next;
   1.385 +        }
   1.386 +        return null;
   1.387 +    }
   1.388 +
   1.389 +    /**
   1.390 +     * Returns <tt>true</tt> if this map contains a mapping for the
   1.391 +     * specified key.
   1.392 +     *
   1.393 +     * @param  key   The key whose presence in this map is to be tested
   1.394 +     * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
   1.395 +     *         <tt>false</tt> otherwise
   1.396 +     */
   1.397 +    public boolean containsKey(Object key) {
   1.398 +        return getEntry(key) != null;
   1.399 +    }
   1.400 +
   1.401 +    /**
   1.402 +     * Returns the entry associated with the specified key in this map.
   1.403 +     * Returns null if the map contains no mapping for this key.
   1.404 +     */
   1.405 +    Entry<K,V> getEntry(Object key) {
   1.406 +        Object k = maskNull(key);
   1.407 +        int h = HashMap.hash(k.hashCode());
   1.408 +        Entry<K,V>[] tab = getTable();
   1.409 +        int index = indexFor(h, tab.length);
   1.410 +        Entry<K,V> e = tab[index];
   1.411 +        while (e != null && !(e.hash == h && eq(k, e.get())))
   1.412 +            e = e.next;
   1.413 +        return e;
   1.414 +    }
   1.415 +
   1.416 +    /**
   1.417 +     * Associates the specified value with the specified key in this map.
   1.418 +     * If the map previously contained a mapping for this key, the old
   1.419 +     * value is replaced.
   1.420 +     *
   1.421 +     * @param key key with which the specified value is to be associated.
   1.422 +     * @param value value to be associated with the specified key.
   1.423 +     * @return the previous value associated with <tt>key</tt>, or
   1.424 +     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
   1.425 +     *         (A <tt>null</tt> return can also indicate that the map
   1.426 +     *         previously associated <tt>null</tt> with <tt>key</tt>.)
   1.427 +     */
   1.428 +    public V put(K key, V value) {
   1.429 +        Object k = maskNull(key);
   1.430 +        int h = HashMap.hash(k.hashCode());
   1.431 +        Entry<K,V>[] tab = getTable();
   1.432 +        int i = indexFor(h, tab.length);
   1.433 +
   1.434 +        for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
   1.435 +            if (h == e.hash && eq(k, e.get())) {
   1.436 +                V oldValue = e.value;
   1.437 +                if (value != oldValue)
   1.438 +                    e.value = value;
   1.439 +                return oldValue;
   1.440 +            }
   1.441 +        }
   1.442 +
   1.443 +        modCount++;
   1.444 +        Entry<K,V> e = tab[i];
   1.445 +        tab[i] = new Entry<>(k, value, queue, h, e);
   1.446 +        if (++size >= threshold)
   1.447 +            resize(tab.length * 2);
   1.448 +        return null;
   1.449 +    }
   1.450 +
   1.451 +    /**
   1.452 +     * Rehashes the contents of this map into a new array with a
   1.453 +     * larger capacity.  This method is called automatically when the
   1.454 +     * number of keys in this map reaches its threshold.
   1.455 +     *
   1.456 +     * If current capacity is MAXIMUM_CAPACITY, this method does not
   1.457 +     * resize the map, but sets threshold to Integer.MAX_VALUE.
   1.458 +     * This has the effect of preventing future calls.
   1.459 +     *
   1.460 +     * @param newCapacity the new capacity, MUST be a power of two;
   1.461 +     *        must be greater than current capacity unless current
   1.462 +     *        capacity is MAXIMUM_CAPACITY (in which case value
   1.463 +     *        is irrelevant).
   1.464 +     */
   1.465 +    void resize(int newCapacity) {
   1.466 +        Entry<K,V>[] oldTable = getTable();
   1.467 +        int oldCapacity = oldTable.length;
   1.468 +        if (oldCapacity == MAXIMUM_CAPACITY) {
   1.469 +            threshold = Integer.MAX_VALUE;
   1.470 +            return;
   1.471 +        }
   1.472 +
   1.473 +        Entry<K,V>[] newTable = newTable(newCapacity);
   1.474 +        transfer(oldTable, newTable);
   1.475 +        table = newTable;
   1.476 +
   1.477 +        /*
   1.478 +         * If ignoring null elements and processing ref queue caused massive
   1.479 +         * shrinkage, then restore old table.  This should be rare, but avoids
   1.480 +         * unbounded expansion of garbage-filled tables.
   1.481 +         */
   1.482 +        if (size >= threshold / 2) {
   1.483 +            threshold = (int)(newCapacity * loadFactor);
   1.484 +        } else {
   1.485 +            expungeStaleEntries();
   1.486 +            transfer(newTable, oldTable);
   1.487 +            table = oldTable;
   1.488 +        }
   1.489 +    }
   1.490 +
   1.491 +    /** Transfers all entries from src to dest tables */
   1.492 +    private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
   1.493 +        for (int j = 0; j < src.length; ++j) {
   1.494 +            Entry<K,V> e = src[j];
   1.495 +            src[j] = null;
   1.496 +            while (e != null) {
   1.497 +                Entry<K,V> next = e.next;
   1.498 +                Object key = e.get();
   1.499 +                if (key == null) {
   1.500 +                    e.next = null;  // Help GC
   1.501 +                    e.value = null; //  "   "
   1.502 +                    size--;
   1.503 +                } else {
   1.504 +                    int i = indexFor(e.hash, dest.length);
   1.505 +                    e.next = dest[i];
   1.506 +                    dest[i] = e;
   1.507 +                }
   1.508 +                e = next;
   1.509 +            }
   1.510 +        }
   1.511 +    }
   1.512 +
   1.513 +    /**
   1.514 +     * Copies all of the mappings from the specified map to this map.
   1.515 +     * These mappings will replace any mappings that this map had for any
   1.516 +     * of the keys currently in the specified map.
   1.517 +     *
   1.518 +     * @param m mappings to be stored in this map.
   1.519 +     * @throws  NullPointerException if the specified map is null.
   1.520 +     */
   1.521 +    public void putAll(Map<? extends K, ? extends V> m) {
   1.522 +        int numKeysToBeAdded = m.size();
   1.523 +        if (numKeysToBeAdded == 0)
   1.524 +            return;
   1.525 +
   1.526 +        /*
   1.527 +         * Expand the map if the map if the number of mappings to be added
   1.528 +         * is greater than or equal to threshold.  This is conservative; the
   1.529 +         * obvious condition is (m.size() + size) >= threshold, but this
   1.530 +         * condition could result in a map with twice the appropriate capacity,
   1.531 +         * if the keys to be added overlap with the keys already in this map.
   1.532 +         * By using the conservative calculation, we subject ourself
   1.533 +         * to at most one extra resize.
   1.534 +         */
   1.535 +        if (numKeysToBeAdded > threshold) {
   1.536 +            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
   1.537 +            if (targetCapacity > MAXIMUM_CAPACITY)
   1.538 +                targetCapacity = MAXIMUM_CAPACITY;
   1.539 +            int newCapacity = table.length;
   1.540 +            while (newCapacity < targetCapacity)
   1.541 +                newCapacity <<= 1;
   1.542 +            if (newCapacity > table.length)
   1.543 +                resize(newCapacity);
   1.544 +        }
   1.545 +
   1.546 +        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
   1.547 +            put(e.getKey(), e.getValue());
   1.548 +    }
   1.549 +
   1.550 +    /**
   1.551 +     * Removes the mapping for a key from this weak hash map if it is present.
   1.552 +     * More formally, if this map contains a mapping from key <tt>k</tt> to
   1.553 +     * value <tt>v</tt> such that <code>(key==null ?  k==null :
   1.554 +     * key.equals(k))</code>, that mapping is removed.  (The map can contain
   1.555 +     * at most one such mapping.)
   1.556 +     *
   1.557 +     * <p>Returns the value to which this map previously associated the key,
   1.558 +     * or <tt>null</tt> if the map contained no mapping for the key.  A
   1.559 +     * return value of <tt>null</tt> does not <i>necessarily</i> indicate
   1.560 +     * that the map contained no mapping for the key; it's also possible
   1.561 +     * that the map explicitly mapped the key to <tt>null</tt>.
   1.562 +     *
   1.563 +     * <p>The map will not contain a mapping for the specified key once the
   1.564 +     * call returns.
   1.565 +     *
   1.566 +     * @param key key whose mapping is to be removed from the map
   1.567 +     * @return the previous value associated with <tt>key</tt>, or
   1.568 +     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
   1.569 +     */
   1.570 +    public V remove(Object key) {
   1.571 +        Object k = maskNull(key);
   1.572 +        int h = HashMap.hash(k.hashCode());
   1.573 +        Entry<K,V>[] tab = getTable();
   1.574 +        int i = indexFor(h, tab.length);
   1.575 +        Entry<K,V> prev = tab[i];
   1.576 +        Entry<K,V> e = prev;
   1.577 +
   1.578 +        while (e != null) {
   1.579 +            Entry<K,V> next = e.next;
   1.580 +            if (h == e.hash && eq(k, e.get())) {
   1.581 +                modCount++;
   1.582 +                size--;
   1.583 +                if (prev == e)
   1.584 +                    tab[i] = next;
   1.585 +                else
   1.586 +                    prev.next = next;
   1.587 +                return e.value;
   1.588 +            }
   1.589 +            prev = e;
   1.590 +            e = next;
   1.591 +        }
   1.592 +
   1.593 +        return null;
   1.594 +    }
   1.595 +
   1.596 +    /** Special version of remove needed by Entry set */
   1.597 +    boolean removeMapping(Object o) {
   1.598 +        if (!(o instanceof Map.Entry))
   1.599 +            return false;
   1.600 +        Entry<K,V>[] tab = getTable();
   1.601 +        Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
   1.602 +        Object k = maskNull(entry.getKey());
   1.603 +        int h = HashMap.hash(k.hashCode());
   1.604 +        int i = indexFor(h, tab.length);
   1.605 +        Entry<K,V> prev = tab[i];
   1.606 +        Entry<K,V> e = prev;
   1.607 +
   1.608 +        while (e != null) {
   1.609 +            Entry<K,V> next = e.next;
   1.610 +            if (h == e.hash && e.equals(entry)) {
   1.611 +                modCount++;
   1.612 +                size--;
   1.613 +                if (prev == e)
   1.614 +                    tab[i] = next;
   1.615 +                else
   1.616 +                    prev.next = next;
   1.617 +                return true;
   1.618 +            }
   1.619 +            prev = e;
   1.620 +            e = next;
   1.621 +        }
   1.622 +
   1.623 +        return false;
   1.624 +    }
   1.625 +
   1.626 +    /**
   1.627 +     * Removes all of the mappings from this map.
   1.628 +     * The map will be empty after this call returns.
   1.629 +     */
   1.630 +    public void clear() {
   1.631 +        // clear out ref queue. We don't need to expunge entries
   1.632 +        // since table is getting cleared.
   1.633 +        while (queue.poll() != null)
   1.634 +            ;
   1.635 +
   1.636 +        modCount++;
   1.637 +        Arrays.fill(table, null);
   1.638 +        size = 0;
   1.639 +
   1.640 +        // Allocation of array may have caused GC, which may have caused
   1.641 +        // additional entries to go stale.  Removing these entries from the
   1.642 +        // reference queue will make them eligible for reclamation.
   1.643 +        while (queue.poll() != null)
   1.644 +            ;
   1.645 +    }
   1.646 +
   1.647 +    /**
   1.648 +     * Returns <tt>true</tt> if this map maps one or more keys to the
   1.649 +     * specified value.
   1.650 +     *
   1.651 +     * @param value value whose presence in this map is to be tested
   1.652 +     * @return <tt>true</tt> if this map maps one or more keys to the
   1.653 +     *         specified value
   1.654 +     */
   1.655 +    public boolean containsValue(Object value) {
   1.656 +        if (value==null)
   1.657 +            return containsNullValue();
   1.658 +
   1.659 +        Entry<K,V>[] tab = getTable();
   1.660 +        for (int i = tab.length; i-- > 0;)
   1.661 +            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
   1.662 +                if (value.equals(e.value))
   1.663 +                    return true;
   1.664 +        return false;
   1.665 +    }
   1.666 +
   1.667 +    /**
   1.668 +     * Special-case code for containsValue with null argument
   1.669 +     */
   1.670 +    private boolean containsNullValue() {
   1.671 +        Entry<K,V>[] tab = getTable();
   1.672 +        for (int i = tab.length; i-- > 0;)
   1.673 +            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
   1.674 +                if (e.value==null)
   1.675 +                    return true;
   1.676 +        return false;
   1.677 +    }
   1.678 +
   1.679 +    /**
   1.680 +     * The entries in this hash table extend WeakReference, using its main ref
   1.681 +     * field as the key.
   1.682 +     */
   1.683 +    private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
   1.684 +        V value;
   1.685 +        final int hash;
   1.686 +        Entry<K,V> next;
   1.687 +
   1.688 +        /**
   1.689 +         * Creates new entry.
   1.690 +         */
   1.691 +        Entry(Object key, V value,
   1.692 +              ReferenceQueue<Object> queue,
   1.693 +              int hash, Entry<K,V> next) {
   1.694 +            super(key, queue);
   1.695 +            this.value = value;
   1.696 +            this.hash  = hash;
   1.697 +            this.next  = next;
   1.698 +        }
   1.699 +
   1.700 +        @SuppressWarnings("unchecked")
   1.701 +        public K getKey() {
   1.702 +            return (K) WeakHashMap.unmaskNull(get());
   1.703 +        }
   1.704 +
   1.705 +        public V getValue() {
   1.706 +            return value;
   1.707 +        }
   1.708 +
   1.709 +        public V setValue(V newValue) {
   1.710 +            V oldValue = value;
   1.711 +            value = newValue;
   1.712 +            return oldValue;
   1.713 +        }
   1.714 +
   1.715 +        public boolean equals(Object o) {
   1.716 +            if (!(o instanceof Map.Entry))
   1.717 +                return false;
   1.718 +            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
   1.719 +            K k1 = getKey();
   1.720 +            Object k2 = e.getKey();
   1.721 +            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
   1.722 +                V v1 = getValue();
   1.723 +                Object v2 = e.getValue();
   1.724 +                if (v1 == v2 || (v1 != null && v1.equals(v2)))
   1.725 +                    return true;
   1.726 +            }
   1.727 +            return false;
   1.728 +        }
   1.729 +
   1.730 +        public int hashCode() {
   1.731 +            K k = getKey();
   1.732 +            V v = getValue();
   1.733 +            return ((k==null ? 0 : k.hashCode()) ^
   1.734 +                    (v==null ? 0 : v.hashCode()));
   1.735 +        }
   1.736 +
   1.737 +        public String toString() {
   1.738 +            return getKey() + "=" + getValue();
   1.739 +        }
   1.740 +    }
   1.741 +
   1.742 +    private abstract class HashIterator<T> implements Iterator<T> {
   1.743 +        private int index;
   1.744 +        private Entry<K,V> entry = null;
   1.745 +        private Entry<K,V> lastReturned = null;
   1.746 +        private int expectedModCount = modCount;
   1.747 +
   1.748 +        /**
   1.749 +         * Strong reference needed to avoid disappearance of key
   1.750 +         * between hasNext and next
   1.751 +         */
   1.752 +        private Object nextKey = null;
   1.753 +
   1.754 +        /**
   1.755 +         * Strong reference needed to avoid disappearance of key
   1.756 +         * between nextEntry() and any use of the entry
   1.757 +         */
   1.758 +        private Object currentKey = null;
   1.759 +
   1.760 +        HashIterator() {
   1.761 +            index = isEmpty() ? 0 : table.length;
   1.762 +        }
   1.763 +
   1.764 +        public boolean hasNext() {
   1.765 +            Entry<K,V>[] t = table;
   1.766 +
   1.767 +            while (nextKey == null) {
   1.768 +                Entry<K,V> e = entry;
   1.769 +                int i = index;
   1.770 +                while (e == null && i > 0)
   1.771 +                    e = t[--i];
   1.772 +                entry = e;
   1.773 +                index = i;
   1.774 +                if (e == null) {
   1.775 +                    currentKey = null;
   1.776 +                    return false;
   1.777 +                }
   1.778 +                nextKey = e.get(); // hold on to key in strong ref
   1.779 +                if (nextKey == null)
   1.780 +                    entry = entry.next;
   1.781 +            }
   1.782 +            return true;
   1.783 +        }
   1.784 +
   1.785 +        /** The common parts of next() across different types of iterators */
   1.786 +        protected Entry<K,V> nextEntry() {
   1.787 +            if (modCount != expectedModCount)
   1.788 +                throw new ConcurrentModificationException();
   1.789 +            if (nextKey == null && !hasNext())
   1.790 +                throw new NoSuchElementException();
   1.791 +
   1.792 +            lastReturned = entry;
   1.793 +            entry = entry.next;
   1.794 +            currentKey = nextKey;
   1.795 +            nextKey = null;
   1.796 +            return lastReturned;
   1.797 +        }
   1.798 +
   1.799 +        public void remove() {
   1.800 +            if (lastReturned == null)
   1.801 +                throw new IllegalStateException();
   1.802 +            if (modCount != expectedModCount)
   1.803 +                throw new ConcurrentModificationException();
   1.804 +
   1.805 +            WeakHashMap.this.remove(currentKey);
   1.806 +            expectedModCount = modCount;
   1.807 +            lastReturned = null;
   1.808 +            currentKey = null;
   1.809 +        }
   1.810 +
   1.811 +    }
   1.812 +
   1.813 +    private class ValueIterator extends HashIterator<V> {
   1.814 +        public V next() {
   1.815 +            return nextEntry().value;
   1.816 +        }
   1.817 +    }
   1.818 +
   1.819 +    private class KeyIterator extends HashIterator<K> {
   1.820 +        public K next() {
   1.821 +            return nextEntry().getKey();
   1.822 +        }
   1.823 +    }
   1.824 +
   1.825 +    private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
   1.826 +        public Map.Entry<K,V> next() {
   1.827 +            return nextEntry();
   1.828 +        }
   1.829 +    }
   1.830 +
   1.831 +    // Views
   1.832 +
   1.833 +    private transient Set<Map.Entry<K,V>> entrySet = null;
   1.834 +
   1.835 +    /**
   1.836 +     * Returns a {@link Set} view of the keys contained in this map.
   1.837 +     * The set is backed by the map, so changes to the map are
   1.838 +     * reflected in the set, and vice-versa.  If the map is modified
   1.839 +     * while an iteration over the set is in progress (except through
   1.840 +     * the iterator's own <tt>remove</tt> operation), the results of
   1.841 +     * the iteration are undefined.  The set supports element removal,
   1.842 +     * which removes the corresponding mapping from the map, via the
   1.843 +     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
   1.844 +     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
   1.845 +     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
   1.846 +     * operations.
   1.847 +     */
   1.848 +    public Set<K> keySet() {
   1.849 +        Set<K> ks = keySet;
   1.850 +        return (ks != null ? ks : (keySet = new KeySet()));
   1.851 +    }
   1.852 +
   1.853 +    private class KeySet extends AbstractSet<K> {
   1.854 +        public Iterator<K> iterator() {
   1.855 +            return new KeyIterator();
   1.856 +        }
   1.857 +
   1.858 +        public int size() {
   1.859 +            return WeakHashMap.this.size();
   1.860 +        }
   1.861 +
   1.862 +        public boolean contains(Object o) {
   1.863 +            return containsKey(o);
   1.864 +        }
   1.865 +
   1.866 +        public boolean remove(Object o) {
   1.867 +            if (containsKey(o)) {
   1.868 +                WeakHashMap.this.remove(o);
   1.869 +                return true;
   1.870 +            }
   1.871 +            else
   1.872 +                return false;
   1.873 +        }
   1.874 +
   1.875 +        public void clear() {
   1.876 +            WeakHashMap.this.clear();
   1.877 +        }
   1.878 +    }
   1.879 +
   1.880 +    /**
   1.881 +     * Returns a {@link Collection} view of the values contained in this map.
   1.882 +     * The collection is backed by the map, so changes to the map are
   1.883 +     * reflected in the collection, and vice-versa.  If the map is
   1.884 +     * modified while an iteration over the collection is in progress
   1.885 +     * (except through the iterator's own <tt>remove</tt> operation),
   1.886 +     * the results of the iteration are undefined.  The collection
   1.887 +     * supports element removal, which removes the corresponding
   1.888 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
   1.889 +     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
   1.890 +     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
   1.891 +     * support the <tt>add</tt> or <tt>addAll</tt> operations.
   1.892 +     */
   1.893 +    public Collection<V> values() {
   1.894 +        Collection<V> vs = values;
   1.895 +        return (vs != null) ? vs : (values = new Values());
   1.896 +    }
   1.897 +
   1.898 +    private class Values extends AbstractCollection<V> {
   1.899 +        public Iterator<V> iterator() {
   1.900 +            return new ValueIterator();
   1.901 +        }
   1.902 +
   1.903 +        public int size() {
   1.904 +            return WeakHashMap.this.size();
   1.905 +        }
   1.906 +
   1.907 +        public boolean contains(Object o) {
   1.908 +            return containsValue(o);
   1.909 +        }
   1.910 +
   1.911 +        public void clear() {
   1.912 +            WeakHashMap.this.clear();
   1.913 +        }
   1.914 +    }
   1.915 +
   1.916 +    /**
   1.917 +     * Returns a {@link Set} view of the mappings contained in this map.
   1.918 +     * The set is backed by the map, so changes to the map are
   1.919 +     * reflected in the set, and vice-versa.  If the map is modified
   1.920 +     * while an iteration over the set is in progress (except through
   1.921 +     * the iterator's own <tt>remove</tt> operation, or through the
   1.922 +     * <tt>setValue</tt> operation on a map entry returned by the
   1.923 +     * iterator) the results of the iteration are undefined.  The set
   1.924 +     * supports element removal, which removes the corresponding
   1.925 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
   1.926 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
   1.927 +     * <tt>clear</tt> operations.  It does not support the
   1.928 +     * <tt>add</tt> or <tt>addAll</tt> operations.
   1.929 +     */
   1.930 +    public Set<Map.Entry<K,V>> entrySet() {
   1.931 +        Set<Map.Entry<K,V>> es = entrySet;
   1.932 +        return es != null ? es : (entrySet = new EntrySet());
   1.933 +    }
   1.934 +
   1.935 +    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
   1.936 +        public Iterator<Map.Entry<K,V>> iterator() {
   1.937 +            return new EntryIterator();
   1.938 +        }
   1.939 +
   1.940 +        public boolean contains(Object o) {
   1.941 +            if (!(o instanceof Map.Entry))
   1.942 +                return false;
   1.943 +            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
   1.944 +            Entry<K,V> candidate = getEntry(e.getKey());
   1.945 +            return candidate != null && candidate.equals(e);
   1.946 +        }
   1.947 +
   1.948 +        public boolean remove(Object o) {
   1.949 +            return removeMapping(o);
   1.950 +        }
   1.951 +
   1.952 +        public int size() {
   1.953 +            return WeakHashMap.this.size();
   1.954 +        }
   1.955 +
   1.956 +        public void clear() {
   1.957 +            WeakHashMap.this.clear();
   1.958 +        }
   1.959 +
   1.960 +        private List<Map.Entry<K,V>> deepCopy() {
   1.961 +            List<Map.Entry<K,V>> list = new ArrayList<>(size());
   1.962 +            for (Map.Entry<K,V> e : this)
   1.963 +                list.add(new AbstractMap.SimpleEntry<>(e));
   1.964 +            return list;
   1.965 +        }
   1.966 +
   1.967 +        public Object[] toArray() {
   1.968 +            return deepCopy().toArray();
   1.969 +        }
   1.970 +
   1.971 +        public <T> T[] toArray(T[] a) {
   1.972 +            return deepCopy().toArray(a);
   1.973 +        }
   1.974 +    }
   1.975 +}