rt/emul/compact/src/main/java/java/util/regex/Pattern.java
branchjdk7-b147
changeset 1348 bca65655b36b
child 1350 f14e9730d4e9
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/util/regex/Pattern.java	Mon Oct 07 16:13:27 2013 +0200
     1.3 @@ -0,0 +1,5648 @@
     1.4 +/*
     1.5 + * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.util.regex;
    1.30 +
    1.31 +import java.security.AccessController;
    1.32 +import java.security.PrivilegedAction;
    1.33 +import java.text.CharacterIterator;
    1.34 +import java.text.Normalizer;
    1.35 +import java.util.Locale;
    1.36 +import java.util.Map;
    1.37 +import java.util.ArrayList;
    1.38 +import java.util.HashMap;
    1.39 +import java.util.Arrays;
    1.40 +
    1.41 +
    1.42 +/**
    1.43 + * A compiled representation of a regular expression.
    1.44 + *
    1.45 + * <p> A regular expression, specified as a string, must first be compiled into
    1.46 + * an instance of this class.  The resulting pattern can then be used to create
    1.47 + * a {@link Matcher} object that can match arbitrary {@link
    1.48 + * java.lang.CharSequence </code>character sequences<code>} against the regular
    1.49 + * expression.  All of the state involved in performing a match resides in the
    1.50 + * matcher, so many matchers can share the same pattern.
    1.51 + *
    1.52 + * <p> A typical invocation sequence is thus
    1.53 + *
    1.54 + * <blockquote><pre>
    1.55 + * Pattern p = Pattern.{@link #compile compile}("a*b");
    1.56 + * Matcher m = p.{@link #matcher matcher}("aaaaab");
    1.57 + * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
    1.58 + *
    1.59 + * <p> A {@link #matches matches} method is defined by this class as a
    1.60 + * convenience for when a regular expression is used just once.  This method
    1.61 + * compiles an expression and matches an input sequence against it in a single
    1.62 + * invocation.  The statement
    1.63 + *
    1.64 + * <blockquote><pre>
    1.65 + * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
    1.66 + *
    1.67 + * is equivalent to the three statements above, though for repeated matches it
    1.68 + * is less efficient since it does not allow the compiled pattern to be reused.
    1.69 + *
    1.70 + * <p> Instances of this class are immutable and are safe for use by multiple
    1.71 + * concurrent threads.  Instances of the {@link Matcher} class are not safe for
    1.72 + * such use.
    1.73 + *
    1.74 + *
    1.75 + * <a name="sum">
    1.76 + * <h4> Summary of regular-expression constructs </h4>
    1.77 + *
    1.78 + * <table border="0" cellpadding="1" cellspacing="0"
    1.79 + *  summary="Regular expression constructs, and what they match">
    1.80 + *
    1.81 + * <tr align="left">
    1.82 + * <th bgcolor="#CCCCFF" align="left" id="construct">Construct</th>
    1.83 + * <th bgcolor="#CCCCFF" align="left" id="matches">Matches</th>
    1.84 + * </tr>
    1.85 + *
    1.86 + * <tr><th>&nbsp;</th></tr>
    1.87 + * <tr align="left"><th colspan="2" id="characters">Characters</th></tr>
    1.88 + *
    1.89 + * <tr><td valign="top" headers="construct characters"><i>x</i></td>
    1.90 + *     <td headers="matches">The character <i>x</i></td></tr>
    1.91 + * <tr><td valign="top" headers="construct characters"><tt>\\</tt></td>
    1.92 + *     <td headers="matches">The backslash character</td></tr>
    1.93 + * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>n</i></td>
    1.94 + *     <td headers="matches">The character with octal value <tt>0</tt><i>n</i>
    1.95 + *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
    1.96 + * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>nn</i></td>
    1.97 + *     <td headers="matches">The character with octal value <tt>0</tt><i>nn</i>
    1.98 + *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
    1.99 + * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>mnn</i></td>
   1.100 + *     <td headers="matches">The character with octal value <tt>0</tt><i>mnn</i>
   1.101 + *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>m</i>&nbsp;<tt>&lt;=</tt>&nbsp;3,
   1.102 + *         0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
   1.103 + * <tr><td valign="top" headers="construct characters"><tt>\x</tt><i>hh</i></td>
   1.104 + *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hh</i></td></tr>
   1.105 + * <tr><td valign="top" headers="construct characters"><tt>&#92;u</tt><i>hhhh</i></td>
   1.106 + *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hhhh</i></td></tr>
   1.107 + * <tr><td valign="top" headers="construct characters"><tt>&#92;x</tt><i>{h...h}</i></td>
   1.108 + *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>h...h</i>
   1.109 + *         ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
   1.110 + *         &nbsp;&lt;=&nbsp;<tt>0x</tt><i>h...h</i>&nbsp;&lt;=&nbsp
   1.111 + *          {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
   1.112 + * <tr><td valign="top" headers="matches"><tt>\t</tt></td>
   1.113 + *     <td headers="matches">The tab character (<tt>'&#92;u0009'</tt>)</td></tr>
   1.114 + * <tr><td valign="top" headers="construct characters"><tt>\n</tt></td>
   1.115 + *     <td headers="matches">The newline (line feed) character (<tt>'&#92;u000A'</tt>)</td></tr>
   1.116 + * <tr><td valign="top" headers="construct characters"><tt>\r</tt></td>
   1.117 + *     <td headers="matches">The carriage-return character (<tt>'&#92;u000D'</tt>)</td></tr>
   1.118 + * <tr><td valign="top" headers="construct characters"><tt>\f</tt></td>
   1.119 + *     <td headers="matches">The form-feed character (<tt>'&#92;u000C'</tt>)</td></tr>
   1.120 + * <tr><td valign="top" headers="construct characters"><tt>\a</tt></td>
   1.121 + *     <td headers="matches">The alert (bell) character (<tt>'&#92;u0007'</tt>)</td></tr>
   1.122 + * <tr><td valign="top" headers="construct characters"><tt>\e</tt></td>
   1.123 + *     <td headers="matches">The escape character (<tt>'&#92;u001B'</tt>)</td></tr>
   1.124 + * <tr><td valign="top" headers="construct characters"><tt>\c</tt><i>x</i></td>
   1.125 + *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
   1.126 + *
   1.127 + * <tr><th>&nbsp;</th></tr>
   1.128 + * <tr align="left"><th colspan="2" id="classes">Character classes</th></tr>
   1.129 + *
   1.130 + * <tr><td valign="top" headers="construct classes"><tt>[abc]</tt></td>
   1.131 + *     <td headers="matches"><tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (simple class)</td></tr>
   1.132 + * <tr><td valign="top" headers="construct classes"><tt>[^abc]</tt></td>
   1.133 + *     <td headers="matches">Any character except <tt>a</tt>, <tt>b</tt>, or <tt>c</tt> (negation)</td></tr>
   1.134 + * <tr><td valign="top" headers="construct classes"><tt>[a-zA-Z]</tt></td>
   1.135 + *     <td headers="matches"><tt>a</tt> through <tt>z</tt>
   1.136 + *         or <tt>A</tt> through <tt>Z</tt>, inclusive (range)</td></tr>
   1.137 + * <tr><td valign="top" headers="construct classes"><tt>[a-d[m-p]]</tt></td>
   1.138 + *     <td headers="matches"><tt>a</tt> through <tt>d</tt>,
   1.139 + *      or <tt>m</tt> through <tt>p</tt>: <tt>[a-dm-p]</tt> (union)</td></tr>
   1.140 + * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[def]]</tt></td>
   1.141 + *     <td headers="matches"><tt>d</tt>, <tt>e</tt>, or <tt>f</tt> (intersection)</tr>
   1.142 + * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^bc]]</tt></td>
   1.143 + *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
   1.144 + *         except for <tt>b</tt> and <tt>c</tt>: <tt>[ad-z]</tt> (subtraction)</td></tr>
   1.145 + * <tr><td valign="top" headers="construct classes"><tt>[a-z&&[^m-p]]</tt></td>
   1.146 + *     <td headers="matches"><tt>a</tt> through <tt>z</tt>,
   1.147 + *          and not <tt>m</tt> through <tt>p</tt>: <tt>[a-lq-z]</tt>(subtraction)</td></tr>
   1.148 + * <tr><th>&nbsp;</th></tr>
   1.149 + *
   1.150 + * <tr align="left"><th colspan="2" id="predef">Predefined character classes</th></tr>
   1.151 + *
   1.152 + * <tr><td valign="top" headers="construct predef"><tt>.</tt></td>
   1.153 + *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
   1.154 + * <tr><td valign="top" headers="construct predef"><tt>\d</tt></td>
   1.155 + *     <td headers="matches">A digit: <tt>[0-9]</tt></td></tr>
   1.156 + * <tr><td valign="top" headers="construct predef"><tt>\D</tt></td>
   1.157 + *     <td headers="matches">A non-digit: <tt>[^0-9]</tt></td></tr>
   1.158 + * <tr><td valign="top" headers="construct predef"><tt>\s</tt></td>
   1.159 + *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
   1.160 + * <tr><td valign="top" headers="construct predef"><tt>\S</tt></td>
   1.161 + *     <td headers="matches">A non-whitespace character: <tt>[^\s]</tt></td></tr>
   1.162 + * <tr><td valign="top" headers="construct predef"><tt>\w</tt></td>
   1.163 + *     <td headers="matches">A word character: <tt>[a-zA-Z_0-9]</tt></td></tr>
   1.164 + * <tr><td valign="top" headers="construct predef"><tt>\W</tt></td>
   1.165 + *     <td headers="matches">A non-word character: <tt>[^\w]</tt></td></tr>
   1.166 + *
   1.167 + * <tr><th>&nbsp;</th></tr>
   1.168 + * <tr align="left"><th colspan="2" id="posix">POSIX character classes</b> (US-ASCII only)<b></th></tr>
   1.169 + *
   1.170 + * <tr><td valign="top" headers="construct posix"><tt>\p{Lower}</tt></td>
   1.171 + *     <td headers="matches">A lower-case alphabetic character: <tt>[a-z]</tt></td></tr>
   1.172 + * <tr><td valign="top" headers="construct posix"><tt>\p{Upper}</tt></td>
   1.173 + *     <td headers="matches">An upper-case alphabetic character:<tt>[A-Z]</tt></td></tr>
   1.174 + * <tr><td valign="top" headers="construct posix"><tt>\p{ASCII}</tt></td>
   1.175 + *     <td headers="matches">All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
   1.176 + * <tr><td valign="top" headers="construct posix"><tt>\p{Alpha}</tt></td>
   1.177 + *     <td headers="matches">An alphabetic character:<tt>[\p{Lower}\p{Upper}]</tt></td></tr>
   1.178 + * <tr><td valign="top" headers="construct posix"><tt>\p{Digit}</tt></td>
   1.179 + *     <td headers="matches">A decimal digit: <tt>[0-9]</tt></td></tr>
   1.180 + * <tr><td valign="top" headers="construct posix"><tt>\p{Alnum}</tt></td>
   1.181 + *     <td headers="matches">An alphanumeric character:<tt>[\p{Alpha}\p{Digit}]</tt></td></tr>
   1.182 + * <tr><td valign="top" headers="construct posix"><tt>\p{Punct}</tt></td>
   1.183 + *     <td headers="matches">Punctuation: One of <tt>!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~</tt></td></tr>
   1.184 + *     <!-- <tt>[\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]</tt>
   1.185 + *          <tt>[\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]</tt> -->
   1.186 + * <tr><td valign="top" headers="construct posix"><tt>\p{Graph}</tt></td>
   1.187 + *     <td headers="matches">A visible character: <tt>[\p{Alnum}\p{Punct}]</tt></td></tr>
   1.188 + * <tr><td valign="top" headers="construct posix"><tt>\p{Print}</tt></td>
   1.189 + *     <td headers="matches">A printable character: <tt>[\p{Graph}\x20]</tt></td></tr>
   1.190 + * <tr><td valign="top" headers="construct posix"><tt>\p{Blank}</tt></td>
   1.191 + *     <td headers="matches">A space or a tab: <tt>[ \t]</tt></td></tr>
   1.192 + * <tr><td valign="top" headers="construct posix"><tt>\p{Cntrl}</tt></td>
   1.193 + *     <td headers="matches">A control character: <tt>[\x00-\x1F\x7F]</tt></td></tr>
   1.194 + * <tr><td valign="top" headers="construct posix"><tt>\p{XDigit}</tt></td>
   1.195 + *     <td headers="matches">A hexadecimal digit: <tt>[0-9a-fA-F]</tt></td></tr>
   1.196 + * <tr><td valign="top" headers="construct posix"><tt>\p{Space}</tt></td>
   1.197 + *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
   1.198 + *
   1.199 + * <tr><th>&nbsp;</th></tr>
   1.200 + * <tr align="left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
   1.201 + *
   1.202 + * <tr><td valign="top"><tt>\p{javaLowerCase}</tt></td>
   1.203 + *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
   1.204 + * <tr><td valign="top"><tt>\p{javaUpperCase}</tt></td>
   1.205 + *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
   1.206 + * <tr><td valign="top"><tt>\p{javaWhitespace}</tt></td>
   1.207 + *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
   1.208 + * <tr><td valign="top"><tt>\p{javaMirrored}</tt></td>
   1.209 + *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
   1.210 + *
   1.211 + * <tr><th>&nbsp;</th></tr>
   1.212 + * <tr align="left"><th colspan="2" id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
   1.213 + * * <tr><td valign="top" headers="construct unicode"><tt>\p{IsLatin}</tt></td>
   1.214 + *     <td headers="matches">A Latin&nbsp;script character (<a href="#usc">script</a>)</td></tr>
   1.215 + * <tr><td valign="top" headers="construct unicode"><tt>\p{InGreek}</tt></td>
   1.216 + *     <td headers="matches">A character in the Greek&nbsp;block (<a href="#ubc">block</a>)</td></tr>
   1.217 + * <tr><td valign="top" headers="construct unicode"><tt>\p{Lu}</tt></td>
   1.218 + *     <td headers="matches">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
   1.219 + * <tr><td valign="top" headers="construct unicode"><tt>\p{IsAlphabetic}</tt></td>
   1.220 + *     <td headers="matches">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
   1.221 + * <tr><td valign="top" headers="construct unicode"><tt>\p{Sc}</tt></td>
   1.222 + *     <td headers="matches">A currency symbol</td></tr>
   1.223 + * <tr><td valign="top" headers="construct unicode"><tt>\P{InGreek}</tt></td>
   1.224 + *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
   1.225 + * <tr><td valign="top" headers="construct unicode"><tt>[\p{L}&&[^\p{Lu}]]&nbsp;</tt></td>
   1.226 + *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
   1.227 + *
   1.228 + * <tr><th>&nbsp;</th></tr>
   1.229 + * <tr align="left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
   1.230 + *
   1.231 + * <tr><td valign="top" headers="construct bounds"><tt>^</tt></td>
   1.232 + *     <td headers="matches">The beginning of a line</td></tr>
   1.233 + * <tr><td valign="top" headers="construct bounds"><tt>$</tt></td>
   1.234 + *     <td headers="matches">The end of a line</td></tr>
   1.235 + * <tr><td valign="top" headers="construct bounds"><tt>\b</tt></td>
   1.236 + *     <td headers="matches">A word boundary</td></tr>
   1.237 + * <tr><td valign="top" headers="construct bounds"><tt>\B</tt></td>
   1.238 + *     <td headers="matches">A non-word boundary</td></tr>
   1.239 + * <tr><td valign="top" headers="construct bounds"><tt>\A</tt></td>
   1.240 + *     <td headers="matches">The beginning of the input</td></tr>
   1.241 + * <tr><td valign="top" headers="construct bounds"><tt>\G</tt></td>
   1.242 + *     <td headers="matches">The end of the previous match</td></tr>
   1.243 + * <tr><td valign="top" headers="construct bounds"><tt>\Z</tt></td>
   1.244 + *     <td headers="matches">The end of the input but for the final
   1.245 + *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
   1.246 + * <tr><td valign="top" headers="construct bounds"><tt>\z</tt></td>
   1.247 + *     <td headers="matches">The end of the input</td></tr>
   1.248 + *
   1.249 + * <tr><th>&nbsp;</th></tr>
   1.250 + * <tr align="left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
   1.251 + *
   1.252 + * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>?</tt></td>
   1.253 + *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
   1.254 + * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>*</tt></td>
   1.255 + *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
   1.256 + * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>+</tt></td>
   1.257 + *     <td headers="matches"><i>X</i>, one or more times</td></tr>
   1.258 + * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>}</tt></td>
   1.259 + *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
   1.260 + * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,}</tt></td>
   1.261 + *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
   1.262 + * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}</tt></td>
   1.263 + *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
   1.264 + *
   1.265 + * <tr><th>&nbsp;</th></tr>
   1.266 + * <tr align="left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
   1.267 + *
   1.268 + * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>??</tt></td>
   1.269 + *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
   1.270 + * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>*?</tt></td>
   1.271 + *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
   1.272 + * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>+?</tt></td>
   1.273 + *     <td headers="matches"><i>X</i>, one or more times</td></tr>
   1.274 + * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>}?</tt></td>
   1.275 + *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
   1.276 + * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,}?</tt></td>
   1.277 + *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
   1.278 + * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}?</tt></td>
   1.279 + *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
   1.280 + *
   1.281 + * <tr><th>&nbsp;</th></tr>
   1.282 + * <tr align="left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
   1.283 + *
   1.284 + * <tr><td valign="top" headers="construct poss"><i>X</i><tt>?+</tt></td>
   1.285 + *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
   1.286 + * <tr><td valign="top" headers="construct poss"><i>X</i><tt>*+</tt></td>
   1.287 + *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
   1.288 + * <tr><td valign="top" headers="construct poss"><i>X</i><tt>++</tt></td>
   1.289 + *     <td headers="matches"><i>X</i>, one or more times</td></tr>
   1.290 + * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>}+</tt></td>
   1.291 + *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
   1.292 + * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,}+</tt></td>
   1.293 + *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
   1.294 + * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}+</tt></td>
   1.295 + *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
   1.296 + *
   1.297 + * <tr><th>&nbsp;</th></tr>
   1.298 + * <tr align="left"><th colspan="2" id="logical">Logical operators</th></tr>
   1.299 + *
   1.300 + * <tr><td valign="top" headers="construct logical"><i>XY</i></td>
   1.301 + *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
   1.302 + * <tr><td valign="top" headers="construct logical"><i>X</i><tt>|</tt><i>Y</i></td>
   1.303 + *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
   1.304 + * <tr><td valign="top" headers="construct logical"><tt>(</tt><i>X</i><tt>)</tt></td>
   1.305 + *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
   1.306 + *
   1.307 + * <tr><th>&nbsp;</th></tr>
   1.308 + * <tr align="left"><th colspan="2" id="backref">Back references</th></tr>
   1.309 + *
   1.310 + * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>n</i></td>
   1.311 + *     <td valign="bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
   1.312 + *     <a href="#cg">capturing group</a> matched</td></tr>
   1.313 + *
   1.314 + * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>k</i>&lt;<i>name</i>&gt;</td>
   1.315 + *     <td valign="bottom" headers="matches">Whatever the
   1.316 + *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
   1.317 + *
   1.318 + * <tr><th>&nbsp;</th></tr>
   1.319 + * <tr align="left"><th colspan="2" id="quot">Quotation</th></tr>
   1.320 + *
   1.321 + * <tr><td valign="top" headers="construct quot"><tt>\</tt></td>
   1.322 + *     <td headers="matches">Nothing, but quotes the following character</td></tr>
   1.323 + * <tr><td valign="top" headers="construct quot"><tt>\Q</tt></td>
   1.324 + *     <td headers="matches">Nothing, but quotes all characters until <tt>\E</tt></td></tr>
   1.325 + * <tr><td valign="top" headers="construct quot"><tt>\E</tt></td>
   1.326 + *     <td headers="matches">Nothing, but ends quoting started by <tt>\Q</tt></td></tr>
   1.327 + *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
   1.328 + *
   1.329 + * <tr><th>&nbsp;</th></tr>
   1.330 + * <tr align="left"><th colspan="2" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
   1.331 + *
   1.332 + * <tr><td valign="top" headers="construct special"><tt>(?&lt;<a href="#groupname">name</a>&gt;</tt><i>X</i><tt>)</tt></td>
   1.333 + *     <td headers="matches"><i>X</i>, as a named-capturing group</td></tr>
   1.334 + * <tr><td valign="top" headers="construct special"><tt>(?:</tt><i>X</i><tt>)</tt></td>
   1.335 + *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
   1.336 + * <tr><td valign="top" headers="construct special"><tt>(?idmsuxU-idmsuxU)&nbsp;</tt></td>
   1.337 + *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
   1.338 + * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
   1.339 + * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
   1.340 + * on - off</td></tr>
   1.341 + * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux:</tt><i>X</i><tt>)</tt>&nbsp;&nbsp;</td>
   1.342 + *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
   1.343 + *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
   1.344 + * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
   1.345 + * <a href="#COMMENTS">x</a> on - off</td></tr>
   1.346 + * <tr><td valign="top" headers="construct special"><tt>(?=</tt><i>X</i><tt>)</tt></td>
   1.347 + *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
   1.348 + * <tr><td valign="top" headers="construct special"><tt>(?!</tt><i>X</i><tt>)</tt></td>
   1.349 + *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
   1.350 + * <tr><td valign="top" headers="construct special"><tt>(?&lt;=</tt><i>X</i><tt>)</tt></td>
   1.351 + *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
   1.352 + * <tr><td valign="top" headers="construct special"><tt>(?&lt;!</tt><i>X</i><tt>)</tt></td>
   1.353 + *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
   1.354 + * <tr><td valign="top" headers="construct special"><tt>(?&gt;</tt><i>X</i><tt>)</tt></td>
   1.355 + *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
   1.356 + *
   1.357 + * </table>
   1.358 + *
   1.359 + * <hr>
   1.360 + *
   1.361 + *
   1.362 + * <a name="bs">
   1.363 + * <h4> Backslashes, escapes, and quoting </h4>
   1.364 + *
   1.365 + * <p> The backslash character (<tt>'\'</tt>) serves to introduce escaped
   1.366 + * constructs, as defined in the table above, as well as to quote characters
   1.367 + * that otherwise would be interpreted as unescaped constructs.  Thus the
   1.368 + * expression <tt>\\</tt> matches a single backslash and <tt>\{</tt> matches a
   1.369 + * left brace.
   1.370 + *
   1.371 + * <p> It is an error to use a backslash prior to any alphabetic character that
   1.372 + * does not denote an escaped construct; these are reserved for future
   1.373 + * extensions to the regular-expression language.  A backslash may be used
   1.374 + * prior to a non-alphabetic character regardless of whether that character is
   1.375 + * part of an unescaped construct.
   1.376 + *
   1.377 + * <p> Backslashes within string literals in Java source code are interpreted
   1.378 + * as required by
   1.379 + * <cite>The Java&trade; Language Specification</cite>
   1.380 + * as either Unicode escapes (section 3.3) or other character escapes (section 3.10.6)
   1.381 + * It is therefore necessary to double backslashes in string
   1.382 + * literals that represent regular expressions to protect them from
   1.383 + * interpretation by the Java bytecode compiler.  The string literal
   1.384 + * <tt>"&#92;b"</tt>, for example, matches a single backspace character when
   1.385 + * interpreted as a regular expression, while <tt>"&#92;&#92;b"</tt> matches a
   1.386 + * word boundary.  The string literal <tt>"&#92;(hello&#92;)"</tt> is illegal
   1.387 + * and leads to a compile-time error; in order to match the string
   1.388 + * <tt>(hello)</tt> the string literal <tt>"&#92;&#92;(hello&#92;&#92;)"</tt>
   1.389 + * must be used.
   1.390 + *
   1.391 + * <a name="cc">
   1.392 + * <h4> Character Classes </h4>
   1.393 + *
   1.394 + *    <p> Character classes may appear within other character classes, and
   1.395 + *    may be composed by the union operator (implicit) and the intersection
   1.396 + *    operator (<tt>&amp;&amp;</tt>).
   1.397 + *    The union operator denotes a class that contains every character that is
   1.398 + *    in at least one of its operand classes.  The intersection operator
   1.399 + *    denotes a class that contains every character that is in both of its
   1.400 + *    operand classes.
   1.401 + *
   1.402 + *    <p> The precedence of character-class operators is as follows, from
   1.403 + *    highest to lowest:
   1.404 + *
   1.405 + *    <blockquote><table border="0" cellpadding="1" cellspacing="0"
   1.406 + *                 summary="Precedence of character class operators.">
   1.407 + *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.408 + *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
   1.409 + *        <td><tt>\x</tt></td></tr>
   1.410 + *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.411 + *        <td>Grouping</td>
   1.412 + *        <td><tt>[...]</tt></td></tr>
   1.413 + *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.414 + *        <td>Range</td>
   1.415 + *        <td><tt>a-z</tt></td></tr>
   1.416 + *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.417 + *        <td>Union</td>
   1.418 + *        <td><tt>[a-e][i-u]</tt></td></tr>
   1.419 + *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.420 + *        <td>Intersection</td>
   1.421 + *        <td><tt>[a-z&&[aeiou]]</tt></td></tr>
   1.422 + *    </table></blockquote>
   1.423 + *
   1.424 + *    <p> Note that a different set of metacharacters are in effect inside
   1.425 + *    a character class than outside a character class. For instance, the
   1.426 + *    regular expression <tt>.</tt> loses its special meaning inside a
   1.427 + *    character class, while the expression <tt>-</tt> becomes a range
   1.428 + *    forming metacharacter.
   1.429 + *
   1.430 + * <a name="lt">
   1.431 + * <h4> Line terminators </h4>
   1.432 + *
   1.433 + * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
   1.434 + * the end of a line of the input character sequence.  The following are
   1.435 + * recognized as line terminators:
   1.436 + *
   1.437 + * <ul>
   1.438 + *
   1.439 + *   <li> A newline (line feed) character&nbsp;(<tt>'\n'</tt>),
   1.440 + *
   1.441 + *   <li> A carriage-return character followed immediately by a newline
   1.442 + *   character&nbsp;(<tt>"\r\n"</tt>),
   1.443 + *
   1.444 + *   <li> A standalone carriage-return character&nbsp;(<tt>'\r'</tt>),
   1.445 + *
   1.446 + *   <li> A next-line character&nbsp;(<tt>'&#92;u0085'</tt>),
   1.447 + *
   1.448 + *   <li> A line-separator character&nbsp;(<tt>'&#92;u2028'</tt>), or
   1.449 + *
   1.450 + *   <li> A paragraph-separator character&nbsp;(<tt>'&#92;u2029</tt>).
   1.451 + *
   1.452 + * </ul>
   1.453 + * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
   1.454 + * recognized are newline characters.
   1.455 + *
   1.456 + * <p> The regular expression <tt>.</tt> matches any character except a line
   1.457 + * terminator unless the {@link #DOTALL} flag is specified.
   1.458 + *
   1.459 + * <p> By default, the regular expressions <tt>^</tt> and <tt>$</tt> ignore
   1.460 + * line terminators and only match at the beginning and the end, respectively,
   1.461 + * of the entire input sequence. If {@link #MULTILINE} mode is activated then
   1.462 + * <tt>^</tt> matches at the beginning of input and after any line terminator
   1.463 + * except at the end of input. When in {@link #MULTILINE} mode <tt>$</tt>
   1.464 + * matches just before a line terminator or the end of the input sequence.
   1.465 + *
   1.466 + * <a name="cg">
   1.467 + * <h4> Groups and capturing </h4>
   1.468 + *
   1.469 + * <a name="gnumber">
   1.470 + * <h5> Group number </h5>
   1.471 + * <p> Capturing groups are numbered by counting their opening parentheses from
   1.472 + * left to right.  In the expression <tt>((A)(B(C)))</tt>, for example, there
   1.473 + * are four such groups: </p>
   1.474 + *
   1.475 + * <blockquote><table cellpadding=1 cellspacing=0 summary="Capturing group numberings">
   1.476 + * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.477 + *     <td><tt>((A)(B(C)))</tt></td></tr>
   1.478 + * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.479 + *     <td><tt>(A)</tt></td></tr>
   1.480 + * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.481 + *     <td><tt>(B(C))</tt></td></tr>
   1.482 + * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
   1.483 + *     <td><tt>(C)</tt></td></tr>
   1.484 + * </table></blockquote>
   1.485 + *
   1.486 + * <p> Group zero always stands for the entire expression.
   1.487 + *
   1.488 + * <p> Capturing groups are so named because, during a match, each subsequence
   1.489 + * of the input sequence that matches such a group is saved.  The captured
   1.490 + * subsequence may be used later in the expression, via a back reference, and
   1.491 + * may also be retrieved from the matcher once the match operation is complete.
   1.492 + *
   1.493 + * <a name="groupname">
   1.494 + * <h5> Group name </h5>
   1.495 + * <p>A capturing group can also be assigned a "name", a <tt>named-capturing group</tt>,
   1.496 + * and then be back-referenced later by the "name". Group names are composed of
   1.497 + * the following characters. The first character must be a <tt>letter</tt>.
   1.498 + *
   1.499 + * <ul>
   1.500 + *   <li> The uppercase letters <tt>'A'</tt> through <tt>'Z'</tt>
   1.501 + *        (<tt>'&#92;u0041'</tt>&nbsp;through&nbsp;<tt>'&#92;u005a'</tt>),
   1.502 + *   <li> The lowercase letters <tt>'a'</tt> through <tt>'z'</tt>
   1.503 + *        (<tt>'&#92;u0061'</tt>&nbsp;through&nbsp;<tt>'&#92;u007a'</tt>),
   1.504 + *   <li> The digits <tt>'0'</tt> through <tt>'9'</tt>
   1.505 + *        (<tt>'&#92;u0030'</tt>&nbsp;through&nbsp;<tt>'&#92;u0039'</tt>),
   1.506 + * </ul>
   1.507 + *
   1.508 + * <p> A <tt>named-capturing group</tt> is still numbered as described in
   1.509 + * <a href="#gnumber">Group number</a>.
   1.510 + *
   1.511 + * <p> The captured input associated with a group is always the subsequence
   1.512 + * that the group most recently matched.  If a group is evaluated a second time
   1.513 + * because of quantification then its previously-captured value, if any, will
   1.514 + * be retained if the second evaluation fails.  Matching the string
   1.515 + * <tt>"aba"</tt> against the expression <tt>(a(b)?)+</tt>, for example, leaves
   1.516 + * group two set to <tt>"b"</tt>.  All captured input is discarded at the
   1.517 + * beginning of each match.
   1.518 + *
   1.519 + * <p> Groups beginning with <tt>(?</tt> are either pure, <i>non-capturing</i> groups
   1.520 + * that do not capture text and do not count towards the group total, or
   1.521 + * <i>named-capturing</i> group.
   1.522 + *
   1.523 + * <h4> Unicode support </h4>
   1.524 + *
   1.525 + * <p> This class is in conformance with Level 1 of <a
   1.526 + * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
   1.527 + * Standard #18: Unicode Regular Expression</i></a>, plus RL2.1
   1.528 + * Canonical Equivalents.
   1.529 + * <p>
   1.530 + * <b>Unicode escape sequences</b> such as <tt>&#92;u2014</tt> in Java source code
   1.531 + * are processed as described in section 3.3 of
   1.532 + * <cite>The Java&trade; Language Specification</cite>.
   1.533 + * Such escape sequences are also implemented directly by the regular-expression
   1.534 + * parser so that Unicode escapes can be used in expressions that are read from
   1.535 + * files or from the keyboard.  Thus the strings <tt>"&#92;u2014"</tt> and
   1.536 + * <tt>"\\u2014"</tt>, while not equal, compile into the same pattern, which
   1.537 + * matches the character with hexadecimal value <tt>0x2014</tt>.
   1.538 + * <p>
   1.539 + * A Unicode character can also be represented in a regular-expression by
   1.540 + * using its <b>Hex notation</b>(hexadecimal code point value) directly as described in construct
   1.541 + * <tt>&#92;x{...}</tt>, for example a supplementary character U+2011F
   1.542 + * can be specified as <tt>&#92;x{2011F}</tt>, instead of two consecutive
   1.543 + * Unicode escape sequences of the surrogate pair
   1.544 + * <tt>&#92;uD840</tt><tt>&#92;uDD1F</tt>.
   1.545 + * <p>
   1.546 + * Unicode scripts, blocks, categories and binary properties are written with
   1.547 + * the <tt>\p</tt> and <tt>\P</tt> constructs as in Perl.
   1.548 + * <tt>\p{</tt><i>prop</i><tt>}</tt> matches if
   1.549 + * the input has the property <i>prop</i>, while <tt>\P{</tt><i>prop</i><tt>}</tt>
   1.550 + * does not match if the input has that property.
   1.551 + * <p>
   1.552 + * Scripts, blocks, categories and binary properties can be used both inside
   1.553 + * and outside of a character class.
   1.554 + * <a name="usc">
   1.555 + * <p>
   1.556 + * <b>Scripts</b> are specified either with the prefix {@code Is}, as in
   1.557 + * {@code IsHiragana}, or by using  the {@code script} keyword (or its short
   1.558 + * form {@code sc})as in {@code script=Hiragana} or {@code sc=Hiragana}.
   1.559 + * <p>
   1.560 + * The script names supported by <code>Pattern</code> are the valid script names
   1.561 + * accepted and defined by
   1.562 + * {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
   1.563 + * <a name="ubc">
   1.564 + * <p>
   1.565 + * <b>Blocks</b> are specified with the prefix {@code In}, as in
   1.566 + * {@code InMongolian}, or by using the keyword {@code block} (or its short
   1.567 + * form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
   1.568 + * <p>
   1.569 + * The block names supported by <code>Pattern</code> are the valid block names
   1.570 + * accepted and defined by
   1.571 + * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
   1.572 + * <p>
   1.573 + * <a name="ucc">
   1.574 + * <b>Categories</b> may be specified with the optional prefix {@code Is}:
   1.575 + * Both {@code \p{L}} and {@code \p{IsL}} denote the category of Unicode
   1.576 + * letters. Same as scripts and blocks, categories can also be specified
   1.577 + * by using the keyword {@code general_category} (or its short form
   1.578 + * {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
   1.579 + * <p>
   1.580 + * The supported categories are those of
   1.581 + * <a href="http://www.unicode.org/unicode/standard/standard.html">
   1.582 + * <i>The Unicode Standard</i></a> in the version specified by the
   1.583 + * {@link java.lang.Character Character} class. The category names are those
   1.584 + * defined in the Standard, both normative and informative.
   1.585 + * <p>
   1.586 + * <a name="ubpc">
   1.587 + * <b>Binary properties</b> are specified with the prefix {@code Is}, as in
   1.588 + * {@code IsAlphabetic}. The supported binary properties by <code>Pattern</code>
   1.589 + * are
   1.590 + * <ul>
   1.591 + *   <li> Alphabetic
   1.592 + *   <li> Ideographic
   1.593 + *   <li> Letter
   1.594 + *   <li> Lowercase
   1.595 + *   <li> Uppercase
   1.596 + *   <li> Titlecase
   1.597 + *   <li> Punctuation
   1.598 + *   <Li> Control
   1.599 + *   <li> White_Space
   1.600 + *   <li> Digit
   1.601 + *   <li> Hex_Digit
   1.602 + *   <li> Noncharacter_Code_Point
   1.603 + *   <li> Assigned
   1.604 + * </ul>
   1.605 +
   1.606 +
   1.607 + * <p>
   1.608 + * <b>Predefined Character classes</b> and <b>POSIX character classes</b> are in
   1.609 + * conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
   1.610 + * of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Regular Expression
   1.611 + * </i></a>, when {@link #UNICODE_CHARACTER_CLASS} flag is specified.
   1.612 + * <p>
   1.613 + * <table border="0" cellpadding="1" cellspacing="0"
   1.614 + *  summary="predefined and posix character classes in Unicode mode">
   1.615 + * <tr align="left">
   1.616 + * <th bgcolor="#CCCCFF" align="left" id="classes">Classes</th>
   1.617 + * <th bgcolor="#CCCCFF" align="left" id="matches">Matches</th>
   1.618 + *</tr>
   1.619 + * <tr><td><tt>\p{Lower}</tt></td>
   1.620 + *     <td>A lowercase character:<tt>\p{IsLowercase}</tt></td></tr>
   1.621 + * <tr><td><tt>\p{Upper}</tt></td>
   1.622 + *     <td>An uppercase character:<tt>\p{IsUppercase}</tt></td></tr>
   1.623 + * <tr><td><tt>\p{ASCII}</tt></td>
   1.624 + *     <td>All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
   1.625 + * <tr><td><tt>\p{Alpha}</tt></td>
   1.626 + *     <td>An alphabetic character:<tt>\p{IsAlphabetic}</tt></td></tr>
   1.627 + * <tr><td><tt>\p{Digit}</tt></td>
   1.628 + *     <td>A decimal digit character:<tt>p{IsDigit}</tt></td></tr>
   1.629 + * <tr><td><tt>\p{Alnum}</tt></td>
   1.630 + *     <td>An alphanumeric character:<tt>[\p{IsAlphabetic}\p{IsDigit}]</tt></td></tr>
   1.631 + * <tr><td><tt>\p{Punct}</tt></td>
   1.632 + *     <td>A punctuation character:<tt>p{IsPunctuation}</tt></td></tr>
   1.633 + * <tr><td><tt>\p{Graph}</tt></td>
   1.634 + *     <td>A visible character: <tt>[^\p{IsWhite_Space}\p{gc=Cc}\p{gc=Cs}\p{gc=Cn}]</tt></td></tr>
   1.635 + * <tr><td><tt>\p{Print}</tt></td>
   1.636 + *     <td>A printable character: <tt>[\p{Graph}\p{Blank}&&[^\p{Cntrl}]]</tt></td></tr>
   1.637 + * <tr><td><tt>\p{Blank}</tt></td>
   1.638 + *     <td>A space or a tab: <tt>[\p{IsWhite_Space}&&[^\p{gc=Zl}\p{gc=Zp}\x0a\x0b\x0c\x0d\x85]]</tt></td></tr>
   1.639 + * <tr><td><tt>\p{Cntrl}</tt></td>
   1.640 + *     <td>A control character: <tt>\p{gc=Cc}</tt></td></tr>
   1.641 + * <tr><td><tt>\p{XDigit}</tt></td>
   1.642 + *     <td>A hexadecimal digit: <tt>[\p{gc=Nd}\p{IsHex_Digit}]</tt></td></tr>
   1.643 + * <tr><td><tt>\p{Space}</tt></td>
   1.644 + *     <td>A whitespace character:<tt>\p{IsWhite_Space}</tt></td></tr>
   1.645 + * <tr><td><tt>\d</tt></td>
   1.646 + *     <td>A digit: <tt>\p{IsDigit}</tt></td></tr>
   1.647 + * <tr><td><tt>\D</tt></td>
   1.648 + *     <td>A non-digit: <tt>[^\d]</tt></td></tr>
   1.649 + * <tr><td><tt>\s</tt></td>
   1.650 + *     <td>A whitespace character: <tt>\p{IsWhite_Space}</tt></td></tr>
   1.651 + * <tr><td><tt>\S</tt></td>
   1.652 + *     <td>A non-whitespace character: <tt>[^\s]</tt></td></tr>
   1.653 + * <tr><td><tt>\w</tt></td>
   1.654 + *     <td>A word character: <tt>[\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}]</tt></td></tr>
   1.655 + * <tr><td><tt>\W</tt></td>
   1.656 + *     <td>A non-word character: <tt>[^\w]</tt></td></tr>
   1.657 + * </table>
   1.658 + * <p>
   1.659 + * <a name="jcc">
   1.660 + * Categories that behave like the java.lang.Character
   1.661 + * boolean is<i>methodname</i> methods (except for the deprecated ones) are
   1.662 + * available through the same <tt>\p{</tt><i>prop</i><tt>}</tt> syntax where
   1.663 + * the specified property has the name <tt>java<i>methodname</i></tt>.
   1.664 + *
   1.665 + * <h4> Comparison to Perl 5 </h4>
   1.666 + *
   1.667 + * <p>The <code>Pattern</code> engine performs traditional NFA-based matching
   1.668 + * with ordered alternation as occurs in Perl 5.
   1.669 + *
   1.670 + * <p> Perl constructs not supported by this class: </p>
   1.671 + *
   1.672 + * <ul>
   1.673 + *    <li><p> Predefined character classes (Unicode character)
   1.674 + *    <p><tt>\h&nbsp;&nbsp;&nbsp;&nbsp;</tt>A horizontal whitespace
   1.675 + *    <p><tt>\H&nbsp;&nbsp;&nbsp;&nbsp;</tt>A non horizontal whitespace
   1.676 + *    <p><tt>\v&nbsp;&nbsp;&nbsp;&nbsp;</tt>A vertical whitespace
   1.677 + *    <p><tt>\V&nbsp;&nbsp;&nbsp;&nbsp;</tt>A non vertical whitespace
   1.678 + *    <p><tt>\R&nbsp;&nbsp;&nbsp;&nbsp;</tt>Any Unicode linebreak sequence
   1.679 + *    <tt>\u005cu000D\u005cu000A|[\u005cu000A\u005cu000B\u005cu000C\u005cu000D\u005cu0085\u005cu2028\u005cu2029]</tt>
   1.680 + *    <p><tt>\X&nbsp;&nbsp;&nbsp;&nbsp;</tt>Match Unicode
   1.681 + *    <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
   1.682 + *    <i>extended grapheme cluster</i></a>
   1.683 + *    </p></li>
   1.684 + *
   1.685 + *    <li><p> The backreference constructs, <tt>\g{</tt><i>n</i><tt>}</tt> for
   1.686 + *    the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
   1.687 + *    <tt>\g{</tt><i>name</i><tt>}</tt> for
   1.688 + *    <a href="#groupname">named-capturing group</a>.
   1.689 + *    </p></li>
   1.690 + *
   1.691 + *    <li><p> The named character construct, <tt>\N{</tt><i>name</i><tt>}</tt>
   1.692 + *    for a Unicode character by its name.
   1.693 + *    </p></li>
   1.694 + *
   1.695 + *    <li><p> The conditional constructs
   1.696 + *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>)</tt> and
   1.697 + *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>|</tt><i>Y</i><tt>)</tt>,
   1.698 + *    </p></li>
   1.699 + *
   1.700 + *    <li><p> The embedded code constructs <tt>(?{</tt><i>code</i><tt>})</tt>
   1.701 + *    and <tt>(??{</tt><i>code</i><tt>})</tt>,</p></li>
   1.702 + *
   1.703 + *    <li><p> The embedded comment syntax <tt>(?#comment)</tt>, and </p></li>
   1.704 + *
   1.705 + *    <li><p> The preprocessing operations <tt>\l</tt> <tt>&#92;u</tt>,
   1.706 + *    <tt>\L</tt>, and <tt>\U</tt>.  </p></li>
   1.707 + *
   1.708 + * </ul>
   1.709 + *
   1.710 + * <p> Constructs supported by this class but not by Perl: </p>
   1.711 + *
   1.712 + * <ul>
   1.713 + *
   1.714 + *    <li><p> Character-class union and intersection as described
   1.715 + *    <a href="#cc">above</a>.</p></li>
   1.716 + *
   1.717 + * </ul>
   1.718 + *
   1.719 + * <p> Notable differences from Perl: </p>
   1.720 + *
   1.721 + * <ul>
   1.722 + *
   1.723 + *    <li><p> In Perl, <tt>\1</tt> through <tt>\9</tt> are always interpreted
   1.724 + *    as back references; a backslash-escaped number greater than <tt>9</tt> is
   1.725 + *    treated as a back reference if at least that many subexpressions exist,
   1.726 + *    otherwise it is interpreted, if possible, as an octal escape.  In this
   1.727 + *    class octal escapes must always begin with a zero. In this class,
   1.728 + *    <tt>\1</tt> through <tt>\9</tt> are always interpreted as back
   1.729 + *    references, and a larger number is accepted as a back reference if at
   1.730 + *    least that many subexpressions exist at that point in the regular
   1.731 + *    expression, otherwise the parser will drop digits until the number is
   1.732 + *    smaller or equal to the existing number of groups or it is one digit.
   1.733 + *    </p></li>
   1.734 + *
   1.735 + *    <li><p> Perl uses the <tt>g</tt> flag to request a match that resumes
   1.736 + *    where the last match left off.  This functionality is provided implicitly
   1.737 + *    by the {@link Matcher} class: Repeated invocations of the {@link
   1.738 + *    Matcher#find find} method will resume where the last match left off,
   1.739 + *    unless the matcher is reset.  </p></li>
   1.740 + *
   1.741 + *    <li><p> In Perl, embedded flags at the top level of an expression affect
   1.742 + *    the whole expression.  In this class, embedded flags always take effect
   1.743 + *    at the point at which they appear, whether they are at the top level or
   1.744 + *    within a group; in the latter case, flags are restored at the end of the
   1.745 + *    group just as in Perl.  </p></li>
   1.746 + *
   1.747 + * </ul>
   1.748 + *
   1.749 + *
   1.750 + * <p> For a more precise description of the behavior of regular expression
   1.751 + * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
   1.752 + * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
   1.753 + * O'Reilly and Associates, 2006.</a>
   1.754 + * </p>
   1.755 + *
   1.756 + * @see java.lang.String#split(String, int)
   1.757 + * @see java.lang.String#split(String)
   1.758 + *
   1.759 + * @author      Mike McCloskey
   1.760 + * @author      Mark Reinhold
   1.761 + * @author      JSR-51 Expert Group
   1.762 + * @since       1.4
   1.763 + * @spec        JSR-51
   1.764 + */
   1.765 +
   1.766 +public final class Pattern
   1.767 +    implements java.io.Serializable
   1.768 +{
   1.769 +
   1.770 +    /**
   1.771 +     * Regular expression modifier values.  Instead of being passed as
   1.772 +     * arguments, they can also be passed as inline modifiers.
   1.773 +     * For example, the following statements have the same effect.
   1.774 +     * <pre>
   1.775 +     * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
   1.776 +     * RegExp r2 = RegExp.compile("(?im)abc", 0);
   1.777 +     * </pre>
   1.778 +     *
   1.779 +     * The flags are duplicated so that the familiar Perl match flag
   1.780 +     * names are available.
   1.781 +     */
   1.782 +
   1.783 +    /**
   1.784 +     * Enables Unix lines mode.
   1.785 +     *
   1.786 +     * <p> In this mode, only the <tt>'\n'</tt> line terminator is recognized
   1.787 +     * in the behavior of <tt>.</tt>, <tt>^</tt>, and <tt>$</tt>.
   1.788 +     *
   1.789 +     * <p> Unix lines mode can also be enabled via the embedded flag
   1.790 +     * expression&nbsp;<tt>(?d)</tt>.
   1.791 +     */
   1.792 +    public static final int UNIX_LINES = 0x01;
   1.793 +
   1.794 +    /**
   1.795 +     * Enables case-insensitive matching.
   1.796 +     *
   1.797 +     * <p> By default, case-insensitive matching assumes that only characters
   1.798 +     * in the US-ASCII charset are being matched.  Unicode-aware
   1.799 +     * case-insensitive matching can be enabled by specifying the {@link
   1.800 +     * #UNICODE_CASE} flag in conjunction with this flag.
   1.801 +     *
   1.802 +     * <p> Case-insensitive matching can also be enabled via the embedded flag
   1.803 +     * expression&nbsp;<tt>(?i)</tt>.
   1.804 +     *
   1.805 +     * <p> Specifying this flag may impose a slight performance penalty.  </p>
   1.806 +     */
   1.807 +    public static final int CASE_INSENSITIVE = 0x02;
   1.808 +
   1.809 +    /**
   1.810 +     * Permits whitespace and comments in pattern.
   1.811 +     *
   1.812 +     * <p> In this mode, whitespace is ignored, and embedded comments starting
   1.813 +     * with <tt>#</tt> are ignored until the end of a line.
   1.814 +     *
   1.815 +     * <p> Comments mode can also be enabled via the embedded flag
   1.816 +     * expression&nbsp;<tt>(?x)</tt>.
   1.817 +     */
   1.818 +    public static final int COMMENTS = 0x04;
   1.819 +
   1.820 +    /**
   1.821 +     * Enables multiline mode.
   1.822 +     *
   1.823 +     * <p> In multiline mode the expressions <tt>^</tt> and <tt>$</tt> match
   1.824 +     * just after or just before, respectively, a line terminator or the end of
   1.825 +     * the input sequence.  By default these expressions only match at the
   1.826 +     * beginning and the end of the entire input sequence.
   1.827 +     *
   1.828 +     * <p> Multiline mode can also be enabled via the embedded flag
   1.829 +     * expression&nbsp;<tt>(?m)</tt>.  </p>
   1.830 +     */
   1.831 +    public static final int MULTILINE = 0x08;
   1.832 +
   1.833 +    /**
   1.834 +     * Enables literal parsing of the pattern.
   1.835 +     *
   1.836 +     * <p> When this flag is specified then the input string that specifies
   1.837 +     * the pattern is treated as a sequence of literal characters.
   1.838 +     * Metacharacters or escape sequences in the input sequence will be
   1.839 +     * given no special meaning.
   1.840 +     *
   1.841 +     * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
   1.842 +     * matching when used in conjunction with this flag. The other flags
   1.843 +     * become superfluous.
   1.844 +     *
   1.845 +     * <p> There is no embedded flag character for enabling literal parsing.
   1.846 +     * @since 1.5
   1.847 +     */
   1.848 +    public static final int LITERAL = 0x10;
   1.849 +
   1.850 +    /**
   1.851 +     * Enables dotall mode.
   1.852 +     *
   1.853 +     * <p> In dotall mode, the expression <tt>.</tt> matches any character,
   1.854 +     * including a line terminator.  By default this expression does not match
   1.855 +     * line terminators.
   1.856 +     *
   1.857 +     * <p> Dotall mode can also be enabled via the embedded flag
   1.858 +     * expression&nbsp;<tt>(?s)</tt>.  (The <tt>s</tt> is a mnemonic for
   1.859 +     * "single-line" mode, which is what this is called in Perl.)  </p>
   1.860 +     */
   1.861 +    public static final int DOTALL = 0x20;
   1.862 +
   1.863 +    /**
   1.864 +     * Enables Unicode-aware case folding.
   1.865 +     *
   1.866 +     * <p> When this flag is specified then case-insensitive matching, when
   1.867 +     * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
   1.868 +     * consistent with the Unicode Standard.  By default, case-insensitive
   1.869 +     * matching assumes that only characters in the US-ASCII charset are being
   1.870 +     * matched.
   1.871 +     *
   1.872 +     * <p> Unicode-aware case folding can also be enabled via the embedded flag
   1.873 +     * expression&nbsp;<tt>(?u)</tt>.
   1.874 +     *
   1.875 +     * <p> Specifying this flag may impose a performance penalty.  </p>
   1.876 +     */
   1.877 +    public static final int UNICODE_CASE = 0x40;
   1.878 +
   1.879 +    /**
   1.880 +     * Enables canonical equivalence.
   1.881 +     *
   1.882 +     * <p> When this flag is specified then two characters will be considered
   1.883 +     * to match if, and only if, their full canonical decompositions match.
   1.884 +     * The expression <tt>"a&#92;u030A"</tt>, for example, will match the
   1.885 +     * string <tt>"&#92;u00E5"</tt> when this flag is specified.  By default,
   1.886 +     * matching does not take canonical equivalence into account.
   1.887 +     *
   1.888 +     * <p> There is no embedded flag character for enabling canonical
   1.889 +     * equivalence.
   1.890 +     *
   1.891 +     * <p> Specifying this flag may impose a performance penalty.  </p>
   1.892 +     */
   1.893 +    public static final int CANON_EQ = 0x80;
   1.894 +
   1.895 +    /**
   1.896 +     * Enables the Unicode version of <i>Predefined character classes</i> and
   1.897 +     * <i>POSIX character classes</i>.
   1.898 +     *
   1.899 +     * <p> When this flag is specified then the (US-ASCII only)
   1.900 +     * <i>Predefined character classes</i> and <i>POSIX character classes</i>
   1.901 +     * are in conformance with
   1.902 +     * <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
   1.903 +     * Standard #18: Unicode Regular Expression</i></a>
   1.904 +     * <i>Annex C: Compatibility Properties</i>.
   1.905 +     * <p>
   1.906 +     * The UNICODE_CHARACTER_CLASS mode can also be enabled via the embedded
   1.907 +     * flag expression&nbsp;<tt>(?U)</tt>.
   1.908 +     * <p>
   1.909 +     * The flag implies UNICODE_CASE, that is, it enables Unicode-aware case
   1.910 +     * folding.
   1.911 +     * <p>
   1.912 +     * Specifying this flag may impose a performance penalty.  </p>
   1.913 +     * @since 1.7
   1.914 +     */
   1.915 +    public static final int UNICODE_CHARACTER_CLASS = 0x100;
   1.916 +
   1.917 +    /* Pattern has only two serialized components: The pattern string
   1.918 +     * and the flags, which are all that is needed to recompile the pattern
   1.919 +     * when it is deserialized.
   1.920 +     */
   1.921 +
   1.922 +    /** use serialVersionUID from Merlin b59 for interoperability */
   1.923 +    private static final long serialVersionUID = 5073258162644648461L;
   1.924 +
   1.925 +    /**
   1.926 +     * The original regular-expression pattern string.
   1.927 +     *
   1.928 +     * @serial
   1.929 +     */
   1.930 +    private String pattern;
   1.931 +
   1.932 +    /**
   1.933 +     * The original pattern flags.
   1.934 +     *
   1.935 +     * @serial
   1.936 +     */
   1.937 +    private int flags;
   1.938 +
   1.939 +    /**
   1.940 +     * Boolean indicating this Pattern is compiled; this is necessary in order
   1.941 +     * to lazily compile deserialized Patterns.
   1.942 +     */
   1.943 +    private transient volatile boolean compiled = false;
   1.944 +
   1.945 +    /**
   1.946 +     * The normalized pattern string.
   1.947 +     */
   1.948 +    private transient String normalizedPattern;
   1.949 +
   1.950 +    /**
   1.951 +     * The starting point of state machine for the find operation.  This allows
   1.952 +     * a match to start anywhere in the input.
   1.953 +     */
   1.954 +    transient Node root;
   1.955 +
   1.956 +    /**
   1.957 +     * The root of object tree for a match operation.  The pattern is matched
   1.958 +     * at the beginning.  This may include a find that uses BnM or a First
   1.959 +     * node.
   1.960 +     */
   1.961 +    transient Node matchRoot;
   1.962 +
   1.963 +    /**
   1.964 +     * Temporary storage used by parsing pattern slice.
   1.965 +     */
   1.966 +    transient int[] buffer;
   1.967 +
   1.968 +    /**
   1.969 +     * Map the "name" of the "named capturing group" to its group id
   1.970 +     * node.
   1.971 +     */
   1.972 +    transient volatile Map<String, Integer> namedGroups;
   1.973 +
   1.974 +    /**
   1.975 +     * Temporary storage used while parsing group references.
   1.976 +     */
   1.977 +    transient GroupHead[] groupNodes;
   1.978 +
   1.979 +    /**
   1.980 +     * Temporary null terminated code point array used by pattern compiling.
   1.981 +     */
   1.982 +    private transient int[] temp;
   1.983 +
   1.984 +    /**
   1.985 +     * The number of capturing groups in this Pattern. Used by matchers to
   1.986 +     * allocate storage needed to perform a match.
   1.987 +     */
   1.988 +    transient int capturingGroupCount;
   1.989 +
   1.990 +    /**
   1.991 +     * The local variable count used by parsing tree. Used by matchers to
   1.992 +     * allocate storage needed to perform a match.
   1.993 +     */
   1.994 +    transient int localCount;
   1.995 +
   1.996 +    /**
   1.997 +     * Index into the pattern string that keeps track of how much has been
   1.998 +     * parsed.
   1.999 +     */
  1.1000 +    private transient int cursor;
  1.1001 +
  1.1002 +    /**
  1.1003 +     * Holds the length of the pattern string.
  1.1004 +     */
  1.1005 +    private transient int patternLength;
  1.1006 +
  1.1007 +    /**
  1.1008 +     * If the Start node might possibly match supplementary characters.
  1.1009 +     * It is set to true during compiling if
  1.1010 +     * (1) There is supplementary char in pattern, or
  1.1011 +     * (2) There is complement node of Category or Block
  1.1012 +     */
  1.1013 +    private transient boolean hasSupplementary;
  1.1014 +
  1.1015 +    /**
  1.1016 +     * Compiles the given regular expression into a pattern.  </p>
  1.1017 +     *
  1.1018 +     * @param  regex
  1.1019 +     *         The expression to be compiled
  1.1020 +     *
  1.1021 +     * @throws  PatternSyntaxException
  1.1022 +     *          If the expression's syntax is invalid
  1.1023 +     */
  1.1024 +    public static Pattern compile(String regex) {
  1.1025 +        return new Pattern(regex, 0);
  1.1026 +    }
  1.1027 +
  1.1028 +    /**
  1.1029 +     * Compiles the given regular expression into a pattern with the given
  1.1030 +     * flags.  </p>
  1.1031 +     *
  1.1032 +     * @param  regex
  1.1033 +     *         The expression to be compiled
  1.1034 +     *
  1.1035 +     * @param  flags
  1.1036 +     *         Match flags, a bit mask that may include
  1.1037 +     *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
  1.1038 +     *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
  1.1039 +     *         {@link #LITERAL}, {@link #UNICODE_CHARACTER_CLASS}
  1.1040 +     *         and {@link #COMMENTS}
  1.1041 +     *
  1.1042 +     * @throws  IllegalArgumentException
  1.1043 +     *          If bit values other than those corresponding to the defined
  1.1044 +     *          match flags are set in <tt>flags</tt>
  1.1045 +     *
  1.1046 +     * @throws  PatternSyntaxException
  1.1047 +     *          If the expression's syntax is invalid
  1.1048 +     */
  1.1049 +    public static Pattern compile(String regex, int flags) {
  1.1050 +        return new Pattern(regex, flags);
  1.1051 +    }
  1.1052 +
  1.1053 +    /**
  1.1054 +     * Returns the regular expression from which this pattern was compiled.
  1.1055 +     * </p>
  1.1056 +     *
  1.1057 +     * @return  The source of this pattern
  1.1058 +     */
  1.1059 +    public String pattern() {
  1.1060 +        return pattern;
  1.1061 +    }
  1.1062 +
  1.1063 +    /**
  1.1064 +     * <p>Returns the string representation of this pattern. This
  1.1065 +     * is the regular expression from which this pattern was
  1.1066 +     * compiled.</p>
  1.1067 +     *
  1.1068 +     * @return  The string representation of this pattern
  1.1069 +     * @since 1.5
  1.1070 +     */
  1.1071 +    public String toString() {
  1.1072 +        return pattern;
  1.1073 +    }
  1.1074 +
  1.1075 +    /**
  1.1076 +     * Creates a matcher that will match the given input against this pattern.
  1.1077 +     * </p>
  1.1078 +     *
  1.1079 +     * @param  input
  1.1080 +     *         The character sequence to be matched
  1.1081 +     *
  1.1082 +     * @return  A new matcher for this pattern
  1.1083 +     */
  1.1084 +    public Matcher matcher(CharSequence input) {
  1.1085 +        if (!compiled) {
  1.1086 +            synchronized(this) {
  1.1087 +                if (!compiled)
  1.1088 +                    compile();
  1.1089 +            }
  1.1090 +        }
  1.1091 +        Matcher m = new Matcher(this, input);
  1.1092 +        return m;
  1.1093 +    }
  1.1094 +
  1.1095 +    /**
  1.1096 +     * Returns this pattern's match flags.  </p>
  1.1097 +     *
  1.1098 +     * @return  The match flags specified when this pattern was compiled
  1.1099 +     */
  1.1100 +    public int flags() {
  1.1101 +        return flags;
  1.1102 +    }
  1.1103 +
  1.1104 +    /**
  1.1105 +     * Compiles the given regular expression and attempts to match the given
  1.1106 +     * input against it.
  1.1107 +     *
  1.1108 +     * <p> An invocation of this convenience method of the form
  1.1109 +     *
  1.1110 +     * <blockquote><pre>
  1.1111 +     * Pattern.matches(regex, input);</pre></blockquote>
  1.1112 +     *
  1.1113 +     * behaves in exactly the same way as the expression
  1.1114 +     *
  1.1115 +     * <blockquote><pre>
  1.1116 +     * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
  1.1117 +     *
  1.1118 +     * <p> If a pattern is to be used multiple times, compiling it once and reusing
  1.1119 +     * it will be more efficient than invoking this method each time.  </p>
  1.1120 +     *
  1.1121 +     * @param  regex
  1.1122 +     *         The expression to be compiled
  1.1123 +     *
  1.1124 +     * @param  input
  1.1125 +     *         The character sequence to be matched
  1.1126 +     *
  1.1127 +     * @throws  PatternSyntaxException
  1.1128 +     *          If the expression's syntax is invalid
  1.1129 +     */
  1.1130 +    public static boolean matches(String regex, CharSequence input) {
  1.1131 +        Pattern p = Pattern.compile(regex);
  1.1132 +        Matcher m = p.matcher(input);
  1.1133 +        return m.matches();
  1.1134 +    }
  1.1135 +
  1.1136 +    /**
  1.1137 +     * Splits the given input sequence around matches of this pattern.
  1.1138 +     *
  1.1139 +     * <p> The array returned by this method contains each substring of the
  1.1140 +     * input sequence that is terminated by another subsequence that matches
  1.1141 +     * this pattern or is terminated by the end of the input sequence.  The
  1.1142 +     * substrings in the array are in the order in which they occur in the
  1.1143 +     * input.  If this pattern does not match any subsequence of the input then
  1.1144 +     * the resulting array has just one element, namely the input sequence in
  1.1145 +     * string form.
  1.1146 +     *
  1.1147 +     * <p> The <tt>limit</tt> parameter controls the number of times the
  1.1148 +     * pattern is applied and therefore affects the length of the resulting
  1.1149 +     * array.  If the limit <i>n</i> is greater than zero then the pattern
  1.1150 +     * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
  1.1151 +     * length will be no greater than <i>n</i>, and the array's last entry
  1.1152 +     * will contain all input beyond the last matched delimiter.  If <i>n</i>
  1.1153 +     * is non-positive then the pattern will be applied as many times as
  1.1154 +     * possible and the array can have any length.  If <i>n</i> is zero then
  1.1155 +     * the pattern will be applied as many times as possible, the array can
  1.1156 +     * have any length, and trailing empty strings will be discarded.
  1.1157 +     *
  1.1158 +     * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
  1.1159 +     * results with these parameters:
  1.1160 +     *
  1.1161 +     * <blockquote><table cellpadding=1 cellspacing=0
  1.1162 +     *              summary="Split examples showing regex, limit, and result">
  1.1163 +     * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
  1.1164 +     *     <th><P align="left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
  1.1165 +     *     <th><P align="left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
  1.1166 +     * <tr><td align=center>:</td>
  1.1167 +     *     <td align=center>2</td>
  1.1168 +     *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
  1.1169 +     * <tr><td align=center>:</td>
  1.1170 +     *     <td align=center>5</td>
  1.1171 +     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  1.1172 +     * <tr><td align=center>:</td>
  1.1173 +     *     <td align=center>-2</td>
  1.1174 +     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  1.1175 +     * <tr><td align=center>o</td>
  1.1176 +     *     <td align=center>5</td>
  1.1177 +     *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  1.1178 +     * <tr><td align=center>o</td>
  1.1179 +     *     <td align=center>-2</td>
  1.1180 +     *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  1.1181 +     * <tr><td align=center>o</td>
  1.1182 +     *     <td align=center>0</td>
  1.1183 +     *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  1.1184 +     * </table></blockquote>
  1.1185 +     *
  1.1186 +     *
  1.1187 +     * @param  input
  1.1188 +     *         The character sequence to be split
  1.1189 +     *
  1.1190 +     * @param  limit
  1.1191 +     *         The result threshold, as described above
  1.1192 +     *
  1.1193 +     * @return  The array of strings computed by splitting the input
  1.1194 +     *          around matches of this pattern
  1.1195 +     */
  1.1196 +    public String[] split(CharSequence input, int limit) {
  1.1197 +        int index = 0;
  1.1198 +        boolean matchLimited = limit > 0;
  1.1199 +        ArrayList<String> matchList = new ArrayList<>();
  1.1200 +        Matcher m = matcher(input);
  1.1201 +
  1.1202 +        // Add segments before each match found
  1.1203 +        while(m.find()) {
  1.1204 +            if (!matchLimited || matchList.size() < limit - 1) {
  1.1205 +                String match = input.subSequence(index, m.start()).toString();
  1.1206 +                matchList.add(match);
  1.1207 +                index = m.end();
  1.1208 +            } else if (matchList.size() == limit - 1) { // last one
  1.1209 +                String match = input.subSequence(index,
  1.1210 +                                                 input.length()).toString();
  1.1211 +                matchList.add(match);
  1.1212 +                index = m.end();
  1.1213 +            }
  1.1214 +        }
  1.1215 +
  1.1216 +        // If no match was found, return this
  1.1217 +        if (index == 0)
  1.1218 +            return new String[] {input.toString()};
  1.1219 +
  1.1220 +        // Add remaining segment
  1.1221 +        if (!matchLimited || matchList.size() < limit)
  1.1222 +            matchList.add(input.subSequence(index, input.length()).toString());
  1.1223 +
  1.1224 +        // Construct result
  1.1225 +        int resultSize = matchList.size();
  1.1226 +        if (limit == 0)
  1.1227 +            while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
  1.1228 +                resultSize--;
  1.1229 +        String[] result = new String[resultSize];
  1.1230 +        return matchList.subList(0, resultSize).toArray(result);
  1.1231 +    }
  1.1232 +
  1.1233 +    /**
  1.1234 +     * Splits the given input sequence around matches of this pattern.
  1.1235 +     *
  1.1236 +     * <p> This method works as if by invoking the two-argument {@link
  1.1237 +     * #split(java.lang.CharSequence, int) split} method with the given input
  1.1238 +     * sequence and a limit argument of zero.  Trailing empty strings are
  1.1239 +     * therefore not included in the resulting array. </p>
  1.1240 +     *
  1.1241 +     * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
  1.1242 +     * results with these expressions:
  1.1243 +     *
  1.1244 +     * <blockquote><table cellpadding=1 cellspacing=0
  1.1245 +     *              summary="Split examples showing regex and result">
  1.1246 +     * <tr><th><P align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
  1.1247 +     *     <th><P align="left"><i>Result</i></th></tr>
  1.1248 +     * <tr><td align=center>:</td>
  1.1249 +     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  1.1250 +     * <tr><td align=center>o</td>
  1.1251 +     *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  1.1252 +     * </table></blockquote>
  1.1253 +     *
  1.1254 +     *
  1.1255 +     * @param  input
  1.1256 +     *         The character sequence to be split
  1.1257 +     *
  1.1258 +     * @return  The array of strings computed by splitting the input
  1.1259 +     *          around matches of this pattern
  1.1260 +     */
  1.1261 +    public String[] split(CharSequence input) {
  1.1262 +        return split(input, 0);
  1.1263 +    }
  1.1264 +
  1.1265 +    /**
  1.1266 +     * Returns a literal pattern <code>String</code> for the specified
  1.1267 +     * <code>String</code>.
  1.1268 +     *
  1.1269 +     * <p>This method produces a <code>String</code> that can be used to
  1.1270 +     * create a <code>Pattern</code> that would match the string
  1.1271 +     * <code>s</code> as if it were a literal pattern.</p> Metacharacters
  1.1272 +     * or escape sequences in the input sequence will be given no special
  1.1273 +     * meaning.
  1.1274 +     *
  1.1275 +     * @param  s The string to be literalized
  1.1276 +     * @return  A literal string replacement
  1.1277 +     * @since 1.5
  1.1278 +     */
  1.1279 +    public static String quote(String s) {
  1.1280 +        int slashEIndex = s.indexOf("\\E");
  1.1281 +        if (slashEIndex == -1)
  1.1282 +            return "\\Q" + s + "\\E";
  1.1283 +
  1.1284 +        StringBuilder sb = new StringBuilder(s.length() * 2);
  1.1285 +        sb.append("\\Q");
  1.1286 +        slashEIndex = 0;
  1.1287 +        int current = 0;
  1.1288 +        while ((slashEIndex = s.indexOf("\\E", current)) != -1) {
  1.1289 +            sb.append(s.substring(current, slashEIndex));
  1.1290 +            current = slashEIndex + 2;
  1.1291 +            sb.append("\\E\\\\E\\Q");
  1.1292 +        }
  1.1293 +        sb.append(s.substring(current, s.length()));
  1.1294 +        sb.append("\\E");
  1.1295 +        return sb.toString();
  1.1296 +    }
  1.1297 +
  1.1298 +    /**
  1.1299 +     * Recompile the Pattern instance from a stream.  The original pattern
  1.1300 +     * string is read in and the object tree is recompiled from it.
  1.1301 +     */
  1.1302 +    private void readObject(java.io.ObjectInputStream s)
  1.1303 +        throws java.io.IOException, ClassNotFoundException {
  1.1304 +
  1.1305 +        // Read in all fields
  1.1306 +        s.defaultReadObject();
  1.1307 +
  1.1308 +        // Initialize counts
  1.1309 +        capturingGroupCount = 1;
  1.1310 +        localCount = 0;
  1.1311 +
  1.1312 +        // if length > 0, the Pattern is lazily compiled
  1.1313 +        compiled = false;
  1.1314 +        if (pattern.length() == 0) {
  1.1315 +            root = new Start(lastAccept);
  1.1316 +            matchRoot = lastAccept;
  1.1317 +            compiled = true;
  1.1318 +        }
  1.1319 +    }
  1.1320 +
  1.1321 +    /**
  1.1322 +     * This private constructor is used to create all Patterns. The pattern
  1.1323 +     * string and match flags are all that is needed to completely describe
  1.1324 +     * a Pattern. An empty pattern string results in an object tree with
  1.1325 +     * only a Start node and a LastNode node.
  1.1326 +     */
  1.1327 +    private Pattern(String p, int f) {
  1.1328 +        pattern = p;
  1.1329 +        flags = f;
  1.1330 +
  1.1331 +        // to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
  1.1332 +        if ((flags & UNICODE_CHARACTER_CLASS) != 0)
  1.1333 +            flags |= UNICODE_CASE;
  1.1334 +
  1.1335 +        // Reset group index count
  1.1336 +        capturingGroupCount = 1;
  1.1337 +        localCount = 0;
  1.1338 +
  1.1339 +        if (pattern.length() > 0) {
  1.1340 +            compile();
  1.1341 +        } else {
  1.1342 +            root = new Start(lastAccept);
  1.1343 +            matchRoot = lastAccept;
  1.1344 +        }
  1.1345 +    }
  1.1346 +
  1.1347 +    /**
  1.1348 +     * The pattern is converted to normalizedD form and then a pure group
  1.1349 +     * is constructed to match canonical equivalences of the characters.
  1.1350 +     */
  1.1351 +    private void normalize() {
  1.1352 +        boolean inCharClass = false;
  1.1353 +        int lastCodePoint = -1;
  1.1354 +
  1.1355 +        // Convert pattern into normalizedD form
  1.1356 +        normalizedPattern = Normalizer.normalize(pattern, Normalizer.Form.NFD);
  1.1357 +        patternLength = normalizedPattern.length();
  1.1358 +
  1.1359 +        // Modify pattern to match canonical equivalences
  1.1360 +        StringBuilder newPattern = new StringBuilder(patternLength);
  1.1361 +        for(int i=0; i<patternLength; ) {
  1.1362 +            int c = normalizedPattern.codePointAt(i);
  1.1363 +            StringBuilder sequenceBuffer;
  1.1364 +            if ((Character.getType(c) == Character.NON_SPACING_MARK)
  1.1365 +                && (lastCodePoint != -1)) {
  1.1366 +                sequenceBuffer = new StringBuilder();
  1.1367 +                sequenceBuffer.appendCodePoint(lastCodePoint);
  1.1368 +                sequenceBuffer.appendCodePoint(c);
  1.1369 +                while(Character.getType(c) == Character.NON_SPACING_MARK) {
  1.1370 +                    i += Character.charCount(c);
  1.1371 +                    if (i >= patternLength)
  1.1372 +                        break;
  1.1373 +                    c = normalizedPattern.codePointAt(i);
  1.1374 +                    sequenceBuffer.appendCodePoint(c);
  1.1375 +                }
  1.1376 +                String ea = produceEquivalentAlternation(
  1.1377 +                                               sequenceBuffer.toString());
  1.1378 +                newPattern.setLength(newPattern.length()-Character.charCount(lastCodePoint));
  1.1379 +                newPattern.append("(?:").append(ea).append(")");
  1.1380 +            } else if (c == '[' && lastCodePoint != '\\') {
  1.1381 +                i = normalizeCharClass(newPattern, i);
  1.1382 +            } else {
  1.1383 +                newPattern.appendCodePoint(c);
  1.1384 +            }
  1.1385 +            lastCodePoint = c;
  1.1386 +            i += Character.charCount(c);
  1.1387 +        }
  1.1388 +        normalizedPattern = newPattern.toString();
  1.1389 +    }
  1.1390 +
  1.1391 +    /**
  1.1392 +     * Complete the character class being parsed and add a set
  1.1393 +     * of alternations to it that will match the canonical equivalences
  1.1394 +     * of the characters within the class.
  1.1395 +     */
  1.1396 +    private int normalizeCharClass(StringBuilder newPattern, int i) {
  1.1397 +        StringBuilder charClass = new StringBuilder();
  1.1398 +        StringBuilder eq = null;
  1.1399 +        int lastCodePoint = -1;
  1.1400 +        String result;
  1.1401 +
  1.1402 +        i++;
  1.1403 +        charClass.append("[");
  1.1404 +        while(true) {
  1.1405 +            int c = normalizedPattern.codePointAt(i);
  1.1406 +            StringBuilder sequenceBuffer;
  1.1407 +
  1.1408 +            if (c == ']' && lastCodePoint != '\\') {
  1.1409 +                charClass.append((char)c);
  1.1410 +                break;
  1.1411 +            } else if (Character.getType(c) == Character.NON_SPACING_MARK) {
  1.1412 +                sequenceBuffer = new StringBuilder();
  1.1413 +                sequenceBuffer.appendCodePoint(lastCodePoint);
  1.1414 +                while(Character.getType(c) == Character.NON_SPACING_MARK) {
  1.1415 +                    sequenceBuffer.appendCodePoint(c);
  1.1416 +                    i += Character.charCount(c);
  1.1417 +                    if (i >= normalizedPattern.length())
  1.1418 +                        break;
  1.1419 +                    c = normalizedPattern.codePointAt(i);
  1.1420 +                }
  1.1421 +                String ea = produceEquivalentAlternation(
  1.1422 +                                                  sequenceBuffer.toString());
  1.1423 +
  1.1424 +                charClass.setLength(charClass.length()-Character.charCount(lastCodePoint));
  1.1425 +                if (eq == null)
  1.1426 +                    eq = new StringBuilder();
  1.1427 +                eq.append('|');
  1.1428 +                eq.append(ea);
  1.1429 +            } else {
  1.1430 +                charClass.appendCodePoint(c);
  1.1431 +                i++;
  1.1432 +            }
  1.1433 +            if (i == normalizedPattern.length())
  1.1434 +                throw error("Unclosed character class");
  1.1435 +            lastCodePoint = c;
  1.1436 +        }
  1.1437 +
  1.1438 +        if (eq != null) {
  1.1439 +            result = "(?:"+charClass.toString()+eq.toString()+")";
  1.1440 +        } else {
  1.1441 +            result = charClass.toString();
  1.1442 +        }
  1.1443 +
  1.1444 +        newPattern.append(result);
  1.1445 +        return i;
  1.1446 +    }
  1.1447 +
  1.1448 +    /**
  1.1449 +     * Given a specific sequence composed of a regular character and
  1.1450 +     * combining marks that follow it, produce the alternation that will
  1.1451 +     * match all canonical equivalences of that sequence.
  1.1452 +     */
  1.1453 +    private String produceEquivalentAlternation(String source) {
  1.1454 +        int len = countChars(source, 0, 1);
  1.1455 +        if (source.length() == len)
  1.1456 +            // source has one character.
  1.1457 +            return source;
  1.1458 +
  1.1459 +        String base = source.substring(0,len);
  1.1460 +        String combiningMarks = source.substring(len);
  1.1461 +
  1.1462 +        String[] perms = producePermutations(combiningMarks);
  1.1463 +        StringBuilder result = new StringBuilder(source);
  1.1464 +
  1.1465 +        // Add combined permutations
  1.1466 +        for(int x=0; x<perms.length; x++) {
  1.1467 +            String next = base + perms[x];
  1.1468 +            if (x>0)
  1.1469 +                result.append("|"+next);
  1.1470 +            next = composeOneStep(next);
  1.1471 +            if (next != null)
  1.1472 +                result.append("|"+produceEquivalentAlternation(next));
  1.1473 +        }
  1.1474 +        return result.toString();
  1.1475 +    }
  1.1476 +
  1.1477 +    /**
  1.1478 +     * Returns an array of strings that have all the possible
  1.1479 +     * permutations of the characters in the input string.
  1.1480 +     * This is used to get a list of all possible orderings
  1.1481 +     * of a set of combining marks. Note that some of the permutations
  1.1482 +     * are invalid because of combining class collisions, and these
  1.1483 +     * possibilities must be removed because they are not canonically
  1.1484 +     * equivalent.
  1.1485 +     */
  1.1486 +    private String[] producePermutations(String input) {
  1.1487 +        if (input.length() == countChars(input, 0, 1))
  1.1488 +            return new String[] {input};
  1.1489 +
  1.1490 +        if (input.length() == countChars(input, 0, 2)) {
  1.1491 +            int c0 = Character.codePointAt(input, 0);
  1.1492 +            int c1 = Character.codePointAt(input, Character.charCount(c0));
  1.1493 +            if (getClass(c1) == getClass(c0)) {
  1.1494 +                return new String[] {input};
  1.1495 +            }
  1.1496 +            String[] result = new String[2];
  1.1497 +            result[0] = input;
  1.1498 +            StringBuilder sb = new StringBuilder(2);
  1.1499 +            sb.appendCodePoint(c1);
  1.1500 +            sb.appendCodePoint(c0);
  1.1501 +            result[1] = sb.toString();
  1.1502 +            return result;
  1.1503 +        }
  1.1504 +
  1.1505 +        int length = 1;
  1.1506 +        int nCodePoints = countCodePoints(input);
  1.1507 +        for(int x=1; x<nCodePoints; x++)
  1.1508 +            length = length * (x+1);
  1.1509 +
  1.1510 +        String[] temp = new String[length];
  1.1511 +
  1.1512 +        int combClass[] = new int[nCodePoints];
  1.1513 +        for(int x=0, i=0; x<nCodePoints; x++) {
  1.1514 +            int c = Character.codePointAt(input, i);
  1.1515 +            combClass[x] = getClass(c);
  1.1516 +            i +=  Character.charCount(c);
  1.1517 +        }
  1.1518 +
  1.1519 +        // For each char, take it out and add the permutations
  1.1520 +        // of the remaining chars
  1.1521 +        int index = 0;
  1.1522 +        int len;
  1.1523 +        // offset maintains the index in code units.
  1.1524 +loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
  1.1525 +            len = countChars(input, offset, 1);
  1.1526 +            boolean skip = false;
  1.1527 +            for(int y=x-1; y>=0; y--) {
  1.1528 +                if (combClass[y] == combClass[x]) {
  1.1529 +                    continue loop;
  1.1530 +                }
  1.1531 +            }
  1.1532 +            StringBuilder sb = new StringBuilder(input);
  1.1533 +            String otherChars = sb.delete(offset, offset+len).toString();
  1.1534 +            String[] subResult = producePermutations(otherChars);
  1.1535 +
  1.1536 +            String prefix = input.substring(offset, offset+len);
  1.1537 +            for(int y=0; y<subResult.length; y++)
  1.1538 +                temp[index++] =  prefix + subResult[y];
  1.1539 +        }
  1.1540 +        String[] result = new String[index];
  1.1541 +        for (int x=0; x<index; x++)
  1.1542 +            result[x] = temp[x];
  1.1543 +        return result;
  1.1544 +    }
  1.1545 +
  1.1546 +    private int getClass(int c) {
  1.1547 +        return sun.text.Normalizer.getCombiningClass(c);
  1.1548 +    }
  1.1549 +
  1.1550 +    /**
  1.1551 +     * Attempts to compose input by combining the first character
  1.1552 +     * with the first combining mark following it. Returns a String
  1.1553 +     * that is the composition of the leading character with its first
  1.1554 +     * combining mark followed by the remaining combining marks. Returns
  1.1555 +     * null if the first two characters cannot be further composed.
  1.1556 +     */
  1.1557 +    private String composeOneStep(String input) {
  1.1558 +        int len = countChars(input, 0, 2);
  1.1559 +        String firstTwoCharacters = input.substring(0, len);
  1.1560 +        String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
  1.1561 +
  1.1562 +        if (result.equals(firstTwoCharacters))
  1.1563 +            return null;
  1.1564 +        else {
  1.1565 +            String remainder = input.substring(len);
  1.1566 +            return result + remainder;
  1.1567 +        }
  1.1568 +    }
  1.1569 +
  1.1570 +    /**
  1.1571 +     * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
  1.1572 +     * See the description of `quotemeta' in perlfunc(1).
  1.1573 +     */
  1.1574 +    private void RemoveQEQuoting() {
  1.1575 +        final int pLen = patternLength;
  1.1576 +        int i = 0;
  1.1577 +        while (i < pLen-1) {
  1.1578 +            if (temp[i] != '\\')
  1.1579 +                i += 1;
  1.1580 +            else if (temp[i + 1] != 'Q')
  1.1581 +                i += 2;
  1.1582 +            else
  1.1583 +                break;
  1.1584 +        }
  1.1585 +        if (i >= pLen - 1)    // No \Q sequence found
  1.1586 +            return;
  1.1587 +        int j = i;
  1.1588 +        i += 2;
  1.1589 +        int[] newtemp = new int[j + 2*(pLen-i) + 2];
  1.1590 +        System.arraycopy(temp, 0, newtemp, 0, j);
  1.1591 +
  1.1592 +        boolean inQuote = true;
  1.1593 +        while (i < pLen) {
  1.1594 +            int c = temp[i++];
  1.1595 +            if (! ASCII.isAscii(c) || ASCII.isAlnum(c)) {
  1.1596 +                newtemp[j++] = c;
  1.1597 +            } else if (c != '\\') {
  1.1598 +                if (inQuote) newtemp[j++] = '\\';
  1.1599 +                newtemp[j++] = c;
  1.1600 +            } else if (inQuote) {
  1.1601 +                if (temp[i] == 'E') {
  1.1602 +                    i++;
  1.1603 +                    inQuote = false;
  1.1604 +                } else {
  1.1605 +                    newtemp[j++] = '\\';
  1.1606 +                    newtemp[j++] = '\\';
  1.1607 +                }
  1.1608 +            } else {
  1.1609 +                if (temp[i] == 'Q') {
  1.1610 +                    i++;
  1.1611 +                    inQuote = true;
  1.1612 +                } else {
  1.1613 +                    newtemp[j++] = c;
  1.1614 +                    if (i != pLen)
  1.1615 +                        newtemp[j++] = temp[i++];
  1.1616 +                }
  1.1617 +            }
  1.1618 +        }
  1.1619 +
  1.1620 +        patternLength = j;
  1.1621 +        temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
  1.1622 +    }
  1.1623 +
  1.1624 +    /**
  1.1625 +     * Copies regular expression to an int array and invokes the parsing
  1.1626 +     * of the expression which will create the object tree.
  1.1627 +     */
  1.1628 +    private void compile() {
  1.1629 +        // Handle canonical equivalences
  1.1630 +        if (has(CANON_EQ) && !has(LITERAL)) {
  1.1631 +            normalize();
  1.1632 +        } else {
  1.1633 +            normalizedPattern = pattern;
  1.1634 +        }
  1.1635 +        patternLength = normalizedPattern.length();
  1.1636 +
  1.1637 +        // Copy pattern to int array for convenience
  1.1638 +        // Use double zero to terminate pattern
  1.1639 +        temp = new int[patternLength + 2];
  1.1640 +
  1.1641 +        hasSupplementary = false;
  1.1642 +        int c, count = 0;
  1.1643 +        // Convert all chars into code points
  1.1644 +        for (int x = 0; x < patternLength; x += Character.charCount(c)) {
  1.1645 +            c = normalizedPattern.codePointAt(x);
  1.1646 +            if (isSupplementary(c)) {
  1.1647 +                hasSupplementary = true;
  1.1648 +            }
  1.1649 +            temp[count++] = c;
  1.1650 +        }
  1.1651 +
  1.1652 +        patternLength = count;   // patternLength now in code points
  1.1653 +
  1.1654 +        if (! has(LITERAL))
  1.1655 +            RemoveQEQuoting();
  1.1656 +
  1.1657 +        // Allocate all temporary objects here.
  1.1658 +        buffer = new int[32];
  1.1659 +        groupNodes = new GroupHead[10];
  1.1660 +        namedGroups = null;
  1.1661 +
  1.1662 +        if (has(LITERAL)) {
  1.1663 +            // Literal pattern handling
  1.1664 +            matchRoot = newSlice(temp, patternLength, hasSupplementary);
  1.1665 +            matchRoot.next = lastAccept;
  1.1666 +        } else {
  1.1667 +            // Start recursive descent parsing
  1.1668 +            matchRoot = expr(lastAccept);
  1.1669 +            // Check extra pattern characters
  1.1670 +            if (patternLength != cursor) {
  1.1671 +                if (peek() == ')') {
  1.1672 +                    throw error("Unmatched closing ')'");
  1.1673 +                } else {
  1.1674 +                    throw error("Unexpected internal error");
  1.1675 +                }
  1.1676 +            }
  1.1677 +        }
  1.1678 +
  1.1679 +        // Peephole optimization
  1.1680 +        if (matchRoot instanceof Slice) {
  1.1681 +            root = BnM.optimize(matchRoot);
  1.1682 +            if (root == matchRoot) {
  1.1683 +                root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
  1.1684 +            }
  1.1685 +        } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
  1.1686 +            root = matchRoot;
  1.1687 +        } else {
  1.1688 +            root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
  1.1689 +        }
  1.1690 +
  1.1691 +        // Release temporary storage
  1.1692 +        temp = null;
  1.1693 +        buffer = null;
  1.1694 +        groupNodes = null;
  1.1695 +        patternLength = 0;
  1.1696 +        compiled = true;
  1.1697 +    }
  1.1698 +
  1.1699 +    Map<String, Integer> namedGroups() {
  1.1700 +        if (namedGroups == null)
  1.1701 +            namedGroups = new HashMap<>(2);
  1.1702 +        return namedGroups;
  1.1703 +    }
  1.1704 +
  1.1705 +    /**
  1.1706 +     * Used to print out a subtree of the Pattern to help with debugging.
  1.1707 +     */
  1.1708 +    private static void printObjectTree(Node node) {
  1.1709 +        while(node != null) {
  1.1710 +            if (node instanceof Prolog) {
  1.1711 +                System.out.println(node);
  1.1712 +                printObjectTree(((Prolog)node).loop);
  1.1713 +                System.out.println("**** end contents prolog loop");
  1.1714 +            } else if (node instanceof Loop) {
  1.1715 +                System.out.println(node);
  1.1716 +                printObjectTree(((Loop)node).body);
  1.1717 +                System.out.println("**** end contents Loop body");
  1.1718 +            } else if (node instanceof Curly) {
  1.1719 +                System.out.println(node);
  1.1720 +                printObjectTree(((Curly)node).atom);
  1.1721 +                System.out.println("**** end contents Curly body");
  1.1722 +            } else if (node instanceof GroupCurly) {
  1.1723 +                System.out.println(node);
  1.1724 +                printObjectTree(((GroupCurly)node).atom);
  1.1725 +                System.out.println("**** end contents GroupCurly body");
  1.1726 +            } else if (node instanceof GroupTail) {
  1.1727 +                System.out.println(node);
  1.1728 +                System.out.println("Tail next is "+node.next);
  1.1729 +                return;
  1.1730 +            } else {
  1.1731 +                System.out.println(node);
  1.1732 +            }
  1.1733 +            node = node.next;
  1.1734 +            if (node != null)
  1.1735 +                System.out.println("->next:");
  1.1736 +            if (node == Pattern.accept) {
  1.1737 +                System.out.println("Accept Node");
  1.1738 +                node = null;
  1.1739 +            }
  1.1740 +       }
  1.1741 +    }
  1.1742 +
  1.1743 +    /**
  1.1744 +     * Used to accumulate information about a subtree of the object graph
  1.1745 +     * so that optimizations can be applied to the subtree.
  1.1746 +     */
  1.1747 +    static final class TreeInfo {
  1.1748 +        int minLength;
  1.1749 +        int maxLength;
  1.1750 +        boolean maxValid;
  1.1751 +        boolean deterministic;
  1.1752 +
  1.1753 +        TreeInfo() {
  1.1754 +            reset();
  1.1755 +        }
  1.1756 +        void reset() {
  1.1757 +            minLength = 0;
  1.1758 +            maxLength = 0;
  1.1759 +            maxValid = true;
  1.1760 +            deterministic = true;
  1.1761 +        }
  1.1762 +    }
  1.1763 +
  1.1764 +    /*
  1.1765 +     * The following private methods are mainly used to improve the
  1.1766 +     * readability of the code. In order to let the Java compiler easily
  1.1767 +     * inline them, we should not put many assertions or error checks in them.
  1.1768 +     */
  1.1769 +
  1.1770 +    /**
  1.1771 +     * Indicates whether a particular flag is set or not.
  1.1772 +     */
  1.1773 +    private boolean has(int f) {
  1.1774 +        return (flags & f) != 0;
  1.1775 +    }
  1.1776 +
  1.1777 +    /**
  1.1778 +     * Match next character, signal error if failed.
  1.1779 +     */
  1.1780 +    private void accept(int ch, String s) {
  1.1781 +        int testChar = temp[cursor++];
  1.1782 +        if (has(COMMENTS))
  1.1783 +            testChar = parsePastWhitespace(testChar);
  1.1784 +        if (ch != testChar) {
  1.1785 +            throw error(s);
  1.1786 +        }
  1.1787 +    }
  1.1788 +
  1.1789 +    /**
  1.1790 +     * Mark the end of pattern with a specific character.
  1.1791 +     */
  1.1792 +    private void mark(int c) {
  1.1793 +        temp[patternLength] = c;
  1.1794 +    }
  1.1795 +
  1.1796 +    /**
  1.1797 +     * Peek the next character, and do not advance the cursor.
  1.1798 +     */
  1.1799 +    private int peek() {
  1.1800 +        int ch = temp[cursor];
  1.1801 +        if (has(COMMENTS))
  1.1802 +            ch = peekPastWhitespace(ch);
  1.1803 +        return ch;
  1.1804 +    }
  1.1805 +
  1.1806 +    /**
  1.1807 +     * Read the next character, and advance the cursor by one.
  1.1808 +     */
  1.1809 +    private int read() {
  1.1810 +        int ch = temp[cursor++];
  1.1811 +        if (has(COMMENTS))
  1.1812 +            ch = parsePastWhitespace(ch);
  1.1813 +        return ch;
  1.1814 +    }
  1.1815 +
  1.1816 +    /**
  1.1817 +     * Read the next character, and advance the cursor by one,
  1.1818 +     * ignoring the COMMENTS setting
  1.1819 +     */
  1.1820 +    private int readEscaped() {
  1.1821 +        int ch = temp[cursor++];
  1.1822 +        return ch;
  1.1823 +    }
  1.1824 +
  1.1825 +    /**
  1.1826 +     * Advance the cursor by one, and peek the next character.
  1.1827 +     */
  1.1828 +    private int next() {
  1.1829 +        int ch = temp[++cursor];
  1.1830 +        if (has(COMMENTS))
  1.1831 +            ch = peekPastWhitespace(ch);
  1.1832 +        return ch;
  1.1833 +    }
  1.1834 +
  1.1835 +    /**
  1.1836 +     * Advance the cursor by one, and peek the next character,
  1.1837 +     * ignoring the COMMENTS setting
  1.1838 +     */
  1.1839 +    private int nextEscaped() {
  1.1840 +        int ch = temp[++cursor];
  1.1841 +        return ch;
  1.1842 +    }
  1.1843 +
  1.1844 +    /**
  1.1845 +     * If in xmode peek past whitespace and comments.
  1.1846 +     */
  1.1847 +    private int peekPastWhitespace(int ch) {
  1.1848 +        while (ASCII.isSpace(ch) || ch == '#') {
  1.1849 +            while (ASCII.isSpace(ch))
  1.1850 +                ch = temp[++cursor];
  1.1851 +            if (ch == '#') {
  1.1852 +                ch = peekPastLine();
  1.1853 +            }
  1.1854 +        }
  1.1855 +        return ch;
  1.1856 +    }
  1.1857 +
  1.1858 +    /**
  1.1859 +     * If in xmode parse past whitespace and comments.
  1.1860 +     */
  1.1861 +    private int parsePastWhitespace(int ch) {
  1.1862 +        while (ASCII.isSpace(ch) || ch == '#') {
  1.1863 +            while (ASCII.isSpace(ch))
  1.1864 +                ch = temp[cursor++];
  1.1865 +            if (ch == '#')
  1.1866 +                ch = parsePastLine();
  1.1867 +        }
  1.1868 +        return ch;
  1.1869 +    }
  1.1870 +
  1.1871 +    /**
  1.1872 +     * xmode parse past comment to end of line.
  1.1873 +     */
  1.1874 +    private int parsePastLine() {
  1.1875 +        int ch = temp[cursor++];
  1.1876 +        while (ch != 0 && !isLineSeparator(ch))
  1.1877 +            ch = temp[cursor++];
  1.1878 +        return ch;
  1.1879 +    }
  1.1880 +
  1.1881 +    /**
  1.1882 +     * xmode peek past comment to end of line.
  1.1883 +     */
  1.1884 +    private int peekPastLine() {
  1.1885 +        int ch = temp[++cursor];
  1.1886 +        while (ch != 0 && !isLineSeparator(ch))
  1.1887 +            ch = temp[++cursor];
  1.1888 +        return ch;
  1.1889 +    }
  1.1890 +
  1.1891 +    /**
  1.1892 +     * Determines if character is a line separator in the current mode
  1.1893 +     */
  1.1894 +    private boolean isLineSeparator(int ch) {
  1.1895 +        if (has(UNIX_LINES)) {
  1.1896 +            return ch == '\n';
  1.1897 +        } else {
  1.1898 +            return (ch == '\n' ||
  1.1899 +                    ch == '\r' ||
  1.1900 +                    (ch|1) == '\u2029' ||
  1.1901 +                    ch == '\u0085');
  1.1902 +        }
  1.1903 +    }
  1.1904 +
  1.1905 +    /**
  1.1906 +     * Read the character after the next one, and advance the cursor by two.
  1.1907 +     */
  1.1908 +    private int skip() {
  1.1909 +        int i = cursor;
  1.1910 +        int ch = temp[i+1];
  1.1911 +        cursor = i + 2;
  1.1912 +        return ch;
  1.1913 +    }
  1.1914 +
  1.1915 +    /**
  1.1916 +     * Unread one next character, and retreat cursor by one.
  1.1917 +     */
  1.1918 +    private void unread() {
  1.1919 +        cursor--;
  1.1920 +    }
  1.1921 +
  1.1922 +    /**
  1.1923 +     * Internal method used for handling all syntax errors. The pattern is
  1.1924 +     * displayed with a pointer to aid in locating the syntax error.
  1.1925 +     */
  1.1926 +    private PatternSyntaxException error(String s) {
  1.1927 +        return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
  1.1928 +    }
  1.1929 +
  1.1930 +    /**
  1.1931 +     * Determines if there is any supplementary character or unpaired
  1.1932 +     * surrogate in the specified range.
  1.1933 +     */
  1.1934 +    private boolean findSupplementary(int start, int end) {
  1.1935 +        for (int i = start; i < end; i++) {
  1.1936 +            if (isSupplementary(temp[i]))
  1.1937 +                return true;
  1.1938 +        }
  1.1939 +        return false;
  1.1940 +    }
  1.1941 +
  1.1942 +    /**
  1.1943 +     * Determines if the specified code point is a supplementary
  1.1944 +     * character or unpaired surrogate.
  1.1945 +     */
  1.1946 +    private static final boolean isSupplementary(int ch) {
  1.1947 +        return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
  1.1948 +               Character.isSurrogate((char)ch);
  1.1949 +    }
  1.1950 +
  1.1951 +    /**
  1.1952 +     *  The following methods handle the main parsing. They are sorted
  1.1953 +     *  according to their precedence order, the lowest one first.
  1.1954 +     */
  1.1955 +
  1.1956 +    /**
  1.1957 +     * The expression is parsed with branch nodes added for alternations.
  1.1958 +     * This may be called recursively to parse sub expressions that may
  1.1959 +     * contain alternations.
  1.1960 +     */
  1.1961 +    private Node expr(Node end) {
  1.1962 +        Node prev = null;
  1.1963 +        Node firstTail = null;
  1.1964 +        Node branchConn = null;
  1.1965 +
  1.1966 +        for (;;) {
  1.1967 +            Node node = sequence(end);
  1.1968 +            Node nodeTail = root;      //double return
  1.1969 +            if (prev == null) {
  1.1970 +                prev = node;
  1.1971 +                firstTail = nodeTail;
  1.1972 +            } else {
  1.1973 +                // Branch
  1.1974 +                if (branchConn == null) {
  1.1975 +                    branchConn = new BranchConn();
  1.1976 +                    branchConn.next = end;
  1.1977 +                }
  1.1978 +                if (node == end) {
  1.1979 +                    // if the node returned from sequence() is "end"
  1.1980 +                    // we have an empty expr, set a null atom into
  1.1981 +                    // the branch to indicate to go "next" directly.
  1.1982 +                    node = null;
  1.1983 +                } else {
  1.1984 +                    // the "tail.next" of each atom goes to branchConn
  1.1985 +                    nodeTail.next = branchConn;
  1.1986 +                }
  1.1987 +                if (prev instanceof Branch) {
  1.1988 +                    ((Branch)prev).add(node);
  1.1989 +                } else {
  1.1990 +                    if (prev == end) {
  1.1991 +                        prev = null;
  1.1992 +                    } else {
  1.1993 +                        // replace the "end" with "branchConn" at its tail.next
  1.1994 +                        // when put the "prev" into the branch as the first atom.
  1.1995 +                        firstTail.next = branchConn;
  1.1996 +                    }
  1.1997 +                    prev = new Branch(prev, node, branchConn);
  1.1998 +                }
  1.1999 +            }
  1.2000 +            if (peek() != '|') {
  1.2001 +                return prev;
  1.2002 +            }
  1.2003 +            next();
  1.2004 +        }
  1.2005 +    }
  1.2006 +
  1.2007 +    /**
  1.2008 +     * Parsing of sequences between alternations.
  1.2009 +     */
  1.2010 +    private Node sequence(Node end) {
  1.2011 +        Node head = null;
  1.2012 +        Node tail = null;
  1.2013 +        Node node = null;
  1.2014 +    LOOP:
  1.2015 +        for (;;) {
  1.2016 +            int ch = peek();
  1.2017 +            switch (ch) {
  1.2018 +            case '(':
  1.2019 +                // Because group handles its own closure,
  1.2020 +                // we need to treat it differently
  1.2021 +                node = group0();
  1.2022 +                // Check for comment or flag group
  1.2023 +                if (node == null)
  1.2024 +                    continue;
  1.2025 +                if (head == null)
  1.2026 +                    head = node;
  1.2027 +                else
  1.2028 +                    tail.next = node;
  1.2029 +                // Double return: Tail was returned in root
  1.2030 +                tail = root;
  1.2031 +                continue;
  1.2032 +            case '[':
  1.2033 +                node = clazz(true);
  1.2034 +                break;
  1.2035 +            case '\\':
  1.2036 +                ch = nextEscaped();
  1.2037 +                if (ch == 'p' || ch == 'P') {
  1.2038 +                    boolean oneLetter = true;
  1.2039 +                    boolean comp = (ch == 'P');
  1.2040 +                    ch = next(); // Consume { if present
  1.2041 +                    if (ch != '{') {
  1.2042 +                        unread();
  1.2043 +                    } else {
  1.2044 +                        oneLetter = false;
  1.2045 +                    }
  1.2046 +                    node = family(oneLetter, comp);
  1.2047 +                } else {
  1.2048 +                    unread();
  1.2049 +                    node = atom();
  1.2050 +                }
  1.2051 +                break;
  1.2052 +            case '^':
  1.2053 +                next();
  1.2054 +                if (has(MULTILINE)) {
  1.2055 +                    if (has(UNIX_LINES))
  1.2056 +                        node = new UnixCaret();
  1.2057 +                    else
  1.2058 +                        node = new Caret();
  1.2059 +                } else {
  1.2060 +                    node = new Begin();
  1.2061 +                }
  1.2062 +                break;
  1.2063 +            case '$':
  1.2064 +                next();
  1.2065 +                if (has(UNIX_LINES))
  1.2066 +                    node = new UnixDollar(has(MULTILINE));
  1.2067 +                else
  1.2068 +                    node = new Dollar(has(MULTILINE));
  1.2069 +                break;
  1.2070 +            case '.':
  1.2071 +                next();
  1.2072 +                if (has(DOTALL)) {
  1.2073 +                    node = new All();
  1.2074 +                } else {
  1.2075 +                    if (has(UNIX_LINES))
  1.2076 +                        node = new UnixDot();
  1.2077 +                    else {
  1.2078 +                        node = new Dot();
  1.2079 +                    }
  1.2080 +                }
  1.2081 +                break;
  1.2082 +            case '|':
  1.2083 +            case ')':
  1.2084 +                break LOOP;
  1.2085 +            case ']': // Now interpreting dangling ] and } as literals
  1.2086 +            case '}':
  1.2087 +                node = atom();
  1.2088 +                break;
  1.2089 +            case '?':
  1.2090 +            case '*':
  1.2091 +            case '+':
  1.2092 +                next();
  1.2093 +                throw error("Dangling meta character '" + ((char)ch) + "'");
  1.2094 +            case 0:
  1.2095 +                if (cursor >= patternLength) {
  1.2096 +                    break LOOP;
  1.2097 +                }
  1.2098 +                // Fall through
  1.2099 +            default:
  1.2100 +                node = atom();
  1.2101 +                break;
  1.2102 +            }
  1.2103 +
  1.2104 +            node = closure(node);
  1.2105 +
  1.2106 +            if (head == null) {
  1.2107 +                head = tail = node;
  1.2108 +            } else {
  1.2109 +                tail.next = node;
  1.2110 +                tail = node;
  1.2111 +            }
  1.2112 +        }
  1.2113 +        if (head == null) {
  1.2114 +            return end;
  1.2115 +        }
  1.2116 +        tail.next = end;
  1.2117 +        root = tail;      //double return
  1.2118 +        return head;
  1.2119 +    }
  1.2120 +
  1.2121 +    /**
  1.2122 +     * Parse and add a new Single or Slice.
  1.2123 +     */
  1.2124 +    private Node atom() {
  1.2125 +        int first = 0;
  1.2126 +        int prev = -1;
  1.2127 +        boolean hasSupplementary = false;
  1.2128 +        int ch = peek();
  1.2129 +        for (;;) {
  1.2130 +            switch (ch) {
  1.2131 +            case '*':
  1.2132 +            case '+':
  1.2133 +            case '?':
  1.2134 +            case '{':
  1.2135 +                if (first > 1) {
  1.2136 +                    cursor = prev;    // Unwind one character
  1.2137 +                    first--;
  1.2138 +                }
  1.2139 +                break;
  1.2140 +            case '$':
  1.2141 +            case '.':
  1.2142 +            case '^':
  1.2143 +            case '(':
  1.2144 +            case '[':
  1.2145 +            case '|':
  1.2146 +            case ')':
  1.2147 +                break;
  1.2148 +            case '\\':
  1.2149 +                ch = nextEscaped();
  1.2150 +                if (ch == 'p' || ch == 'P') { // Property
  1.2151 +                    if (first > 0) { // Slice is waiting; handle it first
  1.2152 +                        unread();
  1.2153 +                        break;
  1.2154 +                    } else { // No slice; just return the family node
  1.2155 +                        boolean comp = (ch == 'P');
  1.2156 +                        boolean oneLetter = true;
  1.2157 +                        ch = next(); // Consume { if present
  1.2158 +                        if (ch != '{')
  1.2159 +                            unread();
  1.2160 +                        else
  1.2161 +                            oneLetter = false;
  1.2162 +                        return family(oneLetter, comp);
  1.2163 +                    }
  1.2164 +                }
  1.2165 +                unread();
  1.2166 +                prev = cursor;
  1.2167 +                ch = escape(false, first == 0);
  1.2168 +                if (ch >= 0) {
  1.2169 +                    append(ch, first);
  1.2170 +                    first++;
  1.2171 +                    if (isSupplementary(ch)) {
  1.2172 +                        hasSupplementary = true;
  1.2173 +                    }
  1.2174 +                    ch = peek();
  1.2175 +                    continue;
  1.2176 +                } else if (first == 0) {
  1.2177 +                    return root;
  1.2178 +                }
  1.2179 +                // Unwind meta escape sequence
  1.2180 +                cursor = prev;
  1.2181 +                break;
  1.2182 +            case 0:
  1.2183 +                if (cursor >= patternLength) {
  1.2184 +                    break;
  1.2185 +                }
  1.2186 +                // Fall through
  1.2187 +            default:
  1.2188 +                prev = cursor;
  1.2189 +                append(ch, first);
  1.2190 +                first++;
  1.2191 +                if (isSupplementary(ch)) {
  1.2192 +                    hasSupplementary = true;
  1.2193 +                }
  1.2194 +                ch = next();
  1.2195 +                continue;
  1.2196 +            }
  1.2197 +            break;
  1.2198 +        }
  1.2199 +        if (first == 1) {
  1.2200 +            return newSingle(buffer[0]);
  1.2201 +        } else {
  1.2202 +            return newSlice(buffer, first, hasSupplementary);
  1.2203 +        }
  1.2204 +    }
  1.2205 +
  1.2206 +    private void append(int ch, int len) {
  1.2207 +        if (len >= buffer.length) {
  1.2208 +            int[] tmp = new int[len+len];
  1.2209 +            System.arraycopy(buffer, 0, tmp, 0, len);
  1.2210 +            buffer = tmp;
  1.2211 +        }
  1.2212 +        buffer[len] = ch;
  1.2213 +    }
  1.2214 +
  1.2215 +    /**
  1.2216 +     * Parses a backref greedily, taking as many numbers as it
  1.2217 +     * can. The first digit is always treated as a backref, but
  1.2218 +     * multi digit numbers are only treated as a backref if at
  1.2219 +     * least that many backrefs exist at this point in the regex.
  1.2220 +     */
  1.2221 +    private Node ref(int refNum) {
  1.2222 +        boolean done = false;
  1.2223 +        while(!done) {
  1.2224 +            int ch = peek();
  1.2225 +            switch(ch) {
  1.2226 +            case '0':
  1.2227 +            case '1':
  1.2228 +            case '2':
  1.2229 +            case '3':
  1.2230 +            case '4':
  1.2231 +            case '5':
  1.2232 +            case '6':
  1.2233 +            case '7':
  1.2234 +            case '8':
  1.2235 +            case '9':
  1.2236 +                int newRefNum = (refNum * 10) + (ch - '0');
  1.2237 +                // Add another number if it doesn't make a group
  1.2238 +                // that doesn't exist
  1.2239 +                if (capturingGroupCount - 1 < newRefNum) {
  1.2240 +                    done = true;
  1.2241 +                    break;
  1.2242 +                }
  1.2243 +                refNum = newRefNum;
  1.2244 +                read();
  1.2245 +                break;
  1.2246 +            default:
  1.2247 +                done = true;
  1.2248 +                break;
  1.2249 +            }
  1.2250 +        }
  1.2251 +        if (has(CASE_INSENSITIVE))
  1.2252 +            return new CIBackRef(refNum, has(UNICODE_CASE));
  1.2253 +        else
  1.2254 +            return new BackRef(refNum);
  1.2255 +    }
  1.2256 +
  1.2257 +    /**
  1.2258 +     * Parses an escape sequence to determine the actual value that needs
  1.2259 +     * to be matched.
  1.2260 +     * If -1 is returned and create was true a new object was added to the tree
  1.2261 +     * to handle the escape sequence.
  1.2262 +     * If the returned value is greater than zero, it is the value that
  1.2263 +     * matches the escape sequence.
  1.2264 +     */
  1.2265 +    private int escape(boolean inclass, boolean create) {
  1.2266 +        int ch = skip();
  1.2267 +        switch (ch) {
  1.2268 +        case '0':
  1.2269 +            return o();
  1.2270 +        case '1':
  1.2271 +        case '2':
  1.2272 +        case '3':
  1.2273 +        case '4':
  1.2274 +        case '5':
  1.2275 +        case '6':
  1.2276 +        case '7':
  1.2277 +        case '8':
  1.2278 +        case '9':
  1.2279 +            if (inclass) break;
  1.2280 +            if (create) {
  1.2281 +                root = ref((ch - '0'));
  1.2282 +            }
  1.2283 +            return -1;
  1.2284 +        case 'A':
  1.2285 +            if (inclass) break;
  1.2286 +            if (create) root = new Begin();
  1.2287 +            return -1;
  1.2288 +        case 'B':
  1.2289 +            if (inclass) break;
  1.2290 +            if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
  1.2291 +            return -1;
  1.2292 +        case 'C':
  1.2293 +            break;
  1.2294 +        case 'D':
  1.2295 +            if (create) root = has(UNICODE_CHARACTER_CLASS)
  1.2296 +                               ? new Utype(UnicodeProp.DIGIT).complement()
  1.2297 +                               : new Ctype(ASCII.DIGIT).complement();
  1.2298 +            return -1;
  1.2299 +        case 'E':
  1.2300 +        case 'F':
  1.2301 +            break;
  1.2302 +        case 'G':
  1.2303 +            if (inclass) break;
  1.2304 +            if (create) root = new LastMatch();
  1.2305 +            return -1;
  1.2306 +        case 'H':
  1.2307 +        case 'I':
  1.2308 +        case 'J':
  1.2309 +        case 'K':
  1.2310 +        case 'L':
  1.2311 +        case 'M':
  1.2312 +        case 'N':
  1.2313 +        case 'O':
  1.2314 +        case 'P':
  1.2315 +        case 'Q':
  1.2316 +        case 'R':
  1.2317 +            break;
  1.2318 +        case 'S':
  1.2319 +            if (create) root = has(UNICODE_CHARACTER_CLASS)
  1.2320 +                               ? new Utype(UnicodeProp.WHITE_SPACE).complement()
  1.2321 +                               : new Ctype(ASCII.SPACE).complement();
  1.2322 +            return -1;
  1.2323 +        case 'T':
  1.2324 +        case 'U':
  1.2325 +        case 'V':
  1.2326 +            break;
  1.2327 +        case 'W':
  1.2328 +            if (create) root = has(UNICODE_CHARACTER_CLASS)
  1.2329 +                               ? new Utype(UnicodeProp.WORD).complement()
  1.2330 +                               : new Ctype(ASCII.WORD).complement();
  1.2331 +            return -1;
  1.2332 +        case 'X':
  1.2333 +        case 'Y':
  1.2334 +            break;
  1.2335 +        case 'Z':
  1.2336 +            if (inclass) break;
  1.2337 +            if (create) {
  1.2338 +                if (has(UNIX_LINES))
  1.2339 +                    root = new UnixDollar(false);
  1.2340 +                else
  1.2341 +                    root = new Dollar(false);
  1.2342 +            }
  1.2343 +            return -1;
  1.2344 +        case 'a':
  1.2345 +            return '\007';
  1.2346 +        case 'b':
  1.2347 +            if (inclass) break;
  1.2348 +            if (create) root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
  1.2349 +            return -1;
  1.2350 +        case 'c':
  1.2351 +            return c();
  1.2352 +        case 'd':
  1.2353 +            if (create) root = has(UNICODE_CHARACTER_CLASS)
  1.2354 +                               ? new Utype(UnicodeProp.DIGIT)
  1.2355 +                               : new Ctype(ASCII.DIGIT);
  1.2356 +            return -1;
  1.2357 +        case 'e':
  1.2358 +            return '\033';
  1.2359 +        case 'f':
  1.2360 +            return '\f';
  1.2361 +        case 'g':
  1.2362 +        case 'h':
  1.2363 +        case 'i':
  1.2364 +        case 'j':
  1.2365 +            break;
  1.2366 +        case 'k':
  1.2367 +            if (inclass)
  1.2368 +                break;
  1.2369 +            if (read() != '<')
  1.2370 +                throw error("\\k is not followed by '<' for named capturing group");
  1.2371 +            String name = groupname(read());
  1.2372 +            if (!namedGroups().containsKey(name))
  1.2373 +                throw error("(named capturing group <"+ name+"> does not exit");
  1.2374 +            if (create) {
  1.2375 +                if (has(CASE_INSENSITIVE))
  1.2376 +                    root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
  1.2377 +                else
  1.2378 +                    root = new BackRef(namedGroups().get(name));
  1.2379 +            }
  1.2380 +            return -1;
  1.2381 +        case 'l':
  1.2382 +        case 'm':
  1.2383 +            break;
  1.2384 +        case 'n':
  1.2385 +            return '\n';
  1.2386 +        case 'o':
  1.2387 +        case 'p':
  1.2388 +        case 'q':
  1.2389 +            break;
  1.2390 +        case 'r':
  1.2391 +            return '\r';
  1.2392 +        case 's':
  1.2393 +            if (create) root = has(UNICODE_CHARACTER_CLASS)
  1.2394 +                               ? new Utype(UnicodeProp.WHITE_SPACE)
  1.2395 +                               : new Ctype(ASCII.SPACE);
  1.2396 +            return -1;
  1.2397 +        case 't':
  1.2398 +            return '\t';
  1.2399 +        case 'u':
  1.2400 +            return u();
  1.2401 +        case 'v':
  1.2402 +            return '\013';
  1.2403 +        case 'w':
  1.2404 +            if (create) root = has(UNICODE_CHARACTER_CLASS)
  1.2405 +                               ? new Utype(UnicodeProp.WORD)
  1.2406 +                               : new Ctype(ASCII.WORD);
  1.2407 +            return -1;
  1.2408 +        case 'x':
  1.2409 +            return x();
  1.2410 +        case 'y':
  1.2411 +            break;
  1.2412 +        case 'z':
  1.2413 +            if (inclass) break;
  1.2414 +            if (create) root = new End();
  1.2415 +            return -1;
  1.2416 +        default:
  1.2417 +            return ch;
  1.2418 +        }
  1.2419 +        throw error("Illegal/unsupported escape sequence");
  1.2420 +    }
  1.2421 +
  1.2422 +    /**
  1.2423 +     * Parse a character class, and return the node that matches it.
  1.2424 +     *
  1.2425 +     * Consumes a ] on the way out if consume is true. Usually consume
  1.2426 +     * is true except for the case of [abc&&def] where def is a separate
  1.2427 +     * right hand node with "understood" brackets.
  1.2428 +     */
  1.2429 +    private CharProperty clazz(boolean consume) {
  1.2430 +        CharProperty prev = null;
  1.2431 +        CharProperty node = null;
  1.2432 +        BitClass bits = new BitClass();
  1.2433 +        boolean include = true;
  1.2434 +        boolean firstInClass = true;
  1.2435 +        int ch = next();
  1.2436 +        for (;;) {
  1.2437 +            switch (ch) {
  1.2438 +                case '^':
  1.2439 +                    // Negates if first char in a class, otherwise literal
  1.2440 +                    if (firstInClass) {
  1.2441 +                        if (temp[cursor-1] != '[')
  1.2442 +                            break;
  1.2443 +                        ch = next();
  1.2444 +                        include = !include;
  1.2445 +                        continue;
  1.2446 +                    } else {
  1.2447 +                        // ^ not first in class, treat as literal
  1.2448 +                        break;
  1.2449 +                    }
  1.2450 +                case '[':
  1.2451 +                    firstInClass = false;
  1.2452 +                    node = clazz(true);
  1.2453 +                    if (prev == null)
  1.2454 +                        prev = node;
  1.2455 +                    else
  1.2456 +                        prev = union(prev, node);
  1.2457 +                    ch = peek();
  1.2458 +                    continue;
  1.2459 +                case '&':
  1.2460 +                    firstInClass = false;
  1.2461 +                    ch = next();
  1.2462 +                    if (ch == '&') {
  1.2463 +                        ch = next();
  1.2464 +                        CharProperty rightNode = null;
  1.2465 +                        while (ch != ']' && ch != '&') {
  1.2466 +                            if (ch == '[') {
  1.2467 +                                if (rightNode == null)
  1.2468 +                                    rightNode = clazz(true);
  1.2469 +                                else
  1.2470 +                                    rightNode = union(rightNode, clazz(true));
  1.2471 +                            } else { // abc&&def
  1.2472 +                                unread();
  1.2473 +                                rightNode = clazz(false);
  1.2474 +                            }
  1.2475 +                            ch = peek();
  1.2476 +                        }
  1.2477 +                        if (rightNode != null)
  1.2478 +                            node = rightNode;
  1.2479 +                        if (prev == null) {
  1.2480 +                            if (rightNode == null)
  1.2481 +                                throw error("Bad class syntax");
  1.2482 +                            else
  1.2483 +                                prev = rightNode;
  1.2484 +                        } else {
  1.2485 +                            prev = intersection(prev, node);
  1.2486 +                        }
  1.2487 +                    } else {
  1.2488 +                        // treat as a literal &
  1.2489 +                        unread();
  1.2490 +                        break;
  1.2491 +                    }
  1.2492 +                    continue;
  1.2493 +                case 0:
  1.2494 +                    firstInClass = false;
  1.2495 +                    if (cursor >= patternLength)
  1.2496 +                        throw error("Unclosed character class");
  1.2497 +                    break;
  1.2498 +                case ']':
  1.2499 +                    firstInClass = false;
  1.2500 +                    if (prev != null) {
  1.2501 +                        if (consume)
  1.2502 +                            next();
  1.2503 +                        return prev;
  1.2504 +                    }
  1.2505 +                    break;
  1.2506 +                default:
  1.2507 +                    firstInClass = false;
  1.2508 +                    break;
  1.2509 +            }
  1.2510 +            node = range(bits);
  1.2511 +            if (include) {
  1.2512 +                if (prev == null) {
  1.2513 +                    prev = node;
  1.2514 +                } else {
  1.2515 +                    if (prev != node)
  1.2516 +                        prev = union(prev, node);
  1.2517 +                }
  1.2518 +            } else {
  1.2519 +                if (prev == null) {
  1.2520 +                    prev = node.complement();
  1.2521 +                } else {
  1.2522 +                    if (prev != node)
  1.2523 +                        prev = setDifference(prev, node);
  1.2524 +                }
  1.2525 +            }
  1.2526 +            ch = peek();
  1.2527 +        }
  1.2528 +    }
  1.2529 +
  1.2530 +    private CharProperty bitsOrSingle(BitClass bits, int ch) {
  1.2531 +        /* Bits can only handle codepoints in [u+0000-u+00ff] range.
  1.2532 +           Use "single" node instead of bits when dealing with unicode
  1.2533 +           case folding for codepoints listed below.
  1.2534 +           (1)Uppercase out of range: u+00ff, u+00b5
  1.2535 +              toUpperCase(u+00ff) -> u+0178
  1.2536 +              toUpperCase(u+00b5) -> u+039c
  1.2537 +           (2)LatinSmallLetterLongS u+17f
  1.2538 +              toUpperCase(u+017f) -> u+0053
  1.2539 +           (3)LatinSmallLetterDotlessI u+131
  1.2540 +              toUpperCase(u+0131) -> u+0049
  1.2541 +           (4)LatinCapitalLetterIWithDotAbove u+0130
  1.2542 +              toLowerCase(u+0130) -> u+0069
  1.2543 +           (5)KelvinSign u+212a
  1.2544 +              toLowerCase(u+212a) ==> u+006B
  1.2545 +           (6)AngstromSign u+212b
  1.2546 +              toLowerCase(u+212b) ==> u+00e5
  1.2547 +        */
  1.2548 +        int d;
  1.2549 +        if (ch < 256 &&
  1.2550 +            !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
  1.2551 +              (ch == 0xff || ch == 0xb5 ||
  1.2552 +               ch == 0x49 || ch == 0x69 ||  //I and i
  1.2553 +               ch == 0x53 || ch == 0x73 ||  //S and s
  1.2554 +               ch == 0x4b || ch == 0x6b ||  //K and k
  1.2555 +               ch == 0xc5 || ch == 0xe5)))  //A+ring
  1.2556 +            return bits.add(ch, flags());
  1.2557 +        return newSingle(ch);
  1.2558 +    }
  1.2559 +
  1.2560 +    /**
  1.2561 +     * Parse a single character or a character range in a character class
  1.2562 +     * and return its representative node.
  1.2563 +     */
  1.2564 +    private CharProperty range(BitClass bits) {
  1.2565 +        int ch = peek();
  1.2566 +        if (ch == '\\') {
  1.2567 +            ch = nextEscaped();
  1.2568 +            if (ch == 'p' || ch == 'P') { // A property
  1.2569 +                boolean comp = (ch == 'P');
  1.2570 +                boolean oneLetter = true;
  1.2571 +                // Consume { if present
  1.2572 +                ch = next();
  1.2573 +                if (ch != '{')
  1.2574 +                    unread();
  1.2575 +                else
  1.2576 +                    oneLetter = false;
  1.2577 +                return family(oneLetter, comp);
  1.2578 +            } else { // ordinary escape
  1.2579 +                unread();
  1.2580 +                ch = escape(true, true);
  1.2581 +                if (ch == -1)
  1.2582 +                    return (CharProperty) root;
  1.2583 +            }
  1.2584 +        } else {
  1.2585 +            ch = single();
  1.2586 +        }
  1.2587 +        if (ch >= 0) {
  1.2588 +            if (peek() == '-') {
  1.2589 +                int endRange = temp[cursor+1];
  1.2590 +                if (endRange == '[') {
  1.2591 +                    return bitsOrSingle(bits, ch);
  1.2592 +                }
  1.2593 +                if (endRange != ']') {
  1.2594 +                    next();
  1.2595 +                    int m = single();
  1.2596 +                    if (m < ch)
  1.2597 +                        throw error("Illegal character range");
  1.2598 +                    if (has(CASE_INSENSITIVE))
  1.2599 +                        return caseInsensitiveRangeFor(ch, m);
  1.2600 +                    else
  1.2601 +                        return rangeFor(ch, m);
  1.2602 +                }
  1.2603 +            }
  1.2604 +            return bitsOrSingle(bits, ch);
  1.2605 +        }
  1.2606 +        throw error("Unexpected character '"+((char)ch)+"'");
  1.2607 +    }
  1.2608 +
  1.2609 +    private int single() {
  1.2610 +        int ch = peek();
  1.2611 +        switch (ch) {
  1.2612 +        case '\\':
  1.2613 +            return escape(true, false);
  1.2614 +        default:
  1.2615 +            next();
  1.2616 +            return ch;
  1.2617 +        }
  1.2618 +    }
  1.2619 +
  1.2620 +    /**
  1.2621 +     * Parses a Unicode character family and returns its representative node.
  1.2622 +     */
  1.2623 +    private CharProperty family(boolean singleLetter,
  1.2624 +                                boolean maybeComplement)
  1.2625 +    {
  1.2626 +        next();
  1.2627 +        String name;
  1.2628 +        CharProperty node = null;
  1.2629 +
  1.2630 +        if (singleLetter) {
  1.2631 +            int c = temp[cursor];
  1.2632 +            if (!Character.isSupplementaryCodePoint(c)) {
  1.2633 +                name = String.valueOf((char)c);
  1.2634 +            } else {
  1.2635 +                name = new String(temp, cursor, 1);
  1.2636 +            }
  1.2637 +            read();
  1.2638 +        } else {
  1.2639 +            int i = cursor;
  1.2640 +            mark('}');
  1.2641 +            while(read() != '}') {
  1.2642 +            }
  1.2643 +            mark('\000');
  1.2644 +            int j = cursor;
  1.2645 +            if (j > patternLength)
  1.2646 +                throw error("Unclosed character family");
  1.2647 +            if (i + 1 >= j)
  1.2648 +                throw error("Empty character family");
  1.2649 +            name = new String(temp, i, j-i-1);
  1.2650 +        }
  1.2651 +
  1.2652 +        int i = name.indexOf('=');
  1.2653 +        if (i != -1) {
  1.2654 +            // property construct \p{name=value}
  1.2655 +            String value = name.substring(i + 1);
  1.2656 +            name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
  1.2657 +            if ("sc".equals(name) || "script".equals(name)) {
  1.2658 +                node = unicodeScriptPropertyFor(value);
  1.2659 +            } else if ("blk".equals(name) || "block".equals(name)) {
  1.2660 +                node = unicodeBlockPropertyFor(value);
  1.2661 +            } else if ("gc".equals(name) || "general_category".equals(name)) {
  1.2662 +                node = charPropertyNodeFor(value);
  1.2663 +            } else {
  1.2664 +                throw error("Unknown Unicode property {name=<" + name + ">, "
  1.2665 +                             + "value=<" + value + ">}");
  1.2666 +            }
  1.2667 +        } else {
  1.2668 +            if (name.startsWith("In")) {
  1.2669 +                // \p{inBlockName}
  1.2670 +                node = unicodeBlockPropertyFor(name.substring(2));
  1.2671 +            } else if (name.startsWith("Is")) {
  1.2672 +                // \p{isGeneralCategory} and \p{isScriptName}
  1.2673 +                name = name.substring(2);
  1.2674 +                UnicodeProp uprop = UnicodeProp.forName(name);
  1.2675 +                if (uprop != null)
  1.2676 +                    node = new Utype(uprop);
  1.2677 +                if (node == null)
  1.2678 +                    node = CharPropertyNames.charPropertyFor(name);
  1.2679 +                if (node == null)
  1.2680 +                    node = unicodeScriptPropertyFor(name);
  1.2681 +            } else {
  1.2682 +                if (has(UNICODE_CHARACTER_CLASS)) {
  1.2683 +                    UnicodeProp uprop = UnicodeProp.forPOSIXName(name);
  1.2684 +                    if (uprop != null)
  1.2685 +                        node = new Utype(uprop);
  1.2686 +                }
  1.2687 +                if (node == null)
  1.2688 +                    node = charPropertyNodeFor(name);
  1.2689 +            }
  1.2690 +        }
  1.2691 +        if (maybeComplement) {
  1.2692 +            if (node instanceof Category || node instanceof Block)
  1.2693 +                hasSupplementary = true;
  1.2694 +            node = node.complement();
  1.2695 +        }
  1.2696 +        return node;
  1.2697 +    }
  1.2698 +
  1.2699 +
  1.2700 +    /**
  1.2701 +     * Returns a CharProperty matching all characters belong to
  1.2702 +     * a UnicodeScript.
  1.2703 +     */
  1.2704 +    private CharProperty unicodeScriptPropertyFor(String name) {
  1.2705 +        final Character.UnicodeScript script;
  1.2706 +        try {
  1.2707 +            script = Character.UnicodeScript.forName(name);
  1.2708 +        } catch (IllegalArgumentException iae) {
  1.2709 +            throw error("Unknown character script name {" + name + "}");
  1.2710 +        }
  1.2711 +        return new Script(script);
  1.2712 +    }
  1.2713 +
  1.2714 +    /**
  1.2715 +     * Returns a CharProperty matching all characters in a UnicodeBlock.
  1.2716 +     */
  1.2717 +    private CharProperty unicodeBlockPropertyFor(String name) {
  1.2718 +        final Character.UnicodeBlock block;
  1.2719 +        try {
  1.2720 +            block = Character.UnicodeBlock.forName(name);
  1.2721 +        } catch (IllegalArgumentException iae) {
  1.2722 +            throw error("Unknown character block name {" + name + "}");
  1.2723 +        }
  1.2724 +        return new Block(block);
  1.2725 +    }
  1.2726 +
  1.2727 +    /**
  1.2728 +     * Returns a CharProperty matching all characters in a named property.
  1.2729 +     */
  1.2730 +    private CharProperty charPropertyNodeFor(String name) {
  1.2731 +        CharProperty p = CharPropertyNames.charPropertyFor(name);
  1.2732 +        if (p == null)
  1.2733 +            throw error("Unknown character property name {" + name + "}");
  1.2734 +        return p;
  1.2735 +    }
  1.2736 +
  1.2737 +    /**
  1.2738 +     * Parses and returns the name of a "named capturing group", the trailing
  1.2739 +     * ">" is consumed after parsing.
  1.2740 +     */
  1.2741 +    private String groupname(int ch) {
  1.2742 +        StringBuilder sb = new StringBuilder();
  1.2743 +        sb.append(Character.toChars(ch));
  1.2744 +        while (ASCII.isLower(ch=read()) || ASCII.isUpper(ch) ||
  1.2745 +               ASCII.isDigit(ch)) {
  1.2746 +            sb.append(Character.toChars(ch));
  1.2747 +        }
  1.2748 +        if (sb.length() == 0)
  1.2749 +            throw error("named capturing group has 0 length name");
  1.2750 +        if (ch != '>')
  1.2751 +            throw error("named capturing group is missing trailing '>'");
  1.2752 +        return sb.toString();
  1.2753 +    }
  1.2754 +
  1.2755 +    /**
  1.2756 +     * Parses a group and returns the head node of a set of nodes that process
  1.2757 +     * the group. Sometimes a double return system is used where the tail is
  1.2758 +     * returned in root.
  1.2759 +     */
  1.2760 +    private Node group0() {
  1.2761 +        boolean capturingGroup = false;
  1.2762 +        Node head = null;
  1.2763 +        Node tail = null;
  1.2764 +        int save = flags;
  1.2765 +        root = null;
  1.2766 +        int ch = next();
  1.2767 +        if (ch == '?') {
  1.2768 +            ch = skip();
  1.2769 +            switch (ch) {
  1.2770 +            case ':':   //  (?:xxx) pure group
  1.2771 +                head = createGroup(true);
  1.2772 +                tail = root;
  1.2773 +                head.next = expr(tail);
  1.2774 +                break;
  1.2775 +            case '=':   // (?=xxx) and (?!xxx) lookahead
  1.2776 +            case '!':
  1.2777 +                head = createGroup(true);
  1.2778 +                tail = root;
  1.2779 +                head.next = expr(tail);
  1.2780 +                if (ch == '=') {
  1.2781 +                    head = tail = new Pos(head);
  1.2782 +                } else {
  1.2783 +                    head = tail = new Neg(head);
  1.2784 +                }
  1.2785 +                break;
  1.2786 +            case '>':   // (?>xxx)  independent group
  1.2787 +                head = createGroup(true);
  1.2788 +                tail = root;
  1.2789 +                head.next = expr(tail);
  1.2790 +                head = tail = new Ques(head, INDEPENDENT);
  1.2791 +                break;
  1.2792 +            case '<':   // (?<xxx)  look behind
  1.2793 +                ch = read();
  1.2794 +                if (ASCII.isLower(ch) || ASCII.isUpper(ch)) {
  1.2795 +                    // named captured group
  1.2796 +                    String name = groupname(ch);
  1.2797 +                    if (namedGroups().containsKey(name))
  1.2798 +                        throw error("Named capturing group <" + name
  1.2799 +                                    + "> is already defined");
  1.2800 +                    capturingGroup = true;
  1.2801 +                    head = createGroup(false);
  1.2802 +                    tail = root;
  1.2803 +                    namedGroups().put(name, capturingGroupCount-1);
  1.2804 +                    head.next = expr(tail);
  1.2805 +                    break;
  1.2806 +                }
  1.2807 +                int start = cursor;
  1.2808 +                head = createGroup(true);
  1.2809 +                tail = root;
  1.2810 +                head.next = expr(tail);
  1.2811 +                tail.next = lookbehindEnd;
  1.2812 +                TreeInfo info = new TreeInfo();
  1.2813 +                head.study(info);
  1.2814 +                if (info.maxValid == false) {
  1.2815 +                    throw error("Look-behind group does not have "
  1.2816 +                                + "an obvious maximum length");
  1.2817 +                }
  1.2818 +                boolean hasSupplementary = findSupplementary(start, patternLength);
  1.2819 +                if (ch == '=') {
  1.2820 +                    head = tail = (hasSupplementary ?
  1.2821 +                                   new BehindS(head, info.maxLength,
  1.2822 +                                               info.minLength) :
  1.2823 +                                   new Behind(head, info.maxLength,
  1.2824 +                                              info.minLength));
  1.2825 +                } else if (ch == '!') {
  1.2826 +                    head = tail = (hasSupplementary ?
  1.2827 +                                   new NotBehindS(head, info.maxLength,
  1.2828 +                                                  info.minLength) :
  1.2829 +                                   new NotBehind(head, info.maxLength,
  1.2830 +                                                 info.minLength));
  1.2831 +                } else {
  1.2832 +                    throw error("Unknown look-behind group");
  1.2833 +                }
  1.2834 +                break;
  1.2835 +            case '$':
  1.2836 +            case '@':
  1.2837 +                throw error("Unknown group type");
  1.2838 +            default:    // (?xxx:) inlined match flags
  1.2839 +                unread();
  1.2840 +                addFlag();
  1.2841 +                ch = read();
  1.2842 +                if (ch == ')') {
  1.2843 +                    return null;    // Inline modifier only
  1.2844 +                }
  1.2845 +                if (ch != ':') {
  1.2846 +                    throw error("Unknown inline modifier");
  1.2847 +                }
  1.2848 +                head = createGroup(true);
  1.2849 +                tail = root;
  1.2850 +                head.next = expr(tail);
  1.2851 +                break;
  1.2852 +            }
  1.2853 +        } else { // (xxx) a regular group
  1.2854 +            capturingGroup = true;
  1.2855 +            head = createGroup(false);
  1.2856 +            tail = root;
  1.2857 +            head.next = expr(tail);
  1.2858 +        }
  1.2859 +
  1.2860 +        accept(')', "Unclosed group");
  1.2861 +        flags = save;
  1.2862 +
  1.2863 +        // Check for quantifiers
  1.2864 +        Node node = closure(head);
  1.2865 +        if (node == head) { // No closure
  1.2866 +            root = tail;
  1.2867 +            return node;    // Dual return
  1.2868 +        }
  1.2869 +        if (head == tail) { // Zero length assertion
  1.2870 +            root = node;
  1.2871 +            return node;    // Dual return
  1.2872 +        }
  1.2873 +
  1.2874 +        if (node instanceof Ques) {
  1.2875 +            Ques ques = (Ques) node;
  1.2876 +            if (ques.type == POSSESSIVE) {
  1.2877 +                root = node;
  1.2878 +                return node;
  1.2879 +            }
  1.2880 +            tail.next = new BranchConn();
  1.2881 +            tail = tail.next;
  1.2882 +            if (ques.type == GREEDY) {
  1.2883 +                head = new Branch(head, null, tail);
  1.2884 +            } else { // Reluctant quantifier
  1.2885 +                head = new Branch(null, head, tail);
  1.2886 +            }
  1.2887 +            root = tail;
  1.2888 +            return head;
  1.2889 +        } else if (node instanceof Curly) {
  1.2890 +            Curly curly = (Curly) node;
  1.2891 +            if (curly.type == POSSESSIVE) {
  1.2892 +                root = node;
  1.2893 +                return node;
  1.2894 +            }
  1.2895 +            // Discover if the group is deterministic
  1.2896 +            TreeInfo info = new TreeInfo();
  1.2897 +            if (head.study(info)) { // Deterministic
  1.2898 +                GroupTail temp = (GroupTail) tail;
  1.2899 +                head = root = new GroupCurly(head.next, curly.cmin,
  1.2900 +                                   curly.cmax, curly.type,
  1.2901 +                                   ((GroupTail)tail).localIndex,
  1.2902 +                                   ((GroupTail)tail).groupIndex,
  1.2903 +                                             capturingGroup);
  1.2904 +                return head;
  1.2905 +            } else { // Non-deterministic
  1.2906 +                int temp = ((GroupHead) head).localIndex;
  1.2907 +                Loop loop;
  1.2908 +                if (curly.type == GREEDY)
  1.2909 +                    loop = new Loop(this.localCount, temp);
  1.2910 +                else  // Reluctant Curly
  1.2911 +                    loop = new LazyLoop(this.localCount, temp);
  1.2912 +                Prolog prolog = new Prolog(loop);
  1.2913 +                this.localCount += 1;
  1.2914 +                loop.cmin = curly.cmin;
  1.2915 +                loop.cmax = curly.cmax;
  1.2916 +                loop.body = head;
  1.2917 +                tail.next = loop;
  1.2918 +                root = loop;
  1.2919 +                return prolog; // Dual return
  1.2920 +            }
  1.2921 +        }
  1.2922 +        throw error("Internal logic error");
  1.2923 +    }
  1.2924 +
  1.2925 +    /**
  1.2926 +     * Create group head and tail nodes using double return. If the group is
  1.2927 +     * created with anonymous true then it is a pure group and should not
  1.2928 +     * affect group counting.
  1.2929 +     */
  1.2930 +    private Node createGroup(boolean anonymous) {
  1.2931 +        int localIndex = localCount++;
  1.2932 +        int groupIndex = 0;
  1.2933 +        if (!anonymous)
  1.2934 +            groupIndex = capturingGroupCount++;
  1.2935 +        GroupHead head = new GroupHead(localIndex);
  1.2936 +        root = new GroupTail(localIndex, groupIndex);
  1.2937 +        if (!anonymous && groupIndex < 10)
  1.2938 +            groupNodes[groupIndex] = head;
  1.2939 +        return head;
  1.2940 +    }
  1.2941 +
  1.2942 +    /**
  1.2943 +     * Parses inlined match flags and set them appropriately.
  1.2944 +     */
  1.2945 +    private void addFlag() {
  1.2946 +        int ch = peek();
  1.2947 +        for (;;) {
  1.2948 +            switch (ch) {
  1.2949 +            case 'i':
  1.2950 +                flags |= CASE_INSENSITIVE;
  1.2951 +                break;
  1.2952 +            case 'm':
  1.2953 +                flags |= MULTILINE;
  1.2954 +                break;
  1.2955 +            case 's':
  1.2956 +                flags |= DOTALL;
  1.2957 +                break;
  1.2958 +            case 'd':
  1.2959 +                flags |= UNIX_LINES;
  1.2960 +                break;
  1.2961 +            case 'u':
  1.2962 +                flags |= UNICODE_CASE;
  1.2963 +                break;
  1.2964 +            case 'c':
  1.2965 +                flags |= CANON_EQ;
  1.2966 +                break;
  1.2967 +            case 'x':
  1.2968 +                flags |= COMMENTS;
  1.2969 +                break;
  1.2970 +            case 'U':
  1.2971 +                flags |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
  1.2972 +                break;
  1.2973 +            case '-': // subFlag then fall through
  1.2974 +                ch = next();
  1.2975 +                subFlag();
  1.2976 +            default:
  1.2977 +                return;
  1.2978 +            }
  1.2979 +            ch = next();
  1.2980 +        }
  1.2981 +    }
  1.2982 +
  1.2983 +    /**
  1.2984 +     * Parses the second part of inlined match flags and turns off
  1.2985 +     * flags appropriately.
  1.2986 +     */
  1.2987 +    private void subFlag() {
  1.2988 +        int ch = peek();
  1.2989 +        for (;;) {
  1.2990 +            switch (ch) {
  1.2991 +            case 'i':
  1.2992 +                flags &= ~CASE_INSENSITIVE;
  1.2993 +                break;
  1.2994 +            case 'm':
  1.2995 +                flags &= ~MULTILINE;
  1.2996 +                break;
  1.2997 +            case 's':
  1.2998 +                flags &= ~DOTALL;
  1.2999 +                break;
  1.3000 +            case 'd':
  1.3001 +                flags &= ~UNIX_LINES;
  1.3002 +                break;
  1.3003 +            case 'u':
  1.3004 +                flags &= ~UNICODE_CASE;
  1.3005 +                break;
  1.3006 +            case 'c':
  1.3007 +                flags &= ~CANON_EQ;
  1.3008 +                break;
  1.3009 +            case 'x':
  1.3010 +                flags &= ~COMMENTS;
  1.3011 +                break;
  1.3012 +            case 'U':
  1.3013 +                flags &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
  1.3014 +            default:
  1.3015 +                return;
  1.3016 +            }
  1.3017 +            ch = next();
  1.3018 +        }
  1.3019 +    }
  1.3020 +
  1.3021 +    static final int MAX_REPS   = 0x7FFFFFFF;
  1.3022 +
  1.3023 +    static final int GREEDY     = 0;
  1.3024 +
  1.3025 +    static final int LAZY       = 1;
  1.3026 +
  1.3027 +    static final int POSSESSIVE = 2;
  1.3028 +
  1.3029 +    static final int INDEPENDENT = 3;
  1.3030 +
  1.3031 +    /**
  1.3032 +     * Processes repetition. If the next character peeked is a quantifier
  1.3033 +     * then new nodes must be appended to handle the repetition.
  1.3034 +     * Prev could be a single or a group, so it could be a chain of nodes.
  1.3035 +     */
  1.3036 +    private Node closure(Node prev) {
  1.3037 +        Node atom;
  1.3038 +        int ch = peek();
  1.3039 +        switch (ch) {
  1.3040 +        case '?':
  1.3041 +            ch = next();
  1.3042 +            if (ch == '?') {
  1.3043 +                next();
  1.3044 +                return new Ques(prev, LAZY);
  1.3045 +            } else if (ch == '+') {
  1.3046 +                next();
  1.3047 +                return new Ques(prev, POSSESSIVE);
  1.3048 +            }
  1.3049 +            return new Ques(prev, GREEDY);
  1.3050 +        case '*':
  1.3051 +            ch = next();
  1.3052 +            if (ch == '?') {
  1.3053 +                next();
  1.3054 +                return new Curly(prev, 0, MAX_REPS, LAZY);
  1.3055 +            } else if (ch == '+') {
  1.3056 +                next();
  1.3057 +                return new Curly(prev, 0, MAX_REPS, POSSESSIVE);
  1.3058 +            }
  1.3059 +            return new Curly(prev, 0, MAX_REPS, GREEDY);
  1.3060 +        case '+':
  1.3061 +            ch = next();
  1.3062 +            if (ch == '?') {
  1.3063 +                next();
  1.3064 +                return new Curly(prev, 1, MAX_REPS, LAZY);
  1.3065 +            } else if (ch == '+') {
  1.3066 +                next();
  1.3067 +                return new Curly(prev, 1, MAX_REPS, POSSESSIVE);
  1.3068 +            }
  1.3069 +            return new Curly(prev, 1, MAX_REPS, GREEDY);
  1.3070 +        case '{':
  1.3071 +            ch = temp[cursor+1];
  1.3072 +            if (ASCII.isDigit(ch)) {
  1.3073 +                skip();
  1.3074 +                int cmin = 0;
  1.3075 +                do {
  1.3076 +                    cmin = cmin * 10 + (ch - '0');
  1.3077 +                } while (ASCII.isDigit(ch = read()));
  1.3078 +                int cmax = cmin;
  1.3079 +                if (ch == ',') {
  1.3080 +                    ch = read();
  1.3081 +                    cmax = MAX_REPS;
  1.3082 +                    if (ch != '}') {
  1.3083 +                        cmax = 0;
  1.3084 +                        while (ASCII.isDigit(ch)) {
  1.3085 +                            cmax = cmax * 10 + (ch - '0');
  1.3086 +                            ch = read();
  1.3087 +                        }
  1.3088 +                    }
  1.3089 +                }
  1.3090 +                if (ch != '}')
  1.3091 +                    throw error("Unclosed counted closure");
  1.3092 +                if (((cmin) | (cmax) | (cmax - cmin)) < 0)
  1.3093 +                    throw error("Illegal repetition range");
  1.3094 +                Curly curly;
  1.3095 +                ch = peek();
  1.3096 +                if (ch == '?') {
  1.3097 +                    next();
  1.3098 +                    curly = new Curly(prev, cmin, cmax, LAZY);
  1.3099 +                } else if (ch == '+') {
  1.3100 +                    next();
  1.3101 +                    curly = new Curly(prev, cmin, cmax, POSSESSIVE);
  1.3102 +                } else {
  1.3103 +                    curly = new Curly(prev, cmin, cmax, GREEDY);
  1.3104 +                }
  1.3105 +                return curly;
  1.3106 +            } else {
  1.3107 +                throw error("Illegal repetition");
  1.3108 +            }
  1.3109 +        default:
  1.3110 +            return prev;
  1.3111 +        }
  1.3112 +    }
  1.3113 +
  1.3114 +    /**
  1.3115 +     *  Utility method for parsing control escape sequences.
  1.3116 +     */
  1.3117 +    private int c() {
  1.3118 +        if (cursor < patternLength) {
  1.3119 +            return read() ^ 64;
  1.3120 +        }
  1.3121 +        throw error("Illegal control escape sequence");
  1.3122 +    }
  1.3123 +
  1.3124 +    /**
  1.3125 +     *  Utility method for parsing octal escape sequences.
  1.3126 +     */
  1.3127 +    private int o() {
  1.3128 +        int n = read();
  1.3129 +        if (((n-'0')|('7'-n)) >= 0) {
  1.3130 +            int m = read();
  1.3131 +            if (((m-'0')|('7'-m)) >= 0) {
  1.3132 +                int o = read();
  1.3133 +                if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
  1.3134 +                    return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
  1.3135 +                }
  1.3136 +                unread();
  1.3137 +                return (n - '0') * 8 + (m - '0');
  1.3138 +            }
  1.3139 +            unread();
  1.3140 +            return (n - '0');
  1.3141 +        }
  1.3142 +        throw error("Illegal octal escape sequence");
  1.3143 +    }
  1.3144 +
  1.3145 +    /**
  1.3146 +     *  Utility method for parsing hexadecimal escape sequences.
  1.3147 +     */
  1.3148 +    private int x() {
  1.3149 +        int n = read();
  1.3150 +        if (ASCII.isHexDigit(n)) {
  1.3151 +            int m = read();
  1.3152 +            if (ASCII.isHexDigit(m)) {
  1.3153 +                return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
  1.3154 +            }
  1.3155 +        } else if (n == '{' && ASCII.isHexDigit(peek())) {
  1.3156 +            int ch = 0;
  1.3157 +            while (ASCII.isHexDigit(n = read())) {
  1.3158 +                ch = (ch << 4) + ASCII.toDigit(n);
  1.3159 +                if (ch > Character.MAX_CODE_POINT)
  1.3160 +                    throw error("Hexadecimal codepoint is too big");
  1.3161 +            }
  1.3162 +            if (n != '}')
  1.3163 +                throw error("Unclosed hexadecimal escape sequence");
  1.3164 +            return ch;
  1.3165 +        }
  1.3166 +        throw error("Illegal hexadecimal escape sequence");
  1.3167 +    }
  1.3168 +
  1.3169 +    /**
  1.3170 +     *  Utility method for parsing unicode escape sequences.
  1.3171 +     */
  1.3172 +    private int cursor() {
  1.3173 +        return cursor;
  1.3174 +    }
  1.3175 +
  1.3176 +    private void setcursor(int pos) {
  1.3177 +        cursor = pos;
  1.3178 +    }
  1.3179 +
  1.3180 +    private int uxxxx() {
  1.3181 +        int n = 0;
  1.3182 +        for (int i = 0; i < 4; i++) {
  1.3183 +            int ch = read();
  1.3184 +            if (!ASCII.isHexDigit(ch)) {
  1.3185 +                throw error("Illegal Unicode escape sequence");
  1.3186 +            }
  1.3187 +            n = n * 16 + ASCII.toDigit(ch);
  1.3188 +        }
  1.3189 +        return n;
  1.3190 +    }
  1.3191 +
  1.3192 +    private int u() {
  1.3193 +        int n = uxxxx();
  1.3194 +        if (Character.isHighSurrogate((char)n)) {
  1.3195 +            int cur = cursor();
  1.3196 +            if (read() == '\\' && read() == 'u') {
  1.3197 +                int n2 = uxxxx();
  1.3198 +                if (Character.isLowSurrogate((char)n2))
  1.3199 +                    return Character.toCodePoint((char)n, (char)n2);
  1.3200 +            }
  1.3201 +            setcursor(cur);
  1.3202 +        }
  1.3203 +        return n;
  1.3204 +    }
  1.3205 +
  1.3206 +    //
  1.3207 +    // Utility methods for code point support
  1.3208 +    //
  1.3209 +
  1.3210 +    private static final int countChars(CharSequence seq, int index,
  1.3211 +                                        int lengthInCodePoints) {
  1.3212 +        // optimization
  1.3213 +        if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
  1.3214 +            assert (index >= 0 && index < seq.length());
  1.3215 +            return 1;
  1.3216 +        }
  1.3217 +        int length = seq.length();
  1.3218 +        int x = index;
  1.3219 +        if (lengthInCodePoints >= 0) {
  1.3220 +            assert (index >= 0 && index < length);
  1.3221 +            for (int i = 0; x < length && i < lengthInCodePoints; i++) {
  1.3222 +                if (Character.isHighSurrogate(seq.charAt(x++))) {
  1.3223 +                    if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
  1.3224 +                        x++;
  1.3225 +                    }
  1.3226 +                }
  1.3227 +            }
  1.3228 +            return x - index;
  1.3229 +        }
  1.3230 +
  1.3231 +        assert (index >= 0 && index <= length);
  1.3232 +        if (index == 0) {
  1.3233 +            return 0;
  1.3234 +        }
  1.3235 +        int len = -lengthInCodePoints;
  1.3236 +        for (int i = 0; x > 0 && i < len; i++) {
  1.3237 +            if (Character.isLowSurrogate(seq.charAt(--x))) {
  1.3238 +                if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
  1.3239 +                    x--;
  1.3240 +                }
  1.3241 +            }
  1.3242 +        }
  1.3243 +        return index - x;
  1.3244 +    }
  1.3245 +
  1.3246 +    private static final int countCodePoints(CharSequence seq) {
  1.3247 +        int length = seq.length();
  1.3248 +        int n = 0;
  1.3249 +        for (int i = 0; i < length; ) {
  1.3250 +            n++;
  1.3251 +            if (Character.isHighSurrogate(seq.charAt(i++))) {
  1.3252 +                if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
  1.3253 +                    i++;
  1.3254 +                }
  1.3255 +            }
  1.3256 +        }
  1.3257 +        return n;
  1.3258 +    }
  1.3259 +
  1.3260 +    /**
  1.3261 +     *  Creates a bit vector for matching Latin-1 values. A normal BitClass
  1.3262 +     *  never matches values above Latin-1, and a complemented BitClass always
  1.3263 +     *  matches values above Latin-1.
  1.3264 +     */
  1.3265 +    private static final class BitClass extends BmpCharProperty {
  1.3266 +        final boolean[] bits;
  1.3267 +        BitClass() { bits = new boolean[256]; }
  1.3268 +        private BitClass(boolean[] bits) { this.bits = bits; }
  1.3269 +        BitClass add(int c, int flags) {
  1.3270 +            assert c >= 0 && c <= 255;
  1.3271 +            if ((flags & CASE_INSENSITIVE) != 0) {
  1.3272 +                if (ASCII.isAscii(c)) {
  1.3273 +                    bits[ASCII.toUpper(c)] = true;
  1.3274 +                    bits[ASCII.toLower(c)] = true;
  1.3275 +                } else if ((flags & UNICODE_CASE) != 0) {
  1.3276 +                    bits[Character.toLowerCase(c)] = true;
  1.3277 +                    bits[Character.toUpperCase(c)] = true;
  1.3278 +                }
  1.3279 +            }
  1.3280 +            bits[c] = true;
  1.3281 +            return this;
  1.3282 +        }
  1.3283 +        boolean isSatisfiedBy(int ch) {
  1.3284 +            return ch < 256 && bits[ch];
  1.3285 +        }
  1.3286 +    }
  1.3287 +
  1.3288 +    /**
  1.3289 +     *  Returns a suitably optimized, single character matcher.
  1.3290 +     */
  1.3291 +    private CharProperty newSingle(final int ch) {
  1.3292 +        if (has(CASE_INSENSITIVE)) {
  1.3293 +            int lower, upper;
  1.3294 +            if (has(UNICODE_CASE)) {
  1.3295 +                upper = Character.toUpperCase(ch);
  1.3296 +                lower = Character.toLowerCase(upper);
  1.3297 +                if (upper != lower)
  1.3298 +                    return new SingleU(lower);
  1.3299 +            } else if (ASCII.isAscii(ch)) {
  1.3300 +                lower = ASCII.toLower(ch);
  1.3301 +                upper = ASCII.toUpper(ch);
  1.3302 +                if (lower != upper)
  1.3303 +                    return new SingleI(lower, upper);
  1.3304 +            }
  1.3305 +        }
  1.3306 +        if (isSupplementary(ch))
  1.3307 +            return new SingleS(ch);    // Match a given Unicode character
  1.3308 +        return new Single(ch);         // Match a given BMP character
  1.3309 +    }
  1.3310 +
  1.3311 +    /**
  1.3312 +     *  Utility method for creating a string slice matcher.
  1.3313 +     */
  1.3314 +    private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
  1.3315 +        int[] tmp = new int[count];
  1.3316 +        if (has(CASE_INSENSITIVE)) {
  1.3317 +            if (has(UNICODE_CASE)) {
  1.3318 +                for (int i = 0; i < count; i++) {
  1.3319 +                    tmp[i] = Character.toLowerCase(
  1.3320 +                                 Character.toUpperCase(buf[i]));
  1.3321 +                }
  1.3322 +                return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
  1.3323 +            }
  1.3324 +            for (int i = 0; i < count; i++) {
  1.3325 +                tmp[i] = ASCII.toLower(buf[i]);
  1.3326 +            }
  1.3327 +            return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
  1.3328 +        }
  1.3329 +        for (int i = 0; i < count; i++) {
  1.3330 +            tmp[i] = buf[i];
  1.3331 +        }
  1.3332 +        return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
  1.3333 +    }
  1.3334 +
  1.3335 +    /**
  1.3336 +     * The following classes are the building components of the object
  1.3337 +     * tree that represents a compiled regular expression. The object tree
  1.3338 +     * is made of individual elements that handle constructs in the Pattern.
  1.3339 +     * Each type of object knows how to match its equivalent construct with
  1.3340 +     * the match() method.
  1.3341 +     */
  1.3342 +
  1.3343 +    /**
  1.3344 +     * Base class for all node classes. Subclasses should override the match()
  1.3345 +     * method as appropriate. This class is an accepting node, so its match()
  1.3346 +     * always returns true.
  1.3347 +     */
  1.3348 +    static class Node extends Object {
  1.3349 +        Node next;
  1.3350 +        Node() {
  1.3351 +            next = Pattern.accept;
  1.3352 +        }
  1.3353 +        /**
  1.3354 +         * This method implements the classic accept node.
  1.3355 +         */
  1.3356 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3357 +            matcher.last = i;
  1.3358 +            matcher.groups[0] = matcher.first;
  1.3359 +            matcher.groups[1] = matcher.last;
  1.3360 +            return true;
  1.3361 +        }
  1.3362 +        /**
  1.3363 +         * This method is good for all zero length assertions.
  1.3364 +         */
  1.3365 +        boolean study(TreeInfo info) {
  1.3366 +            if (next != null) {
  1.3367 +                return next.study(info);
  1.3368 +            } else {
  1.3369 +                return info.deterministic;
  1.3370 +            }
  1.3371 +        }
  1.3372 +    }
  1.3373 +
  1.3374 +    static class LastNode extends Node {
  1.3375 +        /**
  1.3376 +         * This method implements the classic accept node with
  1.3377 +         * the addition of a check to see if the match occurred
  1.3378 +         * using all of the input.
  1.3379 +         */
  1.3380 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3381 +            if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
  1.3382 +                return false;
  1.3383 +            matcher.last = i;
  1.3384 +            matcher.groups[0] = matcher.first;
  1.3385 +            matcher.groups[1] = matcher.last;
  1.3386 +            return true;
  1.3387 +        }
  1.3388 +    }
  1.3389 +
  1.3390 +    /**
  1.3391 +     * Used for REs that can start anywhere within the input string.
  1.3392 +     * This basically tries to match repeatedly at each spot in the
  1.3393 +     * input string, moving forward after each try. An anchored search
  1.3394 +     * or a BnM will bypass this node completely.
  1.3395 +     */
  1.3396 +    static class Start extends Node {
  1.3397 +        int minLength;
  1.3398 +        Start(Node node) {
  1.3399 +            this.next = node;
  1.3400 +            TreeInfo info = new TreeInfo();
  1.3401 +            next.study(info);
  1.3402 +            minLength = info.minLength;
  1.3403 +        }
  1.3404 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3405 +            if (i > matcher.to - minLength) {
  1.3406 +                matcher.hitEnd = true;
  1.3407 +                return false;
  1.3408 +            }
  1.3409 +            int guard = matcher.to - minLength;
  1.3410 +            for (; i <= guard; i++) {
  1.3411 +                if (next.match(matcher, i, seq)) {
  1.3412 +                    matcher.first = i;
  1.3413 +                    matcher.groups[0] = matcher.first;
  1.3414 +                    matcher.groups[1] = matcher.last;
  1.3415 +                    return true;
  1.3416 +                }
  1.3417 +            }
  1.3418 +            matcher.hitEnd = true;
  1.3419 +            return false;
  1.3420 +        }
  1.3421 +        boolean study(TreeInfo info) {
  1.3422 +            next.study(info);
  1.3423 +            info.maxValid = false;
  1.3424 +            info.deterministic = false;
  1.3425 +            return false;
  1.3426 +        }
  1.3427 +    }
  1.3428 +
  1.3429 +    /*
  1.3430 +     * StartS supports supplementary characters, including unpaired surrogates.
  1.3431 +     */
  1.3432 +    static final class StartS extends Start {
  1.3433 +        StartS(Node node) {
  1.3434 +            super(node);
  1.3435 +        }
  1.3436 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3437 +            if (i > matcher.to - minLength) {
  1.3438 +                matcher.hitEnd = true;
  1.3439 +                return false;
  1.3440 +            }
  1.3441 +            int guard = matcher.to - minLength;
  1.3442 +            while (i <= guard) {
  1.3443 +                //if ((ret = next.match(matcher, i, seq)) || i == guard)
  1.3444 +                if (next.match(matcher, i, seq)) {
  1.3445 +                    matcher.first = i;
  1.3446 +                    matcher.groups[0] = matcher.first;
  1.3447 +                    matcher.groups[1] = matcher.last;
  1.3448 +                    return true;
  1.3449 +                }
  1.3450 +                if (i == guard)
  1.3451 +                    break;
  1.3452 +                // Optimization to move to the next character. This is
  1.3453 +                // faster than countChars(seq, i, 1).
  1.3454 +                if (Character.isHighSurrogate(seq.charAt(i++))) {
  1.3455 +                    if (i < seq.length() &&
  1.3456 +                        Character.isLowSurrogate(seq.charAt(i))) {
  1.3457 +                        i++;
  1.3458 +                    }
  1.3459 +                }
  1.3460 +            }
  1.3461 +            matcher.hitEnd = true;
  1.3462 +            return false;
  1.3463 +        }
  1.3464 +    }
  1.3465 +
  1.3466 +    /**
  1.3467 +     * Node to anchor at the beginning of input. This object implements the
  1.3468 +     * match for a \A sequence, and the caret anchor will use this if not in
  1.3469 +     * multiline mode.
  1.3470 +     */
  1.3471 +    static final class Begin extends Node {
  1.3472 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3473 +            int fromIndex = (matcher.anchoringBounds) ?
  1.3474 +                matcher.from : 0;
  1.3475 +            if (i == fromIndex && next.match(matcher, i, seq)) {
  1.3476 +                matcher.first = i;
  1.3477 +                matcher.groups[0] = i;
  1.3478 +                matcher.groups[1] = matcher.last;
  1.3479 +                return true;
  1.3480 +            } else {
  1.3481 +                return false;
  1.3482 +            }
  1.3483 +        }
  1.3484 +    }
  1.3485 +
  1.3486 +    /**
  1.3487 +     * Node to anchor at the end of input. This is the absolute end, so this
  1.3488 +     * should not match at the last newline before the end as $ will.
  1.3489 +     */
  1.3490 +    static final class End extends Node {
  1.3491 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3492 +            int endIndex = (matcher.anchoringBounds) ?
  1.3493 +                matcher.to : matcher.getTextLength();
  1.3494 +            if (i == endIndex) {
  1.3495 +                matcher.hitEnd = true;
  1.3496 +                return next.match(matcher, i, seq);
  1.3497 +            }
  1.3498 +            return false;
  1.3499 +        }
  1.3500 +    }
  1.3501 +
  1.3502 +    /**
  1.3503 +     * Node to anchor at the beginning of a line. This is essentially the
  1.3504 +     * object to match for the multiline ^.
  1.3505 +     */
  1.3506 +    static final class Caret extends Node {
  1.3507 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3508 +            int startIndex = matcher.from;
  1.3509 +            int endIndex = matcher.to;
  1.3510 +            if (!matcher.anchoringBounds) {
  1.3511 +                startIndex = 0;
  1.3512 +                endIndex = matcher.getTextLength();
  1.3513 +            }
  1.3514 +            // Perl does not match ^ at end of input even after newline
  1.3515 +            if (i == endIndex) {
  1.3516 +                matcher.hitEnd = true;
  1.3517 +                return false;
  1.3518 +            }
  1.3519 +            if (i > startIndex) {
  1.3520 +                char ch = seq.charAt(i-1);
  1.3521 +                if (ch != '\n' && ch != '\r'
  1.3522 +                    && (ch|1) != '\u2029'
  1.3523 +                    && ch != '\u0085' ) {
  1.3524 +                    return false;
  1.3525 +                }
  1.3526 +                // Should treat /r/n as one newline
  1.3527 +                if (ch == '\r' && seq.charAt(i) == '\n')
  1.3528 +                    return false;
  1.3529 +            }
  1.3530 +            return next.match(matcher, i, seq);
  1.3531 +        }
  1.3532 +    }
  1.3533 +
  1.3534 +    /**
  1.3535 +     * Node to anchor at the beginning of a line when in unixdot mode.
  1.3536 +     */
  1.3537 +    static final class UnixCaret extends Node {
  1.3538 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3539 +            int startIndex = matcher.from;
  1.3540 +            int endIndex = matcher.to;
  1.3541 +            if (!matcher.anchoringBounds) {
  1.3542 +                startIndex = 0;
  1.3543 +                endIndex = matcher.getTextLength();
  1.3544 +            }
  1.3545 +            // Perl does not match ^ at end of input even after newline
  1.3546 +            if (i == endIndex) {
  1.3547 +                matcher.hitEnd = true;
  1.3548 +                return false;
  1.3549 +            }
  1.3550 +            if (i > startIndex) {
  1.3551 +                char ch = seq.charAt(i-1);
  1.3552 +                if (ch != '\n') {
  1.3553 +                    return false;
  1.3554 +                }
  1.3555 +            }
  1.3556 +            return next.match(matcher, i, seq);
  1.3557 +        }
  1.3558 +    }
  1.3559 +
  1.3560 +    /**
  1.3561 +     * Node to match the location where the last match ended.
  1.3562 +     * This is used for the \G construct.
  1.3563 +     */
  1.3564 +    static final class LastMatch extends Node {
  1.3565 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3566 +            if (i != matcher.oldLast)
  1.3567 +                return false;
  1.3568 +            return next.match(matcher, i, seq);
  1.3569 +        }
  1.3570 +    }
  1.3571 +
  1.3572 +    /**
  1.3573 +     * Node to anchor at the end of a line or the end of input based on the
  1.3574 +     * multiline mode.
  1.3575 +     *
  1.3576 +     * When not in multiline mode, the $ can only match at the very end
  1.3577 +     * of the input, unless the input ends in a line terminator in which
  1.3578 +     * it matches right before the last line terminator.
  1.3579 +     *
  1.3580 +     * Note that \r\n is considered an atomic line terminator.
  1.3581 +     *
  1.3582 +     * Like ^ the $ operator matches at a position, it does not match the
  1.3583 +     * line terminators themselves.
  1.3584 +     */
  1.3585 +    static final class Dollar extends Node {
  1.3586 +        boolean multiline;
  1.3587 +        Dollar(boolean mul) {
  1.3588 +            multiline = mul;
  1.3589 +        }
  1.3590 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3591 +            int endIndex = (matcher.anchoringBounds) ?
  1.3592 +                matcher.to : matcher.getTextLength();
  1.3593 +            if (!multiline) {
  1.3594 +                if (i < endIndex - 2)
  1.3595 +                    return false;
  1.3596 +                if (i == endIndex - 2) {
  1.3597 +                    char ch = seq.charAt(i);
  1.3598 +                    if (ch != '\r')
  1.3599 +                        return false;
  1.3600 +                    ch = seq.charAt(i + 1);
  1.3601 +                    if (ch != '\n')
  1.3602 +                        return false;
  1.3603 +                }
  1.3604 +            }
  1.3605 +            // Matches before any line terminator; also matches at the
  1.3606 +            // end of input
  1.3607 +            // Before line terminator:
  1.3608 +            // If multiline, we match here no matter what
  1.3609 +            // If not multiline, fall through so that the end
  1.3610 +            // is marked as hit; this must be a /r/n or a /n
  1.3611 +            // at the very end so the end was hit; more input
  1.3612 +            // could make this not match here
  1.3613 +            if (i < endIndex) {
  1.3614 +                char ch = seq.charAt(i);
  1.3615 +                 if (ch == '\n') {
  1.3616 +                     // No match between \r\n
  1.3617 +                     if (i > 0 && seq.charAt(i-1) == '\r')
  1.3618 +                         return false;
  1.3619 +                     if (multiline)
  1.3620 +                         return next.match(matcher, i, seq);
  1.3621 +                 } else if (ch == '\r' || ch == '\u0085' ||
  1.3622 +                            (ch|1) == '\u2029') {
  1.3623 +                     if (multiline)
  1.3624 +                         return next.match(matcher, i, seq);
  1.3625 +                 } else { // No line terminator, no match
  1.3626 +                     return false;
  1.3627 +                 }
  1.3628 +            }
  1.3629 +            // Matched at current end so hit end
  1.3630 +            matcher.hitEnd = true;
  1.3631 +            // If a $ matches because of end of input, then more input
  1.3632 +            // could cause it to fail!
  1.3633 +            matcher.requireEnd = true;
  1.3634 +            return next.match(matcher, i, seq);
  1.3635 +        }
  1.3636 +        boolean study(TreeInfo info) {
  1.3637 +            next.study(info);
  1.3638 +            return info.deterministic;
  1.3639 +        }
  1.3640 +    }
  1.3641 +
  1.3642 +    /**
  1.3643 +     * Node to anchor at the end of a line or the end of input based on the
  1.3644 +     * multiline mode when in unix lines mode.
  1.3645 +     */
  1.3646 +    static final class UnixDollar extends Node {
  1.3647 +        boolean multiline;
  1.3648 +        UnixDollar(boolean mul) {
  1.3649 +            multiline = mul;
  1.3650 +        }
  1.3651 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3652 +            int endIndex = (matcher.anchoringBounds) ?
  1.3653 +                matcher.to : matcher.getTextLength();
  1.3654 +            if (i < endIndex) {
  1.3655 +                char ch = seq.charAt(i);
  1.3656 +                if (ch == '\n') {
  1.3657 +                    // If not multiline, then only possible to
  1.3658 +                    // match at very end or one before end
  1.3659 +                    if (multiline == false && i != endIndex - 1)
  1.3660 +                        return false;
  1.3661 +                    // If multiline return next.match without setting
  1.3662 +                    // matcher.hitEnd
  1.3663 +                    if (multiline)
  1.3664 +                        return next.match(matcher, i, seq);
  1.3665 +                } else {
  1.3666 +                    return false;
  1.3667 +                }
  1.3668 +            }
  1.3669 +            // Matching because at the end or 1 before the end;
  1.3670 +            // more input could change this so set hitEnd
  1.3671 +            matcher.hitEnd = true;
  1.3672 +            // If a $ matches because of end of input, then more input
  1.3673 +            // could cause it to fail!
  1.3674 +            matcher.requireEnd = true;
  1.3675 +            return next.match(matcher, i, seq);
  1.3676 +        }
  1.3677 +        boolean study(TreeInfo info) {
  1.3678 +            next.study(info);
  1.3679 +            return info.deterministic;
  1.3680 +        }
  1.3681 +    }
  1.3682 +
  1.3683 +    /**
  1.3684 +     * Abstract node class to match one character satisfying some
  1.3685 +     * boolean property.
  1.3686 +     */
  1.3687 +    private static abstract class CharProperty extends Node {
  1.3688 +        abstract boolean isSatisfiedBy(int ch);
  1.3689 +        CharProperty complement() {
  1.3690 +            return new CharProperty() {
  1.3691 +                    boolean isSatisfiedBy(int ch) {
  1.3692 +                        return ! CharProperty.this.isSatisfiedBy(ch);}};
  1.3693 +        }
  1.3694 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3695 +            if (i < matcher.to) {
  1.3696 +                int ch = Character.codePointAt(seq, i);
  1.3697 +                return isSatisfiedBy(ch)
  1.3698 +                    && next.match(matcher, i+Character.charCount(ch), seq);
  1.3699 +            } else {
  1.3700 +                matcher.hitEnd = true;
  1.3701 +                return false;
  1.3702 +            }
  1.3703 +        }
  1.3704 +        boolean study(TreeInfo info) {
  1.3705 +            info.minLength++;
  1.3706 +            info.maxLength++;
  1.3707 +            return next.study(info);
  1.3708 +        }
  1.3709 +    }
  1.3710 +
  1.3711 +    /**
  1.3712 +     * Optimized version of CharProperty that works only for
  1.3713 +     * properties never satisfied by Supplementary characters.
  1.3714 +     */
  1.3715 +    private static abstract class BmpCharProperty extends CharProperty {
  1.3716 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3717 +            if (i < matcher.to) {
  1.3718 +                return isSatisfiedBy(seq.charAt(i))
  1.3719 +                    && next.match(matcher, i+1, seq);
  1.3720 +            } else {
  1.3721 +                matcher.hitEnd = true;
  1.3722 +                return false;
  1.3723 +            }
  1.3724 +        }
  1.3725 +    }
  1.3726 +
  1.3727 +    /**
  1.3728 +     * Node class that matches a Supplementary Unicode character
  1.3729 +     */
  1.3730 +    static final class SingleS extends CharProperty {
  1.3731 +        final int c;
  1.3732 +        SingleS(int c) { this.c = c; }
  1.3733 +        boolean isSatisfiedBy(int ch) {
  1.3734 +            return ch == c;
  1.3735 +        }
  1.3736 +    }
  1.3737 +
  1.3738 +    /**
  1.3739 +     * Optimization -- matches a given BMP character
  1.3740 +     */
  1.3741 +    static final class Single extends BmpCharProperty {
  1.3742 +        final int c;
  1.3743 +        Single(int c) { this.c = c; }
  1.3744 +        boolean isSatisfiedBy(int ch) {
  1.3745 +            return ch == c;
  1.3746 +        }
  1.3747 +    }
  1.3748 +
  1.3749 +    /**
  1.3750 +     * Case insensitive matches a given BMP character
  1.3751 +     */
  1.3752 +    static final class SingleI extends BmpCharProperty {
  1.3753 +        final int lower;
  1.3754 +        final int upper;
  1.3755 +        SingleI(int lower, int upper) {
  1.3756 +            this.lower = lower;
  1.3757 +            this.upper = upper;
  1.3758 +        }
  1.3759 +        boolean isSatisfiedBy(int ch) {
  1.3760 +            return ch == lower || ch == upper;
  1.3761 +        }
  1.3762 +    }
  1.3763 +
  1.3764 +    /**
  1.3765 +     * Unicode case insensitive matches a given Unicode character
  1.3766 +     */
  1.3767 +    static final class SingleU extends CharProperty {
  1.3768 +        final int lower;
  1.3769 +        SingleU(int lower) {
  1.3770 +            this.lower = lower;
  1.3771 +        }
  1.3772 +        boolean isSatisfiedBy(int ch) {
  1.3773 +            return lower == ch ||
  1.3774 +                lower == Character.toLowerCase(Character.toUpperCase(ch));
  1.3775 +        }
  1.3776 +    }
  1.3777 +
  1.3778 +
  1.3779 +    /**
  1.3780 +     * Node class that matches a Unicode block.
  1.3781 +     */
  1.3782 +    static final class Block extends CharProperty {
  1.3783 +        final Character.UnicodeBlock block;
  1.3784 +        Block(Character.UnicodeBlock block) {
  1.3785 +            this.block = block;
  1.3786 +        }
  1.3787 +        boolean isSatisfiedBy(int ch) {
  1.3788 +            return block == Character.UnicodeBlock.of(ch);
  1.3789 +        }
  1.3790 +    }
  1.3791 +
  1.3792 +    /**
  1.3793 +     * Node class that matches a Unicode script
  1.3794 +     */
  1.3795 +    static final class Script extends CharProperty {
  1.3796 +        final Character.UnicodeScript script;
  1.3797 +        Script(Character.UnicodeScript script) {
  1.3798 +            this.script = script;
  1.3799 +        }
  1.3800 +        boolean isSatisfiedBy(int ch) {
  1.3801 +            return script == Character.UnicodeScript.of(ch);
  1.3802 +        }
  1.3803 +    }
  1.3804 +
  1.3805 +    /**
  1.3806 +     * Node class that matches a Unicode category.
  1.3807 +     */
  1.3808 +    static final class Category extends CharProperty {
  1.3809 +        final int typeMask;
  1.3810 +        Category(int typeMask) { this.typeMask = typeMask; }
  1.3811 +        boolean isSatisfiedBy(int ch) {
  1.3812 +            return (typeMask & (1 << Character.getType(ch))) != 0;
  1.3813 +        }
  1.3814 +    }
  1.3815 +
  1.3816 +    /**
  1.3817 +     * Node class that matches a Unicode "type"
  1.3818 +     */
  1.3819 +    static final class Utype extends CharProperty {
  1.3820 +        final UnicodeProp uprop;
  1.3821 +        Utype(UnicodeProp uprop) { this.uprop = uprop; }
  1.3822 +        boolean isSatisfiedBy(int ch) {
  1.3823 +            return uprop.is(ch);
  1.3824 +        }
  1.3825 +    }
  1.3826 +
  1.3827 +
  1.3828 +    /**
  1.3829 +     * Node class that matches a POSIX type.
  1.3830 +     */
  1.3831 +    static final class Ctype extends BmpCharProperty {
  1.3832 +        final int ctype;
  1.3833 +        Ctype(int ctype) { this.ctype = ctype; }
  1.3834 +        boolean isSatisfiedBy(int ch) {
  1.3835 +            return ch < 128 && ASCII.isType(ch, ctype);
  1.3836 +        }
  1.3837 +    }
  1.3838 +
  1.3839 +    /**
  1.3840 +     * Base class for all Slice nodes
  1.3841 +     */
  1.3842 +    static class SliceNode extends Node {
  1.3843 +        int[] buffer;
  1.3844 +        SliceNode(int[] buf) {
  1.3845 +            buffer = buf;
  1.3846 +        }
  1.3847 +        boolean study(TreeInfo info) {
  1.3848 +            info.minLength += buffer.length;
  1.3849 +            info.maxLength += buffer.length;
  1.3850 +            return next.study(info);
  1.3851 +        }
  1.3852 +    }
  1.3853 +
  1.3854 +    /**
  1.3855 +     * Node class for a case sensitive/BMP-only sequence of literal
  1.3856 +     * characters.
  1.3857 +     */
  1.3858 +    static final class Slice extends SliceNode {
  1.3859 +        Slice(int[] buf) {
  1.3860 +            super(buf);
  1.3861 +        }
  1.3862 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3863 +            int[] buf = buffer;
  1.3864 +            int len = buf.length;
  1.3865 +            for (int j=0; j<len; j++) {
  1.3866 +                if ((i+j) >= matcher.to) {
  1.3867 +                    matcher.hitEnd = true;
  1.3868 +                    return false;
  1.3869 +                }
  1.3870 +                if (buf[j] != seq.charAt(i+j))
  1.3871 +                    return false;
  1.3872 +            }
  1.3873 +            return next.match(matcher, i+len, seq);
  1.3874 +        }
  1.3875 +    }
  1.3876 +
  1.3877 +    /**
  1.3878 +     * Node class for a case_insensitive/BMP-only sequence of literal
  1.3879 +     * characters.
  1.3880 +     */
  1.3881 +    static class SliceI extends SliceNode {
  1.3882 +        SliceI(int[] buf) {
  1.3883 +            super(buf);
  1.3884 +        }
  1.3885 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3886 +            int[] buf = buffer;
  1.3887 +            int len = buf.length;
  1.3888 +            for (int j=0; j<len; j++) {
  1.3889 +                if ((i+j) >= matcher.to) {
  1.3890 +                    matcher.hitEnd = true;
  1.3891 +                    return false;
  1.3892 +                }
  1.3893 +                int c = seq.charAt(i+j);
  1.3894 +                if (buf[j] != c &&
  1.3895 +                    buf[j] != ASCII.toLower(c))
  1.3896 +                    return false;
  1.3897 +            }
  1.3898 +            return next.match(matcher, i+len, seq);
  1.3899 +        }
  1.3900 +    }
  1.3901 +
  1.3902 +    /**
  1.3903 +     * Node class for a unicode_case_insensitive/BMP-only sequence of
  1.3904 +     * literal characters. Uses unicode case folding.
  1.3905 +     */
  1.3906 +    static final class SliceU extends SliceNode {
  1.3907 +        SliceU(int[] buf) {
  1.3908 +            super(buf);
  1.3909 +        }
  1.3910 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3911 +            int[] buf = buffer;
  1.3912 +            int len = buf.length;
  1.3913 +            for (int j=0; j<len; j++) {
  1.3914 +                if ((i+j) >= matcher.to) {
  1.3915 +                    matcher.hitEnd = true;
  1.3916 +                    return false;
  1.3917 +                }
  1.3918 +                int c = seq.charAt(i+j);
  1.3919 +                if (buf[j] != c &&
  1.3920 +                    buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
  1.3921 +                    return false;
  1.3922 +            }
  1.3923 +            return next.match(matcher, i+len, seq);
  1.3924 +        }
  1.3925 +    }
  1.3926 +
  1.3927 +    /**
  1.3928 +     * Node class for a case sensitive sequence of literal characters
  1.3929 +     * including supplementary characters.
  1.3930 +     */
  1.3931 +    static final class SliceS extends SliceNode {
  1.3932 +        SliceS(int[] buf) {
  1.3933 +            super(buf);
  1.3934 +        }
  1.3935 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3936 +            int[] buf = buffer;
  1.3937 +            int x = i;
  1.3938 +            for (int j = 0; j < buf.length; j++) {
  1.3939 +                if (x >= matcher.to) {
  1.3940 +                    matcher.hitEnd = true;
  1.3941 +                    return false;
  1.3942 +                }
  1.3943 +                int c = Character.codePointAt(seq, x);
  1.3944 +                if (buf[j] != c)
  1.3945 +                    return false;
  1.3946 +                x += Character.charCount(c);
  1.3947 +                if (x > matcher.to) {
  1.3948 +                    matcher.hitEnd = true;
  1.3949 +                    return false;
  1.3950 +                }
  1.3951 +            }
  1.3952 +            return next.match(matcher, x, seq);
  1.3953 +        }
  1.3954 +    }
  1.3955 +
  1.3956 +    /**
  1.3957 +     * Node class for a case insensitive sequence of literal characters
  1.3958 +     * including supplementary characters.
  1.3959 +     */
  1.3960 +    static class SliceIS extends SliceNode {
  1.3961 +        SliceIS(int[] buf) {
  1.3962 +            super(buf);
  1.3963 +        }
  1.3964 +        int toLower(int c) {
  1.3965 +            return ASCII.toLower(c);
  1.3966 +        }
  1.3967 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.3968 +            int[] buf = buffer;
  1.3969 +            int x = i;
  1.3970 +            for (int j = 0; j < buf.length; j++) {
  1.3971 +                if (x >= matcher.to) {
  1.3972 +                    matcher.hitEnd = true;
  1.3973 +                    return false;
  1.3974 +                }
  1.3975 +                int c = Character.codePointAt(seq, x);
  1.3976 +                if (buf[j] != c && buf[j] != toLower(c))
  1.3977 +                    return false;
  1.3978 +                x += Character.charCount(c);
  1.3979 +                if (x > matcher.to) {
  1.3980 +                    matcher.hitEnd = true;
  1.3981 +                    return false;
  1.3982 +                }
  1.3983 +            }
  1.3984 +            return next.match(matcher, x, seq);
  1.3985 +        }
  1.3986 +    }
  1.3987 +
  1.3988 +    /**
  1.3989 +     * Node class for a case insensitive sequence of literal characters.
  1.3990 +     * Uses unicode case folding.
  1.3991 +     */
  1.3992 +    static final class SliceUS extends SliceIS {
  1.3993 +        SliceUS(int[] buf) {
  1.3994 +            super(buf);
  1.3995 +        }
  1.3996 +        int toLower(int c) {
  1.3997 +            return Character.toLowerCase(Character.toUpperCase(c));
  1.3998 +        }
  1.3999 +    }
  1.4000 +
  1.4001 +    private static boolean inRange(int lower, int ch, int upper) {
  1.4002 +        return lower <= ch && ch <= upper;
  1.4003 +    }
  1.4004 +
  1.4005 +    /**
  1.4006 +     * Returns node for matching characters within an explicit value range.
  1.4007 +     */
  1.4008 +    private static CharProperty rangeFor(final int lower,
  1.4009 +                                         final int upper) {
  1.4010 +        return new CharProperty() {
  1.4011 +                boolean isSatisfiedBy(int ch) {
  1.4012 +                    return inRange(lower, ch, upper);}};
  1.4013 +    }
  1.4014 +
  1.4015 +    /**
  1.4016 +     * Returns node for matching characters within an explicit value
  1.4017 +     * range in a case insensitive manner.
  1.4018 +     */
  1.4019 +    private CharProperty caseInsensitiveRangeFor(final int lower,
  1.4020 +                                                 final int upper) {
  1.4021 +        if (has(UNICODE_CASE))
  1.4022 +            return new CharProperty() {
  1.4023 +                boolean isSatisfiedBy(int ch) {
  1.4024 +                    if (inRange(lower, ch, upper))
  1.4025 +                        return true;
  1.4026 +                    int up = Character.toUpperCase(ch);
  1.4027 +                    return inRange(lower, up, upper) ||
  1.4028 +                           inRange(lower, Character.toLowerCase(up), upper);}};
  1.4029 +        return new CharProperty() {
  1.4030 +            boolean isSatisfiedBy(int ch) {
  1.4031 +                return inRange(lower, ch, upper) ||
  1.4032 +                    ASCII.isAscii(ch) &&
  1.4033 +                        (inRange(lower, ASCII.toUpper(ch), upper) ||
  1.4034 +                         inRange(lower, ASCII.toLower(ch), upper));
  1.4035 +            }};
  1.4036 +    }
  1.4037 +
  1.4038 +    /**
  1.4039 +     * Implements the Unicode category ALL and the dot metacharacter when
  1.4040 +     * in dotall mode.
  1.4041 +     */
  1.4042 +    static final class All extends CharProperty {
  1.4043 +        boolean isSatisfiedBy(int ch) {
  1.4044 +            return true;
  1.4045 +        }
  1.4046 +    }
  1.4047 +
  1.4048 +    /**
  1.4049 +     * Node class for the dot metacharacter when dotall is not enabled.
  1.4050 +     */
  1.4051 +    static final class Dot extends CharProperty {
  1.4052 +        boolean isSatisfiedBy(int ch) {
  1.4053 +            return (ch != '\n' && ch != '\r'
  1.4054 +                    && (ch|1) != '\u2029'
  1.4055 +                    && ch != '\u0085');
  1.4056 +        }
  1.4057 +    }
  1.4058 +
  1.4059 +    /**
  1.4060 +     * Node class for the dot metacharacter when dotall is not enabled
  1.4061 +     * but UNIX_LINES is enabled.
  1.4062 +     */
  1.4063 +    static final class UnixDot extends CharProperty {
  1.4064 +        boolean isSatisfiedBy(int ch) {
  1.4065 +            return ch != '\n';
  1.4066 +        }
  1.4067 +    }
  1.4068 +
  1.4069 +    /**
  1.4070 +     * The 0 or 1 quantifier. This one class implements all three types.
  1.4071 +     */
  1.4072 +    static final class Ques extends Node {
  1.4073 +        Node atom;
  1.4074 +        int type;
  1.4075 +        Ques(Node node, int type) {
  1.4076 +            this.atom = node;
  1.4077 +            this.type = type;
  1.4078 +        }
  1.4079 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4080 +            switch (type) {
  1.4081 +            case GREEDY:
  1.4082 +                return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
  1.4083 +                    || next.match(matcher, i, seq);
  1.4084 +            case LAZY:
  1.4085 +                return next.match(matcher, i, seq)
  1.4086 +                    || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
  1.4087 +            case POSSESSIVE:
  1.4088 +                if (atom.match(matcher, i, seq)) i = matcher.last;
  1.4089 +                return next.match(matcher, i, seq);
  1.4090 +            default:
  1.4091 +                return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
  1.4092 +            }
  1.4093 +        }
  1.4094 +        boolean study(TreeInfo info) {
  1.4095 +            if (type != INDEPENDENT) {
  1.4096 +                int minL = info.minLength;
  1.4097 +                atom.study(info);
  1.4098 +                info.minLength = minL;
  1.4099 +                info.deterministic = false;
  1.4100 +                return next.study(info);
  1.4101 +            } else {
  1.4102 +                atom.study(info);
  1.4103 +                return next.study(info);
  1.4104 +            }
  1.4105 +        }
  1.4106 +    }
  1.4107 +
  1.4108 +    /**
  1.4109 +     * Handles the curly-brace style repetition with a specified minimum and
  1.4110 +     * maximum occurrences. The * quantifier is handled as a special case.
  1.4111 +     * This class handles the three types.
  1.4112 +     */
  1.4113 +    static final class Curly extends Node {
  1.4114 +        Node atom;
  1.4115 +        int type;
  1.4116 +        int cmin;
  1.4117 +        int cmax;
  1.4118 +
  1.4119 +        Curly(Node node, int cmin, int cmax, int type) {
  1.4120 +            this.atom = node;
  1.4121 +            this.type = type;
  1.4122 +            this.cmin = cmin;
  1.4123 +            this.cmax = cmax;
  1.4124 +        }
  1.4125 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4126 +            int j;
  1.4127 +            for (j = 0; j < cmin; j++) {
  1.4128 +                if (atom.match(matcher, i, seq)) {
  1.4129 +                    i = matcher.last;
  1.4130 +                    continue;
  1.4131 +                }
  1.4132 +                return false;
  1.4133 +            }
  1.4134 +            if (type == GREEDY)
  1.4135 +                return match0(matcher, i, j, seq);
  1.4136 +            else if (type == LAZY)
  1.4137 +                return match1(matcher, i, j, seq);
  1.4138 +            else
  1.4139 +                return match2(matcher, i, j, seq);
  1.4140 +        }
  1.4141 +        // Greedy match.
  1.4142 +        // i is the index to start matching at
  1.4143 +        // j is the number of atoms that have matched
  1.4144 +        boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
  1.4145 +            if (j >= cmax) {
  1.4146 +                // We have matched the maximum... continue with the rest of
  1.4147 +                // the regular expression
  1.4148 +                return next.match(matcher, i, seq);
  1.4149 +            }
  1.4150 +            int backLimit = j;
  1.4151 +            while (atom.match(matcher, i, seq)) {
  1.4152 +                // k is the length of this match
  1.4153 +                int k = matcher.last - i;
  1.4154 +                if (k == 0) // Zero length match
  1.4155 +                    break;
  1.4156 +                // Move up index and number matched
  1.4157 +                i = matcher.last;
  1.4158 +                j++;
  1.4159 +                // We are greedy so match as many as we can
  1.4160 +                while (j < cmax) {
  1.4161 +                    if (!atom.match(matcher, i, seq))
  1.4162 +                        break;
  1.4163 +                    if (i + k != matcher.last) {
  1.4164 +                        if (match0(matcher, matcher.last, j+1, seq))
  1.4165 +                            return true;
  1.4166 +                        break;
  1.4167 +                    }
  1.4168 +                    i += k;
  1.4169 +                    j++;
  1.4170 +                }
  1.4171 +                // Handle backing off if match fails
  1.4172 +                while (j >= backLimit) {
  1.4173 +                   if (next.match(matcher, i, seq))
  1.4174 +                        return true;
  1.4175 +                    i -= k;
  1.4176 +                    j--;
  1.4177 +                }
  1.4178 +                return false;
  1.4179 +            }
  1.4180 +            return next.match(matcher, i, seq);
  1.4181 +        }
  1.4182 +        // Reluctant match. At this point, the minimum has been satisfied.
  1.4183 +        // i is the index to start matching at
  1.4184 +        // j is the number of atoms that have matched
  1.4185 +        boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
  1.4186 +            for (;;) {
  1.4187 +                // Try finishing match without consuming any more
  1.4188 +                if (next.match(matcher, i, seq))
  1.4189 +                    return true;
  1.4190 +                // At the maximum, no match found
  1.4191 +                if (j >= cmax)
  1.4192 +                    return false;
  1.4193 +                // Okay, must try one more atom
  1.4194 +                if (!atom.match(matcher, i, seq))
  1.4195 +                    return false;
  1.4196 +                // If we haven't moved forward then must break out
  1.4197 +                if (i == matcher.last)
  1.4198 +                    return false;
  1.4199 +                // Move up index and number matched
  1.4200 +                i = matcher.last;
  1.4201 +                j++;
  1.4202 +            }
  1.4203 +        }
  1.4204 +        boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
  1.4205 +            for (; j < cmax; j++) {
  1.4206 +                if (!atom.match(matcher, i, seq))
  1.4207 +                    break;
  1.4208 +                if (i == matcher.last)
  1.4209 +                    break;
  1.4210 +                i = matcher.last;
  1.4211 +            }
  1.4212 +            return next.match(matcher, i, seq);
  1.4213 +        }
  1.4214 +        boolean study(TreeInfo info) {
  1.4215 +            // Save original info
  1.4216 +            int minL = info.minLength;
  1.4217 +            int maxL = info.maxLength;
  1.4218 +            boolean maxV = info.maxValid;
  1.4219 +            boolean detm = info.deterministic;
  1.4220 +            info.reset();
  1.4221 +
  1.4222 +            atom.study(info);
  1.4223 +
  1.4224 +            int temp = info.minLength * cmin + minL;
  1.4225 +            if (temp < minL) {
  1.4226 +                temp = 0xFFFFFFF; // arbitrary large number
  1.4227 +            }
  1.4228 +            info.minLength = temp;
  1.4229 +
  1.4230 +            if (maxV & info.maxValid) {
  1.4231 +                temp = info.maxLength * cmax + maxL;
  1.4232 +                info.maxLength = temp;
  1.4233 +                if (temp < maxL) {
  1.4234 +                    info.maxValid = false;
  1.4235 +                }
  1.4236 +            } else {
  1.4237 +                info.maxValid = false;
  1.4238 +            }
  1.4239 +
  1.4240 +            if (info.deterministic && cmin == cmax)
  1.4241 +                info.deterministic = detm;
  1.4242 +            else
  1.4243 +                info.deterministic = false;
  1.4244 +
  1.4245 +            return next.study(info);
  1.4246 +        }
  1.4247 +    }
  1.4248 +
  1.4249 +    /**
  1.4250 +     * Handles the curly-brace style repetition with a specified minimum and
  1.4251 +     * maximum occurrences in deterministic cases. This is an iterative
  1.4252 +     * optimization over the Prolog and Loop system which would handle this
  1.4253 +     * in a recursive way. The * quantifier is handled as a special case.
  1.4254 +     * If capture is true then this class saves group settings and ensures
  1.4255 +     * that groups are unset when backing off of a group match.
  1.4256 +     */
  1.4257 +    static final class GroupCurly extends Node {
  1.4258 +        Node atom;
  1.4259 +        int type;
  1.4260 +        int cmin;
  1.4261 +        int cmax;
  1.4262 +        int localIndex;
  1.4263 +        int groupIndex;
  1.4264 +        boolean capture;
  1.4265 +
  1.4266 +        GroupCurly(Node node, int cmin, int cmax, int type, int local,
  1.4267 +                   int group, boolean capture) {
  1.4268 +            this.atom = node;
  1.4269 +            this.type = type;
  1.4270 +            this.cmin = cmin;
  1.4271 +            this.cmax = cmax;
  1.4272 +            this.localIndex = local;
  1.4273 +            this.groupIndex = group;
  1.4274 +            this.capture = capture;
  1.4275 +        }
  1.4276 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4277 +            int[] groups = matcher.groups;
  1.4278 +            int[] locals = matcher.locals;
  1.4279 +            int save0 = locals[localIndex];
  1.4280 +            int save1 = 0;
  1.4281 +            int save2 = 0;
  1.4282 +
  1.4283 +            if (capture) {
  1.4284 +                save1 = groups[groupIndex];
  1.4285 +                save2 = groups[groupIndex+1];
  1.4286 +            }
  1.4287 +
  1.4288 +            // Notify GroupTail there is no need to setup group info
  1.4289 +            // because it will be set here
  1.4290 +            locals[localIndex] = -1;
  1.4291 +
  1.4292 +            boolean ret = true;
  1.4293 +            for (int j = 0; j < cmin; j++) {
  1.4294 +                if (atom.match(matcher, i, seq)) {
  1.4295 +                    if (capture) {
  1.4296 +                        groups[groupIndex] = i;
  1.4297 +                        groups[groupIndex+1] = matcher.last;
  1.4298 +                    }
  1.4299 +                    i = matcher.last;
  1.4300 +                } else {
  1.4301 +                    ret = false;
  1.4302 +                    break;
  1.4303 +                }
  1.4304 +            }
  1.4305 +            if (ret) {
  1.4306 +                if (type == GREEDY) {
  1.4307 +                    ret = match0(matcher, i, cmin, seq);
  1.4308 +                } else if (type == LAZY) {
  1.4309 +                    ret = match1(matcher, i, cmin, seq);
  1.4310 +                } else {
  1.4311 +                    ret = match2(matcher, i, cmin, seq);
  1.4312 +                }
  1.4313 +            }
  1.4314 +            if (!ret) {
  1.4315 +                locals[localIndex] = save0;
  1.4316 +                if (capture) {
  1.4317 +                    groups[groupIndex] = save1;
  1.4318 +                    groups[groupIndex+1] = save2;
  1.4319 +                }
  1.4320 +            }
  1.4321 +            return ret;
  1.4322 +        }
  1.4323 +        // Aggressive group match
  1.4324 +        boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
  1.4325 +            int[] groups = matcher.groups;
  1.4326 +            int save0 = 0;
  1.4327 +            int save1 = 0;
  1.4328 +            if (capture) {
  1.4329 +                save0 = groups[groupIndex];
  1.4330 +                save1 = groups[groupIndex+1];
  1.4331 +            }
  1.4332 +            for (;;) {
  1.4333 +                if (j >= cmax)
  1.4334 +                    break;
  1.4335 +                if (!atom.match(matcher, i, seq))
  1.4336 +                    break;
  1.4337 +                int k = matcher.last - i;
  1.4338 +                if (k <= 0) {
  1.4339 +                    if (capture) {
  1.4340 +                        groups[groupIndex] = i;
  1.4341 +                        groups[groupIndex+1] = i + k;
  1.4342 +                    }
  1.4343 +                    i = i + k;
  1.4344 +                    break;
  1.4345 +                }
  1.4346 +                for (;;) {
  1.4347 +                    if (capture) {
  1.4348 +                        groups[groupIndex] = i;
  1.4349 +                        groups[groupIndex+1] = i + k;
  1.4350 +                    }
  1.4351 +                    i = i + k;
  1.4352 +                    if (++j >= cmax)
  1.4353 +                        break;
  1.4354 +                    if (!atom.match(matcher, i, seq))
  1.4355 +                        break;
  1.4356 +                    if (i + k != matcher.last) {
  1.4357 +                        if (match0(matcher, i, j, seq))
  1.4358 +                            return true;
  1.4359 +                        break;
  1.4360 +                    }
  1.4361 +                }
  1.4362 +                while (j > cmin) {
  1.4363 +                    if (next.match(matcher, i, seq)) {
  1.4364 +                        if (capture) {
  1.4365 +                            groups[groupIndex+1] = i;
  1.4366 +                            groups[groupIndex] = i - k;
  1.4367 +                        }
  1.4368 +                        i = i - k;
  1.4369 +                        return true;
  1.4370 +                    }
  1.4371 +                    // backing off
  1.4372 +                    if (capture) {
  1.4373 +                        groups[groupIndex+1] = i;
  1.4374 +                        groups[groupIndex] = i - k;
  1.4375 +                    }
  1.4376 +                    i = i - k;
  1.4377 +                    j--;
  1.4378 +                }
  1.4379 +                break;
  1.4380 +            }
  1.4381 +            if (capture) {
  1.4382 +                groups[groupIndex] = save0;
  1.4383 +                groups[groupIndex+1] = save1;
  1.4384 +            }
  1.4385 +            return next.match(matcher, i, seq);
  1.4386 +        }
  1.4387 +        // Reluctant matching
  1.4388 +        boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
  1.4389 +            for (;;) {
  1.4390 +                if (next.match(matcher, i, seq))
  1.4391 +                    return true;
  1.4392 +                if (j >= cmax)
  1.4393 +                    return false;
  1.4394 +                if (!atom.match(matcher, i, seq))
  1.4395 +                    return false;
  1.4396 +                if (i == matcher.last)
  1.4397 +                    return false;
  1.4398 +                if (capture) {
  1.4399 +                    matcher.groups[groupIndex] = i;
  1.4400 +                    matcher.groups[groupIndex+1] = matcher.last;
  1.4401 +                }
  1.4402 +                i = matcher.last;
  1.4403 +                j++;
  1.4404 +            }
  1.4405 +        }
  1.4406 +        // Possessive matching
  1.4407 +        boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
  1.4408 +            for (; j < cmax; j++) {
  1.4409 +                if (!atom.match(matcher, i, seq)) {
  1.4410 +                    break;
  1.4411 +                }
  1.4412 +                if (capture) {
  1.4413 +                    matcher.groups[groupIndex] = i;
  1.4414 +                    matcher.groups[groupIndex+1] = matcher.last;
  1.4415 +                }
  1.4416 +                if (i == matcher.last) {
  1.4417 +                    break;
  1.4418 +                }
  1.4419 +                i = matcher.last;
  1.4420 +            }
  1.4421 +            return next.match(matcher, i, seq);
  1.4422 +        }
  1.4423 +        boolean study(TreeInfo info) {
  1.4424 +            // Save original info
  1.4425 +            int minL = info.minLength;
  1.4426 +            int maxL = info.maxLength;
  1.4427 +            boolean maxV = info.maxValid;
  1.4428 +            boolean detm = info.deterministic;
  1.4429 +            info.reset();
  1.4430 +
  1.4431 +            atom.study(info);
  1.4432 +
  1.4433 +            int temp = info.minLength * cmin + minL;
  1.4434 +            if (temp < minL) {
  1.4435 +                temp = 0xFFFFFFF; // Arbitrary large number
  1.4436 +            }
  1.4437 +            info.minLength = temp;
  1.4438 +
  1.4439 +            if (maxV & info.maxValid) {
  1.4440 +                temp = info.maxLength * cmax + maxL;
  1.4441 +                info.maxLength = temp;
  1.4442 +                if (temp < maxL) {
  1.4443 +                    info.maxValid = false;
  1.4444 +                }
  1.4445 +            } else {
  1.4446 +                info.maxValid = false;
  1.4447 +            }
  1.4448 +
  1.4449 +            if (info.deterministic && cmin == cmax) {
  1.4450 +                info.deterministic = detm;
  1.4451 +            } else {
  1.4452 +                info.deterministic = false;
  1.4453 +            }
  1.4454 +
  1.4455 +            return next.study(info);
  1.4456 +        }
  1.4457 +    }
  1.4458 +
  1.4459 +    /**
  1.4460 +     * A Guard node at the end of each atom node in a Branch. It
  1.4461 +     * serves the purpose of chaining the "match" operation to
  1.4462 +     * "next" but not the "study", so we can collect the TreeInfo
  1.4463 +     * of each atom node without including the TreeInfo of the
  1.4464 +     * "next".
  1.4465 +     */
  1.4466 +    static final class BranchConn extends Node {
  1.4467 +        BranchConn() {};
  1.4468 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4469 +            return next.match(matcher, i, seq);
  1.4470 +        }
  1.4471 +        boolean study(TreeInfo info) {
  1.4472 +            return info.deterministic;
  1.4473 +        }
  1.4474 +    }
  1.4475 +
  1.4476 +    /**
  1.4477 +     * Handles the branching of alternations. Note this is also used for
  1.4478 +     * the ? quantifier to branch between the case where it matches once
  1.4479 +     * and where it does not occur.
  1.4480 +     */
  1.4481 +    static final class Branch extends Node {
  1.4482 +        Node[] atoms = new Node[2];
  1.4483 +        int size = 2;
  1.4484 +        Node conn;
  1.4485 +        Branch(Node first, Node second, Node branchConn) {
  1.4486 +            conn = branchConn;
  1.4487 +            atoms[0] = first;
  1.4488 +            atoms[1] = second;
  1.4489 +        }
  1.4490 +
  1.4491 +        void add(Node node) {
  1.4492 +            if (size >= atoms.length) {
  1.4493 +                Node[] tmp = new Node[atoms.length*2];
  1.4494 +                System.arraycopy(atoms, 0, tmp, 0, atoms.length);
  1.4495 +                atoms = tmp;
  1.4496 +            }
  1.4497 +            atoms[size++] = node;
  1.4498 +        }
  1.4499 +
  1.4500 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4501 +            for (int n = 0; n < size; n++) {
  1.4502 +                if (atoms[n] == null) {
  1.4503 +                    if (conn.next.match(matcher, i, seq))
  1.4504 +                        return true;
  1.4505 +                } else if (atoms[n].match(matcher, i, seq)) {
  1.4506 +                    return true;
  1.4507 +                }
  1.4508 +            }
  1.4509 +            return false;
  1.4510 +        }
  1.4511 +
  1.4512 +        boolean study(TreeInfo info) {
  1.4513 +            int minL = info.minLength;
  1.4514 +            int maxL = info.maxLength;
  1.4515 +            boolean maxV = info.maxValid;
  1.4516 +
  1.4517 +            int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
  1.4518 +            int maxL2 = -1;
  1.4519 +            for (int n = 0; n < size; n++) {
  1.4520 +                info.reset();
  1.4521 +                if (atoms[n] != null)
  1.4522 +                    atoms[n].study(info);
  1.4523 +                minL2 = Math.min(minL2, info.minLength);
  1.4524 +                maxL2 = Math.max(maxL2, info.maxLength);
  1.4525 +                maxV = (maxV & info.maxValid);
  1.4526 +            }
  1.4527 +
  1.4528 +            minL += minL2;
  1.4529 +            maxL += maxL2;
  1.4530 +
  1.4531 +            info.reset();
  1.4532 +            conn.next.study(info);
  1.4533 +
  1.4534 +            info.minLength += minL;
  1.4535 +            info.maxLength += maxL;
  1.4536 +            info.maxValid &= maxV;
  1.4537 +            info.deterministic = false;
  1.4538 +            return false;
  1.4539 +        }
  1.4540 +    }
  1.4541 +
  1.4542 +    /**
  1.4543 +     * The GroupHead saves the location where the group begins in the locals
  1.4544 +     * and restores them when the match is done.
  1.4545 +     *
  1.4546 +     * The matchRef is used when a reference to this group is accessed later
  1.4547 +     * in the expression. The locals will have a negative value in them to
  1.4548 +     * indicate that we do not want to unset the group if the reference
  1.4549 +     * doesn't match.
  1.4550 +     */
  1.4551 +    static final class GroupHead extends Node {
  1.4552 +        int localIndex;
  1.4553 +        GroupHead(int localCount) {
  1.4554 +            localIndex = localCount;
  1.4555 +        }
  1.4556 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4557 +            int save = matcher.locals[localIndex];
  1.4558 +            matcher.locals[localIndex] = i;
  1.4559 +            boolean ret = next.match(matcher, i, seq);
  1.4560 +            matcher.locals[localIndex] = save;
  1.4561 +            return ret;
  1.4562 +        }
  1.4563 +        boolean matchRef(Matcher matcher, int i, CharSequence seq) {
  1.4564 +            int save = matcher.locals[localIndex];
  1.4565 +            matcher.locals[localIndex] = ~i; // HACK
  1.4566 +            boolean ret = next.match(matcher, i, seq);
  1.4567 +            matcher.locals[localIndex] = save;
  1.4568 +            return ret;
  1.4569 +        }
  1.4570 +    }
  1.4571 +
  1.4572 +    /**
  1.4573 +     * Recursive reference to a group in the regular expression. It calls
  1.4574 +     * matchRef because if the reference fails to match we would not unset
  1.4575 +     * the group.
  1.4576 +     */
  1.4577 +    static final class GroupRef extends Node {
  1.4578 +        GroupHead head;
  1.4579 +        GroupRef(GroupHead head) {
  1.4580 +            this.head = head;
  1.4581 +        }
  1.4582 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4583 +            return head.matchRef(matcher, i, seq)
  1.4584 +                && next.match(matcher, matcher.last, seq);
  1.4585 +        }
  1.4586 +        boolean study(TreeInfo info) {
  1.4587 +            info.maxValid = false;
  1.4588 +            info.deterministic = false;
  1.4589 +            return next.study(info);
  1.4590 +        }
  1.4591 +    }
  1.4592 +
  1.4593 +    /**
  1.4594 +     * The GroupTail handles the setting of group beginning and ending
  1.4595 +     * locations when groups are successfully matched. It must also be able to
  1.4596 +     * unset groups that have to be backed off of.
  1.4597 +     *
  1.4598 +     * The GroupTail node is also used when a previous group is referenced,
  1.4599 +     * and in that case no group information needs to be set.
  1.4600 +     */
  1.4601 +    static final class GroupTail extends Node {
  1.4602 +        int localIndex;
  1.4603 +        int groupIndex;
  1.4604 +        GroupTail(int localCount, int groupCount) {
  1.4605 +            localIndex = localCount;
  1.4606 +            groupIndex = groupCount + groupCount;
  1.4607 +        }
  1.4608 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4609 +            int tmp = matcher.locals[localIndex];
  1.4610 +            if (tmp >= 0) { // This is the normal group case.
  1.4611 +                // Save the group so we can unset it if it
  1.4612 +                // backs off of a match.
  1.4613 +                int groupStart = matcher.groups[groupIndex];
  1.4614 +                int groupEnd = matcher.groups[groupIndex+1];
  1.4615 +
  1.4616 +                matcher.groups[groupIndex] = tmp;
  1.4617 +                matcher.groups[groupIndex+1] = i;
  1.4618 +                if (next.match(matcher, i, seq)) {
  1.4619 +                    return true;
  1.4620 +                }
  1.4621 +                matcher.groups[groupIndex] = groupStart;
  1.4622 +                matcher.groups[groupIndex+1] = groupEnd;
  1.4623 +                return false;
  1.4624 +            } else {
  1.4625 +                // This is a group reference case. We don't need to save any
  1.4626 +                // group info because it isn't really a group.
  1.4627 +                matcher.last = i;
  1.4628 +                return true;
  1.4629 +            }
  1.4630 +        }
  1.4631 +    }
  1.4632 +
  1.4633 +    /**
  1.4634 +     * This sets up a loop to handle a recursive quantifier structure.
  1.4635 +     */
  1.4636 +    static final class Prolog extends Node {
  1.4637 +        Loop loop;
  1.4638 +        Prolog(Loop loop) {
  1.4639 +            this.loop = loop;
  1.4640 +        }
  1.4641 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4642 +            return loop.matchInit(matcher, i, seq);
  1.4643 +        }
  1.4644 +        boolean study(TreeInfo info) {
  1.4645 +            return loop.study(info);
  1.4646 +        }
  1.4647 +    }
  1.4648 +
  1.4649 +    /**
  1.4650 +     * Handles the repetition count for a greedy Curly. The matchInit
  1.4651 +     * is called from the Prolog to save the index of where the group
  1.4652 +     * beginning is stored. A zero length group check occurs in the
  1.4653 +     * normal match but is skipped in the matchInit.
  1.4654 +     */
  1.4655 +    static class Loop extends Node {
  1.4656 +        Node body;
  1.4657 +        int countIndex; // local count index in matcher locals
  1.4658 +        int beginIndex; // group beginning index
  1.4659 +        int cmin, cmax;
  1.4660 +        Loop(int countIndex, int beginIndex) {
  1.4661 +            this.countIndex = countIndex;
  1.4662 +            this.beginIndex = beginIndex;
  1.4663 +        }
  1.4664 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4665 +            // Avoid infinite loop in zero-length case.
  1.4666 +            if (i > matcher.locals[beginIndex]) {
  1.4667 +                int count = matcher.locals[countIndex];
  1.4668 +
  1.4669 +                // This block is for before we reach the minimum
  1.4670 +                // iterations required for the loop to match
  1.4671 +                if (count < cmin) {
  1.4672 +                    matcher.locals[countIndex] = count + 1;
  1.4673 +                    boolean b = body.match(matcher, i, seq);
  1.4674 +                    // If match failed we must backtrack, so
  1.4675 +                    // the loop count should NOT be incremented
  1.4676 +                    if (!b)
  1.4677 +                        matcher.locals[countIndex] = count;
  1.4678 +                    // Return success or failure since we are under
  1.4679 +                    // minimum
  1.4680 +                    return b;
  1.4681 +                }
  1.4682 +                // This block is for after we have the minimum
  1.4683 +                // iterations required for the loop to match
  1.4684 +                if (count < cmax) {
  1.4685 +                    matcher.locals[countIndex] = count + 1;
  1.4686 +                    boolean b = body.match(matcher, i, seq);
  1.4687 +                    // If match failed we must backtrack, so
  1.4688 +                    // the loop count should NOT be incremented
  1.4689 +                    if (!b)
  1.4690 +                        matcher.locals[countIndex] = count;
  1.4691 +                    else
  1.4692 +                        return true;
  1.4693 +                }
  1.4694 +            }
  1.4695 +            return next.match(matcher, i, seq);
  1.4696 +        }
  1.4697 +        boolean matchInit(Matcher matcher, int i, CharSequence seq) {
  1.4698 +            int save = matcher.locals[countIndex];
  1.4699 +            boolean ret = false;
  1.4700 +            if (0 < cmin) {
  1.4701 +                matcher.locals[countIndex] = 1;
  1.4702 +                ret = body.match(matcher, i, seq);
  1.4703 +            } else if (0 < cmax) {
  1.4704 +                matcher.locals[countIndex] = 1;
  1.4705 +                ret = body.match(matcher, i, seq);
  1.4706 +                if (ret == false)
  1.4707 +                    ret = next.match(matcher, i, seq);
  1.4708 +            } else {
  1.4709 +                ret = next.match(matcher, i, seq);
  1.4710 +            }
  1.4711 +            matcher.locals[countIndex] = save;
  1.4712 +            return ret;
  1.4713 +        }
  1.4714 +        boolean study(TreeInfo info) {
  1.4715 +            info.maxValid = false;
  1.4716 +            info.deterministic = false;
  1.4717 +            return false;
  1.4718 +        }
  1.4719 +    }
  1.4720 +
  1.4721 +    /**
  1.4722 +     * Handles the repetition count for a reluctant Curly. The matchInit
  1.4723 +     * is called from the Prolog to save the index of where the group
  1.4724 +     * beginning is stored. A zero length group check occurs in the
  1.4725 +     * normal match but is skipped in the matchInit.
  1.4726 +     */
  1.4727 +    static final class LazyLoop extends Loop {
  1.4728 +        LazyLoop(int countIndex, int beginIndex) {
  1.4729 +            super(countIndex, beginIndex);
  1.4730 +        }
  1.4731 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4732 +            // Check for zero length group
  1.4733 +            if (i > matcher.locals[beginIndex]) {
  1.4734 +                int count = matcher.locals[countIndex];
  1.4735 +                if (count < cmin) {
  1.4736 +                    matcher.locals[countIndex] = count + 1;
  1.4737 +                    boolean result = body.match(matcher, i, seq);
  1.4738 +                    // If match failed we must backtrack, so
  1.4739 +                    // the loop count should NOT be incremented
  1.4740 +                    if (!result)
  1.4741 +                        matcher.locals[countIndex] = count;
  1.4742 +                    return result;
  1.4743 +                }
  1.4744 +                if (next.match(matcher, i, seq))
  1.4745 +                    return true;
  1.4746 +                if (count < cmax) {
  1.4747 +                    matcher.locals[countIndex] = count + 1;
  1.4748 +                    boolean result = body.match(matcher, i, seq);
  1.4749 +                    // If match failed we must backtrack, so
  1.4750 +                    // the loop count should NOT be incremented
  1.4751 +                    if (!result)
  1.4752 +                        matcher.locals[countIndex] = count;
  1.4753 +                    return result;
  1.4754 +                }
  1.4755 +                return false;
  1.4756 +            }
  1.4757 +            return next.match(matcher, i, seq);
  1.4758 +        }
  1.4759 +        boolean matchInit(Matcher matcher, int i, CharSequence seq) {
  1.4760 +            int save = matcher.locals[countIndex];
  1.4761 +            boolean ret = false;
  1.4762 +            if (0 < cmin) {
  1.4763 +                matcher.locals[countIndex] = 1;
  1.4764 +                ret = body.match(matcher, i, seq);
  1.4765 +            } else if (next.match(matcher, i, seq)) {
  1.4766 +                ret = true;
  1.4767 +            } else if (0 < cmax) {
  1.4768 +                matcher.locals[countIndex] = 1;
  1.4769 +                ret = body.match(matcher, i, seq);
  1.4770 +            }
  1.4771 +            matcher.locals[countIndex] = save;
  1.4772 +            return ret;
  1.4773 +        }
  1.4774 +        boolean study(TreeInfo info) {
  1.4775 +            info.maxValid = false;
  1.4776 +            info.deterministic = false;
  1.4777 +            return false;
  1.4778 +        }
  1.4779 +    }
  1.4780 +
  1.4781 +    /**
  1.4782 +     * Refers to a group in the regular expression. Attempts to match
  1.4783 +     * whatever the group referred to last matched.
  1.4784 +     */
  1.4785 +    static class BackRef extends Node {
  1.4786 +        int groupIndex;
  1.4787 +        BackRef(int groupCount) {
  1.4788 +            super();
  1.4789 +            groupIndex = groupCount + groupCount;
  1.4790 +        }
  1.4791 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4792 +            int j = matcher.groups[groupIndex];
  1.4793 +            int k = matcher.groups[groupIndex+1];
  1.4794 +
  1.4795 +            int groupSize = k - j;
  1.4796 +
  1.4797 +            // If the referenced group didn't match, neither can this
  1.4798 +            if (j < 0)
  1.4799 +                return false;
  1.4800 +
  1.4801 +            // If there isn't enough input left no match
  1.4802 +            if (i + groupSize > matcher.to) {
  1.4803 +                matcher.hitEnd = true;
  1.4804 +                return false;
  1.4805 +            }
  1.4806 +
  1.4807 +            // Check each new char to make sure it matches what the group
  1.4808 +            // referenced matched last time around
  1.4809 +            for (int index=0; index<groupSize; index++)
  1.4810 +                if (seq.charAt(i+index) != seq.charAt(j+index))
  1.4811 +                    return false;
  1.4812 +
  1.4813 +            return next.match(matcher, i+groupSize, seq);
  1.4814 +        }
  1.4815 +        boolean study(TreeInfo info) {
  1.4816 +            info.maxValid = false;
  1.4817 +            return next.study(info);
  1.4818 +        }
  1.4819 +    }
  1.4820 +
  1.4821 +    static class CIBackRef extends Node {
  1.4822 +        int groupIndex;
  1.4823 +        boolean doUnicodeCase;
  1.4824 +        CIBackRef(int groupCount, boolean doUnicodeCase) {
  1.4825 +            super();
  1.4826 +            groupIndex = groupCount + groupCount;
  1.4827 +            this.doUnicodeCase = doUnicodeCase;
  1.4828 +        }
  1.4829 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4830 +            int j = matcher.groups[groupIndex];
  1.4831 +            int k = matcher.groups[groupIndex+1];
  1.4832 +
  1.4833 +            int groupSize = k - j;
  1.4834 +
  1.4835 +            // If the referenced group didn't match, neither can this
  1.4836 +            if (j < 0)
  1.4837 +                return false;
  1.4838 +
  1.4839 +            // If there isn't enough input left no match
  1.4840 +            if (i + groupSize > matcher.to) {
  1.4841 +                matcher.hitEnd = true;
  1.4842 +                return false;
  1.4843 +            }
  1.4844 +
  1.4845 +            // Check each new char to make sure it matches what the group
  1.4846 +            // referenced matched last time around
  1.4847 +            int x = i;
  1.4848 +            for (int index=0; index<groupSize; index++) {
  1.4849 +                int c1 = Character.codePointAt(seq, x);
  1.4850 +                int c2 = Character.codePointAt(seq, j);
  1.4851 +                if (c1 != c2) {
  1.4852 +                    if (doUnicodeCase) {
  1.4853 +                        int cc1 = Character.toUpperCase(c1);
  1.4854 +                        int cc2 = Character.toUpperCase(c2);
  1.4855 +                        if (cc1 != cc2 &&
  1.4856 +                            Character.toLowerCase(cc1) !=
  1.4857 +                            Character.toLowerCase(cc2))
  1.4858 +                            return false;
  1.4859 +                    } else {
  1.4860 +                        if (ASCII.toLower(c1) != ASCII.toLower(c2))
  1.4861 +                            return false;
  1.4862 +                    }
  1.4863 +                }
  1.4864 +                x += Character.charCount(c1);
  1.4865 +                j += Character.charCount(c2);
  1.4866 +            }
  1.4867 +
  1.4868 +            return next.match(matcher, i+groupSize, seq);
  1.4869 +        }
  1.4870 +        boolean study(TreeInfo info) {
  1.4871 +            info.maxValid = false;
  1.4872 +            return next.study(info);
  1.4873 +        }
  1.4874 +    }
  1.4875 +
  1.4876 +    /**
  1.4877 +     * Searches until the next instance of its atom. This is useful for
  1.4878 +     * finding the atom efficiently without passing an instance of it
  1.4879 +     * (greedy problem) and without a lot of wasted search time (reluctant
  1.4880 +     * problem).
  1.4881 +     */
  1.4882 +    static final class First extends Node {
  1.4883 +        Node atom;
  1.4884 +        First(Node node) {
  1.4885 +            this.atom = BnM.optimize(node);
  1.4886 +        }
  1.4887 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4888 +            if (atom instanceof BnM) {
  1.4889 +                return atom.match(matcher, i, seq)
  1.4890 +                    && next.match(matcher, matcher.last, seq);
  1.4891 +            }
  1.4892 +            for (;;) {
  1.4893 +                if (i > matcher.to) {
  1.4894 +                    matcher.hitEnd = true;
  1.4895 +                    return false;
  1.4896 +                }
  1.4897 +                if (atom.match(matcher, i, seq)) {
  1.4898 +                    return next.match(matcher, matcher.last, seq);
  1.4899 +                }
  1.4900 +                i += countChars(seq, i, 1);
  1.4901 +                matcher.first++;
  1.4902 +            }
  1.4903 +        }
  1.4904 +        boolean study(TreeInfo info) {
  1.4905 +            atom.study(info);
  1.4906 +            info.maxValid = false;
  1.4907 +            info.deterministic = false;
  1.4908 +            return next.study(info);
  1.4909 +        }
  1.4910 +    }
  1.4911 +
  1.4912 +    static final class Conditional extends Node {
  1.4913 +        Node cond, yes, not;
  1.4914 +        Conditional(Node cond, Node yes, Node not) {
  1.4915 +            this.cond = cond;
  1.4916 +            this.yes = yes;
  1.4917 +            this.not = not;
  1.4918 +        }
  1.4919 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4920 +            if (cond.match(matcher, i, seq)) {
  1.4921 +                return yes.match(matcher, i, seq);
  1.4922 +            } else {
  1.4923 +                return not.match(matcher, i, seq);
  1.4924 +            }
  1.4925 +        }
  1.4926 +        boolean study(TreeInfo info) {
  1.4927 +            int minL = info.minLength;
  1.4928 +            int maxL = info.maxLength;
  1.4929 +            boolean maxV = info.maxValid;
  1.4930 +            info.reset();
  1.4931 +            yes.study(info);
  1.4932 +
  1.4933 +            int minL2 = info.minLength;
  1.4934 +            int maxL2 = info.maxLength;
  1.4935 +            boolean maxV2 = info.maxValid;
  1.4936 +            info.reset();
  1.4937 +            not.study(info);
  1.4938 +
  1.4939 +            info.minLength = minL + Math.min(minL2, info.minLength);
  1.4940 +            info.maxLength = maxL + Math.max(maxL2, info.maxLength);
  1.4941 +            info.maxValid = (maxV & maxV2 & info.maxValid);
  1.4942 +            info.deterministic = false;
  1.4943 +            return next.study(info);
  1.4944 +        }
  1.4945 +    }
  1.4946 +
  1.4947 +    /**
  1.4948 +     * Zero width positive lookahead.
  1.4949 +     */
  1.4950 +    static final class Pos extends Node {
  1.4951 +        Node cond;
  1.4952 +        Pos(Node cond) {
  1.4953 +            this.cond = cond;
  1.4954 +        }
  1.4955 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4956 +            int savedTo = matcher.to;
  1.4957 +            boolean conditionMatched = false;
  1.4958 +
  1.4959 +            // Relax transparent region boundaries for lookahead
  1.4960 +            if (matcher.transparentBounds)
  1.4961 +                matcher.to = matcher.getTextLength();
  1.4962 +            try {
  1.4963 +                conditionMatched = cond.match(matcher, i, seq);
  1.4964 +            } finally {
  1.4965 +                // Reinstate region boundaries
  1.4966 +                matcher.to = savedTo;
  1.4967 +            }
  1.4968 +            return conditionMatched && next.match(matcher, i, seq);
  1.4969 +        }
  1.4970 +    }
  1.4971 +
  1.4972 +    /**
  1.4973 +     * Zero width negative lookahead.
  1.4974 +     */
  1.4975 +    static final class Neg extends Node {
  1.4976 +        Node cond;
  1.4977 +        Neg(Node cond) {
  1.4978 +            this.cond = cond;
  1.4979 +        }
  1.4980 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.4981 +            int savedTo = matcher.to;
  1.4982 +            boolean conditionMatched = false;
  1.4983 +
  1.4984 +            // Relax transparent region boundaries for lookahead
  1.4985 +            if (matcher.transparentBounds)
  1.4986 +                matcher.to = matcher.getTextLength();
  1.4987 +            try {
  1.4988 +                if (i < matcher.to) {
  1.4989 +                    conditionMatched = !cond.match(matcher, i, seq);
  1.4990 +                } else {
  1.4991 +                    // If a negative lookahead succeeds then more input
  1.4992 +                    // could cause it to fail!
  1.4993 +                    matcher.requireEnd = true;
  1.4994 +                    conditionMatched = !cond.match(matcher, i, seq);
  1.4995 +                }
  1.4996 +            } finally {
  1.4997 +                // Reinstate region boundaries
  1.4998 +                matcher.to = savedTo;
  1.4999 +            }
  1.5000 +            return conditionMatched && next.match(matcher, i, seq);
  1.5001 +        }
  1.5002 +    }
  1.5003 +
  1.5004 +    /**
  1.5005 +     * For use with lookbehinds; matches the position where the lookbehind
  1.5006 +     * was encountered.
  1.5007 +     */
  1.5008 +    static Node lookbehindEnd = new Node() {
  1.5009 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.5010 +            return i == matcher.lookbehindTo;
  1.5011 +        }
  1.5012 +    };
  1.5013 +
  1.5014 +    /**
  1.5015 +     * Zero width positive lookbehind.
  1.5016 +     */
  1.5017 +    static class Behind extends Node {
  1.5018 +        Node cond;
  1.5019 +        int rmax, rmin;
  1.5020 +        Behind(Node cond, int rmax, int rmin) {
  1.5021 +            this.cond = cond;
  1.5022 +            this.rmax = rmax;
  1.5023 +            this.rmin = rmin;
  1.5024 +        }
  1.5025 +
  1.5026 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.5027 +            int savedFrom = matcher.from;
  1.5028 +            boolean conditionMatched = false;
  1.5029 +            int startIndex = (!matcher.transparentBounds) ?
  1.5030 +                             matcher.from : 0;
  1.5031 +            int from = Math.max(i - rmax, startIndex);
  1.5032 +            // Set end boundary
  1.5033 +            int savedLBT = matcher.lookbehindTo;
  1.5034 +            matcher.lookbehindTo = i;
  1.5035 +            // Relax transparent region boundaries for lookbehind
  1.5036 +            if (matcher.transparentBounds)
  1.5037 +                matcher.from = 0;
  1.5038 +            for (int j = i - rmin; !conditionMatched && j >= from; j--) {
  1.5039 +                conditionMatched = cond.match(matcher, j, seq);
  1.5040 +            }
  1.5041 +            matcher.from = savedFrom;
  1.5042 +            matcher.lookbehindTo = savedLBT;
  1.5043 +            return conditionMatched && next.match(matcher, i, seq);
  1.5044 +        }
  1.5045 +    }
  1.5046 +
  1.5047 +    /**
  1.5048 +     * Zero width positive lookbehind, including supplementary
  1.5049 +     * characters or unpaired surrogates.
  1.5050 +     */
  1.5051 +    static final class BehindS extends Behind {
  1.5052 +        BehindS(Node cond, int rmax, int rmin) {
  1.5053 +            super(cond, rmax, rmin);
  1.5054 +        }
  1.5055 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.5056 +            int rmaxChars = countChars(seq, i, -rmax);
  1.5057 +            int rminChars = countChars(seq, i, -rmin);
  1.5058 +            int savedFrom = matcher.from;
  1.5059 +            int startIndex = (!matcher.transparentBounds) ?
  1.5060 +                             matcher.from : 0;
  1.5061 +            boolean conditionMatched = false;
  1.5062 +            int from = Math.max(i - rmaxChars, startIndex);
  1.5063 +            // Set end boundary
  1.5064 +            int savedLBT = matcher.lookbehindTo;
  1.5065 +            matcher.lookbehindTo = i;
  1.5066 +            // Relax transparent region boundaries for lookbehind
  1.5067 +            if (matcher.transparentBounds)
  1.5068 +                matcher.from = 0;
  1.5069 +
  1.5070 +            for (int j = i - rminChars;
  1.5071 +                 !conditionMatched && j >= from;
  1.5072 +                 j -= j>from ? countChars(seq, j, -1) : 1) {
  1.5073 +                conditionMatched = cond.match(matcher, j, seq);
  1.5074 +            }
  1.5075 +            matcher.from = savedFrom;
  1.5076 +            matcher.lookbehindTo = savedLBT;
  1.5077 +            return conditionMatched && next.match(matcher, i, seq);
  1.5078 +        }
  1.5079 +    }
  1.5080 +
  1.5081 +    /**
  1.5082 +     * Zero width negative lookbehind.
  1.5083 +     */
  1.5084 +    static class NotBehind extends Node {
  1.5085 +        Node cond;
  1.5086 +        int rmax, rmin;
  1.5087 +        NotBehind(Node cond, int rmax, int rmin) {
  1.5088 +            this.cond = cond;
  1.5089 +            this.rmax = rmax;
  1.5090 +            this.rmin = rmin;
  1.5091 +        }
  1.5092 +
  1.5093 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.5094 +            int savedLBT = matcher.lookbehindTo;
  1.5095 +            int savedFrom = matcher.from;
  1.5096 +            boolean conditionMatched = false;
  1.5097 +            int startIndex = (!matcher.transparentBounds) ?
  1.5098 +                             matcher.from : 0;
  1.5099 +            int from = Math.max(i - rmax, startIndex);
  1.5100 +            matcher.lookbehindTo = i;
  1.5101 +            // Relax transparent region boundaries for lookbehind
  1.5102 +            if (matcher.transparentBounds)
  1.5103 +                matcher.from = 0;
  1.5104 +            for (int j = i - rmin; !conditionMatched && j >= from; j--) {
  1.5105 +                conditionMatched = cond.match(matcher, j, seq);
  1.5106 +            }
  1.5107 +            // Reinstate region boundaries
  1.5108 +            matcher.from = savedFrom;
  1.5109 +            matcher.lookbehindTo = savedLBT;
  1.5110 +            return !conditionMatched && next.match(matcher, i, seq);
  1.5111 +        }
  1.5112 +    }
  1.5113 +
  1.5114 +    /**
  1.5115 +     * Zero width negative lookbehind, including supplementary
  1.5116 +     * characters or unpaired surrogates.
  1.5117 +     */
  1.5118 +    static final class NotBehindS extends NotBehind {
  1.5119 +        NotBehindS(Node cond, int rmax, int rmin) {
  1.5120 +            super(cond, rmax, rmin);
  1.5121 +        }
  1.5122 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.5123 +            int rmaxChars = countChars(seq, i, -rmax);
  1.5124 +            int rminChars = countChars(seq, i, -rmin);
  1.5125 +            int savedFrom = matcher.from;
  1.5126 +            int savedLBT = matcher.lookbehindTo;
  1.5127 +            boolean conditionMatched = false;
  1.5128 +            int startIndex = (!matcher.transparentBounds) ?
  1.5129 +                             matcher.from : 0;
  1.5130 +            int from = Math.max(i - rmaxChars, startIndex);
  1.5131 +            matcher.lookbehindTo = i;
  1.5132 +            // Relax transparent region boundaries for lookbehind
  1.5133 +            if (matcher.transparentBounds)
  1.5134 +                matcher.from = 0;
  1.5135 +            for (int j = i - rminChars;
  1.5136 +                 !conditionMatched && j >= from;
  1.5137 +                 j -= j>from ? countChars(seq, j, -1) : 1) {
  1.5138 +                conditionMatched = cond.match(matcher, j, seq);
  1.5139 +            }
  1.5140 +            //Reinstate region boundaries
  1.5141 +            matcher.from = savedFrom;
  1.5142 +            matcher.lookbehindTo = savedLBT;
  1.5143 +            return !conditionMatched && next.match(matcher, i, seq);
  1.5144 +        }
  1.5145 +    }
  1.5146 +
  1.5147 +    /**
  1.5148 +     * Returns the set union of two CharProperty nodes.
  1.5149 +     */
  1.5150 +    private static CharProperty union(final CharProperty lhs,
  1.5151 +                                      final CharProperty rhs) {
  1.5152 +        return new CharProperty() {
  1.5153 +                boolean isSatisfiedBy(int ch) {
  1.5154 +                    return lhs.isSatisfiedBy(ch) || rhs.isSatisfiedBy(ch);}};
  1.5155 +    }
  1.5156 +
  1.5157 +    /**
  1.5158 +     * Returns the set intersection of two CharProperty nodes.
  1.5159 +     */
  1.5160 +    private static CharProperty intersection(final CharProperty lhs,
  1.5161 +                                             final CharProperty rhs) {
  1.5162 +        return new CharProperty() {
  1.5163 +                boolean isSatisfiedBy(int ch) {
  1.5164 +                    return lhs.isSatisfiedBy(ch) && rhs.isSatisfiedBy(ch);}};
  1.5165 +    }
  1.5166 +
  1.5167 +    /**
  1.5168 +     * Returns the set difference of two CharProperty nodes.
  1.5169 +     */
  1.5170 +    private static CharProperty setDifference(final CharProperty lhs,
  1.5171 +                                              final CharProperty rhs) {
  1.5172 +        return new CharProperty() {
  1.5173 +                boolean isSatisfiedBy(int ch) {
  1.5174 +                    return ! rhs.isSatisfiedBy(ch) && lhs.isSatisfiedBy(ch);}};
  1.5175 +    }
  1.5176 +
  1.5177 +    /**
  1.5178 +     * Handles word boundaries. Includes a field to allow this one class to
  1.5179 +     * deal with the different types of word boundaries we can match. The word
  1.5180 +     * characters include underscores, letters, and digits. Non spacing marks
  1.5181 +     * can are also part of a word if they have a base character, otherwise
  1.5182 +     * they are ignored for purposes of finding word boundaries.
  1.5183 +     */
  1.5184 +    static final class Bound extends Node {
  1.5185 +        static int LEFT = 0x1;
  1.5186 +        static int RIGHT= 0x2;
  1.5187 +        static int BOTH = 0x3;
  1.5188 +        static int NONE = 0x4;
  1.5189 +        int type;
  1.5190 +        boolean useUWORD;
  1.5191 +        Bound(int n, boolean useUWORD) {
  1.5192 +            type = n;
  1.5193 +            this.useUWORD = useUWORD;
  1.5194 +        }
  1.5195 +
  1.5196 +        boolean isWord(int ch) {
  1.5197 +            return useUWORD ? UnicodeProp.WORD.is(ch)
  1.5198 +                            : (ch == '_' || Character.isLetterOrDigit(ch));
  1.5199 +        }
  1.5200 +
  1.5201 +        int check(Matcher matcher, int i, CharSequence seq) {
  1.5202 +            int ch;
  1.5203 +            boolean left = false;
  1.5204 +            int startIndex = matcher.from;
  1.5205 +            int endIndex = matcher.to;
  1.5206 +            if (matcher.transparentBounds) {
  1.5207 +                startIndex = 0;
  1.5208 +                endIndex = matcher.getTextLength();
  1.5209 +            }
  1.5210 +            if (i > startIndex) {
  1.5211 +                ch = Character.codePointBefore(seq, i);
  1.5212 +                left = (isWord(ch) ||
  1.5213 +                    ((Character.getType(ch) == Character.NON_SPACING_MARK)
  1.5214 +                     && hasBaseCharacter(matcher, i-1, seq)));
  1.5215 +            }
  1.5216 +            boolean right = false;
  1.5217 +            if (i < endIndex) {
  1.5218 +                ch = Character.codePointAt(seq, i);
  1.5219 +                right = (isWord(ch) ||
  1.5220 +                    ((Character.getType(ch) == Character.NON_SPACING_MARK)
  1.5221 +                     && hasBaseCharacter(matcher, i, seq)));
  1.5222 +            } else {
  1.5223 +                // Tried to access char past the end
  1.5224 +                matcher.hitEnd = true;
  1.5225 +                // The addition of another char could wreck a boundary
  1.5226 +                matcher.requireEnd = true;
  1.5227 +            }
  1.5228 +            return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
  1.5229 +        }
  1.5230 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.5231 +            return (check(matcher, i, seq) & type) > 0
  1.5232 +                && next.match(matcher, i, seq);
  1.5233 +        }
  1.5234 +    }
  1.5235 +
  1.5236 +    /**
  1.5237 +     * Non spacing marks only count as word characters in bounds calculations
  1.5238 +     * if they have a base character.
  1.5239 +     */
  1.5240 +    private static boolean hasBaseCharacter(Matcher matcher, int i,
  1.5241 +                                            CharSequence seq)
  1.5242 +    {
  1.5243 +        int start = (!matcher.transparentBounds) ?
  1.5244 +            matcher.from : 0;
  1.5245 +        for (int x=i; x >= start; x--) {
  1.5246 +            int ch = Character.codePointAt(seq, x);
  1.5247 +            if (Character.isLetterOrDigit(ch))
  1.5248 +                return true;
  1.5249 +            if (Character.getType(ch) == Character.NON_SPACING_MARK)
  1.5250 +                continue;
  1.5251 +            return false;
  1.5252 +        }
  1.5253 +        return false;
  1.5254 +    }
  1.5255 +
  1.5256 +    /**
  1.5257 +     * Attempts to match a slice in the input using the Boyer-Moore string
  1.5258 +     * matching algorithm. The algorithm is based on the idea that the
  1.5259 +     * pattern can be shifted farther ahead in the search text if it is
  1.5260 +     * matched right to left.
  1.5261 +     * <p>
  1.5262 +     * The pattern is compared to the input one character at a time, from
  1.5263 +     * the rightmost character in the pattern to the left. If the characters
  1.5264 +     * all match the pattern has been found. If a character does not match,
  1.5265 +     * the pattern is shifted right a distance that is the maximum of two
  1.5266 +     * functions, the bad character shift and the good suffix shift. This
  1.5267 +     * shift moves the attempted match position through the input more
  1.5268 +     * quickly than a naive one position at a time check.
  1.5269 +     * <p>
  1.5270 +     * The bad character shift is based on the character from the text that
  1.5271 +     * did not match. If the character does not appear in the pattern, the
  1.5272 +     * pattern can be shifted completely beyond the bad character. If the
  1.5273 +     * character does occur in the pattern, the pattern can be shifted to
  1.5274 +     * line the pattern up with the next occurrence of that character.
  1.5275 +     * <p>
  1.5276 +     * The good suffix shift is based on the idea that some subset on the right
  1.5277 +     * side of the pattern has matched. When a bad character is found, the
  1.5278 +     * pattern can be shifted right by the pattern length if the subset does
  1.5279 +     * not occur again in pattern, or by the amount of distance to the
  1.5280 +     * next occurrence of the subset in the pattern.
  1.5281 +     *
  1.5282 +     * Boyer-Moore search methods adapted from code by Amy Yu.
  1.5283 +     */
  1.5284 +    static class BnM extends Node {
  1.5285 +        int[] buffer;
  1.5286 +        int[] lastOcc;
  1.5287 +        int[] optoSft;
  1.5288 +
  1.5289 +        /**
  1.5290 +         * Pre calculates arrays needed to generate the bad character
  1.5291 +         * shift and the good suffix shift. Only the last seven bits
  1.5292 +         * are used to see if chars match; This keeps the tables small
  1.5293 +         * and covers the heavily used ASCII range, but occasionally
  1.5294 +         * results in an aliased match for the bad character shift.
  1.5295 +         */
  1.5296 +        static Node optimize(Node node) {
  1.5297 +            if (!(node instanceof Slice)) {
  1.5298 +                return node;
  1.5299 +            }
  1.5300 +
  1.5301 +            int[] src = ((Slice) node).buffer;
  1.5302 +            int patternLength = src.length;
  1.5303 +            // The BM algorithm requires a bit of overhead;
  1.5304 +            // If the pattern is short don't use it, since
  1.5305 +            // a shift larger than the pattern length cannot
  1.5306 +            // be used anyway.
  1.5307 +            if (patternLength < 4) {
  1.5308 +                return node;
  1.5309 +            }
  1.5310 +            int i, j, k;
  1.5311 +            int[] lastOcc = new int[128];
  1.5312 +            int[] optoSft = new int[patternLength];
  1.5313 +            // Precalculate part of the bad character shift
  1.5314 +            // It is a table for where in the pattern each
  1.5315 +            // lower 7-bit value occurs
  1.5316 +            for (i = 0; i < patternLength; i++) {
  1.5317 +                lastOcc[src[i]&0x7F] = i + 1;
  1.5318 +            }
  1.5319 +            // Precalculate the good suffix shift
  1.5320 +            // i is the shift amount being considered
  1.5321 +NEXT:       for (i = patternLength; i > 0; i--) {
  1.5322 +                // j is the beginning index of suffix being considered
  1.5323 +                for (j = patternLength - 1; j >= i; j--) {
  1.5324 +                    // Testing for good suffix
  1.5325 +                    if (src[j] == src[j-i]) {
  1.5326 +                        // src[j..len] is a good suffix
  1.5327 +                        optoSft[j-1] = i;
  1.5328 +                    } else {
  1.5329 +                        // No match. The array has already been
  1.5330 +                        // filled up with correct values before.
  1.5331 +                        continue NEXT;
  1.5332 +                    }
  1.5333 +                }
  1.5334 +                // This fills up the remaining of optoSft
  1.5335 +                // any suffix can not have larger shift amount
  1.5336 +                // then its sub-suffix. Why???
  1.5337 +                while (j > 0) {
  1.5338 +                    optoSft[--j] = i;
  1.5339 +                }
  1.5340 +            }
  1.5341 +            // Set the guard value because of unicode compression
  1.5342 +            optoSft[patternLength-1] = 1;
  1.5343 +            if (node instanceof SliceS)
  1.5344 +                return new BnMS(src, lastOcc, optoSft, node.next);
  1.5345 +            return new BnM(src, lastOcc, optoSft, node.next);
  1.5346 +        }
  1.5347 +        BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
  1.5348 +            this.buffer = src;
  1.5349 +            this.lastOcc = lastOcc;
  1.5350 +            this.optoSft = optoSft;
  1.5351 +            this.next = next;
  1.5352 +        }
  1.5353 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.5354 +            int[] src = buffer;
  1.5355 +            int patternLength = src.length;
  1.5356 +            int last = matcher.to - patternLength;
  1.5357 +
  1.5358 +            // Loop over all possible match positions in text
  1.5359 +NEXT:       while (i <= last) {
  1.5360 +                // Loop over pattern from right to left
  1.5361 +                for (int j = patternLength - 1; j >= 0; j--) {
  1.5362 +                    int ch = seq.charAt(i+j);
  1.5363 +                    if (ch != src[j]) {
  1.5364 +                        // Shift search to the right by the maximum of the
  1.5365 +                        // bad character shift and the good suffix shift
  1.5366 +                        i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
  1.5367 +                        continue NEXT;
  1.5368 +                    }
  1.5369 +                }
  1.5370 +                // Entire pattern matched starting at i
  1.5371 +                matcher.first = i;
  1.5372 +                boolean ret = next.match(matcher, i + patternLength, seq);
  1.5373 +                if (ret) {
  1.5374 +                    matcher.first = i;
  1.5375 +                    matcher.groups[0] = matcher.first;
  1.5376 +                    matcher.groups[1] = matcher.last;
  1.5377 +                    return true;
  1.5378 +                }
  1.5379 +                i++;
  1.5380 +            }
  1.5381 +            // BnM is only used as the leading node in the unanchored case,
  1.5382 +            // and it replaced its Start() which always searches to the end
  1.5383 +            // if it doesn't find what it's looking for, so hitEnd is true.
  1.5384 +            matcher.hitEnd = true;
  1.5385 +            return false;
  1.5386 +        }
  1.5387 +        boolean study(TreeInfo info) {
  1.5388 +            info.minLength += buffer.length;
  1.5389 +            info.maxValid = false;
  1.5390 +            return next.study(info);
  1.5391 +        }
  1.5392 +    }
  1.5393 +
  1.5394 +    /**
  1.5395 +     * Supplementary support version of BnM(). Unpaired surrogates are
  1.5396 +     * also handled by this class.
  1.5397 +     */
  1.5398 +    static final class BnMS extends BnM {
  1.5399 +        int lengthInChars;
  1.5400 +
  1.5401 +        BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
  1.5402 +            super(src, lastOcc, optoSft, next);
  1.5403 +            for (int x = 0; x < buffer.length; x++) {
  1.5404 +                lengthInChars += Character.charCount(buffer[x]);
  1.5405 +            }
  1.5406 +        }
  1.5407 +        boolean match(Matcher matcher, int i, CharSequence seq) {
  1.5408 +            int[] src = buffer;
  1.5409 +            int patternLength = src.length;
  1.5410 +            int last = matcher.to - lengthInChars;
  1.5411 +
  1.5412 +            // Loop over all possible match positions in text
  1.5413 +NEXT:       while (i <= last) {
  1.5414 +                // Loop over pattern from right to left
  1.5415 +                int ch;
  1.5416 +                for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
  1.5417 +                     j > 0; j -= Character.charCount(ch), x--) {
  1.5418 +                    ch = Character.codePointBefore(seq, i+j);
  1.5419 +                    if (ch != src[x]) {
  1.5420 +                        // Shift search to the right by the maximum of the
  1.5421 +                        // bad character shift and the good suffix shift
  1.5422 +                        int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
  1.5423 +                        i += countChars(seq, i, n);
  1.5424 +                        continue NEXT;
  1.5425 +                    }
  1.5426 +                }
  1.5427 +                // Entire pattern matched starting at i
  1.5428 +                matcher.first = i;
  1.5429 +                boolean ret = next.match(matcher, i + lengthInChars, seq);
  1.5430 +                if (ret) {
  1.5431 +                    matcher.first = i;
  1.5432 +                    matcher.groups[0] = matcher.first;
  1.5433 +                    matcher.groups[1] = matcher.last;
  1.5434 +                    return true;
  1.5435 +                }
  1.5436 +                i += countChars(seq, i, 1);
  1.5437 +            }
  1.5438 +            matcher.hitEnd = true;
  1.5439 +            return false;
  1.5440 +        }
  1.5441 +    }
  1.5442 +
  1.5443 +///////////////////////////////////////////////////////////////////////////////
  1.5444 +///////////////////////////////////////////////////////////////////////////////
  1.5445 +
  1.5446 +    /**
  1.5447 +     *  This must be the very first initializer.
  1.5448 +     */
  1.5449 +    static Node accept = new Node();
  1.5450 +
  1.5451 +    static Node lastAccept = new LastNode();
  1.5452 +
  1.5453 +    private static class CharPropertyNames {
  1.5454 +
  1.5455 +        static CharProperty charPropertyFor(String name) {
  1.5456 +            CharPropertyFactory m = map.get(name);
  1.5457 +            return m == null ? null : m.make();
  1.5458 +        }
  1.5459 +
  1.5460 +        private static abstract class CharPropertyFactory {
  1.5461 +            abstract CharProperty make();
  1.5462 +        }
  1.5463 +
  1.5464 +        private static void defCategory(String name,
  1.5465 +                                        final int typeMask) {
  1.5466 +            map.put(name, new CharPropertyFactory() {
  1.5467 +                    CharProperty make() { return new Category(typeMask);}});
  1.5468 +        }
  1.5469 +
  1.5470 +        private static void defRange(String name,
  1.5471 +                                     final int lower, final int upper) {
  1.5472 +            map.put(name, new CharPropertyFactory() {
  1.5473 +                    CharProperty make() { return rangeFor(lower, upper);}});
  1.5474 +        }
  1.5475 +
  1.5476 +        private static void defCtype(String name,
  1.5477 +                                     final int ctype) {
  1.5478 +            map.put(name, new CharPropertyFactory() {
  1.5479 +                    CharProperty make() { return new Ctype(ctype);}});
  1.5480 +        }
  1.5481 +
  1.5482 +        private static abstract class CloneableProperty
  1.5483 +            extends CharProperty implements Cloneable
  1.5484 +        {
  1.5485 +            public CloneableProperty clone() {
  1.5486 +                try {
  1.5487 +                    return (CloneableProperty) super.clone();
  1.5488 +                } catch (CloneNotSupportedException e) {
  1.5489 +                    throw new AssertionError(e);
  1.5490 +                }
  1.5491 +            }
  1.5492 +        }
  1.5493 +
  1.5494 +        private static void defClone(String name,
  1.5495 +                                     final CloneableProperty p) {
  1.5496 +            map.put(name, new CharPropertyFactory() {
  1.5497 +                    CharProperty make() { return p.clone();}});
  1.5498 +        }
  1.5499 +
  1.5500 +        private static final HashMap<String, CharPropertyFactory> map
  1.5501 +            = new HashMap<>();
  1.5502 +
  1.5503 +        static {
  1.5504 +            // Unicode character property aliases, defined in
  1.5505 +            // http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt
  1.5506 +            defCategory("Cn", 1<<Character.UNASSIGNED);
  1.5507 +            defCategory("Lu", 1<<Character.UPPERCASE_LETTER);
  1.5508 +            defCategory("Ll", 1<<Character.LOWERCASE_LETTER);
  1.5509 +            defCategory("Lt", 1<<Character.TITLECASE_LETTER);
  1.5510 +            defCategory("Lm", 1<<Character.MODIFIER_LETTER);
  1.5511 +            defCategory("Lo", 1<<Character.OTHER_LETTER);
  1.5512 +            defCategory("Mn", 1<<Character.NON_SPACING_MARK);
  1.5513 +            defCategory("Me", 1<<Character.ENCLOSING_MARK);
  1.5514 +            defCategory("Mc", 1<<Character.COMBINING_SPACING_MARK);
  1.5515 +            defCategory("Nd", 1<<Character.DECIMAL_DIGIT_NUMBER);
  1.5516 +            defCategory("Nl", 1<<Character.LETTER_NUMBER);
  1.5517 +            defCategory("No", 1<<Character.OTHER_NUMBER);
  1.5518 +            defCategory("Zs", 1<<Character.SPACE_SEPARATOR);
  1.5519 +            defCategory("Zl", 1<<Character.LINE_SEPARATOR);
  1.5520 +            defCategory("Zp", 1<<Character.PARAGRAPH_SEPARATOR);
  1.5521 +            defCategory("Cc", 1<<Character.CONTROL);
  1.5522 +            defCategory("Cf", 1<<Character.FORMAT);
  1.5523 +            defCategory("Co", 1<<Character.PRIVATE_USE);
  1.5524 +            defCategory("Cs", 1<<Character.SURROGATE);
  1.5525 +            defCategory("Pd", 1<<Character.DASH_PUNCTUATION);
  1.5526 +            defCategory("Ps", 1<<Character.START_PUNCTUATION);
  1.5527 +            defCategory("Pe", 1<<Character.END_PUNCTUATION);
  1.5528 +            defCategory("Pc", 1<<Character.CONNECTOR_PUNCTUATION);
  1.5529 +            defCategory("Po", 1<<Character.OTHER_PUNCTUATION);
  1.5530 +            defCategory("Sm", 1<<Character.MATH_SYMBOL);
  1.5531 +            defCategory("Sc", 1<<Character.CURRENCY_SYMBOL);
  1.5532 +            defCategory("Sk", 1<<Character.MODIFIER_SYMBOL);
  1.5533 +            defCategory("So", 1<<Character.OTHER_SYMBOL);
  1.5534 +            defCategory("Pi", 1<<Character.INITIAL_QUOTE_PUNCTUATION);
  1.5535 +            defCategory("Pf", 1<<Character.FINAL_QUOTE_PUNCTUATION);
  1.5536 +            defCategory("L", ((1<<Character.UPPERCASE_LETTER) |
  1.5537 +                              (1<<Character.LOWERCASE_LETTER) |
  1.5538 +                              (1<<Character.TITLECASE_LETTER) |
  1.5539 +                              (1<<Character.MODIFIER_LETTER)  |
  1.5540 +                              (1<<Character.OTHER_LETTER)));
  1.5541 +            defCategory("M", ((1<<Character.NON_SPACING_MARK) |
  1.5542 +                              (1<<Character.ENCLOSING_MARK)   |
  1.5543 +                              (1<<Character.COMBINING_SPACING_MARK)));
  1.5544 +            defCategory("N", ((1<<Character.DECIMAL_DIGIT_NUMBER) |
  1.5545 +                              (1<<Character.LETTER_NUMBER)        |
  1.5546 +                              (1<<Character.OTHER_NUMBER)));
  1.5547 +            defCategory("Z", ((1<<Character.SPACE_SEPARATOR) |
  1.5548 +                              (1<<Character.LINE_SEPARATOR)  |
  1.5549 +                              (1<<Character.PARAGRAPH_SEPARATOR)));
  1.5550 +            defCategory("C", ((1<<Character.CONTROL)     |
  1.5551 +                              (1<<Character.FORMAT)      |
  1.5552 +                              (1<<Character.PRIVATE_USE) |
  1.5553 +                              (1<<Character.SURROGATE))); // Other
  1.5554 +            defCategory("P", ((1<<Character.DASH_PUNCTUATION)      |
  1.5555 +                              (1<<Character.START_PUNCTUATION)     |
  1.5556 +                              (1<<Character.END_PUNCTUATION)       |
  1.5557 +                              (1<<Character.CONNECTOR_PUNCTUATION) |
  1.5558 +                              (1<<Character.OTHER_PUNCTUATION)     |
  1.5559 +                              (1<<Character.INITIAL_QUOTE_PUNCTUATION) |
  1.5560 +                              (1<<Character.FINAL_QUOTE_PUNCTUATION)));
  1.5561 +            defCategory("S", ((1<<Character.MATH_SYMBOL)     |
  1.5562 +                              (1<<Character.CURRENCY_SYMBOL) |
  1.5563 +                              (1<<Character.MODIFIER_SYMBOL) |
  1.5564 +                              (1<<Character.OTHER_SYMBOL)));
  1.5565 +            defCategory("LC", ((1<<Character.UPPERCASE_LETTER) |
  1.5566 +                               (1<<Character.LOWERCASE_LETTER) |
  1.5567 +                               (1<<Character.TITLECASE_LETTER)));
  1.5568 +            defCategory("LD", ((1<<Character.UPPERCASE_LETTER) |
  1.5569 +                               (1<<Character.LOWERCASE_LETTER) |
  1.5570 +                               (1<<Character.TITLECASE_LETTER) |
  1.5571 +                               (1<<Character.MODIFIER_LETTER)  |
  1.5572 +                               (1<<Character.OTHER_LETTER)     |
  1.5573 +                               (1<<Character.DECIMAL_DIGIT_NUMBER)));
  1.5574 +            defRange("L1", 0x00, 0xFF); // Latin-1
  1.5575 +            map.put("all", new CharPropertyFactory() {
  1.5576 +                    CharProperty make() { return new All(); }});
  1.5577 +
  1.5578 +            // Posix regular expression character classes, defined in
  1.5579 +            // http://www.unix.org/onlinepubs/009695399/basedefs/xbd_chap09.html
  1.5580 +            defRange("ASCII", 0x00, 0x7F);   // ASCII
  1.5581 +            defCtype("Alnum", ASCII.ALNUM);  // Alphanumeric characters
  1.5582 +            defCtype("Alpha", ASCII.ALPHA);  // Alphabetic characters
  1.5583 +            defCtype("Blank", ASCII.BLANK);  // Space and tab characters
  1.5584 +            defCtype("Cntrl", ASCII.CNTRL);  // Control characters
  1.5585 +            defRange("Digit", '0', '9');     // Numeric characters
  1.5586 +            defCtype("Graph", ASCII.GRAPH);  // printable and visible
  1.5587 +            defRange("Lower", 'a', 'z');     // Lower-case alphabetic
  1.5588 +            defRange("Print", 0x20, 0x7E);   // Printable characters
  1.5589 +            defCtype("Punct", ASCII.PUNCT);  // Punctuation characters
  1.5590 +            defCtype("Space", ASCII.SPACE);  // Space characters
  1.5591 +            defRange("Upper", 'A', 'Z');     // Upper-case alphabetic
  1.5592 +            defCtype("XDigit",ASCII.XDIGIT); // hexadecimal digits
  1.5593 +
  1.5594 +            // Java character properties, defined by methods in Character.java
  1.5595 +            defClone("javaLowerCase", new CloneableProperty() {
  1.5596 +                boolean isSatisfiedBy(int ch) {
  1.5597 +                    return Character.isLowerCase(ch);}});
  1.5598 +            defClone("javaUpperCase", new CloneableProperty() {
  1.5599 +                boolean isSatisfiedBy(int ch) {
  1.5600 +                    return Character.isUpperCase(ch);}});
  1.5601 +            defClone("javaAlphabetic", new CloneableProperty() {
  1.5602 +                boolean isSatisfiedBy(int ch) {
  1.5603 +                    return Character.isAlphabetic(ch);}});
  1.5604 +            defClone("javaIdeographic", new CloneableProperty() {
  1.5605 +                boolean isSatisfiedBy(int ch) {
  1.5606 +                    return Character.isIdeographic(ch);}});
  1.5607 +            defClone("javaTitleCase", new CloneableProperty() {
  1.5608 +                boolean isSatisfiedBy(int ch) {
  1.5609 +                    return Character.isTitleCase(ch);}});
  1.5610 +            defClone("javaDigit", new CloneableProperty() {
  1.5611 +                boolean isSatisfiedBy(int ch) {
  1.5612 +                    return Character.isDigit(ch);}});
  1.5613 +            defClone("javaDefined", new CloneableProperty() {
  1.5614 +                boolean isSatisfiedBy(int ch) {
  1.5615 +                    return Character.isDefined(ch);}});
  1.5616 +            defClone("javaLetter", new CloneableProperty() {
  1.5617 +                boolean isSatisfiedBy(int ch) {
  1.5618 +                    return Character.isLetter(ch);}});
  1.5619 +            defClone("javaLetterOrDigit", new CloneableProperty() {
  1.5620 +                boolean isSatisfiedBy(int ch) {
  1.5621 +                    return Character.isLetterOrDigit(ch);}});
  1.5622 +            defClone("javaJavaIdentifierStart", new CloneableProperty() {
  1.5623 +                boolean isSatisfiedBy(int ch) {
  1.5624 +                    return Character.isJavaIdentifierStart(ch);}});
  1.5625 +            defClone("javaJavaIdentifierPart", new CloneableProperty() {
  1.5626 +                boolean isSatisfiedBy(int ch) {
  1.5627 +                    return Character.isJavaIdentifierPart(ch);}});
  1.5628 +            defClone("javaUnicodeIdentifierStart", new CloneableProperty() {
  1.5629 +                boolean isSatisfiedBy(int ch) {
  1.5630 +                    return Character.isUnicodeIdentifierStart(ch);}});
  1.5631 +            defClone("javaUnicodeIdentifierPart", new CloneableProperty() {
  1.5632 +                boolean isSatisfiedBy(int ch) {
  1.5633 +                    return Character.isUnicodeIdentifierPart(ch);}});
  1.5634 +            defClone("javaIdentifierIgnorable", new CloneableProperty() {
  1.5635 +                boolean isSatisfiedBy(int ch) {
  1.5636 +                    return Character.isIdentifierIgnorable(ch);}});
  1.5637 +            defClone("javaSpaceChar", new CloneableProperty() {
  1.5638 +                boolean isSatisfiedBy(int ch) {
  1.5639 +                    return Character.isSpaceChar(ch);}});
  1.5640 +            defClone("javaWhitespace", new CloneableProperty() {
  1.5641 +                boolean isSatisfiedBy(int ch) {
  1.5642 +                    return Character.isWhitespace(ch);}});
  1.5643 +            defClone("javaISOControl", new CloneableProperty() {
  1.5644 +                boolean isSatisfiedBy(int ch) {
  1.5645 +                    return Character.isISOControl(ch);}});
  1.5646 +            defClone("javaMirrored", new CloneableProperty() {
  1.5647 +                boolean isSatisfiedBy(int ch) {
  1.5648 +                    return Character.isMirrored(ch);}});
  1.5649 +        }
  1.5650 +    }
  1.5651 +}