rt/emul/compact/src/main/java/java/lang/invoke/MethodHandles.java
branchjdk8-b132
changeset 1646 c880a8a8803b
child 1651 5c990ed353e9
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/lang/invoke/MethodHandles.java	Sat Aug 09 11:11:13 2014 +0200
     1.3 @@ -0,0 +1,2848 @@
     1.4 +/*
     1.5 + * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.lang.invoke;
    1.30 +
    1.31 +import java.lang.reflect.*;
    1.32 +import java.util.List;
    1.33 +import java.util.ArrayList;
    1.34 +import java.util.Arrays;
    1.35 +
    1.36 +import sun.invoke.util.ValueConversions;
    1.37 +import sun.invoke.util.VerifyAccess;
    1.38 +import sun.invoke.util.Wrapper;
    1.39 +import sun.reflect.CallerSensitive;
    1.40 +import sun.reflect.Reflection;
    1.41 +import sun.reflect.misc.ReflectUtil;
    1.42 +import sun.security.util.SecurityConstants;
    1.43 +import static java.lang.invoke.MethodHandleStatics.*;
    1.44 +import static java.lang.invoke.MethodHandleNatives.Constants.*;
    1.45 +import java.util.concurrent.ConcurrentHashMap;
    1.46 +import sun.security.util.SecurityConstants;
    1.47 +
    1.48 +/**
    1.49 + * This class consists exclusively of static methods that operate on or return
    1.50 + * method handles. They fall into several categories:
    1.51 + * <ul>
    1.52 + * <li>Lookup methods which help create method handles for methods and fields.
    1.53 + * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
    1.54 + * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
    1.55 + * </ul>
    1.56 + * <p>
    1.57 + * @author John Rose, JSR 292 EG
    1.58 + * @since 1.7
    1.59 + */
    1.60 +public class MethodHandles {
    1.61 +
    1.62 +    private MethodHandles() { }  // do not instantiate
    1.63 +
    1.64 +    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
    1.65 +    static { MethodHandleImpl.initStatics(); }
    1.66 +    // See IMPL_LOOKUP below.
    1.67 +
    1.68 +    //// Method handle creation from ordinary methods.
    1.69 +
    1.70 +    /**
    1.71 +     * Returns a {@link Lookup lookup object} with
    1.72 +     * full capabilities to emulate all supported bytecode behaviors of the caller.
    1.73 +     * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
    1.74 +     * Factory methods on the lookup object can create
    1.75 +     * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
    1.76 +     * for any member that the caller has access to via bytecodes,
    1.77 +     * including protected and private fields and methods.
    1.78 +     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
    1.79 +     * Do not store it in place where untrusted code can access it.
    1.80 +     * <p>
    1.81 +     * This method is caller sensitive, which means that it may return different
    1.82 +     * values to different callers.
    1.83 +     * <p>
    1.84 +     * For any given caller class {@code C}, the lookup object returned by this call
    1.85 +     * has equivalent capabilities to any lookup object
    1.86 +     * supplied by the JVM to the bootstrap method of an
    1.87 +     * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
    1.88 +     * executing in the same caller class {@code C}.
    1.89 +     * @return a lookup object for the caller of this method, with private access
    1.90 +     */
    1.91 +    @CallerSensitive
    1.92 +    public static Lookup lookup() {
    1.93 +        return new Lookup(Reflection.getCallerClass());
    1.94 +    }
    1.95 +
    1.96 +    /**
    1.97 +     * Returns a {@link Lookup lookup object} which is trusted minimally.
    1.98 +     * It can only be used to create method handles to
    1.99 +     * publicly accessible fields and methods.
   1.100 +     * <p>
   1.101 +     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
   1.102 +     * of this lookup object will be {@link java.lang.Object}.
   1.103 +     *
   1.104 +     * <p style="font-size:smaller;">
   1.105 +     * <em>Discussion:</em>
   1.106 +     * The lookup class can be changed to any other class {@code C} using an expression of the form
   1.107 +     * {@link Lookup#in publicLookup().in(C.class)}.
   1.108 +     * Since all classes have equal access to public names,
   1.109 +     * such a change would confer no new access rights.
   1.110 +     * A public lookup object is always subject to
   1.111 +     * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
   1.112 +     * Also, it cannot access
   1.113 +     * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
   1.114 +     * @return a lookup object which is trusted minimally
   1.115 +     */
   1.116 +    public static Lookup publicLookup() {
   1.117 +        return Lookup.PUBLIC_LOOKUP;
   1.118 +    }
   1.119 +
   1.120 +    /**
   1.121 +     * Performs an unchecked "crack" of a
   1.122 +     * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
   1.123 +     * The result is as if the user had obtained a lookup object capable enough
   1.124 +     * to crack the target method handle, called
   1.125 +     * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
   1.126 +     * on the target to obtain its symbolic reference, and then called
   1.127 +     * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
   1.128 +     * to resolve the symbolic reference to a member.
   1.129 +     * <p>
   1.130 +     * If there is a security manager, its {@code checkPermission} method
   1.131 +     * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
   1.132 +     * @param <T> the desired type of the result, either {@link Member} or a subtype
   1.133 +     * @param target a direct method handle to crack into symbolic reference components
   1.134 +     * @param expected a class object representing the desired result type {@code T}
   1.135 +     * @return a reference to the method, constructor, or field object
   1.136 +     * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
   1.137 +     * @exception NullPointerException if either argument is {@code null}
   1.138 +     * @exception IllegalArgumentException if the target is not a direct method handle
   1.139 +     * @exception ClassCastException if the member is not of the expected type
   1.140 +     * @since 1.8
   1.141 +     */
   1.142 +    public static <T extends Member> T
   1.143 +    reflectAs(Class<T> expected, MethodHandle target) {
   1.144 +        SecurityManager smgr = System.getSecurityManager();
   1.145 +        if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
   1.146 +        Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
   1.147 +        return lookup.revealDirect(target).reflectAs(expected, lookup);
   1.148 +    }
   1.149 +    // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
   1.150 +    static final private java.security.Permission ACCESS_PERMISSION =
   1.151 +        new ReflectPermission("suppressAccessChecks");
   1.152 +
   1.153 +    /**
   1.154 +     * A <em>lookup object</em> is a factory for creating method handles,
   1.155 +     * when the creation requires access checking.
   1.156 +     * Method handles do not perform
   1.157 +     * access checks when they are called, but rather when they are created.
   1.158 +     * Therefore, method handle access
   1.159 +     * restrictions must be enforced when a method handle is created.
   1.160 +     * The caller class against which those restrictions are enforced
   1.161 +     * is known as the {@linkplain #lookupClass lookup class}.
   1.162 +     * <p>
   1.163 +     * A lookup class which needs to create method handles will call
   1.164 +     * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
   1.165 +     * When the {@code Lookup} factory object is created, the identity of the lookup class is
   1.166 +     * determined, and securely stored in the {@code Lookup} object.
   1.167 +     * The lookup class (or its delegates) may then use factory methods
   1.168 +     * on the {@code Lookup} object to create method handles for access-checked members.
   1.169 +     * This includes all methods, constructors, and fields which are allowed to the lookup class,
   1.170 +     * even private ones.
   1.171 +     *
   1.172 +     * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
   1.173 +     * The factory methods on a {@code Lookup} object correspond to all major
   1.174 +     * use cases for methods, constructors, and fields.
   1.175 +     * Each method handle created by a factory method is the functional
   1.176 +     * equivalent of a particular <em>bytecode behavior</em>.
   1.177 +     * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
   1.178 +     * Here is a summary of the correspondence between these factory methods and
   1.179 +     * the behavior the resulting method handles:
   1.180 +     * <table border=1 cellpadding=5 summary="lookup method behaviors">
   1.181 +     * <tr>
   1.182 +     *     <th><a name="equiv"></a>lookup expression</th>
   1.183 +     *     <th>member</th>
   1.184 +     *     <th>bytecode behavior</th>
   1.185 +     * </tr>
   1.186 +     * <tr>
   1.187 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
   1.188 +     *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
   1.189 +     * </tr>
   1.190 +     * <tr>
   1.191 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
   1.192 +     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
   1.193 +     * </tr>
   1.194 +     * <tr>
   1.195 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
   1.196 +     *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
   1.197 +     * </tr>
   1.198 +     * <tr>
   1.199 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
   1.200 +     *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
   1.201 +     * </tr>
   1.202 +     * <tr>
   1.203 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
   1.204 +     *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
   1.205 +     * </tr>
   1.206 +     * <tr>
   1.207 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
   1.208 +     *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
   1.209 +     * </tr>
   1.210 +     * <tr>
   1.211 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
   1.212 +     *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
   1.213 +     * </tr>
   1.214 +     * <tr>
   1.215 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
   1.216 +     *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
   1.217 +     * </tr>
   1.218 +     * <tr>
   1.219 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
   1.220 +     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
   1.221 +     * </tr>
   1.222 +     * <tr>
   1.223 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
   1.224 +     *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
   1.225 +     * </tr>
   1.226 +     * <tr>
   1.227 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
   1.228 +     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
   1.229 +     * </tr>
   1.230 +     * <tr>
   1.231 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
   1.232 +     *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
   1.233 +     * </tr>
   1.234 +     * <tr>
   1.235 +     *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
   1.236 +     *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
   1.237 +     * </tr>
   1.238 +     * </table>
   1.239 +     *
   1.240 +     * Here, the type {@code C} is the class or interface being searched for a member,
   1.241 +     * documented as a parameter named {@code refc} in the lookup methods.
   1.242 +     * The method type {@code MT} is composed from the return type {@code T}
   1.243 +     * and the sequence of argument types {@code A*}.
   1.244 +     * The constructor also has a sequence of argument types {@code A*} and
   1.245 +     * is deemed to return the newly-created object of type {@code C}.
   1.246 +     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
   1.247 +     * The formal parameter {@code this} stands for the self-reference of type {@code C};
   1.248 +     * if it is present, it is always the leading argument to the method handle invocation.
   1.249 +     * (In the case of some {@code protected} members, {@code this} may be
   1.250 +     * restricted in type to the lookup class; see below.)
   1.251 +     * The name {@code arg} stands for all the other method handle arguments.
   1.252 +     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
   1.253 +     * stands for a null reference if the accessed method or field is static,
   1.254 +     * and {@code this} otherwise.
   1.255 +     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
   1.256 +     * for reflective objects corresponding to the given members.
   1.257 +     * <p>
   1.258 +     * In cases where the given member is of variable arity (i.e., a method or constructor)
   1.259 +     * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
   1.260 +     * In all other cases, the returned method handle will be of fixed arity.
   1.261 +     * <p style="font-size:smaller;">
   1.262 +     * <em>Discussion:</em>
   1.263 +     * The equivalence between looked-up method handles and underlying
   1.264 +     * class members and bytecode behaviors
   1.265 +     * can break down in a few ways:
   1.266 +     * <ul style="font-size:smaller;">
   1.267 +     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
   1.268 +     * the lookup can still succeed, even when there is no equivalent
   1.269 +     * Java expression or bytecoded constant.
   1.270 +     * <li>Likewise, if {@code T} or {@code MT}
   1.271 +     * is not symbolically accessible from the lookup class's loader,
   1.272 +     * the lookup can still succeed.
   1.273 +     * For example, lookups for {@code MethodHandle.invokeExact} and
   1.274 +     * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
   1.275 +     * <li>If there is a security manager installed, it can forbid the lookup
   1.276 +     * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
   1.277 +     * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
   1.278 +     * constant is not subject to security manager checks.
   1.279 +     * <li>If the looked-up method has a
   1.280 +     * <a href="MethodHandle.html#maxarity">very large arity</a>,
   1.281 +     * the method handle creation may fail, due to the method handle
   1.282 +     * type having too many parameters.
   1.283 +     * </ul>
   1.284 +     *
   1.285 +     * <h1><a name="access"></a>Access checking</h1>
   1.286 +     * Access checks are applied in the factory methods of {@code Lookup},
   1.287 +     * when a method handle is created.
   1.288 +     * This is a key difference from the Core Reflection API, since
   1.289 +     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
   1.290 +     * performs access checking against every caller, on every call.
   1.291 +     * <p>
   1.292 +     * All access checks start from a {@code Lookup} object, which
   1.293 +     * compares its recorded lookup class against all requests to
   1.294 +     * create method handles.
   1.295 +     * A single {@code Lookup} object can be used to create any number
   1.296 +     * of access-checked method handles, all checked against a single
   1.297 +     * lookup class.
   1.298 +     * <p>
   1.299 +     * A {@code Lookup} object can be shared with other trusted code,
   1.300 +     * such as a metaobject protocol.
   1.301 +     * A shared {@code Lookup} object delegates the capability
   1.302 +     * to create method handles on private members of the lookup class.
   1.303 +     * Even if privileged code uses the {@code Lookup} object,
   1.304 +     * the access checking is confined to the privileges of the
   1.305 +     * original lookup class.
   1.306 +     * <p>
   1.307 +     * A lookup can fail, because
   1.308 +     * the containing class is not accessible to the lookup class, or
   1.309 +     * because the desired class member is missing, or because the
   1.310 +     * desired class member is not accessible to the lookup class, or
   1.311 +     * because the lookup object is not trusted enough to access the member.
   1.312 +     * In any of these cases, a {@code ReflectiveOperationException} will be
   1.313 +     * thrown from the attempted lookup.  The exact class will be one of
   1.314 +     * the following:
   1.315 +     * <ul>
   1.316 +     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
   1.317 +     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
   1.318 +     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
   1.319 +     * </ul>
   1.320 +     * <p>
   1.321 +     * In general, the conditions under which a method handle may be
   1.322 +     * looked up for a method {@code M} are no more restrictive than the conditions
   1.323 +     * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
   1.324 +     * Where the JVM would raise exceptions like {@code NoSuchMethodError},
   1.325 +     * a method handle lookup will generally raise a corresponding
   1.326 +     * checked exception, such as {@code NoSuchMethodException}.
   1.327 +     * And the effect of invoking the method handle resulting from the lookup
   1.328 +     * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
   1.329 +     * to executing the compiled, verified, and resolved call to {@code M}.
   1.330 +     * The same point is true of fields and constructors.
   1.331 +     * <p style="font-size:smaller;">
   1.332 +     * <em>Discussion:</em>
   1.333 +     * Access checks only apply to named and reflected methods,
   1.334 +     * constructors, and fields.
   1.335 +     * Other method handle creation methods, such as
   1.336 +     * {@link MethodHandle#asType MethodHandle.asType},
   1.337 +     * do not require any access checks, and are used
   1.338 +     * independently of any {@code Lookup} object.
   1.339 +     * <p>
   1.340 +     * If the desired member is {@code protected}, the usual JVM rules apply,
   1.341 +     * including the requirement that the lookup class must be either be in the
   1.342 +     * same package as the desired member, or must inherit that member.
   1.343 +     * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
   1.344 +     * In addition, if the desired member is a non-static field or method
   1.345 +     * in a different package, the resulting method handle may only be applied
   1.346 +     * to objects of the lookup class or one of its subclasses.
   1.347 +     * This requirement is enforced by narrowing the type of the leading
   1.348 +     * {@code this} parameter from {@code C}
   1.349 +     * (which will necessarily be a superclass of the lookup class)
   1.350 +     * to the lookup class itself.
   1.351 +     * <p>
   1.352 +     * The JVM imposes a similar requirement on {@code invokespecial} instruction,
   1.353 +     * that the receiver argument must match both the resolved method <em>and</em>
   1.354 +     * the current class.  Again, this requirement is enforced by narrowing the
   1.355 +     * type of the leading parameter to the resulting method handle.
   1.356 +     * (See the Java Virtual Machine Specification, section 4.10.1.9.)
   1.357 +     * <p>
   1.358 +     * The JVM represents constructors and static initializer blocks as internal methods
   1.359 +     * with special names ({@code "<init>"} and {@code "<clinit>"}).
   1.360 +     * The internal syntax of invocation instructions allows them to refer to such internal
   1.361 +     * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
   1.362 +     * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
   1.363 +     * <p>
   1.364 +     * In some cases, access between nested classes is obtained by the Java compiler by creating
   1.365 +     * an wrapper method to access a private method of another class
   1.366 +     * in the same top-level declaration.
   1.367 +     * For example, a nested class {@code C.D}
   1.368 +     * can access private members within other related classes such as
   1.369 +     * {@code C}, {@code C.D.E}, or {@code C.B},
   1.370 +     * but the Java compiler may need to generate wrapper methods in
   1.371 +     * those related classes.  In such cases, a {@code Lookup} object on
   1.372 +     * {@code C.E} would be unable to those private members.
   1.373 +     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
   1.374 +     * which can transform a lookup on {@code C.E} into one on any of those other
   1.375 +     * classes, without special elevation of privilege.
   1.376 +     * <p>
   1.377 +     * The accesses permitted to a given lookup object may be limited,
   1.378 +     * according to its set of {@link #lookupModes lookupModes},
   1.379 +     * to a subset of members normally accessible to the lookup class.
   1.380 +     * For example, the {@link MethodHandles#publicLookup publicLookup}
   1.381 +     * method produces a lookup object which is only allowed to access
   1.382 +     * public members in public classes.
   1.383 +     * The caller sensitive method {@link MethodHandles#lookup lookup}
   1.384 +     * produces a lookup object with full capabilities relative to
   1.385 +     * its caller class, to emulate all supported bytecode behaviors.
   1.386 +     * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
   1.387 +     * with fewer access modes than the original lookup object.
   1.388 +     *
   1.389 +     * <p style="font-size:smaller;">
   1.390 +     * <a name="privacc"></a>
   1.391 +     * <em>Discussion of private access:</em>
   1.392 +     * We say that a lookup has <em>private access</em>
   1.393 +     * if its {@linkplain #lookupModes lookup modes}
   1.394 +     * include the possibility of accessing {@code private} members.
   1.395 +     * As documented in the relevant methods elsewhere,
   1.396 +     * only lookups with private access possess the following capabilities:
   1.397 +     * <ul style="font-size:smaller;">
   1.398 +     * <li>access private fields, methods, and constructors of the lookup class
   1.399 +     * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
   1.400 +     *     such as {@code Class.forName}
   1.401 +     * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
   1.402 +     * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
   1.403 +     *     for classes accessible to the lookup class
   1.404 +     * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
   1.405 +     *     within the same package member
   1.406 +     * </ul>
   1.407 +     * <p style="font-size:smaller;">
   1.408 +     * Each of these permissions is a consequence of the fact that a lookup object
   1.409 +     * with private access can be securely traced back to an originating class,
   1.410 +     * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
   1.411 +     * can be reliably determined and emulated by method handles.
   1.412 +     *
   1.413 +     * <h1><a name="secmgr"></a>Security manager interactions</h1>
   1.414 +     * Although bytecode instructions can only refer to classes in
   1.415 +     * a related class loader, this API can search for methods in any
   1.416 +     * class, as long as a reference to its {@code Class} object is
   1.417 +     * available.  Such cross-loader references are also possible with the
   1.418 +     * Core Reflection API, and are impossible to bytecode instructions
   1.419 +     * such as {@code invokestatic} or {@code getfield}.
   1.420 +     * There is a {@linkplain java.lang.SecurityManager security manager API}
   1.421 +     * to allow applications to check such cross-loader references.
   1.422 +     * These checks apply to both the {@code MethodHandles.Lookup} API
   1.423 +     * and the Core Reflection API
   1.424 +     * (as found on {@link java.lang.Class Class}).
   1.425 +     * <p>
   1.426 +     * If a security manager is present, member lookups are subject to
   1.427 +     * additional checks.
   1.428 +     * From one to three calls are made to the security manager.
   1.429 +     * Any of these calls can refuse access by throwing a
   1.430 +     * {@link java.lang.SecurityException SecurityException}.
   1.431 +     * Define {@code smgr} as the security manager,
   1.432 +     * {@code lookc} as the lookup class of the current lookup object,
   1.433 +     * {@code refc} as the containing class in which the member
   1.434 +     * is being sought, and {@code defc} as the class in which the
   1.435 +     * member is actually defined.
   1.436 +     * The value {@code lookc} is defined as <em>not present</em>
   1.437 +     * if the current lookup object does not have
   1.438 +     * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
   1.439 +     * The calls are made according to the following rules:
   1.440 +     * <ul>
   1.441 +     * <li><b>Step 1:</b>
   1.442 +     *     If {@code lookc} is not present, or if its class loader is not
   1.443 +     *     the same as or an ancestor of the class loader of {@code refc},
   1.444 +     *     then {@link SecurityManager#checkPackageAccess
   1.445 +     *     smgr.checkPackageAccess(refcPkg)} is called,
   1.446 +     *     where {@code refcPkg} is the package of {@code refc}.
   1.447 +     * <li><b>Step 2:</b>
   1.448 +     *     If the retrieved member is not public and
   1.449 +     *     {@code lookc} is not present, then
   1.450 +     *     {@link SecurityManager#checkPermission smgr.checkPermission}
   1.451 +     *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
   1.452 +     * <li><b>Step 3:</b>
   1.453 +     *     If the retrieved member is not public,
   1.454 +     *     and if {@code lookc} is not present,
   1.455 +     *     and if {@code defc} and {@code refc} are different,
   1.456 +     *     then {@link SecurityManager#checkPackageAccess
   1.457 +     *     smgr.checkPackageAccess(defcPkg)} is called,
   1.458 +     *     where {@code defcPkg} is the package of {@code defc}.
   1.459 +     * </ul>
   1.460 +     * Security checks are performed after other access checks have passed.
   1.461 +     * Therefore, the above rules presuppose a member that is public,
   1.462 +     * or else that is being accessed from a lookup class that has
   1.463 +     * rights to access the member.
   1.464 +     *
   1.465 +     * <h1><a name="callsens"></a>Caller sensitive methods</h1>
   1.466 +     * A small number of Java methods have a special property called caller sensitivity.
   1.467 +     * A <em>caller-sensitive</em> method can behave differently depending on the
   1.468 +     * identity of its immediate caller.
   1.469 +     * <p>
   1.470 +     * If a method handle for a caller-sensitive method is requested,
   1.471 +     * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
   1.472 +     * but they take account of the lookup class in a special way.
   1.473 +     * The resulting method handle behaves as if it were called
   1.474 +     * from an instruction contained in the lookup class,
   1.475 +     * so that the caller-sensitive method detects the lookup class.
   1.476 +     * (By contrast, the invoker of the method handle is disregarded.)
   1.477 +     * Thus, in the case of caller-sensitive methods,
   1.478 +     * different lookup classes may give rise to
   1.479 +     * differently behaving method handles.
   1.480 +     * <p>
   1.481 +     * In cases where the lookup object is
   1.482 +     * {@link MethodHandles#publicLookup() publicLookup()},
   1.483 +     * or some other lookup object without
   1.484 +     * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
   1.485 +     * the lookup class is disregarded.
   1.486 +     * In such cases, no caller-sensitive method handle can be created,
   1.487 +     * access is forbidden, and the lookup fails with an
   1.488 +     * {@code IllegalAccessException}.
   1.489 +     * <p style="font-size:smaller;">
   1.490 +     * <em>Discussion:</em>
   1.491 +     * For example, the caller-sensitive method
   1.492 +     * {@link java.lang.Class#forName(String) Class.forName(x)}
   1.493 +     * can return varying classes or throw varying exceptions,
   1.494 +     * depending on the class loader of the class that calls it.
   1.495 +     * A public lookup of {@code Class.forName} will fail, because
   1.496 +     * there is no reasonable way to determine its bytecode behavior.
   1.497 +     * <p style="font-size:smaller;">
   1.498 +     * If an application caches method handles for broad sharing,
   1.499 +     * it should use {@code publicLookup()} to create them.
   1.500 +     * If there is a lookup of {@code Class.forName}, it will fail,
   1.501 +     * and the application must take appropriate action in that case.
   1.502 +     * It may be that a later lookup, perhaps during the invocation of a
   1.503 +     * bootstrap method, can incorporate the specific identity
   1.504 +     * of the caller, making the method accessible.
   1.505 +     * <p style="font-size:smaller;">
   1.506 +     * The function {@code MethodHandles.lookup} is caller sensitive
   1.507 +     * so that there can be a secure foundation for lookups.
   1.508 +     * Nearly all other methods in the JSR 292 API rely on lookup
   1.509 +     * objects to check access requests.
   1.510 +     */
   1.511 +    public static final
   1.512 +    class Lookup {
   1.513 +        /** The class on behalf of whom the lookup is being performed. */
   1.514 +        private final Class<?> lookupClass;
   1.515 +
   1.516 +        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
   1.517 +        private final int allowedModes;
   1.518 +
   1.519 +        /** A single-bit mask representing {@code public} access,
   1.520 +         *  which may contribute to the result of {@link #lookupModes lookupModes}.
   1.521 +         *  The value, {@code 0x01}, happens to be the same as the value of the
   1.522 +         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
   1.523 +         */
   1.524 +        public static final int PUBLIC = Modifier.PUBLIC;
   1.525 +
   1.526 +        /** A single-bit mask representing {@code private} access,
   1.527 +         *  which may contribute to the result of {@link #lookupModes lookupModes}.
   1.528 +         *  The value, {@code 0x02}, happens to be the same as the value of the
   1.529 +         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
   1.530 +         */
   1.531 +        public static final int PRIVATE = Modifier.PRIVATE;
   1.532 +
   1.533 +        /** A single-bit mask representing {@code protected} access,
   1.534 +         *  which may contribute to the result of {@link #lookupModes lookupModes}.
   1.535 +         *  The value, {@code 0x04}, happens to be the same as the value of the
   1.536 +         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
   1.537 +         */
   1.538 +        public static final int PROTECTED = Modifier.PROTECTED;
   1.539 +
   1.540 +        /** A single-bit mask representing {@code package} access (default access),
   1.541 +         *  which may contribute to the result of {@link #lookupModes lookupModes}.
   1.542 +         *  The value is {@code 0x08}, which does not correspond meaningfully to
   1.543 +         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
   1.544 +         */
   1.545 +        public static final int PACKAGE = Modifier.STATIC;
   1.546 +
   1.547 +        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
   1.548 +        private static final int TRUSTED   = -1;
   1.549 +
   1.550 +        private static int fixmods(int mods) {
   1.551 +            mods &= (ALL_MODES - PACKAGE);
   1.552 +            return (mods != 0) ? mods : PACKAGE;
   1.553 +        }
   1.554 +
   1.555 +        /** Tells which class is performing the lookup.  It is this class against
   1.556 +         *  which checks are performed for visibility and access permissions.
   1.557 +         *  <p>
   1.558 +         *  The class implies a maximum level of access permission,
   1.559 +         *  but the permissions may be additionally limited by the bitmask
   1.560 +         *  {@link #lookupModes lookupModes}, which controls whether non-public members
   1.561 +         *  can be accessed.
   1.562 +         *  @return the lookup class, on behalf of which this lookup object finds members
   1.563 +         */
   1.564 +        public Class<?> lookupClass() {
   1.565 +            return lookupClass;
   1.566 +        }
   1.567 +
   1.568 +        // This is just for calling out to MethodHandleImpl.
   1.569 +        private Class<?> lookupClassOrNull() {
   1.570 +            return (allowedModes == TRUSTED) ? null : lookupClass;
   1.571 +        }
   1.572 +
   1.573 +        /** Tells which access-protection classes of members this lookup object can produce.
   1.574 +         *  The result is a bit-mask of the bits
   1.575 +         *  {@linkplain #PUBLIC PUBLIC (0x01)},
   1.576 +         *  {@linkplain #PRIVATE PRIVATE (0x02)},
   1.577 +         *  {@linkplain #PROTECTED PROTECTED (0x04)},
   1.578 +         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
   1.579 +         *  <p>
   1.580 +         *  A freshly-created lookup object
   1.581 +         *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
   1.582 +         *  has all possible bits set, since the caller class can access all its own members.
   1.583 +         *  A lookup object on a new lookup class
   1.584 +         *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
   1.585 +         *  may have some mode bits set to zero.
   1.586 +         *  The purpose of this is to restrict access via the new lookup object,
   1.587 +         *  so that it can access only names which can be reached by the original
   1.588 +         *  lookup object, and also by the new lookup class.
   1.589 +         *  @return the lookup modes, which limit the kinds of access performed by this lookup object
   1.590 +         */
   1.591 +        public int lookupModes() {
   1.592 +            return allowedModes & ALL_MODES;
   1.593 +        }
   1.594 +
   1.595 +        /** Embody the current class (the lookupClass) as a lookup class
   1.596 +         * for method handle creation.
   1.597 +         * Must be called by from a method in this package,
   1.598 +         * which in turn is called by a method not in this package.
   1.599 +         */
   1.600 +        Lookup(Class<?> lookupClass) {
   1.601 +            this(lookupClass, ALL_MODES);
   1.602 +            // make sure we haven't accidentally picked up a privileged class:
   1.603 +            checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
   1.604 +        }
   1.605 +
   1.606 +        private Lookup(Class<?> lookupClass, int allowedModes) {
   1.607 +            this.lookupClass = lookupClass;
   1.608 +            this.allowedModes = allowedModes;
   1.609 +        }
   1.610 +
   1.611 +        /**
   1.612 +         * Creates a lookup on the specified new lookup class.
   1.613 +         * The resulting object will report the specified
   1.614 +         * class as its own {@link #lookupClass lookupClass}.
   1.615 +         * <p>
   1.616 +         * However, the resulting {@code Lookup} object is guaranteed
   1.617 +         * to have no more access capabilities than the original.
   1.618 +         * In particular, access capabilities can be lost as follows:<ul>
   1.619 +         * <li>If the new lookup class differs from the old one,
   1.620 +         * protected members will not be accessible by virtue of inheritance.
   1.621 +         * (Protected members may continue to be accessible because of package sharing.)
   1.622 +         * <li>If the new lookup class is in a different package
   1.623 +         * than the old one, protected and default (package) members will not be accessible.
   1.624 +         * <li>If the new lookup class is not within the same package member
   1.625 +         * as the old one, private members will not be accessible.
   1.626 +         * <li>If the new lookup class is not accessible to the old lookup class,
   1.627 +         * then no members, not even public members, will be accessible.
   1.628 +         * (In all other cases, public members will continue to be accessible.)
   1.629 +         * </ul>
   1.630 +         *
   1.631 +         * @param requestedLookupClass the desired lookup class for the new lookup object
   1.632 +         * @return a lookup object which reports the desired lookup class
   1.633 +         * @throws NullPointerException if the argument is null
   1.634 +         */
   1.635 +        public Lookup in(Class<?> requestedLookupClass) {
   1.636 +            requestedLookupClass.getClass();  // null check
   1.637 +            if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
   1.638 +                return new Lookup(requestedLookupClass, ALL_MODES);
   1.639 +            if (requestedLookupClass == this.lookupClass)
   1.640 +                return this;  // keep same capabilities
   1.641 +            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
   1.642 +            if ((newModes & PACKAGE) != 0
   1.643 +                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
   1.644 +                newModes &= ~(PACKAGE|PRIVATE);
   1.645 +            }
   1.646 +            // Allow nestmate lookups to be created without special privilege:
   1.647 +            if ((newModes & PRIVATE) != 0
   1.648 +                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
   1.649 +                newModes &= ~PRIVATE;
   1.650 +            }
   1.651 +            if ((newModes & PUBLIC) != 0
   1.652 +                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
   1.653 +                // The requested class it not accessible from the lookup class.
   1.654 +                // No permissions.
   1.655 +                newModes = 0;
   1.656 +            }
   1.657 +            checkUnprivilegedlookupClass(requestedLookupClass, newModes);
   1.658 +            return new Lookup(requestedLookupClass, newModes);
   1.659 +        }
   1.660 +
   1.661 +        // Make sure outer class is initialized first.
   1.662 +        static { IMPL_NAMES.getClass(); }
   1.663 +
   1.664 +        /** Version of lookup which is trusted minimally.
   1.665 +         *  It can only be used to create method handles to
   1.666 +         *  publicly accessible members.
   1.667 +         */
   1.668 +        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
   1.669 +
   1.670 +        /** Package-private version of lookup which is trusted. */
   1.671 +        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
   1.672 +
   1.673 +        private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
   1.674 +            String name = lookupClass.getName();
   1.675 +            if (name.startsWith("java.lang.invoke."))
   1.676 +                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
   1.677 +
   1.678 +            // For caller-sensitive MethodHandles.lookup()
   1.679 +            // disallow lookup more restricted packages
   1.680 +            if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
   1.681 +                if (name.startsWith("java.") ||
   1.682 +                        (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
   1.683 +                    throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
   1.684 +                }
   1.685 +            }
   1.686 +        }
   1.687 +
   1.688 +        /**
   1.689 +         * Displays the name of the class from which lookups are to be made.
   1.690 +         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
   1.691 +         * If there are restrictions on the access permitted to this lookup,
   1.692 +         * this is indicated by adding a suffix to the class name, consisting
   1.693 +         * of a slash and a keyword.  The keyword represents the strongest
   1.694 +         * allowed access, and is chosen as follows:
   1.695 +         * <ul>
   1.696 +         * <li>If no access is allowed, the suffix is "/noaccess".
   1.697 +         * <li>If only public access is allowed, the suffix is "/public".
   1.698 +         * <li>If only public and package access are allowed, the suffix is "/package".
   1.699 +         * <li>If only public, package, and private access are allowed, the suffix is "/private".
   1.700 +         * </ul>
   1.701 +         * If none of the above cases apply, it is the case that full
   1.702 +         * access (public, package, private, and protected) is allowed.
   1.703 +         * In this case, no suffix is added.
   1.704 +         * This is true only of an object obtained originally from
   1.705 +         * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
   1.706 +         * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
   1.707 +         * always have restricted access, and will display a suffix.
   1.708 +         * <p>
   1.709 +         * (It may seem strange that protected access should be
   1.710 +         * stronger than private access.  Viewed independently from
   1.711 +         * package access, protected access is the first to be lost,
   1.712 +         * because it requires a direct subclass relationship between
   1.713 +         * caller and callee.)
   1.714 +         * @see #in
   1.715 +         */
   1.716 +        @Override
   1.717 +        public String toString() {
   1.718 +            String cname = lookupClass.getName();
   1.719 +            switch (allowedModes) {
   1.720 +            case 0:  // no privileges
   1.721 +                return cname + "/noaccess";
   1.722 +            case PUBLIC:
   1.723 +                return cname + "/public";
   1.724 +            case PUBLIC|PACKAGE:
   1.725 +                return cname + "/package";
   1.726 +            case ALL_MODES & ~PROTECTED:
   1.727 +                return cname + "/private";
   1.728 +            case ALL_MODES:
   1.729 +                return cname;
   1.730 +            case TRUSTED:
   1.731 +                return "/trusted";  // internal only; not exported
   1.732 +            default:  // Should not happen, but it's a bitfield...
   1.733 +                cname = cname + "/" + Integer.toHexString(allowedModes);
   1.734 +                assert(false) : cname;
   1.735 +                return cname;
   1.736 +            }
   1.737 +        }
   1.738 +
   1.739 +        /**
   1.740 +         * Produces a method handle for a static method.
   1.741 +         * The type of the method handle will be that of the method.
   1.742 +         * (Since static methods do not take receivers, there is no
   1.743 +         * additional receiver argument inserted into the method handle type,
   1.744 +         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
   1.745 +         * The method and all its argument types must be accessible to the lookup object.
   1.746 +         * <p>
   1.747 +         * The returned method handle will have
   1.748 +         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1.749 +         * the method's variable arity modifier bit ({@code 0x0080}) is set.
   1.750 +         * <p>
   1.751 +         * If the returned method handle is invoked, the method's class will
   1.752 +         * be initialized, if it has not already been initialized.
   1.753 +         * <p><b>Example:</b>
   1.754 +         * <blockquote><pre>{@code
   1.755 +import static java.lang.invoke.MethodHandles.*;
   1.756 +import static java.lang.invoke.MethodType.*;
   1.757 +...
   1.758 +MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
   1.759 +  "asList", methodType(List.class, Object[].class));
   1.760 +assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
   1.761 +         * }</pre></blockquote>
   1.762 +         * @param refc the class from which the method is accessed
   1.763 +         * @param name the name of the method
   1.764 +         * @param type the type of the method
   1.765 +         * @return the desired method handle
   1.766 +         * @throws NoSuchMethodException if the method does not exist
   1.767 +         * @throws IllegalAccessException if access checking fails,
   1.768 +         *                                or if the method is not {@code static},
   1.769 +         *                                or if the method's variable arity modifier bit
   1.770 +         *                                is set and {@code asVarargsCollector} fails
   1.771 +         * @exception SecurityException if a security manager is present and it
   1.772 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1.773 +         * @throws NullPointerException if any argument is null
   1.774 +         */
   1.775 +        public
   1.776 +        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
   1.777 +            MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
   1.778 +            return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
   1.779 +        }
   1.780 +
   1.781 +        /**
   1.782 +         * Produces a method handle for a virtual method.
   1.783 +         * The type of the method handle will be that of the method,
   1.784 +         * with the receiver type (usually {@code refc}) prepended.
   1.785 +         * The method and all its argument types must be accessible to the lookup object.
   1.786 +         * <p>
   1.787 +         * When called, the handle will treat the first argument as a receiver
   1.788 +         * and dispatch on the receiver's type to determine which method
   1.789 +         * implementation to enter.
   1.790 +         * (The dispatching action is identical with that performed by an
   1.791 +         * {@code invokevirtual} or {@code invokeinterface} instruction.)
   1.792 +         * <p>
   1.793 +         * The first argument will be of type {@code refc} if the lookup
   1.794 +         * class has full privileges to access the member.  Otherwise
   1.795 +         * the member must be {@code protected} and the first argument
   1.796 +         * will be restricted in type to the lookup class.
   1.797 +         * <p>
   1.798 +         * The returned method handle will have
   1.799 +         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1.800 +         * the method's variable arity modifier bit ({@code 0x0080}) is set.
   1.801 +         * <p>
   1.802 +         * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
   1.803 +         * instructions and method handles produced by {@code findVirtual},
   1.804 +         * if the class is {@code MethodHandle} and the name string is
   1.805 +         * {@code invokeExact} or {@code invoke}, the resulting
   1.806 +         * method handle is equivalent to one produced by
   1.807 +         * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
   1.808 +         * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
   1.809 +         * with the same {@code type} argument.
   1.810 +         *
   1.811 +         * <b>Example:</b>
   1.812 +         * <blockquote><pre>{@code
   1.813 +import static java.lang.invoke.MethodHandles.*;
   1.814 +import static java.lang.invoke.MethodType.*;
   1.815 +...
   1.816 +MethodHandle MH_concat = publicLookup().findVirtual(String.class,
   1.817 +  "concat", methodType(String.class, String.class));
   1.818 +MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
   1.819 +  "hashCode", methodType(int.class));
   1.820 +MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
   1.821 +  "hashCode", methodType(int.class));
   1.822 +assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
   1.823 +assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
   1.824 +assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
   1.825 +// interface method:
   1.826 +MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
   1.827 +  "subSequence", methodType(CharSequence.class, int.class, int.class));
   1.828 +assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
   1.829 +// constructor "internal method" must be accessed differently:
   1.830 +MethodType MT_newString = methodType(void.class); //()V for new String()
   1.831 +try { assertEquals("impossible", lookup()
   1.832 +        .findVirtual(String.class, "<init>", MT_newString));
   1.833 + } catch (NoSuchMethodException ex) { } // OK
   1.834 +MethodHandle MH_newString = publicLookup()
   1.835 +  .findConstructor(String.class, MT_newString);
   1.836 +assertEquals("", (String) MH_newString.invokeExact());
   1.837 +         * }</pre></blockquote>
   1.838 +         *
   1.839 +         * @param refc the class or interface from which the method is accessed
   1.840 +         * @param name the name of the method
   1.841 +         * @param type the type of the method, with the receiver argument omitted
   1.842 +         * @return the desired method handle
   1.843 +         * @throws NoSuchMethodException if the method does not exist
   1.844 +         * @throws IllegalAccessException if access checking fails,
   1.845 +         *                                or if the method is {@code static}
   1.846 +         *                                or if the method's variable arity modifier bit
   1.847 +         *                                is set and {@code asVarargsCollector} fails
   1.848 +         * @exception SecurityException if a security manager is present and it
   1.849 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1.850 +         * @throws NullPointerException if any argument is null
   1.851 +         */
   1.852 +        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
   1.853 +            if (refc == MethodHandle.class) {
   1.854 +                MethodHandle mh = findVirtualForMH(name, type);
   1.855 +                if (mh != null)  return mh;
   1.856 +            }
   1.857 +            byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
   1.858 +            MemberName method = resolveOrFail(refKind, refc, name, type);
   1.859 +            return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
   1.860 +        }
   1.861 +        private MethodHandle findVirtualForMH(String name, MethodType type) {
   1.862 +            // these names require special lookups because of the implicit MethodType argument
   1.863 +            if ("invoke".equals(name))
   1.864 +                return invoker(type);
   1.865 +            if ("invokeExact".equals(name))
   1.866 +                return exactInvoker(type);
   1.867 +            assert(!MemberName.isMethodHandleInvokeName(name));
   1.868 +            return null;
   1.869 +        }
   1.870 +
   1.871 +        /**
   1.872 +         * Produces a method handle which creates an object and initializes it, using
   1.873 +         * the constructor of the specified type.
   1.874 +         * The parameter types of the method handle will be those of the constructor,
   1.875 +         * while the return type will be a reference to the constructor's class.
   1.876 +         * The constructor and all its argument types must be accessible to the lookup object.
   1.877 +         * <p>
   1.878 +         * The requested type must have a return type of {@code void}.
   1.879 +         * (This is consistent with the JVM's treatment of constructor type descriptors.)
   1.880 +         * <p>
   1.881 +         * The returned method handle will have
   1.882 +         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1.883 +         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
   1.884 +         * <p>
   1.885 +         * If the returned method handle is invoked, the constructor's class will
   1.886 +         * be initialized, if it has not already been initialized.
   1.887 +         * <p><b>Example:</b>
   1.888 +         * <blockquote><pre>{@code
   1.889 +import static java.lang.invoke.MethodHandles.*;
   1.890 +import static java.lang.invoke.MethodType.*;
   1.891 +...
   1.892 +MethodHandle MH_newArrayList = publicLookup().findConstructor(
   1.893 +  ArrayList.class, methodType(void.class, Collection.class));
   1.894 +Collection orig = Arrays.asList("x", "y");
   1.895 +Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
   1.896 +assert(orig != copy);
   1.897 +assertEquals(orig, copy);
   1.898 +// a variable-arity constructor:
   1.899 +MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
   1.900 +  ProcessBuilder.class, methodType(void.class, String[].class));
   1.901 +ProcessBuilder pb = (ProcessBuilder)
   1.902 +  MH_newProcessBuilder.invoke("x", "y", "z");
   1.903 +assertEquals("[x, y, z]", pb.command().toString());
   1.904 +         * }</pre></blockquote>
   1.905 +         * @param refc the class or interface from which the method is accessed
   1.906 +         * @param type the type of the method, with the receiver argument omitted, and a void return type
   1.907 +         * @return the desired method handle
   1.908 +         * @throws NoSuchMethodException if the constructor does not exist
   1.909 +         * @throws IllegalAccessException if access checking fails
   1.910 +         *                                or if the method's variable arity modifier bit
   1.911 +         *                                is set and {@code asVarargsCollector} fails
   1.912 +         * @exception SecurityException if a security manager is present and it
   1.913 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1.914 +         * @throws NullPointerException if any argument is null
   1.915 +         */
   1.916 +        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
   1.917 +            String name = "<init>";
   1.918 +            MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
   1.919 +            return getDirectConstructor(refc, ctor);
   1.920 +        }
   1.921 +
   1.922 +        /**
   1.923 +         * Produces an early-bound method handle for a virtual method.
   1.924 +         * It will bypass checks for overriding methods on the receiver,
   1.925 +         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
   1.926 +         * instruction from within the explicitly specified {@code specialCaller}.
   1.927 +         * The type of the method handle will be that of the method,
   1.928 +         * with a suitably restricted receiver type prepended.
   1.929 +         * (The receiver type will be {@code specialCaller} or a subtype.)
   1.930 +         * The method and all its argument types must be accessible
   1.931 +         * to the lookup object.
   1.932 +         * <p>
   1.933 +         * Before method resolution,
   1.934 +         * if the explicitly specified caller class is not identical with the
   1.935 +         * lookup class, or if this lookup object does not have
   1.936 +         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
   1.937 +         * privileges, the access fails.
   1.938 +         * <p>
   1.939 +         * The returned method handle will have
   1.940 +         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1.941 +         * the method's variable arity modifier bit ({@code 0x0080}) is set.
   1.942 +         * <p style="font-size:smaller;">
   1.943 +         * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
   1.944 +         * even though the {@code invokespecial} instruction can refer to them
   1.945 +         * in special circumstances.  Use {@link #findConstructor findConstructor}
   1.946 +         * to access instance initialization methods in a safe manner.)</em>
   1.947 +         * <p><b>Example:</b>
   1.948 +         * <blockquote><pre>{@code
   1.949 +import static java.lang.invoke.MethodHandles.*;
   1.950 +import static java.lang.invoke.MethodType.*;
   1.951 +...
   1.952 +static class Listie extends ArrayList {
   1.953 +  public String toString() { return "[wee Listie]"; }
   1.954 +  static Lookup lookup() { return MethodHandles.lookup(); }
   1.955 +}
   1.956 +...
   1.957 +// no access to constructor via invokeSpecial:
   1.958 +MethodHandle MH_newListie = Listie.lookup()
   1.959 +  .findConstructor(Listie.class, methodType(void.class));
   1.960 +Listie l = (Listie) MH_newListie.invokeExact();
   1.961 +try { assertEquals("impossible", Listie.lookup().findSpecial(
   1.962 +        Listie.class, "<init>", methodType(void.class), Listie.class));
   1.963 + } catch (NoSuchMethodException ex) { } // OK
   1.964 +// access to super and self methods via invokeSpecial:
   1.965 +MethodHandle MH_super = Listie.lookup().findSpecial(
   1.966 +  ArrayList.class, "toString" , methodType(String.class), Listie.class);
   1.967 +MethodHandle MH_this = Listie.lookup().findSpecial(
   1.968 +  Listie.class, "toString" , methodType(String.class), Listie.class);
   1.969 +MethodHandle MH_duper = Listie.lookup().findSpecial(
   1.970 +  Object.class, "toString" , methodType(String.class), Listie.class);
   1.971 +assertEquals("[]", (String) MH_super.invokeExact(l));
   1.972 +assertEquals(""+l, (String) MH_this.invokeExact(l));
   1.973 +assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
   1.974 +try { assertEquals("inaccessible", Listie.lookup().findSpecial(
   1.975 +        String.class, "toString", methodType(String.class), Listie.class));
   1.976 + } catch (IllegalAccessException ex) { } // OK
   1.977 +Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
   1.978 +assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
   1.979 +         * }</pre></blockquote>
   1.980 +         *
   1.981 +         * @param refc the class or interface from which the method is accessed
   1.982 +         * @param name the name of the method (which must not be "&lt;init&gt;")
   1.983 +         * @param type the type of the method, with the receiver argument omitted
   1.984 +         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
   1.985 +         * @return the desired method handle
   1.986 +         * @throws NoSuchMethodException if the method does not exist
   1.987 +         * @throws IllegalAccessException if access checking fails
   1.988 +         *                                or if the method's variable arity modifier bit
   1.989 +         *                                is set and {@code asVarargsCollector} fails
   1.990 +         * @exception SecurityException if a security manager is present and it
   1.991 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1.992 +         * @throws NullPointerException if any argument is null
   1.993 +         */
   1.994 +        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
   1.995 +                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
   1.996 +            checkSpecialCaller(specialCaller);
   1.997 +            Lookup specialLookup = this.in(specialCaller);
   1.998 +            MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
   1.999 +            return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
  1.1000 +        }
  1.1001 +
  1.1002 +        /**
  1.1003 +         * Produces a method handle giving read access to a non-static field.
  1.1004 +         * The type of the method handle will have a return type of the field's
  1.1005 +         * value type.
  1.1006 +         * The method handle's single argument will be the instance containing
  1.1007 +         * the field.
  1.1008 +         * Access checking is performed immediately on behalf of the lookup class.
  1.1009 +         * @param refc the class or interface from which the method is accessed
  1.1010 +         * @param name the field's name
  1.1011 +         * @param type the field's type
  1.1012 +         * @return a method handle which can load values from the field
  1.1013 +         * @throws NoSuchFieldException if the field does not exist
  1.1014 +         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
  1.1015 +         * @exception SecurityException if a security manager is present and it
  1.1016 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1.1017 +         * @throws NullPointerException if any argument is null
  1.1018 +         */
  1.1019 +        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1.1020 +            MemberName field = resolveOrFail(REF_getField, refc, name, type);
  1.1021 +            return getDirectField(REF_getField, refc, field);
  1.1022 +        }
  1.1023 +
  1.1024 +        /**
  1.1025 +         * Produces a method handle giving write access to a non-static field.
  1.1026 +         * The type of the method handle will have a void return type.
  1.1027 +         * The method handle will take two arguments, the instance containing
  1.1028 +         * the field, and the value to be stored.
  1.1029 +         * The second argument will be of the field's value type.
  1.1030 +         * Access checking is performed immediately on behalf of the lookup class.
  1.1031 +         * @param refc the class or interface from which the method is accessed
  1.1032 +         * @param name the field's name
  1.1033 +         * @param type the field's type
  1.1034 +         * @return a method handle which can store values into the field
  1.1035 +         * @throws NoSuchFieldException if the field does not exist
  1.1036 +         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
  1.1037 +         * @exception SecurityException if a security manager is present and it
  1.1038 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1.1039 +         * @throws NullPointerException if any argument is null
  1.1040 +         */
  1.1041 +        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1.1042 +            MemberName field = resolveOrFail(REF_putField, refc, name, type);
  1.1043 +            return getDirectField(REF_putField, refc, field);
  1.1044 +        }
  1.1045 +
  1.1046 +        /**
  1.1047 +         * Produces a method handle giving read access to a static field.
  1.1048 +         * The type of the method handle will have a return type of the field's
  1.1049 +         * value type.
  1.1050 +         * The method handle will take no arguments.
  1.1051 +         * Access checking is performed immediately on behalf of the lookup class.
  1.1052 +         * <p>
  1.1053 +         * If the returned method handle is invoked, the field's class will
  1.1054 +         * be initialized, if it has not already been initialized.
  1.1055 +         * @param refc the class or interface from which the method is accessed
  1.1056 +         * @param name the field's name
  1.1057 +         * @param type the field's type
  1.1058 +         * @return a method handle which can load values from the field
  1.1059 +         * @throws NoSuchFieldException if the field does not exist
  1.1060 +         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
  1.1061 +         * @exception SecurityException if a security manager is present and it
  1.1062 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1.1063 +         * @throws NullPointerException if any argument is null
  1.1064 +         */
  1.1065 +        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1.1066 +            MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
  1.1067 +            return getDirectField(REF_getStatic, refc, field);
  1.1068 +        }
  1.1069 +
  1.1070 +        /**
  1.1071 +         * Produces a method handle giving write access to a static field.
  1.1072 +         * The type of the method handle will have a void return type.
  1.1073 +         * The method handle will take a single
  1.1074 +         * argument, of the field's value type, the value to be stored.
  1.1075 +         * Access checking is performed immediately on behalf of the lookup class.
  1.1076 +         * <p>
  1.1077 +         * If the returned method handle is invoked, the field's class will
  1.1078 +         * be initialized, if it has not already been initialized.
  1.1079 +         * @param refc the class or interface from which the method is accessed
  1.1080 +         * @param name the field's name
  1.1081 +         * @param type the field's type
  1.1082 +         * @return a method handle which can store values into the field
  1.1083 +         * @throws NoSuchFieldException if the field does not exist
  1.1084 +         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
  1.1085 +         * @exception SecurityException if a security manager is present and it
  1.1086 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1.1087 +         * @throws NullPointerException if any argument is null
  1.1088 +         */
  1.1089 +        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1.1090 +            MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
  1.1091 +            return getDirectField(REF_putStatic, refc, field);
  1.1092 +        }
  1.1093 +
  1.1094 +        /**
  1.1095 +         * Produces an early-bound method handle for a non-static method.
  1.1096 +         * The receiver must have a supertype {@code defc} in which a method
  1.1097 +         * of the given name and type is accessible to the lookup class.
  1.1098 +         * The method and all its argument types must be accessible to the lookup object.
  1.1099 +         * The type of the method handle will be that of the method,
  1.1100 +         * without any insertion of an additional receiver parameter.
  1.1101 +         * The given receiver will be bound into the method handle,
  1.1102 +         * so that every call to the method handle will invoke the
  1.1103 +         * requested method on the given receiver.
  1.1104 +         * <p>
  1.1105 +         * The returned method handle will have
  1.1106 +         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
  1.1107 +         * the method's variable arity modifier bit ({@code 0x0080}) is set
  1.1108 +         * <em>and</em> the trailing array argument is not the only argument.
  1.1109 +         * (If the trailing array argument is the only argument,
  1.1110 +         * the given receiver value will be bound to it.)
  1.1111 +         * <p>
  1.1112 +         * This is equivalent to the following code:
  1.1113 +         * <blockquote><pre>{@code
  1.1114 +import static java.lang.invoke.MethodHandles.*;
  1.1115 +import static java.lang.invoke.MethodType.*;
  1.1116 +...
  1.1117 +MethodHandle mh0 = lookup().findVirtual(defc, name, type);
  1.1118 +MethodHandle mh1 = mh0.bindTo(receiver);
  1.1119 +MethodType mt1 = mh1.type();
  1.1120 +if (mh0.isVarargsCollector())
  1.1121 +  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
  1.1122 +return mh1;
  1.1123 +         * }</pre></blockquote>
  1.1124 +         * where {@code defc} is either {@code receiver.getClass()} or a super
  1.1125 +         * type of that class, in which the requested method is accessible
  1.1126 +         * to the lookup class.
  1.1127 +         * (Note that {@code bindTo} does not preserve variable arity.)
  1.1128 +         * @param receiver the object from which the method is accessed
  1.1129 +         * @param name the name of the method
  1.1130 +         * @param type the type of the method, with the receiver argument omitted
  1.1131 +         * @return the desired method handle
  1.1132 +         * @throws NoSuchMethodException if the method does not exist
  1.1133 +         * @throws IllegalAccessException if access checking fails
  1.1134 +         *                                or if the method's variable arity modifier bit
  1.1135 +         *                                is set and {@code asVarargsCollector} fails
  1.1136 +         * @exception SecurityException if a security manager is present and it
  1.1137 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1.1138 +         * @throws NullPointerException if any argument is null
  1.1139 +         * @see MethodHandle#bindTo
  1.1140 +         * @see #findVirtual
  1.1141 +         */
  1.1142 +        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
  1.1143 +            Class<? extends Object> refc = receiver.getClass(); // may get NPE
  1.1144 +            MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
  1.1145 +            MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
  1.1146 +            return mh.bindReceiver(receiver).setVarargs(method);
  1.1147 +        }
  1.1148 +
  1.1149 +        /**
  1.1150 +         * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
  1.1151 +         * to <i>m</i>, if the lookup class has permission.
  1.1152 +         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
  1.1153 +         * If <i>m</i> is virtual, overriding is respected on every call.
  1.1154 +         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
  1.1155 +         * The type of the method handle will be that of the method,
  1.1156 +         * with the receiver type prepended (but only if it is non-static).
  1.1157 +         * If the method's {@code accessible} flag is not set,
  1.1158 +         * access checking is performed immediately on behalf of the lookup class.
  1.1159 +         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
  1.1160 +         * <p>
  1.1161 +         * The returned method handle will have
  1.1162 +         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
  1.1163 +         * the method's variable arity modifier bit ({@code 0x0080}) is set.
  1.1164 +         * <p>
  1.1165 +         * If <i>m</i> is static, and
  1.1166 +         * if the returned method handle is invoked, the method's class will
  1.1167 +         * be initialized, if it has not already been initialized.
  1.1168 +         * @param m the reflected method
  1.1169 +         * @return a method handle which can invoke the reflected method
  1.1170 +         * @throws IllegalAccessException if access checking fails
  1.1171 +         *                                or if the method's variable arity modifier bit
  1.1172 +         *                                is set and {@code asVarargsCollector} fails
  1.1173 +         * @throws NullPointerException if the argument is null
  1.1174 +         */
  1.1175 +        public MethodHandle unreflect(Method m) throws IllegalAccessException {
  1.1176 +            if (m.getDeclaringClass() == MethodHandle.class) {
  1.1177 +                MethodHandle mh = unreflectForMH(m);
  1.1178 +                if (mh != null)  return mh;
  1.1179 +            }
  1.1180 +            MemberName method = new MemberName(m);
  1.1181 +            byte refKind = method.getReferenceKind();
  1.1182 +            if (refKind == REF_invokeSpecial)
  1.1183 +                refKind = REF_invokeVirtual;
  1.1184 +            assert(method.isMethod());
  1.1185 +            Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
  1.1186 +            return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
  1.1187 +        }
  1.1188 +        private MethodHandle unreflectForMH(Method m) {
  1.1189 +            // these names require special lookups because they throw UnsupportedOperationException
  1.1190 +            if (MemberName.isMethodHandleInvokeName(m.getName()))
  1.1191 +                return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
  1.1192 +            return null;
  1.1193 +        }
  1.1194 +
  1.1195 +        /**
  1.1196 +         * Produces a method handle for a reflected method.
  1.1197 +         * It will bypass checks for overriding methods on the receiver,
  1.1198 +         * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
  1.1199 +         * instruction from within the explicitly specified {@code specialCaller}.
  1.1200 +         * The type of the method handle will be that of the method,
  1.1201 +         * with a suitably restricted receiver type prepended.
  1.1202 +         * (The receiver type will be {@code specialCaller} or a subtype.)
  1.1203 +         * If the method's {@code accessible} flag is not set,
  1.1204 +         * access checking is performed immediately on behalf of the lookup class,
  1.1205 +         * as if {@code invokespecial} instruction were being linked.
  1.1206 +         * <p>
  1.1207 +         * Before method resolution,
  1.1208 +         * if the explicitly specified caller class is not identical with the
  1.1209 +         * lookup class, or if this lookup object does not have
  1.1210 +         * <a href="MethodHandles.Lookup.html#privacc">private access</a>
  1.1211 +         * privileges, the access fails.
  1.1212 +         * <p>
  1.1213 +         * The returned method handle will have
  1.1214 +         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
  1.1215 +         * the method's variable arity modifier bit ({@code 0x0080}) is set.
  1.1216 +         * @param m the reflected method
  1.1217 +         * @param specialCaller the class nominally calling the method
  1.1218 +         * @return a method handle which can invoke the reflected method
  1.1219 +         * @throws IllegalAccessException if access checking fails
  1.1220 +         *                                or if the method's variable arity modifier bit
  1.1221 +         *                                is set and {@code asVarargsCollector} fails
  1.1222 +         * @throws NullPointerException if any argument is null
  1.1223 +         */
  1.1224 +        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
  1.1225 +            checkSpecialCaller(specialCaller);
  1.1226 +            Lookup specialLookup = this.in(specialCaller);
  1.1227 +            MemberName method = new MemberName(m, true);
  1.1228 +            assert(method.isMethod());
  1.1229 +            // ignore m.isAccessible:  this is a new kind of access
  1.1230 +            return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
  1.1231 +        }
  1.1232 +
  1.1233 +        /**
  1.1234 +         * Produces a method handle for a reflected constructor.
  1.1235 +         * The type of the method handle will be that of the constructor,
  1.1236 +         * with the return type changed to the declaring class.
  1.1237 +         * The method handle will perform a {@code newInstance} operation,
  1.1238 +         * creating a new instance of the constructor's class on the
  1.1239 +         * arguments passed to the method handle.
  1.1240 +         * <p>
  1.1241 +         * If the constructor's {@code accessible} flag is not set,
  1.1242 +         * access checking is performed immediately on behalf of the lookup class.
  1.1243 +         * <p>
  1.1244 +         * The returned method handle will have
  1.1245 +         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
  1.1246 +         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
  1.1247 +         * <p>
  1.1248 +         * If the returned method handle is invoked, the constructor's class will
  1.1249 +         * be initialized, if it has not already been initialized.
  1.1250 +         * @param c the reflected constructor
  1.1251 +         * @return a method handle which can invoke the reflected constructor
  1.1252 +         * @throws IllegalAccessException if access checking fails
  1.1253 +         *                                or if the method's variable arity modifier bit
  1.1254 +         *                                is set and {@code asVarargsCollector} fails
  1.1255 +         * @throws NullPointerException if the argument is null
  1.1256 +         */
  1.1257 +        public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
  1.1258 +            MemberName ctor = new MemberName(c);
  1.1259 +            assert(ctor.isConstructor());
  1.1260 +            Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
  1.1261 +            return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
  1.1262 +        }
  1.1263 +
  1.1264 +        /**
  1.1265 +         * Produces a method handle giving read access to a reflected field.
  1.1266 +         * The type of the method handle will have a return type of the field's
  1.1267 +         * value type.
  1.1268 +         * If the field is static, the method handle will take no arguments.
  1.1269 +         * Otherwise, its single argument will be the instance containing
  1.1270 +         * the field.
  1.1271 +         * If the field's {@code accessible} flag is not set,
  1.1272 +         * access checking is performed immediately on behalf of the lookup class.
  1.1273 +         * <p>
  1.1274 +         * If the field is static, and
  1.1275 +         * if the returned method handle is invoked, the field's class will
  1.1276 +         * be initialized, if it has not already been initialized.
  1.1277 +         * @param f the reflected field
  1.1278 +         * @return a method handle which can load values from the reflected field
  1.1279 +         * @throws IllegalAccessException if access checking fails
  1.1280 +         * @throws NullPointerException if the argument is null
  1.1281 +         */
  1.1282 +        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
  1.1283 +            return unreflectField(f, false);
  1.1284 +        }
  1.1285 +        private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
  1.1286 +            MemberName field = new MemberName(f, isSetter);
  1.1287 +            assert(isSetter
  1.1288 +                    ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
  1.1289 +                    : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
  1.1290 +            Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
  1.1291 +            return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
  1.1292 +        }
  1.1293 +
  1.1294 +        /**
  1.1295 +         * Produces a method handle giving write access to a reflected field.
  1.1296 +         * The type of the method handle will have a void return type.
  1.1297 +         * If the field is static, the method handle will take a single
  1.1298 +         * argument, of the field's value type, the value to be stored.
  1.1299 +         * Otherwise, the two arguments will be the instance containing
  1.1300 +         * the field, and the value to be stored.
  1.1301 +         * If the field's {@code accessible} flag is not set,
  1.1302 +         * access checking is performed immediately on behalf of the lookup class.
  1.1303 +         * <p>
  1.1304 +         * If the field is static, and
  1.1305 +         * if the returned method handle is invoked, the field's class will
  1.1306 +         * be initialized, if it has not already been initialized.
  1.1307 +         * @param f the reflected field
  1.1308 +         * @return a method handle which can store values into the reflected field
  1.1309 +         * @throws IllegalAccessException if access checking fails
  1.1310 +         * @throws NullPointerException if the argument is null
  1.1311 +         */
  1.1312 +        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
  1.1313 +            return unreflectField(f, true);
  1.1314 +        }
  1.1315 +
  1.1316 +        /**
  1.1317 +         * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
  1.1318 +         * created by this lookup object or a similar one.
  1.1319 +         * Security and access checks are performed to ensure that this lookup object
  1.1320 +         * is capable of reproducing the target method handle.
  1.1321 +         * This means that the cracking may fail if target is a direct method handle
  1.1322 +         * but was created by an unrelated lookup object.
  1.1323 +         * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
  1.1324 +         * and was created by a lookup object for a different class.
  1.1325 +         * @param target a direct method handle to crack into symbolic reference components
  1.1326 +         * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
  1.1327 +         * @exception SecurityException if a security manager is present and it
  1.1328 +         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1.1329 +         * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
  1.1330 +         * @exception NullPointerException if the target is {@code null}
  1.1331 +         * @see MethodHandleInfo
  1.1332 +         * @since 1.8
  1.1333 +         */
  1.1334 +        public MethodHandleInfo revealDirect(MethodHandle target) {
  1.1335 +            MemberName member = target.internalMemberName();
  1.1336 +            if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke()))
  1.1337 +                throw newIllegalArgumentException("not a direct method handle");
  1.1338 +            Class<?> defc = member.getDeclaringClass();
  1.1339 +            byte refKind = member.getReferenceKind();
  1.1340 +            assert(MethodHandleNatives.refKindIsValid(refKind));
  1.1341 +            if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
  1.1342 +                // Devirtualized method invocation is usually formally virtual.
  1.1343 +                // To avoid creating extra MemberName objects for this common case,
  1.1344 +                // we encode this extra degree of freedom using MH.isInvokeSpecial.
  1.1345 +                refKind = REF_invokeVirtual;
  1.1346 +            if (refKind == REF_invokeVirtual && defc.isInterface())
  1.1347 +                // Symbolic reference is through interface but resolves to Object method (toString, etc.)
  1.1348 +                refKind = REF_invokeInterface;
  1.1349 +            // Check SM permissions and member access before cracking.
  1.1350 +            try {
  1.1351 +                checkAccess(refKind, defc, member);
  1.1352 +                checkSecurityManager(defc, member);
  1.1353 +            } catch (IllegalAccessException ex) {
  1.1354 +                throw new IllegalArgumentException(ex);
  1.1355 +            }
  1.1356 +            if (allowedModes != TRUSTED && member.isCallerSensitive()) {
  1.1357 +                Class<?> callerClass = target.internalCallerClass();
  1.1358 +                if (!hasPrivateAccess() || callerClass != lookupClass())
  1.1359 +                    throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
  1.1360 +            }
  1.1361 +            // Produce the handle to the results.
  1.1362 +            return new InfoFromMemberName(this, member, refKind);
  1.1363 +        }
  1.1364 +
  1.1365 +        /// Helper methods, all package-private.
  1.1366 +
  1.1367 +        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1.1368 +            checkSymbolicClass(refc);  // do this before attempting to resolve
  1.1369 +            name.getClass();  // NPE
  1.1370 +            type.getClass();  // NPE
  1.1371 +            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
  1.1372 +                                            NoSuchFieldException.class);
  1.1373 +        }
  1.1374 +
  1.1375 +        MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
  1.1376 +            checkSymbolicClass(refc);  // do this before attempting to resolve
  1.1377 +            name.getClass();  // NPE
  1.1378 +            type.getClass();  // NPE
  1.1379 +            checkMethodName(refKind, name);  // NPE check on name
  1.1380 +            return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
  1.1381 +                                            NoSuchMethodException.class);
  1.1382 +        }
  1.1383 +
  1.1384 +        MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
  1.1385 +            checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
  1.1386 +            member.getName().getClass();  // NPE
  1.1387 +            member.getType().getClass();  // NPE
  1.1388 +            return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
  1.1389 +                                            ReflectiveOperationException.class);
  1.1390 +        }
  1.1391 +
  1.1392 +        void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
  1.1393 +            refc.getClass();  // NPE
  1.1394 +            Class<?> caller = lookupClassOrNull();
  1.1395 +            if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
  1.1396 +                throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
  1.1397 +        }
  1.1398 +
  1.1399 +        /** Check name for an illegal leading "&lt;" character. */
  1.1400 +        void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
  1.1401 +            if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
  1.1402 +                throw new NoSuchMethodException("illegal method name: "+name);
  1.1403 +        }
  1.1404 +
  1.1405 +
  1.1406 +        /**
  1.1407 +         * Find my trustable caller class if m is a caller sensitive method.
  1.1408 +         * If this lookup object has private access, then the caller class is the lookupClass.
  1.1409 +         * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
  1.1410 +         */
  1.1411 +        Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
  1.1412 +            Class<?> callerClass = null;
  1.1413 +            if (MethodHandleNatives.isCallerSensitive(m)) {
  1.1414 +                // Only lookups with private access are allowed to resolve caller-sensitive methods
  1.1415 +                if (hasPrivateAccess()) {
  1.1416 +                    callerClass = lookupClass;
  1.1417 +                } else {
  1.1418 +                    throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
  1.1419 +                }
  1.1420 +            }
  1.1421 +            return callerClass;
  1.1422 +        }
  1.1423 +
  1.1424 +        private boolean hasPrivateAccess() {
  1.1425 +            return (allowedModes & PRIVATE) != 0;
  1.1426 +        }
  1.1427 +
  1.1428 +        /**
  1.1429 +         * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
  1.1430 +         * Determines a trustable caller class to compare with refc, the symbolic reference class.
  1.1431 +         * If this lookup object has private access, then the caller class is the lookupClass.
  1.1432 +         */
  1.1433 +        void checkSecurityManager(Class<?> refc, MemberName m) {
  1.1434 +            SecurityManager smgr = System.getSecurityManager();
  1.1435 +            if (smgr == null)  return;
  1.1436 +            if (allowedModes == TRUSTED)  return;
  1.1437 +
  1.1438 +            // Step 1:
  1.1439 +            boolean fullPowerLookup = hasPrivateAccess();
  1.1440 +            if (!fullPowerLookup ||
  1.1441 +                !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
  1.1442 +                ReflectUtil.checkPackageAccess(refc);
  1.1443 +            }
  1.1444 +
  1.1445 +            // Step 2:
  1.1446 +            if (m.isPublic()) return;
  1.1447 +            if (!fullPowerLookup) {
  1.1448 +                smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
  1.1449 +            }
  1.1450 +
  1.1451 +            // Step 3:
  1.1452 +            Class<?> defc = m.getDeclaringClass();
  1.1453 +            if (!fullPowerLookup && defc != refc) {
  1.1454 +                ReflectUtil.checkPackageAccess(defc);
  1.1455 +            }
  1.1456 +        }
  1.1457 +
  1.1458 +        void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
  1.1459 +            boolean wantStatic = (refKind == REF_invokeStatic);
  1.1460 +            String message;
  1.1461 +            if (m.isConstructor())
  1.1462 +                message = "expected a method, not a constructor";
  1.1463 +            else if (!m.isMethod())
  1.1464 +                message = "expected a method";
  1.1465 +            else if (wantStatic != m.isStatic())
  1.1466 +                message = wantStatic ? "expected a static method" : "expected a non-static method";
  1.1467 +            else
  1.1468 +                { checkAccess(refKind, refc, m); return; }
  1.1469 +            throw m.makeAccessException(message, this);
  1.1470 +        }
  1.1471 +
  1.1472 +        void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
  1.1473 +            boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
  1.1474 +            String message;
  1.1475 +            if (wantStatic != m.isStatic())
  1.1476 +                message = wantStatic ? "expected a static field" : "expected a non-static field";
  1.1477 +            else
  1.1478 +                { checkAccess(refKind, refc, m); return; }
  1.1479 +            throw m.makeAccessException(message, this);
  1.1480 +        }
  1.1481 +
  1.1482 +        /** Check public/protected/private bits on the symbolic reference class and its member. */
  1.1483 +        void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
  1.1484 +            assert(m.referenceKindIsConsistentWith(refKind) &&
  1.1485 +                   MethodHandleNatives.refKindIsValid(refKind) &&
  1.1486 +                   (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
  1.1487 +            int allowedModes = this.allowedModes;
  1.1488 +            if (allowedModes == TRUSTED)  return;
  1.1489 +            int mods = m.getModifiers();
  1.1490 +            if (Modifier.isProtected(mods) &&
  1.1491 +                    refKind == REF_invokeVirtual &&
  1.1492 +                    m.getDeclaringClass() == Object.class &&
  1.1493 +                    m.getName().equals("clone") &&
  1.1494 +                    refc.isArray()) {
  1.1495 +                // The JVM does this hack also.
  1.1496 +                // (See ClassVerifier::verify_invoke_instructions
  1.1497 +                // and LinkResolver::check_method_accessability.)
  1.1498 +                // Because the JVM does not allow separate methods on array types,
  1.1499 +                // there is no separate method for int[].clone.
  1.1500 +                // All arrays simply inherit Object.clone.
  1.1501 +                // But for access checking logic, we make Object.clone
  1.1502 +                // (normally protected) appear to be public.
  1.1503 +                // Later on, when the DirectMethodHandle is created,
  1.1504 +                // its leading argument will be restricted to the
  1.1505 +                // requested array type.
  1.1506 +                // N.B. The return type is not adjusted, because
  1.1507 +                // that is *not* the bytecode behavior.
  1.1508 +                mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
  1.1509 +            }
  1.1510 +            if (Modifier.isFinal(mods) &&
  1.1511 +                    MethodHandleNatives.refKindIsSetter(refKind))
  1.1512 +                throw m.makeAccessException("unexpected set of a final field", this);
  1.1513 +            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
  1.1514 +                return;  // common case
  1.1515 +            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
  1.1516 +            if ((requestedModes & allowedModes) != 0) {
  1.1517 +                if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
  1.1518 +                                                    mods, lookupClass(), allowedModes))
  1.1519 +                    return;
  1.1520 +            } else {
  1.1521 +                // Protected members can also be checked as if they were package-private.
  1.1522 +                if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
  1.1523 +                        && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
  1.1524 +                    return;
  1.1525 +            }
  1.1526 +            throw m.makeAccessException(accessFailedMessage(refc, m), this);
  1.1527 +        }
  1.1528 +
  1.1529 +        String accessFailedMessage(Class<?> refc, MemberName m) {
  1.1530 +            Class<?> defc = m.getDeclaringClass();
  1.1531 +            int mods = m.getModifiers();
  1.1532 +            // check the class first:
  1.1533 +            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
  1.1534 +                               (defc == refc ||
  1.1535 +                                Modifier.isPublic(refc.getModifiers())));
  1.1536 +            if (!classOK && (allowedModes & PACKAGE) != 0) {
  1.1537 +                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
  1.1538 +                           (defc == refc ||
  1.1539 +                            VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
  1.1540 +            }
  1.1541 +            if (!classOK)
  1.1542 +                return "class is not public";
  1.1543 +            if (Modifier.isPublic(mods))
  1.1544 +                return "access to public member failed";  // (how?)
  1.1545 +            if (Modifier.isPrivate(mods))
  1.1546 +                return "member is private";
  1.1547 +            if (Modifier.isProtected(mods))
  1.1548 +                return "member is protected";
  1.1549 +            return "member is private to package";
  1.1550 +        }
  1.1551 +
  1.1552 +        private static final boolean ALLOW_NESTMATE_ACCESS = false;
  1.1553 +
  1.1554 +        private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
  1.1555 +            int allowedModes = this.allowedModes;
  1.1556 +            if (allowedModes == TRUSTED)  return;
  1.1557 +            if (!hasPrivateAccess()
  1.1558 +                || (specialCaller != lookupClass()
  1.1559 +                    && !(ALLOW_NESTMATE_ACCESS &&
  1.1560 +                         VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
  1.1561 +                throw new MemberName(specialCaller).
  1.1562 +                    makeAccessException("no private access for invokespecial", this);
  1.1563 +        }
  1.1564 +
  1.1565 +        private boolean restrictProtectedReceiver(MemberName method) {
  1.1566 +            // The accessing class only has the right to use a protected member
  1.1567 +            // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
  1.1568 +            if (!method.isProtected() || method.isStatic()
  1.1569 +                || allowedModes == TRUSTED
  1.1570 +                || method.getDeclaringClass() == lookupClass()
  1.1571 +                || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
  1.1572 +                || (ALLOW_NESTMATE_ACCESS &&
  1.1573 +                    VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
  1.1574 +                return false;
  1.1575 +            return true;
  1.1576 +        }
  1.1577 +        private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
  1.1578 +            assert(!method.isStatic());
  1.1579 +            // receiver type of mh is too wide; narrow to caller
  1.1580 +            if (!method.getDeclaringClass().isAssignableFrom(caller)) {
  1.1581 +                throw method.makeAccessException("caller class must be a subclass below the method", caller);
  1.1582 +            }
  1.1583 +            MethodType rawType = mh.type();
  1.1584 +            if (rawType.parameterType(0) == caller)  return mh;
  1.1585 +            MethodType narrowType = rawType.changeParameterType(0, caller);
  1.1586 +            return mh.viewAsType(narrowType);
  1.1587 +        }
  1.1588 +
  1.1589 +        /** Check access and get the requested method. */
  1.1590 +        private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
  1.1591 +            final boolean doRestrict    = true;
  1.1592 +            final boolean checkSecurity = true;
  1.1593 +            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
  1.1594 +        }
  1.1595 +        /** Check access and get the requested method, eliding receiver narrowing rules. */
  1.1596 +        private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
  1.1597 +            final boolean doRestrict    = false;
  1.1598 +            final boolean checkSecurity = true;
  1.1599 +            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
  1.1600 +        }
  1.1601 +        /** Check access and get the requested method, eliding security manager checks. */
  1.1602 +        private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
  1.1603 +            final boolean doRestrict    = true;
  1.1604 +            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
  1.1605 +            return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
  1.1606 +        }
  1.1607 +        /** Common code for all methods; do not call directly except from immediately above. */
  1.1608 +        private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
  1.1609 +                                                   boolean checkSecurity,
  1.1610 +                                                   boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
  1.1611 +            checkMethod(refKind, refc, method);
  1.1612 +            // Optionally check with the security manager; this isn't needed for unreflect* calls.
  1.1613 +            if (checkSecurity)
  1.1614 +                checkSecurityManager(refc, method);
  1.1615 +            assert(!method.isMethodHandleInvoke());
  1.1616 +
  1.1617 +            Class<?> refcAsSuper;
  1.1618 +            if (refKind == REF_invokeSpecial &&
  1.1619 +                refc != lookupClass() &&
  1.1620 +                !refc.isInterface() &&
  1.1621 +                refc != (refcAsSuper = lookupClass().getSuperclass()) &&
  1.1622 +                refc.isAssignableFrom(lookupClass())) {
  1.1623 +                assert(!method.getName().equals("<init>"));  // not this code path
  1.1624 +                // Per JVMS 6.5, desc. of invokespecial instruction:
  1.1625 +                // If the method is in a superclass of the LC,
  1.1626 +                // and if our original search was above LC.super,
  1.1627 +                // repeat the search (symbolic lookup) from LC.super.
  1.1628 +                // FIXME: MemberName.resolve should handle this instead.
  1.1629 +                MemberName m2 = new MemberName(refcAsSuper,
  1.1630 +                                               method.getName(),
  1.1631 +                                               method.getMethodType(),
  1.1632 +                                               REF_invokeSpecial);
  1.1633 +                m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
  1.1634 +                if (m2 == null)  throw new InternalError(method.toString());
  1.1635 +                method = m2;
  1.1636 +                refc = refcAsSuper;
  1.1637 +                // redo basic checks
  1.1638 +                checkMethod(refKind, refc, method);
  1.1639 +            }
  1.1640 +
  1.1641 +            MethodHandle mh = DirectMethodHandle.make(refKind, refc, method);
  1.1642 +            mh = maybeBindCaller(method, mh, callerClass);
  1.1643 +            mh = mh.setVarargs(method);
  1.1644 +            // Optionally narrow the receiver argument to refc using restrictReceiver.
  1.1645 +            if (doRestrict &&
  1.1646 +                   (refKind == REF_invokeSpecial ||
  1.1647 +                       (MethodHandleNatives.refKindHasReceiver(refKind) &&
  1.1648 +                           restrictProtectedReceiver(method))))
  1.1649 +                mh = restrictReceiver(method, mh, lookupClass());
  1.1650 +            return mh;
  1.1651 +        }
  1.1652 +        private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
  1.1653 +                                             Class<?> callerClass)
  1.1654 +                                             throws IllegalAccessException {
  1.1655 +            if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
  1.1656 +                return mh;
  1.1657 +            Class<?> hostClass = lookupClass;
  1.1658 +            if (!hasPrivateAccess())  // caller must have private access
  1.1659 +                hostClass = callerClass;  // callerClass came from a security manager style stack walk
  1.1660 +            MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
  1.1661 +            // Note: caller will apply varargs after this step happens.
  1.1662 +            return cbmh;
  1.1663 +        }
  1.1664 +        /** Check access and get the requested field. */
  1.1665 +        private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
  1.1666 +            final boolean checkSecurity = true;
  1.1667 +            return getDirectFieldCommon(refKind, refc, field, checkSecurity);
  1.1668 +        }
  1.1669 +        /** Check access and get the requested field, eliding security manager checks. */
  1.1670 +        private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
  1.1671 +            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
  1.1672 +            return getDirectFieldCommon(refKind, refc, field, checkSecurity);
  1.1673 +        }
  1.1674 +        /** Common code for all fields; do not call directly except from immediately above. */
  1.1675 +        private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
  1.1676 +                                                  boolean checkSecurity) throws IllegalAccessException {
  1.1677 +            checkField(refKind, refc, field);
  1.1678 +            // Optionally check with the security manager; this isn't needed for unreflect* calls.
  1.1679 +            if (checkSecurity)
  1.1680 +                checkSecurityManager(refc, field);
  1.1681 +            MethodHandle mh = DirectMethodHandle.make(refc, field);
  1.1682 +            boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
  1.1683 +                                    restrictProtectedReceiver(field));
  1.1684 +            if (doRestrict)
  1.1685 +                mh = restrictReceiver(field, mh, lookupClass());
  1.1686 +            return mh;
  1.1687 +        }
  1.1688 +        /** Check access and get the requested constructor. */
  1.1689 +        private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
  1.1690 +            final boolean checkSecurity = true;
  1.1691 +            return getDirectConstructorCommon(refc, ctor, checkSecurity);
  1.1692 +        }
  1.1693 +        /** Check access and get the requested constructor, eliding security manager checks. */
  1.1694 +        private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
  1.1695 +            final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
  1.1696 +            return getDirectConstructorCommon(refc, ctor, checkSecurity);
  1.1697 +        }
  1.1698 +        /** Common code for all constructors; do not call directly except from immediately above. */
  1.1699 +        private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
  1.1700 +                                                  boolean checkSecurity) throws IllegalAccessException {
  1.1701 +            assert(ctor.isConstructor());
  1.1702 +            checkAccess(REF_newInvokeSpecial, refc, ctor);
  1.1703 +            // Optionally check with the security manager; this isn't needed for unreflect* calls.
  1.1704 +            if (checkSecurity)
  1.1705 +                checkSecurityManager(refc, ctor);
  1.1706 +            assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
  1.1707 +            return DirectMethodHandle.make(ctor).setVarargs(ctor);
  1.1708 +        }
  1.1709 +
  1.1710 +        /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
  1.1711 +         */
  1.1712 +        /*non-public*/
  1.1713 +        MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
  1.1714 +            if (!(type instanceof Class || type instanceof MethodType))
  1.1715 +                throw new InternalError("unresolved MemberName");
  1.1716 +            MemberName member = new MemberName(refKind, defc, name, type);
  1.1717 +            MethodHandle mh = LOOKASIDE_TABLE.get(member);
  1.1718 +            if (mh != null) {
  1.1719 +                checkSymbolicClass(defc);
  1.1720 +                return mh;
  1.1721 +            }
  1.1722 +            // Treat MethodHandle.invoke and invokeExact specially.
  1.1723 +            if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
  1.1724 +                mh = findVirtualForMH(member.getName(), member.getMethodType());
  1.1725 +                if (mh != null) {
  1.1726 +                    return mh;
  1.1727 +                }
  1.1728 +            }
  1.1729 +            MemberName resolved = resolveOrFail(refKind, member);
  1.1730 +            mh = getDirectMethodForConstant(refKind, defc, resolved);
  1.1731 +            if (mh instanceof DirectMethodHandle
  1.1732 +                    && canBeCached(refKind, defc, resolved)) {
  1.1733 +                MemberName key = mh.internalMemberName();
  1.1734 +                if (key != null) {
  1.1735 +                    key = key.asNormalOriginal();
  1.1736 +                }
  1.1737 +                if (member.equals(key)) {  // better safe than sorry
  1.1738 +                    LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
  1.1739 +                }
  1.1740 +            }
  1.1741 +            return mh;
  1.1742 +        }
  1.1743 +        private
  1.1744 +        boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
  1.1745 +            if (refKind == REF_invokeSpecial) {
  1.1746 +                return false;
  1.1747 +            }
  1.1748 +            if (!Modifier.isPublic(defc.getModifiers()) ||
  1.1749 +                    !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
  1.1750 +                    !member.isPublic() ||
  1.1751 +                    member.isCallerSensitive()) {
  1.1752 +                return false;
  1.1753 +            }
  1.1754 +            ClassLoader loader = defc.getClassLoader();
  1.1755 +            if (!sun.misc.VM.isSystemDomainLoader(loader)) {
  1.1756 +                ClassLoader sysl = ClassLoader.getSystemClassLoader();
  1.1757 +                boolean found = false;
  1.1758 +                while (sysl != null) {
  1.1759 +                    if (loader == sysl) { found = true; break; }
  1.1760 +                    sysl = sysl.getParent();
  1.1761 +                }
  1.1762 +                if (!found) {
  1.1763 +                    return false;
  1.1764 +                }
  1.1765 +            }
  1.1766 +            try {
  1.1767 +                MemberName resolved2 = publicLookup().resolveOrFail(refKind,
  1.1768 +                    new MemberName(refKind, defc, member.getName(), member.getType()));
  1.1769 +                checkSecurityManager(defc, resolved2);
  1.1770 +            } catch (ReflectiveOperationException | SecurityException ex) {
  1.1771 +                return false;
  1.1772 +            }
  1.1773 +            return true;
  1.1774 +        }
  1.1775 +        private
  1.1776 +        MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
  1.1777 +                throws ReflectiveOperationException {
  1.1778 +            if (MethodHandleNatives.refKindIsField(refKind)) {
  1.1779 +                return getDirectFieldNoSecurityManager(refKind, defc, member);
  1.1780 +            } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
  1.1781 +                return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
  1.1782 +            } else if (refKind == REF_newInvokeSpecial) {
  1.1783 +                return getDirectConstructorNoSecurityManager(defc, member);
  1.1784 +            }
  1.1785 +            // oops
  1.1786 +            throw newIllegalArgumentException("bad MethodHandle constant #"+member);
  1.1787 +        }
  1.1788 +
  1.1789 +        static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
  1.1790 +    }
  1.1791 +
  1.1792 +    /**
  1.1793 +     * Produces a method handle giving read access to elements of an array.
  1.1794 +     * The type of the method handle will have a return type of the array's
  1.1795 +     * element type.  Its first argument will be the array type,
  1.1796 +     * and the second will be {@code int}.
  1.1797 +     * @param arrayClass an array type
  1.1798 +     * @return a method handle which can load values from the given array type
  1.1799 +     * @throws NullPointerException if the argument is null
  1.1800 +     * @throws  IllegalArgumentException if arrayClass is not an array type
  1.1801 +     */
  1.1802 +    public static
  1.1803 +    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
  1.1804 +        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
  1.1805 +    }
  1.1806 +
  1.1807 +    /**
  1.1808 +     * Produces a method handle giving write access to elements of an array.
  1.1809 +     * The type of the method handle will have a void return type.
  1.1810 +     * Its last argument will be the array's element type.
  1.1811 +     * The first and second arguments will be the array type and int.
  1.1812 +     * @param arrayClass the class of an array
  1.1813 +     * @return a method handle which can store values into the array type
  1.1814 +     * @throws NullPointerException if the argument is null
  1.1815 +     * @throws IllegalArgumentException if arrayClass is not an array type
  1.1816 +     */
  1.1817 +    public static
  1.1818 +    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
  1.1819 +        return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
  1.1820 +    }
  1.1821 +
  1.1822 +    /// method handle invocation (reflective style)
  1.1823 +
  1.1824 +    /**
  1.1825 +     * Produces a method handle which will invoke any method handle of the
  1.1826 +     * given {@code type}, with a given number of trailing arguments replaced by
  1.1827 +     * a single trailing {@code Object[]} array.
  1.1828 +     * The resulting invoker will be a method handle with the following
  1.1829 +     * arguments:
  1.1830 +     * <ul>
  1.1831 +     * <li>a single {@code MethodHandle} target
  1.1832 +     * <li>zero or more leading values (counted by {@code leadingArgCount})
  1.1833 +     * <li>an {@code Object[]} array containing trailing arguments
  1.1834 +     * </ul>
  1.1835 +     * <p>
  1.1836 +     * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
  1.1837 +     * the indicated {@code type}.
  1.1838 +     * That is, if the target is exactly of the given {@code type}, it will behave
  1.1839 +     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
  1.1840 +     * is used to convert the target to the required {@code type}.
  1.1841 +     * <p>
  1.1842 +     * The type of the returned invoker will not be the given {@code type}, but rather
  1.1843 +     * will have all parameters except the first {@code leadingArgCount}
  1.1844 +     * replaced by a single array of type {@code Object[]}, which will be
  1.1845 +     * the final parameter.
  1.1846 +     * <p>
  1.1847 +     * Before invoking its target, the invoker will spread the final array, apply
  1.1848 +     * reference casts as necessary, and unbox and widen primitive arguments.
  1.1849 +     * If, when the invoker is called, the supplied array argument does
  1.1850 +     * not have the correct number of elements, the invoker will throw
  1.1851 +     * an {@link IllegalArgumentException} instead of invoking the target.
  1.1852 +     * <p>
  1.1853 +     * This method is equivalent to the following code (though it may be more efficient):
  1.1854 +     * <blockquote><pre>{@code
  1.1855 +MethodHandle invoker = MethodHandles.invoker(type);
  1.1856 +int spreadArgCount = type.parameterCount() - leadingArgCount;
  1.1857 +invoker = invoker.asSpreader(Object[].class, spreadArgCount);
  1.1858 +return invoker;
  1.1859 +     * }</pre></blockquote>
  1.1860 +     * This method throws no reflective or security exceptions.
  1.1861 +     * @param type the desired target type
  1.1862 +     * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
  1.1863 +     * @return a method handle suitable for invoking any method handle of the given type
  1.1864 +     * @throws NullPointerException if {@code type} is null
  1.1865 +     * @throws IllegalArgumentException if {@code leadingArgCount} is not in
  1.1866 +     *                  the range from 0 to {@code type.parameterCount()} inclusive,
  1.1867 +     *                  or if the resulting method handle's type would have
  1.1868 +     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  1.1869 +     */
  1.1870 +    static public
  1.1871 +    MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
  1.1872 +        if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
  1.1873 +            throw new IllegalArgumentException("bad argument count "+leadingArgCount);
  1.1874 +        return type.invokers().spreadInvoker(leadingArgCount);
  1.1875 +    }
  1.1876 +
  1.1877 +    /**
  1.1878 +     * Produces a special <em>invoker method handle</em> which can be used to
  1.1879 +     * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
  1.1880 +     * The resulting invoker will have a type which is
  1.1881 +     * exactly equal to the desired type, except that it will accept
  1.1882 +     * an additional leading argument of type {@code MethodHandle}.
  1.1883 +     * <p>
  1.1884 +     * This method is equivalent to the following code (though it may be more efficient):
  1.1885 +     * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
  1.1886 +     *
  1.1887 +     * <p style="font-size:smaller;">
  1.1888 +     * <em>Discussion:</em>
  1.1889 +     * Invoker method handles can be useful when working with variable method handles
  1.1890 +     * of unknown types.
  1.1891 +     * For example, to emulate an {@code invokeExact} call to a variable method
  1.1892 +     * handle {@code M}, extract its type {@code T},
  1.1893 +     * look up the invoker method {@code X} for {@code T},
  1.1894 +     * and call the invoker method, as {@code X.invoke(T, A...)}.
  1.1895 +     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
  1.1896 +     * is unknown.)
  1.1897 +     * If spreading, collecting, or other argument transformations are required,
  1.1898 +     * they can be applied once to the invoker {@code X} and reused on many {@code M}
  1.1899 +     * method handle values, as long as they are compatible with the type of {@code X}.
  1.1900 +     * <p style="font-size:smaller;">
  1.1901 +     * <em>(Note:  The invoker method is not available via the Core Reflection API.
  1.1902 +     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
  1.1903 +     * on the declared {@code invokeExact} or {@code invoke} method will raise an
  1.1904 +     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
  1.1905 +     * <p>
  1.1906 +     * This method throws no reflective or security exceptions.
  1.1907 +     * @param type the desired target type
  1.1908 +     * @return a method handle suitable for invoking any method handle of the given type
  1.1909 +     * @throws IllegalArgumentException if the resulting method handle's type would have
  1.1910 +     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  1.1911 +     */
  1.1912 +    static public
  1.1913 +    MethodHandle exactInvoker(MethodType type) {
  1.1914 +        return type.invokers().exactInvoker();
  1.1915 +    }
  1.1916 +
  1.1917 +    /**
  1.1918 +     * Produces a special <em>invoker method handle</em> which can be used to
  1.1919 +     * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
  1.1920 +     * The resulting invoker will have a type which is
  1.1921 +     * exactly equal to the desired type, except that it will accept
  1.1922 +     * an additional leading argument of type {@code MethodHandle}.
  1.1923 +     * <p>
  1.1924 +     * Before invoking its target, if the target differs from the expected type,
  1.1925 +     * the invoker will apply reference casts as
  1.1926 +     * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
  1.1927 +     * Similarly, the return value will be converted as necessary.
  1.1928 +     * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
  1.1929 +     * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
  1.1930 +     * <p>
  1.1931 +     * This method is equivalent to the following code (though it may be more efficient):
  1.1932 +     * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
  1.1933 +     * <p style="font-size:smaller;">
  1.1934 +     * <em>Discussion:</em>
  1.1935 +     * A {@linkplain MethodType#genericMethodType general method type} is one which
  1.1936 +     * mentions only {@code Object} arguments and return values.
  1.1937 +     * An invoker for such a type is capable of calling any method handle
  1.1938 +     * of the same arity as the general type.
  1.1939 +     * <p style="font-size:smaller;">
  1.1940 +     * <em>(Note:  The invoker method is not available via the Core Reflection API.
  1.1941 +     * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
  1.1942 +     * on the declared {@code invokeExact} or {@code invoke} method will raise an
  1.1943 +     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
  1.1944 +     * <p>
  1.1945 +     * This method throws no reflective or security exceptions.
  1.1946 +     * @param type the desired target type
  1.1947 +     * @return a method handle suitable for invoking any method handle convertible to the given type
  1.1948 +     * @throws IllegalArgumentException if the resulting method handle's type would have
  1.1949 +     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  1.1950 +     */
  1.1951 +    static public
  1.1952 +    MethodHandle invoker(MethodType type) {
  1.1953 +        return type.invokers().generalInvoker();
  1.1954 +    }
  1.1955 +
  1.1956 +    static /*non-public*/
  1.1957 +    MethodHandle basicInvoker(MethodType type) {
  1.1958 +        return type.form().basicInvoker();
  1.1959 +    }
  1.1960 +
  1.1961 +     /// method handle modification (creation from other method handles)
  1.1962 +
  1.1963 +    /**
  1.1964 +     * Produces a method handle which adapts the type of the
  1.1965 +     * given method handle to a new type by pairwise argument and return type conversion.
  1.1966 +     * The original type and new type must have the same number of arguments.
  1.1967 +     * The resulting method handle is guaranteed to report a type
  1.1968 +     * which is equal to the desired new type.
  1.1969 +     * <p>
  1.1970 +     * If the original type and new type are equal, returns target.
  1.1971 +     * <p>
  1.1972 +     * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
  1.1973 +     * and some additional conversions are also applied if those conversions fail.
  1.1974 +     * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
  1.1975 +     * if possible, before or instead of any conversions done by {@code asType}:
  1.1976 +     * <ul>
  1.1977 +     * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
  1.1978 +     *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
  1.1979 +     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
  1.1980 +     * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
  1.1981 +     *     the boolean is converted to a byte value, 1 for true, 0 for false.
  1.1982 +     *     (This treatment follows the usage of the bytecode verifier.)
  1.1983 +     * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
  1.1984 +     *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
  1.1985 +     *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
  1.1986 +     * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
  1.1987 +     *     then a Java casting conversion (JLS 5.5) is applied.
  1.1988 +     *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
  1.1989 +     *     widening and/or narrowing.)
  1.1990 +     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
  1.1991 +     *     conversion will be applied at runtime, possibly followed
  1.1992 +     *     by a Java casting conversion (JLS 5.5) on the primitive value,
  1.1993 +     *     possibly followed by a conversion from byte to boolean by testing
  1.1994 +     *     the low-order bit.
  1.1995 +     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
  1.1996 +     *     and if the reference is null at runtime, a zero value is introduced.
  1.1997 +     * </ul>
  1.1998 +     * @param target the method handle to invoke after arguments are retyped
  1.1999 +     * @param newType the expected type of the new method handle
  1.2000 +     * @return a method handle which delegates to the target after performing
  1.2001 +     *           any necessary argument conversions, and arranges for any
  1.2002 +     *           necessary return value conversions
  1.2003 +     * @throws NullPointerException if either argument is null
  1.2004 +     * @throws WrongMethodTypeException if the conversion cannot be made
  1.2005 +     * @see MethodHandle#asType
  1.2006 +     */
  1.2007 +    public static
  1.2008 +    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
  1.2009 +        if (!target.type().isCastableTo(newType)) {
  1.2010 +            throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
  1.2011 +        }
  1.2012 +        return MethodHandleImpl.makePairwiseConvert(target, newType, 2);
  1.2013 +    }
  1.2014 +
  1.2015 +    /**
  1.2016 +     * Produces a method handle which adapts the calling sequence of the
  1.2017 +     * given method handle to a new type, by reordering the arguments.
  1.2018 +     * The resulting method handle is guaranteed to report a type
  1.2019 +     * which is equal to the desired new type.
  1.2020 +     * <p>
  1.2021 +     * The given array controls the reordering.
  1.2022 +     * Call {@code #I} the number of incoming parameters (the value
  1.2023 +     * {@code newType.parameterCount()}, and call {@code #O} the number
  1.2024 +     * of outgoing parameters (the value {@code target.type().parameterCount()}).
  1.2025 +     * Then the length of the reordering array must be {@code #O},
  1.2026 +     * and each element must be a non-negative number less than {@code #I}.
  1.2027 +     * For every {@code N} less than {@code #O}, the {@code N}-th
  1.2028 +     * outgoing argument will be taken from the {@code I}-th incoming
  1.2029 +     * argument, where {@code I} is {@code reorder[N]}.
  1.2030 +     * <p>
  1.2031 +     * No argument or return value conversions are applied.
  1.2032 +     * The type of each incoming argument, as determined by {@code newType},
  1.2033 +     * must be identical to the type of the corresponding outgoing parameter
  1.2034 +     * or parameters in the target method handle.
  1.2035 +     * The return type of {@code newType} must be identical to the return
  1.2036 +     * type of the original target.
  1.2037 +     * <p>
  1.2038 +     * The reordering array need not specify an actual permutation.
  1.2039 +     * An incoming argument will be duplicated if its index appears
  1.2040 +     * more than once in the array, and an incoming argument will be dropped
  1.2041 +     * if its index does not appear in the array.
  1.2042 +     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
  1.2043 +     * incoming arguments which are not mentioned in the reordering array
  1.2044 +     * are may be any type, as determined only by {@code newType}.
  1.2045 +     * <blockquote><pre>{@code
  1.2046 +import static java.lang.invoke.MethodHandles.*;
  1.2047 +import static java.lang.invoke.MethodType.*;
  1.2048 +...
  1.2049 +MethodType intfn1 = methodType(int.class, int.class);
  1.2050 +MethodType intfn2 = methodType(int.class, int.class, int.class);
  1.2051 +MethodHandle sub = ... (int x, int y) -> (x-y) ...;
  1.2052 +assert(sub.type().equals(intfn2));
  1.2053 +MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
  1.2054 +MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
  1.2055 +assert((int)rsub.invokeExact(1, 100) == 99);
  1.2056 +MethodHandle add = ... (int x, int y) -> (x+y) ...;
  1.2057 +assert(add.type().equals(intfn2));
  1.2058 +MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
  1.2059 +assert(twice.type().equals(intfn1));
  1.2060 +assert((int)twice.invokeExact(21) == 42);
  1.2061 +     * }</pre></blockquote>
  1.2062 +     * @param target the method handle to invoke after arguments are reordered
  1.2063 +     * @param newType the expected type of the new method handle
  1.2064 +     * @param reorder an index array which controls the reordering
  1.2065 +     * @return a method handle which delegates to the target after it
  1.2066 +     *           drops unused arguments and moves and/or duplicates the other arguments
  1.2067 +     * @throws NullPointerException if any argument is null
  1.2068 +     * @throws IllegalArgumentException if the index array length is not equal to
  1.2069 +     *                  the arity of the target, or if any index array element
  1.2070 +     *                  not a valid index for a parameter of {@code newType},
  1.2071 +     *                  or if two corresponding parameter types in
  1.2072 +     *                  {@code target.type()} and {@code newType} are not identical,
  1.2073 +     */
  1.2074 +    public static
  1.2075 +    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
  1.2076 +        checkReorder(reorder, newType, target.type());
  1.2077 +        return target.permuteArguments(newType, reorder);
  1.2078 +    }
  1.2079 +
  1.2080 +    private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
  1.2081 +        if (newType.returnType() != oldType.returnType())
  1.2082 +            throw newIllegalArgumentException("return types do not match",
  1.2083 +                    oldType, newType);
  1.2084 +        if (reorder.length == oldType.parameterCount()) {
  1.2085 +            int limit = newType.parameterCount();
  1.2086 +            boolean bad = false;
  1.2087 +            for (int j = 0; j < reorder.length; j++) {
  1.2088 +                int i = reorder[j];
  1.2089 +                if (i < 0 || i >= limit) {
  1.2090 +                    bad = true; break;
  1.2091 +                }
  1.2092 +                Class<?> src = newType.parameterType(i);
  1.2093 +                Class<?> dst = oldType.parameterType(j);
  1.2094 +                if (src != dst)
  1.2095 +                    throw newIllegalArgumentException("parameter types do not match after reorder",
  1.2096 +                            oldType, newType);
  1.2097 +            }
  1.2098 +            if (!bad)  return;
  1.2099 +        }
  1.2100 +        throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
  1.2101 +    }
  1.2102 +
  1.2103 +    /**
  1.2104 +     * Produces a method handle of the requested return type which returns the given
  1.2105 +     * constant value every time it is invoked.
  1.2106 +     * <p>
  1.2107 +     * Before the method handle is returned, the passed-in value is converted to the requested type.
  1.2108 +     * If the requested type is primitive, widening primitive conversions are attempted,
  1.2109 +     * else reference conversions are attempted.
  1.2110 +     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
  1.2111 +     * @param type the return type of the desired method handle
  1.2112 +     * @param value the value to return
  1.2113 +     * @return a method handle of the given return type and no arguments, which always returns the given value
  1.2114 +     * @throws NullPointerException if the {@code type} argument is null
  1.2115 +     * @throws ClassCastException if the value cannot be converted to the required return type
  1.2116 +     * @throws IllegalArgumentException if the given type is {@code void.class}
  1.2117 +     */
  1.2118 +    public static
  1.2119 +    MethodHandle constant(Class<?> type, Object value) {
  1.2120 +        if (type.isPrimitive()) {
  1.2121 +            if (type == void.class)
  1.2122 +                throw newIllegalArgumentException("void type");
  1.2123 +            Wrapper w = Wrapper.forPrimitiveType(type);
  1.2124 +            return insertArguments(identity(type), 0, w.convert(value, type));
  1.2125 +        } else {
  1.2126 +            return identity(type).bindTo(type.cast(value));
  1.2127 +        }
  1.2128 +    }
  1.2129 +
  1.2130 +    /**
  1.2131 +     * Produces a method handle which returns its sole argument when invoked.
  1.2132 +     * @param type the type of the sole parameter and return value of the desired method handle
  1.2133 +     * @return a unary method handle which accepts and returns the given type
  1.2134 +     * @throws NullPointerException if the argument is null
  1.2135 +     * @throws IllegalArgumentException if the given type is {@code void.class}
  1.2136 +     */
  1.2137 +    public static
  1.2138 +    MethodHandle identity(Class<?> type) {
  1.2139 +        if (type == void.class)
  1.2140 +            throw newIllegalArgumentException("void type");
  1.2141 +        else if (type == Object.class)
  1.2142 +            return ValueConversions.identity();
  1.2143 +        else if (type.isPrimitive())
  1.2144 +            return ValueConversions.identity(Wrapper.forPrimitiveType(type));
  1.2145 +        else
  1.2146 +            return MethodHandleImpl.makeReferenceIdentity(type);
  1.2147 +    }
  1.2148 +
  1.2149 +    /**
  1.2150 +     * Provides a target method handle with one or more <em>bound arguments</em>
  1.2151 +     * in advance of the method handle's invocation.
  1.2152 +     * The formal parameters to the target corresponding to the bound
  1.2153 +     * arguments are called <em>bound parameters</em>.
  1.2154 +     * Returns a new method handle which saves away the bound arguments.
  1.2155 +     * When it is invoked, it receives arguments for any non-bound parameters,
  1.2156 +     * binds the saved arguments to their corresponding parameters,
  1.2157 +     * and calls the original target.
  1.2158 +     * <p>
  1.2159 +     * The type of the new method handle will drop the types for the bound
  1.2160 +     * parameters from the original target type, since the new method handle
  1.2161 +     * will no longer require those arguments to be supplied by its callers.
  1.2162 +     * <p>
  1.2163 +     * Each given argument object must match the corresponding bound parameter type.
  1.2164 +     * If a bound parameter type is a primitive, the argument object
  1.2165 +     * must be a wrapper, and will be unboxed to produce the primitive value.
  1.2166 +     * <p>
  1.2167 +     * The {@code pos} argument selects which parameters are to be bound.
  1.2168 +     * It may range between zero and <i>N-L</i> (inclusively),
  1.2169 +     * where <i>N</i> is the arity of the target method handle
  1.2170 +     * and <i>L</i> is the length of the values array.
  1.2171 +     * @param target the method handle to invoke after the argument is inserted
  1.2172 +     * @param pos where to insert the argument (zero for the first)
  1.2173 +     * @param values the series of arguments to insert
  1.2174 +     * @return a method handle which inserts an additional argument,
  1.2175 +     *         before calling the original method handle
  1.2176 +     * @throws NullPointerException if the target or the {@code values} array is null
  1.2177 +     * @see MethodHandle#bindTo
  1.2178 +     */
  1.2179 +    public static
  1.2180 +    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
  1.2181 +        int insCount = values.length;
  1.2182 +        MethodType oldType = target.type();
  1.2183 +        int outargs = oldType.parameterCount();
  1.2184 +        int inargs  = outargs - insCount;
  1.2185 +        if (inargs < 0)
  1.2186 +            throw newIllegalArgumentException("too many values to insert");
  1.2187 +        if (pos < 0 || pos > inargs)
  1.2188 +            throw newIllegalArgumentException("no argument type to append");
  1.2189 +        MethodHandle result = target;
  1.2190 +        for (int i = 0; i < insCount; i++) {
  1.2191 +            Object value = values[i];
  1.2192 +            Class<?> ptype = oldType.parameterType(pos+i);
  1.2193 +            if (ptype.isPrimitive()) {
  1.2194 +                char btype = 'I';
  1.2195 +                Wrapper w = Wrapper.forPrimitiveType(ptype);
  1.2196 +                switch (w) {
  1.2197 +                case LONG:    btype = 'J'; break;
  1.2198 +                case FLOAT:   btype = 'F'; break;
  1.2199 +                case DOUBLE:  btype = 'D'; break;
  1.2200 +                }
  1.2201 +                // perform unboxing and/or primitive conversion
  1.2202 +                value = w.convert(value, ptype);
  1.2203 +                result = result.bindArgument(pos, btype, value);
  1.2204 +                continue;
  1.2205 +            }
  1.2206 +            value = ptype.cast(value);  // throw CCE if needed
  1.2207 +            if (pos == 0) {
  1.2208 +                result = result.bindReceiver(value);
  1.2209 +            } else {
  1.2210 +                result = result.bindArgument(pos, 'L', value);
  1.2211 +            }
  1.2212 +        }
  1.2213 +        return result;
  1.2214 +    }
  1.2215 +
  1.2216 +    /**
  1.2217 +     * Produces a method handle which will discard some dummy arguments
  1.2218 +     * before calling some other specified <i>target</i> method handle.
  1.2219 +     * The type of the new method handle will be the same as the target's type,
  1.2220 +     * except it will also include the dummy argument types,
  1.2221 +     * at some given position.
  1.2222 +     * <p>
  1.2223 +     * The {@code pos} argument may range between zero and <i>N</i>,
  1.2224 +     * where <i>N</i> is the arity of the target.
  1.2225 +     * If {@code pos} is zero, the dummy arguments will precede
  1.2226 +     * the target's real arguments; if {@code pos} is <i>N</i>
  1.2227 +     * they will come after.
  1.2228 +     * <p>
  1.2229 +     * <b>Example:</b>
  1.2230 +     * <blockquote><pre>{@code
  1.2231 +import static java.lang.invoke.MethodHandles.*;
  1.2232 +import static java.lang.invoke.MethodType.*;
  1.2233 +...
  1.2234 +MethodHandle cat = lookup().findVirtual(String.class,
  1.2235 +  "concat", methodType(String.class, String.class));
  1.2236 +assertEquals("xy", (String) cat.invokeExact("x", "y"));
  1.2237 +MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
  1.2238 +MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
  1.2239 +assertEquals(bigType, d0.type());
  1.2240 +assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
  1.2241 +     * }</pre></blockquote>
  1.2242 +     * <p>
  1.2243 +     * This method is also equivalent to the following code:
  1.2244 +     * <blockquote><pre>
  1.2245 +     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
  1.2246 +     * </pre></blockquote>
  1.2247 +     * @param target the method handle to invoke after the arguments are dropped
  1.2248 +     * @param valueTypes the type(s) of the argument(s) to drop
  1.2249 +     * @param pos position of first argument to drop (zero for the leftmost)
  1.2250 +     * @return a method handle which drops arguments of the given types,
  1.2251 +     *         before calling the original method handle
  1.2252 +     * @throws NullPointerException if the target is null,
  1.2253 +     *                              or if the {@code valueTypes} list or any of its elements is null
  1.2254 +     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
  1.2255 +     *                  or if {@code pos} is negative or greater than the arity of the target,
  1.2256 +     *                  or if the new method handle's type would have too many parameters
  1.2257 +     */
  1.2258 +    public static
  1.2259 +    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
  1.2260 +        MethodType oldType = target.type();  // get NPE
  1.2261 +        int dropped = valueTypes.size();
  1.2262 +        MethodType.checkSlotCount(dropped);
  1.2263 +        if (dropped == 0)  return target;
  1.2264 +        int outargs = oldType.parameterCount();
  1.2265 +        int inargs  = outargs + dropped;
  1.2266 +        if (pos < 0 || pos >= inargs)
  1.2267 +            throw newIllegalArgumentException("no argument type to remove");
  1.2268 +        ArrayList<Class<?>> ptypes = new ArrayList<>(oldType.parameterList());
  1.2269 +        ptypes.addAll(pos, valueTypes);
  1.2270 +        MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
  1.2271 +        return target.dropArguments(newType, pos, dropped);
  1.2272 +    }
  1.2273 +
  1.2274 +    /**
  1.2275 +     * Produces a method handle which will discard some dummy arguments
  1.2276 +     * before calling some other specified <i>target</i> method handle.
  1.2277 +     * The type of the new method handle will be the same as the target's type,
  1.2278 +     * except it will also include the dummy argument types,
  1.2279 +     * at some given position.
  1.2280 +     * <p>
  1.2281 +     * The {@code pos} argument may range between zero and <i>N</i>,
  1.2282 +     * where <i>N</i> is the arity of the target.
  1.2283 +     * If {@code pos} is zero, the dummy arguments will precede
  1.2284 +     * the target's real arguments; if {@code pos} is <i>N</i>
  1.2285 +     * they will come after.
  1.2286 +     * <p>
  1.2287 +     * <b>Example:</b>
  1.2288 +     * <blockquote><pre>{@code
  1.2289 +import static java.lang.invoke.MethodHandles.*;
  1.2290 +import static java.lang.invoke.MethodType.*;
  1.2291 +...
  1.2292 +MethodHandle cat = lookup().findVirtual(String.class,
  1.2293 +  "concat", methodType(String.class, String.class));
  1.2294 +assertEquals("xy", (String) cat.invokeExact("x", "y"));
  1.2295 +MethodHandle d0 = dropArguments(cat, 0, String.class);
  1.2296 +assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
  1.2297 +MethodHandle d1 = dropArguments(cat, 1, String.class);
  1.2298 +assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
  1.2299 +MethodHandle d2 = dropArguments(cat, 2, String.class);
  1.2300 +assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
  1.2301 +MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
  1.2302 +assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
  1.2303 +     * }</pre></blockquote>
  1.2304 +     * <p>
  1.2305 +     * This method is also equivalent to the following code:
  1.2306 +     * <blockquote><pre>
  1.2307 +     * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
  1.2308 +     * </pre></blockquote>
  1.2309 +     * @param target the method handle to invoke after the arguments are dropped
  1.2310 +     * @param valueTypes the type(s) of the argument(s) to drop
  1.2311 +     * @param pos position of first argument to drop (zero for the leftmost)
  1.2312 +     * @return a method handle which drops arguments of the given types,
  1.2313 +     *         before calling the original method handle
  1.2314 +     * @throws NullPointerException if the target is null,
  1.2315 +     *                              or if the {@code valueTypes} array or any of its elements is null
  1.2316 +     * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
  1.2317 +     *                  or if {@code pos} is negative or greater than the arity of the target,
  1.2318 +     *                  or if the new method handle's type would have
  1.2319 +     *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
  1.2320 +     */
  1.2321 +    public static
  1.2322 +    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
  1.2323 +        return dropArguments(target, pos, Arrays.asList(valueTypes));
  1.2324 +    }
  1.2325 +
  1.2326 +    /**
  1.2327 +     * Adapts a target method handle by pre-processing
  1.2328 +     * one or more of its arguments, each with its own unary filter function,
  1.2329 +     * and then calling the target with each pre-processed argument
  1.2330 +     * replaced by the result of its corresponding filter function.
  1.2331 +     * <p>
  1.2332 +     * The pre-processing is performed by one or more method handles,
  1.2333 +     * specified in the elements of the {@code filters} array.
  1.2334 +     * The first element of the filter array corresponds to the {@code pos}
  1.2335 +     * argument of the target, and so on in sequence.
  1.2336 +     * <p>
  1.2337 +     * Null arguments in the array are treated as identity functions,
  1.2338 +     * and the corresponding arguments left unchanged.
  1.2339 +     * (If there are no non-null elements in the array, the original target is returned.)
  1.2340 +     * Each filter is applied to the corresponding argument of the adapter.
  1.2341 +     * <p>
  1.2342 +     * If a filter {@code F} applies to the {@code N}th argument of
  1.2343 +     * the target, then {@code F} must be a method handle which
  1.2344 +     * takes exactly one argument.  The type of {@code F}'s sole argument
  1.2345 +     * replaces the corresponding argument type of the target
  1.2346 +     * in the resulting adapted method handle.
  1.2347 +     * The return type of {@code F} must be identical to the corresponding
  1.2348 +     * parameter type of the target.
  1.2349 +     * <p>
  1.2350 +     * It is an error if there are elements of {@code filters}
  1.2351 +     * (null or not)
  1.2352 +     * which do not correspond to argument positions in the target.
  1.2353 +     * <p><b>Example:</b>
  1.2354 +     * <blockquote><pre>{@code
  1.2355 +import static java.lang.invoke.MethodHandles.*;
  1.2356 +import static java.lang.invoke.MethodType.*;
  1.2357 +...
  1.2358 +MethodHandle cat = lookup().findVirtual(String.class,
  1.2359 +  "concat", methodType(String.class, String.class));
  1.2360 +MethodHandle upcase = lookup().findVirtual(String.class,
  1.2361 +  "toUpperCase", methodType(String.class));
  1.2362 +assertEquals("xy", (String) cat.invokeExact("x", "y"));
  1.2363 +MethodHandle f0 = filterArguments(cat, 0, upcase);
  1.2364 +assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
  1.2365 +MethodHandle f1 = filterArguments(cat, 1, upcase);
  1.2366 +assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
  1.2367 +MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
  1.2368 +assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
  1.2369 +     * }</pre></blockquote>
  1.2370 +     * <p> Here is pseudocode for the resulting adapter:
  1.2371 +     * <blockquote><pre>{@code
  1.2372 +     * V target(P... p, A[i]... a[i], B... b);
  1.2373 +     * A[i] filter[i](V[i]);
  1.2374 +     * T adapter(P... p, V[i]... v[i], B... b) {
  1.2375 +     *   return target(p..., f[i](v[i])..., b...);
  1.2376 +     * }
  1.2377 +     * }</pre></blockquote>
  1.2378 +     *
  1.2379 +     * @param target the method handle to invoke after arguments are filtered
  1.2380 +     * @param pos the position of the first argument to filter
  1.2381 +     * @param filters method handles to call initially on filtered arguments
  1.2382 +     * @return method handle which incorporates the specified argument filtering logic
  1.2383 +     * @throws NullPointerException if the target is null
  1.2384 +     *                              or if the {@code filters} array is null
  1.2385 +     * @throws IllegalArgumentException if a non-null element of {@code filters}
  1.2386 +     *          does not match a corresponding argument type of target as described above,
  1.2387 +     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
  1.2388 +     *          or if the resulting method handle's type would have
  1.2389 +     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  1.2390 +     */
  1.2391 +    public static
  1.2392 +    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
  1.2393 +        MethodType targetType = target.type();
  1.2394 +        MethodHandle adapter = target;
  1.2395 +        MethodType adapterType = null;
  1.2396 +        assert((adapterType = targetType) != null);
  1.2397 +        int maxPos = targetType.parameterCount();
  1.2398 +        if (pos + filters.length > maxPos)
  1.2399 +            throw newIllegalArgumentException("too many filters");
  1.2400 +        int curPos = pos-1;  // pre-incremented
  1.2401 +        for (MethodHandle filter : filters) {
  1.2402 +            curPos += 1;
  1.2403 +            if (filter == null)  continue;  // ignore null elements of filters
  1.2404 +            adapter = filterArgument(adapter, curPos, filter);
  1.2405 +            assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
  1.2406 +        }
  1.2407 +        assert(adapterType.equals(adapter.type()));
  1.2408 +        return adapter;
  1.2409 +    }
  1.2410 +
  1.2411 +    /*non-public*/ static
  1.2412 +    MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
  1.2413 +        MethodType targetType = target.type();
  1.2414 +        MethodType filterType = filter.type();
  1.2415 +        if (filterType.parameterCount() != 1
  1.2416 +            || filterType.returnType() != targetType.parameterType(pos))
  1.2417 +            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
  1.2418 +        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
  1.2419 +    }
  1.2420 +
  1.2421 +    /**
  1.2422 +     * Adapts a target method handle by pre-processing
  1.2423 +     * a sub-sequence of its arguments with a filter (another method handle).
  1.2424 +     * The pre-processed arguments are replaced by the result (if any) of the
  1.2425 +     * filter function.
  1.2426 +     * The target is then called on the modified (usually shortened) argument list.
  1.2427 +     * <p>
  1.2428 +     * If the filter returns a value, the target must accept that value as
  1.2429 +     * its argument in position {@code pos}, preceded and/or followed by
  1.2430 +     * any arguments not passed to the filter.
  1.2431 +     * If the filter returns void, the target must accept all arguments
  1.2432 +     * not passed to the filter.
  1.2433 +     * No arguments are reordered, and a result returned from the filter
  1.2434 +     * replaces (in order) the whole subsequence of arguments originally
  1.2435 +     * passed to the adapter.
  1.2436 +     * <p>
  1.2437 +     * The argument types (if any) of the filter
  1.2438 +     * replace zero or one argument types of the target, at position {@code pos},
  1.2439 +     * in the resulting adapted method handle.
  1.2440 +     * The return type of the filter (if any) must be identical to the
  1.2441 +     * argument type of the target at position {@code pos}, and that target argument
  1.2442 +     * is supplied by the return value of the filter.
  1.2443 +     * <p>
  1.2444 +     * In all cases, {@code pos} must be greater than or equal to zero, and
  1.2445 +     * {@code pos} must also be less than or equal to the target's arity.
  1.2446 +     * <p><b>Example:</b>
  1.2447 +     * <blockquote><pre>{@code
  1.2448 +import static java.lang.invoke.MethodHandles.*;
  1.2449 +import static java.lang.invoke.MethodType.*;
  1.2450 +...
  1.2451 +MethodHandle deepToString = publicLookup()
  1.2452 +  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
  1.2453 +
  1.2454 +MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
  1.2455 +assertEquals("[strange]", (String) ts1.invokeExact("strange"));
  1.2456 +
  1.2457 +MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
  1.2458 +assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
  1.2459 +
  1.2460 +MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
  1.2461 +MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
  1.2462 +assertEquals("[top, [up, down], strange]",
  1.2463 +             (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
  1.2464 +
  1.2465 +MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
  1.2466 +assertEquals("[top, [up, down], [strange]]",
  1.2467 +             (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
  1.2468 +
  1.2469 +MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
  1.2470 +assertEquals("[top, [[up, down, strange], charm], bottom]",
  1.2471 +             (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
  1.2472 +     * }</pre></blockquote>
  1.2473 +     * <p> Here is pseudocode for the resulting adapter:
  1.2474 +     * <blockquote><pre>{@code
  1.2475 +     * T target(A...,V,C...);
  1.2476 +     * V filter(B...);
  1.2477 +     * T adapter(A... a,B... b,C... c) {
  1.2478 +     *   V v = filter(b...);
  1.2479 +     *   return target(a...,v,c...);
  1.2480 +     * }
  1.2481 +     * // and if the filter has no arguments:
  1.2482 +     * T target2(A...,V,C...);
  1.2483 +     * V filter2();
  1.2484 +     * T adapter2(A... a,C... c) {
  1.2485 +     *   V v = filter2();
  1.2486 +     *   return target2(a...,v,c...);
  1.2487 +     * }
  1.2488 +     * // and if the filter has a void return:
  1.2489 +     * T target3(A...,C...);
  1.2490 +     * void filter3(B...);
  1.2491 +     * void adapter3(A... a,B... b,C... c) {
  1.2492 +     *   filter3(b...);
  1.2493 +     *   return target3(a...,c...);
  1.2494 +     * }
  1.2495 +     * }</pre></blockquote>
  1.2496 +     * <p>
  1.2497 +     * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
  1.2498 +     * one which first "folds" the affected arguments, and then drops them, in separate
  1.2499 +     * steps as follows:
  1.2500 +     * <blockquote><pre>{@code
  1.2501 +     * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
  1.2502 +     * mh = MethodHandles.foldArguments(mh, coll); //step 1
  1.2503 +     * }</pre></blockquote>
  1.2504 +     * If the target method handle consumes no arguments besides than the result
  1.2505 +     * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
  1.2506 +     * is equivalent to {@code filterReturnValue(coll, mh)}.
  1.2507 +     * If the filter method handle {@code coll} consumes one argument and produces
  1.2508 +     * a non-void result, then {@code collectArguments(mh, N, coll)}
  1.2509 +     * is equivalent to {@code filterArguments(mh, N, coll)}.
  1.2510 +     * Other equivalences are possible but would require argument permutation.
  1.2511 +     *
  1.2512 +     * @param target the method handle to invoke after filtering the subsequence of arguments
  1.2513 +     * @param pos the position of the first adapter argument to pass to the filter,
  1.2514 +     *            and/or the target argument which receives the result of the filter
  1.2515 +     * @param filter method handle to call on the subsequence of arguments
  1.2516 +     * @return method handle which incorporates the specified argument subsequence filtering logic
  1.2517 +     * @throws NullPointerException if either argument is null
  1.2518 +     * @throws IllegalArgumentException if the return type of {@code filter}
  1.2519 +     *          is non-void and is not the same as the {@code pos} argument of the target,
  1.2520 +     *          or if {@code pos} is not between 0 and the target's arity, inclusive,
  1.2521 +     *          or if the resulting method handle's type would have
  1.2522 +     *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  1.2523 +     * @see MethodHandles#foldArguments
  1.2524 +     * @see MethodHandles#filterArguments
  1.2525 +     * @see MethodHandles#filterReturnValue
  1.2526 +     */
  1.2527 +    public static
  1.2528 +    MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
  1.2529 +        MethodType targetType = target.type();
  1.2530 +        MethodType filterType = filter.type();
  1.2531 +        if (filterType.returnType() != void.class &&
  1.2532 +            filterType.returnType() != targetType.parameterType(pos))
  1.2533 +            throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
  1.2534 +        return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
  1.2535 +    }
  1.2536 +
  1.2537 +    /**
  1.2538 +     * Adapts a target method handle by post-processing
  1.2539 +     * its return value (if any) with a filter (another method handle).
  1.2540 +     * The result of the filter is returned from the adapter.
  1.2541 +     * <p>
  1.2542 +     * If the target returns a value, the filter must accept that value as
  1.2543 +     * its only argument.
  1.2544 +     * If the target returns void, the filter must accept no arguments.
  1.2545 +     * <p>
  1.2546 +     * The return type of the filter
  1.2547 +     * replaces the return type of the target
  1.2548 +     * in the resulting adapted method handle.
  1.2549 +     * The argument type of the filter (if any) must be identical to the
  1.2550 +     * return type of the target.
  1.2551 +     * <p><b>Example:</b>
  1.2552 +     * <blockquote><pre>{@code
  1.2553 +import static java.lang.invoke.MethodHandles.*;
  1.2554 +import static java.lang.invoke.MethodType.*;
  1.2555 +...
  1.2556 +MethodHandle cat = lookup().findVirtual(String.class,
  1.2557 +  "concat", methodType(String.class, String.class));
  1.2558 +MethodHandle length = lookup().findVirtual(String.class,
  1.2559 +  "length", methodType(int.class));
  1.2560 +System.out.println((String) cat.invokeExact("x", "y")); // xy
  1.2561 +MethodHandle f0 = filterReturnValue(cat, length);
  1.2562 +System.out.println((int) f0.invokeExact("x", "y")); // 2
  1.2563 +     * }</pre></blockquote>
  1.2564 +     * <p> Here is pseudocode for the resulting adapter:
  1.2565 +     * <blockquote><pre>{@code
  1.2566 +     * V target(A...);
  1.2567 +     * T filter(V);
  1.2568 +     * T adapter(A... a) {
  1.2569 +     *   V v = target(a...);
  1.2570 +     *   return filter(v);
  1.2571 +     * }
  1.2572 +     * // and if the target has a void return:
  1.2573 +     * void target2(A...);
  1.2574 +     * T filter2();
  1.2575 +     * T adapter2(A... a) {
  1.2576 +     *   target2(a...);
  1.2577 +     *   return filter2();
  1.2578 +     * }
  1.2579 +     * // and if the filter has a void return:
  1.2580 +     * V target3(A...);
  1.2581 +     * void filter3(V);
  1.2582 +     * void adapter3(A... a) {
  1.2583 +     *   V v = target3(a...);
  1.2584 +     *   filter3(v);
  1.2585 +     * }
  1.2586 +     * }</pre></blockquote>
  1.2587 +     * @param target the method handle to invoke before filtering the return value
  1.2588 +     * @param filter method handle to call on the return value
  1.2589 +     * @return method handle which incorporates the specified return value filtering logic
  1.2590 +     * @throws NullPointerException if either argument is null
  1.2591 +     * @throws IllegalArgumentException if the argument list of {@code filter}
  1.2592 +     *          does not match the return type of target as described above
  1.2593 +     */
  1.2594 +    public static
  1.2595 +    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
  1.2596 +        MethodType targetType = target.type();
  1.2597 +        MethodType filterType = filter.type();
  1.2598 +        Class<?> rtype = targetType.returnType();
  1.2599 +        int filterValues = filterType.parameterCount();
  1.2600 +        if (filterValues == 0
  1.2601 +                ? (rtype != void.class)
  1.2602 +                : (rtype != filterType.parameterType(0)))
  1.2603 +            throw newIllegalArgumentException("target and filter types do not match", target, filter);
  1.2604 +        // result = fold( lambda(retval, arg...) { filter(retval) },
  1.2605 +        //                lambda(        arg...) { target(arg...) } )
  1.2606 +        return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
  1.2607 +    }
  1.2608 +
  1.2609 +    /**
  1.2610 +     * Adapts a target method handle by pre-processing
  1.2611 +     * some of its arguments, and then calling the target with
  1.2612 +     * the result of the pre-processing, inserted into the original
  1.2613 +     * sequence of arguments.
  1.2614 +     * <p>
  1.2615 +     * The pre-processing is performed by {@code combiner}, a second method handle.
  1.2616 +     * Of the arguments passed to the adapter, the first {@code N} arguments
  1.2617 +     * are copied to the combiner, which is then called.
  1.2618 +     * (Here, {@code N} is defined as the parameter count of the combiner.)
  1.2619 +     * After this, control passes to the target, with any result
  1.2620 +     * from the combiner inserted before the original {@code N} incoming
  1.2621 +     * arguments.
  1.2622 +     * <p>
  1.2623 +     * If the combiner returns a value, the first parameter type of the target
  1.2624 +     * must be identical with the return type of the combiner, and the next
  1.2625 +     * {@code N} parameter types of the target must exactly match the parameters
  1.2626 +     * of the combiner.
  1.2627 +     * <p>
  1.2628 +     * If the combiner has a void return, no result will be inserted,
  1.2629 +     * and the first {@code N} parameter types of the target
  1.2630 +     * must exactly match the parameters of the combiner.
  1.2631 +     * <p>
  1.2632 +     * The resulting adapter is the same type as the target, except that the
  1.2633 +     * first parameter type is dropped,
  1.2634 +     * if it corresponds to the result of the combiner.
  1.2635 +     * <p>
  1.2636 +     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
  1.2637 +     * that either the combiner or the target does not wish to receive.
  1.2638 +     * If some of the incoming arguments are destined only for the combiner,
  1.2639 +     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
  1.2640 +     * arguments will not need to be live on the stack on entry to the
  1.2641 +     * target.)
  1.2642 +     * <p><b>Example:</b>
  1.2643 +     * <blockquote><pre>{@code
  1.2644 +import static java.lang.invoke.MethodHandles.*;
  1.2645 +import static java.lang.invoke.MethodType.*;
  1.2646 +...
  1.2647 +MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
  1.2648 +  "println", methodType(void.class, String.class))
  1.2649 +    .bindTo(System.out);
  1.2650 +MethodHandle cat = lookup().findVirtual(String.class,
  1.2651 +  "concat", methodType(String.class, String.class));
  1.2652 +assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
  1.2653 +MethodHandle catTrace = foldArguments(cat, trace);
  1.2654 +// also prints "boo":
  1.2655 +assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
  1.2656 +     * }</pre></blockquote>
  1.2657 +     * <p> Here is pseudocode for the resulting adapter:
  1.2658 +     * <blockquote><pre>{@code
  1.2659 +     * // there are N arguments in A...
  1.2660 +     * T target(V, A[N]..., B...);
  1.2661 +     * V combiner(A...);
  1.2662 +     * T adapter(A... a, B... b) {
  1.2663 +     *   V v = combiner(a...);
  1.2664 +     *   return target(v, a..., b...);
  1.2665 +     * }
  1.2666 +     * // and if the combiner has a void return:
  1.2667 +     * T target2(A[N]..., B...);
  1.2668 +     * void combiner2(A...);
  1.2669 +     * T adapter2(A... a, B... b) {
  1.2670 +     *   combiner2(a...);
  1.2671 +     *   return target2(a..., b...);
  1.2672 +     * }
  1.2673 +     * }</pre></blockquote>
  1.2674 +     * @param target the method handle to invoke after arguments are combined
  1.2675 +     * @param combiner method handle to call initially on the incoming arguments
  1.2676 +     * @return method handle which incorporates the specified argument folding logic
  1.2677 +     * @throws NullPointerException if either argument is null
  1.2678 +     * @throws IllegalArgumentException if {@code combiner}'s return type
  1.2679 +     *          is non-void and not the same as the first argument type of
  1.2680 +     *          the target, or if the initial {@code N} argument types
  1.2681 +     *          of the target
  1.2682 +     *          (skipping one matching the {@code combiner}'s return type)
  1.2683 +     *          are not identical with the argument types of {@code combiner}
  1.2684 +     */
  1.2685 +    public static
  1.2686 +    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
  1.2687 +        int pos = 0;
  1.2688 +        MethodType targetType = target.type();
  1.2689 +        MethodType combinerType = combiner.type();
  1.2690 +        int foldPos = pos;
  1.2691 +        int foldArgs = combinerType.parameterCount();
  1.2692 +        int foldVals = combinerType.returnType() == void.class ? 0 : 1;
  1.2693 +        int afterInsertPos = foldPos + foldVals;
  1.2694 +        boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
  1.2695 +        if (ok && !(combinerType.parameterList()
  1.2696 +                    .equals(targetType.parameterList().subList(afterInsertPos,
  1.2697 +                                                               afterInsertPos + foldArgs))))
  1.2698 +            ok = false;
  1.2699 +        if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
  1.2700 +            ok = false;
  1.2701 +        if (!ok)
  1.2702 +            throw misMatchedTypes("target and combiner types", targetType, combinerType);
  1.2703 +        MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
  1.2704 +        return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
  1.2705 +    }
  1.2706 +
  1.2707 +    /**
  1.2708 +     * Makes a method handle which adapts a target method handle,
  1.2709 +     * by guarding it with a test, a boolean-valued method handle.
  1.2710 +     * If the guard fails, a fallback handle is called instead.
  1.2711 +     * All three method handles must have the same corresponding
  1.2712 +     * argument and return types, except that the return type
  1.2713 +     * of the test must be boolean, and the test is allowed
  1.2714 +     * to have fewer arguments than the other two method handles.
  1.2715 +     * <p> Here is pseudocode for the resulting adapter:
  1.2716 +     * <blockquote><pre>{@code
  1.2717 +     * boolean test(A...);
  1.2718 +     * T target(A...,B...);
  1.2719 +     * T fallback(A...,B...);
  1.2720 +     * T adapter(A... a,B... b) {
  1.2721 +     *   if (test(a...))
  1.2722 +     *     return target(a..., b...);
  1.2723 +     *   else
  1.2724 +     *     return fallback(a..., b...);
  1.2725 +     * }
  1.2726 +     * }</pre></blockquote>
  1.2727 +     * Note that the test arguments ({@code a...} in the pseudocode) cannot
  1.2728 +     * be modified by execution of the test, and so are passed unchanged
  1.2729 +     * from the caller to the target or fallback as appropriate.
  1.2730 +     * @param test method handle used for test, must return boolean
  1.2731 +     * @param target method handle to call if test passes
  1.2732 +     * @param fallback method handle to call if test fails
  1.2733 +     * @return method handle which incorporates the specified if/then/else logic
  1.2734 +     * @throws NullPointerException if any argument is null
  1.2735 +     * @throws IllegalArgumentException if {@code test} does not return boolean,
  1.2736 +     *          or if all three method types do not match (with the return
  1.2737 +     *          type of {@code test} changed to match that of the target).
  1.2738 +     */
  1.2739 +    public static
  1.2740 +    MethodHandle guardWithTest(MethodHandle test,
  1.2741 +                               MethodHandle target,
  1.2742 +                               MethodHandle fallback) {
  1.2743 +        MethodType gtype = test.type();
  1.2744 +        MethodType ttype = target.type();
  1.2745 +        MethodType ftype = fallback.type();
  1.2746 +        if (!ttype.equals(ftype))
  1.2747 +            throw misMatchedTypes("target and fallback types", ttype, ftype);
  1.2748 +        if (gtype.returnType() != boolean.class)
  1.2749 +            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
  1.2750 +        List<Class<?>> targs = ttype.parameterList();
  1.2751 +        List<Class<?>> gargs = gtype.parameterList();
  1.2752 +        if (!targs.equals(gargs)) {
  1.2753 +            int gpc = gargs.size(), tpc = targs.size();
  1.2754 +            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
  1.2755 +                throw misMatchedTypes("target and test types", ttype, gtype);
  1.2756 +            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
  1.2757 +            gtype = test.type();
  1.2758 +        }
  1.2759 +        return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
  1.2760 +    }
  1.2761 +
  1.2762 +    static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
  1.2763 +        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
  1.2764 +    }
  1.2765 +
  1.2766 +    /**
  1.2767 +     * Makes a method handle which adapts a target method handle,
  1.2768 +     * by running it inside an exception handler.
  1.2769 +     * If the target returns normally, the adapter returns that value.
  1.2770 +     * If an exception matching the specified type is thrown, the fallback
  1.2771 +     * handle is called instead on the exception, plus the original arguments.
  1.2772 +     * <p>
  1.2773 +     * The target and handler must have the same corresponding
  1.2774 +     * argument and return types, except that handler may omit trailing arguments
  1.2775 +     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
  1.2776 +     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
  1.2777 +     * <p> Here is pseudocode for the resulting adapter:
  1.2778 +     * <blockquote><pre>{@code
  1.2779 +     * T target(A..., B...);
  1.2780 +     * T handler(ExType, A...);
  1.2781 +     * T adapter(A... a, B... b) {
  1.2782 +     *   try {
  1.2783 +     *     return target(a..., b...);
  1.2784 +     *   } catch (ExType ex) {
  1.2785 +     *     return handler(ex, a...);
  1.2786 +     *   }
  1.2787 +     * }
  1.2788 +     * }</pre></blockquote>
  1.2789 +     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
  1.2790 +     * be modified by execution of the target, and so are passed unchanged
  1.2791 +     * from the caller to the handler, if the handler is invoked.
  1.2792 +     * <p>
  1.2793 +     * The target and handler must return the same type, even if the handler
  1.2794 +     * always throws.  (This might happen, for instance, because the handler
  1.2795 +     * is simulating a {@code finally} clause).
  1.2796 +     * To create such a throwing handler, compose the handler creation logic
  1.2797 +     * with {@link #throwException throwException},
  1.2798 +     * in order to create a method handle of the correct return type.
  1.2799 +     * @param target method handle to call
  1.2800 +     * @param exType the type of exception which the handler will catch
  1.2801 +     * @param handler method handle to call if a matching exception is thrown
  1.2802 +     * @return method handle which incorporates the specified try/catch logic
  1.2803 +     * @throws NullPointerException if any argument is null
  1.2804 +     * @throws IllegalArgumentException if {@code handler} does not accept
  1.2805 +     *          the given exception type, or if the method handle types do
  1.2806 +     *          not match in their return types and their
  1.2807 +     *          corresponding parameters
  1.2808 +     */
  1.2809 +    public static
  1.2810 +    MethodHandle catchException(MethodHandle target,
  1.2811 +                                Class<? extends Throwable> exType,
  1.2812 +                                MethodHandle handler) {
  1.2813 +        MethodType ttype = target.type();
  1.2814 +        MethodType htype = handler.type();
  1.2815 +        if (htype.parameterCount() < 1 ||
  1.2816 +            !htype.parameterType(0).isAssignableFrom(exType))
  1.2817 +            throw newIllegalArgumentException("handler does not accept exception type "+exType);
  1.2818 +        if (htype.returnType() != ttype.returnType())
  1.2819 +            throw misMatchedTypes("target and handler return types", ttype, htype);
  1.2820 +        List<Class<?>> targs = ttype.parameterList();
  1.2821 +        List<Class<?>> hargs = htype.parameterList();
  1.2822 +        hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
  1.2823 +        if (!targs.equals(hargs)) {
  1.2824 +            int hpc = hargs.size(), tpc = targs.size();
  1.2825 +            if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
  1.2826 +                throw misMatchedTypes("target and handler types", ttype, htype);
  1.2827 +            handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
  1.2828 +            htype = handler.type();
  1.2829 +        }
  1.2830 +        return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
  1.2831 +    }
  1.2832 +
  1.2833 +    /**
  1.2834 +     * Produces a method handle which will throw exceptions of the given {@code exType}.
  1.2835 +     * The method handle will accept a single argument of {@code exType},
  1.2836 +     * and immediately throw it as an exception.
  1.2837 +     * The method type will nominally specify a return of {@code returnType}.
  1.2838 +     * The return type may be anything convenient:  It doesn't matter to the
  1.2839 +     * method handle's behavior, since it will never return normally.
  1.2840 +     * @param returnType the return type of the desired method handle
  1.2841 +     * @param exType the parameter type of the desired method handle
  1.2842 +     * @return method handle which can throw the given exceptions
  1.2843 +     * @throws NullPointerException if either argument is null
  1.2844 +     */
  1.2845 +    public static
  1.2846 +    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
  1.2847 +        if (!Throwable.class.isAssignableFrom(exType))
  1.2848 +            throw new ClassCastException(exType.getName());
  1.2849 +        return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
  1.2850 +    }
  1.2851 +}