rt/emul/compact/src/main/java/java/lang/invoke/MethodTypeForm.java
branchjdk8-b132
changeset 1646 c880a8a8803b
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/lang/invoke/MethodTypeForm.java	Sat Aug 09 11:11:13 2014 +0200
     1.3 @@ -0,0 +1,388 @@
     1.4 +/*
     1.5 + * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.lang.invoke;
    1.30 +
    1.31 +import sun.invoke.util.Wrapper;
    1.32 +import static java.lang.invoke.MethodHandleStatics.*;
    1.33 +import static java.lang.invoke.MethodHandleNatives.Constants.*;
    1.34 + import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
    1.35 +
    1.36 +/**
    1.37 + * Shared information for a group of method types, which differ
    1.38 + * only by reference types, and therefore share a common erasure
    1.39 + * and wrapping.
    1.40 + * <p>
    1.41 + * For an empirical discussion of the structure of method types,
    1.42 + * see <a href="http://groups.google.com/group/jvm-languages/browse_thread/thread/ac9308ae74da9b7e/">
    1.43 + * the thread "Avoiding Boxing" on jvm-languages</a>.
    1.44 + * There are approximately 2000 distinct erased method types in the JDK.
    1.45 + * There are a little over 10 times that number of unerased types.
    1.46 + * No more than half of these are likely to be loaded at once.
    1.47 + * @author John Rose
    1.48 + */
    1.49 +final class MethodTypeForm {
    1.50 +    final int[] argToSlotTable, slotToArgTable;
    1.51 +    final long argCounts;               // packed slot & value counts
    1.52 +    final long primCounts;              // packed prim & double counts
    1.53 +    final int vmslots;                  // total number of parameter slots
    1.54 +    final MethodType erasedType;        // the canonical erasure
    1.55 +    final MethodType basicType;         // the canonical erasure, with primitives simplified
    1.56 +
    1.57 +    // Cached adapter information:
    1.58 +    @Stable String typeString;           // argument type signature characters
    1.59 +    @Stable MethodHandle genericInvoker; // JVM hook for inexact invoke
    1.60 +    @Stable MethodHandle basicInvoker;   // cached instance of MH.invokeBasic
    1.61 +    @Stable MethodHandle namedFunctionInvoker; // cached helper for LF.NamedFunction
    1.62 +
    1.63 +    // Cached lambda form information, for basic types only:
    1.64 +    final @Stable LambdaForm[] lambdaForms;
    1.65 +    // Indexes into lambdaForms:
    1.66 +    static final int
    1.67 +            LF_INVVIRTUAL     =  0,  // DMH invokeVirtual
    1.68 +            LF_INVSTATIC      =  1,
    1.69 +            LF_INVSPECIAL     =  2,
    1.70 +            LF_NEWINVSPECIAL  =  3,
    1.71 +            LF_INVINTERFACE   =  4,
    1.72 +            LF_INVSTATIC_INIT =  5,  // DMH invokeStatic with <clinit> barrier
    1.73 +            LF_INTERPRET      =  6,  // LF interpreter
    1.74 +            LF_COUNTER        =  7,  // CMH wrapper
    1.75 +            LF_REINVOKE       =  8,  // other wrapper
    1.76 +            LF_EX_LINKER      =  9,  // invokeExact_MT
    1.77 +            LF_EX_INVOKER     = 10,  // invokeExact MH
    1.78 +            LF_GEN_LINKER     = 11,
    1.79 +            LF_GEN_INVOKER    = 12,
    1.80 +            LF_CS_LINKER      = 13,  // linkToCallSite_CS
    1.81 +            LF_MH_LINKER      = 14,  // linkToCallSite_MH
    1.82 +            LF_LIMIT          = 15;
    1.83 +
    1.84 +    public MethodType erasedType() {
    1.85 +        return erasedType;
    1.86 +    }
    1.87 +
    1.88 +    public MethodType basicType() {
    1.89 +        return basicType;
    1.90 +    }
    1.91 +
    1.92 +    public LambdaForm cachedLambdaForm(int which) {
    1.93 +        return lambdaForms[which];
    1.94 +    }
    1.95 +
    1.96 +    public LambdaForm setCachedLambdaForm(int which, LambdaForm form) {
    1.97 +        // Should we perform some sort of CAS, to avoid racy duplication?
    1.98 +        return lambdaForms[which] = form;
    1.99 +    }
   1.100 +
   1.101 +    public MethodHandle basicInvoker() {
   1.102 +        assert(erasedType == basicType) : "erasedType: " + erasedType + " != basicType: " + basicType;  // primitives must be flattened also
   1.103 +        MethodHandle invoker = basicInvoker;
   1.104 +        if (invoker != null)  return invoker;
   1.105 +        invoker = DirectMethodHandle.make(invokeBasicMethod(basicType));
   1.106 +        basicInvoker = invoker;
   1.107 +        return invoker;
   1.108 +    }
   1.109 +
   1.110 +    // This next one is called from LambdaForm.NamedFunction.<init>.
   1.111 +    /*non-public*/ static MemberName invokeBasicMethod(MethodType basicType) {
   1.112 +        assert(basicType == basicType.basicType());
   1.113 +        try {
   1.114 +            // Do approximately the same as this public API call:
   1.115 +            //   Lookup.findVirtual(MethodHandle.class, name, type);
   1.116 +            // But bypass access and corner case checks, since we know exactly what we need.
   1.117 +            return IMPL_LOOKUP.resolveOrFail(REF_invokeVirtual, MethodHandle.class, "invokeBasic", basicType);
   1.118 +         } catch (ReflectiveOperationException ex) {
   1.119 +            throw newInternalError("JVM cannot find invoker for "+basicType, ex);
   1.120 +        }
   1.121 +    }
   1.122 +
   1.123 +    /**
   1.124 +     * Build an MTF for a given type, which must have all references erased to Object.
   1.125 +     * This MTF will stand for that type and all un-erased variations.
   1.126 +     * Eagerly compute some basic properties of the type, common to all variations.
   1.127 +     */
   1.128 +    protected MethodTypeForm(MethodType erasedType) {
   1.129 +        this.erasedType = erasedType;
   1.130 +
   1.131 +        Class<?>[] ptypes = erasedType.ptypes();
   1.132 +        int ptypeCount = ptypes.length;
   1.133 +        int pslotCount = ptypeCount;            // temp. estimate
   1.134 +        int rtypeCount = 1;                     // temp. estimate
   1.135 +        int rslotCount = 1;                     // temp. estimate
   1.136 +
   1.137 +        int[] argToSlotTab = null, slotToArgTab = null;
   1.138 +
   1.139 +        // Walk the argument types, looking for primitives.
   1.140 +        int pac = 0, lac = 0, prc = 0, lrc = 0;
   1.141 +        Class<?>[] epts = ptypes;
   1.142 +        Class<?>[] bpts = epts;
   1.143 +        for (int i = 0; i < epts.length; i++) {
   1.144 +            Class<?> pt = epts[i];
   1.145 +            if (pt != Object.class) {
   1.146 +                ++pac;
   1.147 +                Wrapper w = Wrapper.forPrimitiveType(pt);
   1.148 +                if (w.isDoubleWord())  ++lac;
   1.149 +                if (w.isSubwordOrInt() && pt != int.class) {
   1.150 +                    if (bpts == epts)
   1.151 +                        bpts = bpts.clone();
   1.152 +                    bpts[i] = int.class;
   1.153 +                }
   1.154 +            }
   1.155 +        }
   1.156 +        pslotCount += lac;                  // #slots = #args + #longs
   1.157 +        Class<?> rt = erasedType.returnType();
   1.158 +        Class<?> bt = rt;
   1.159 +        if (rt != Object.class) {
   1.160 +            ++prc;          // even void.class counts as a prim here
   1.161 +            Wrapper w = Wrapper.forPrimitiveType(rt);
   1.162 +            if (w.isDoubleWord())  ++lrc;
   1.163 +            if (w.isSubwordOrInt() && rt != int.class)
   1.164 +                bt = int.class;
   1.165 +            // adjust #slots, #args
   1.166 +            if (rt == void.class)
   1.167 +                rtypeCount = rslotCount = 0;
   1.168 +            else
   1.169 +                rslotCount += lrc;
   1.170 +        }
   1.171 +        if (epts == bpts && bt == rt) {
   1.172 +            this.basicType = erasedType;
   1.173 +        } else {
   1.174 +            this.basicType = MethodType.makeImpl(bt, bpts, true);
   1.175 +        }
   1.176 +        if (lac != 0) {
   1.177 +            int slot = ptypeCount + lac;
   1.178 +            slotToArgTab = new int[slot+1];
   1.179 +            argToSlotTab = new int[1+ptypeCount];
   1.180 +            argToSlotTab[0] = slot;  // argument "-1" is past end of slots
   1.181 +            for (int i = 0; i < epts.length; i++) {
   1.182 +                Class<?> pt = epts[i];
   1.183 +                Wrapper w = Wrapper.forBasicType(pt);
   1.184 +                if (w.isDoubleWord())  --slot;
   1.185 +                --slot;
   1.186 +                slotToArgTab[slot] = i+1; // "+1" see argSlotToParameter note
   1.187 +                argToSlotTab[1+i]  = slot;
   1.188 +            }
   1.189 +            assert(slot == 0);  // filled the table
   1.190 +        }
   1.191 +        this.primCounts = pack(lrc, prc, lac, pac);
   1.192 +        this.argCounts = pack(rslotCount, rtypeCount, pslotCount, ptypeCount);
   1.193 +        if (slotToArgTab == null) {
   1.194 +            int slot = ptypeCount; // first arg is deepest in stack
   1.195 +            slotToArgTab = new int[slot+1];
   1.196 +            argToSlotTab = new int[1+ptypeCount];
   1.197 +            argToSlotTab[0] = slot;  // argument "-1" is past end of slots
   1.198 +            for (int i = 0; i < ptypeCount; i++) {
   1.199 +                --slot;
   1.200 +                slotToArgTab[slot] = i+1; // "+1" see argSlotToParameter note
   1.201 +                argToSlotTab[1+i]  = slot;
   1.202 +            }
   1.203 +        }
   1.204 +        this.argToSlotTable = argToSlotTab;
   1.205 +        this.slotToArgTable = slotToArgTab;
   1.206 +
   1.207 +        if (pslotCount >= 256)  throw newIllegalArgumentException("too many arguments");
   1.208 +
   1.209 +        // send a few bits down to the JVM:
   1.210 +        this.vmslots = parameterSlotCount();
   1.211 +
   1.212 +        if (basicType == erasedType) {
   1.213 +            lambdaForms = new LambdaForm[LF_LIMIT];
   1.214 +        } else {
   1.215 +            lambdaForms = null;  // could be basicType.form().lambdaForms;
   1.216 +        }
   1.217 +    }
   1.218 +
   1.219 +    private static long pack(int a, int b, int c, int d) {
   1.220 +        assert(((a|b|c|d) & ~0xFFFF) == 0);
   1.221 +        long hw = ((a << 16) | b), lw = ((c << 16) | d);
   1.222 +        return (hw << 32) | lw;
   1.223 +    }
   1.224 +    private static char unpack(long packed, int word) { // word==0 => return a, ==3 => return d
   1.225 +        assert(word <= 3);
   1.226 +        return (char)(packed >> ((3-word) * 16));
   1.227 +    }
   1.228 +
   1.229 +    public int parameterCount() {                      // # outgoing values
   1.230 +        return unpack(argCounts, 3);
   1.231 +    }
   1.232 +    public int parameterSlotCount() {                  // # outgoing interpreter slots
   1.233 +        return unpack(argCounts, 2);
   1.234 +    }
   1.235 +    public int returnCount() {                         // = 0 (V), or 1
   1.236 +        return unpack(argCounts, 1);
   1.237 +    }
   1.238 +    public int returnSlotCount() {                     // = 0 (V), 2 (J/D), or 1
   1.239 +        return unpack(argCounts, 0);
   1.240 +    }
   1.241 +    public int primitiveParameterCount() {
   1.242 +        return unpack(primCounts, 3);
   1.243 +    }
   1.244 +    public int longPrimitiveParameterCount() {
   1.245 +        return unpack(primCounts, 2);
   1.246 +    }
   1.247 +    public int primitiveReturnCount() {                // = 0 (obj), or 1
   1.248 +        return unpack(primCounts, 1);
   1.249 +    }
   1.250 +    public int longPrimitiveReturnCount() {            // = 1 (J/D), or 0
   1.251 +        return unpack(primCounts, 0);
   1.252 +    }
   1.253 +    public boolean hasPrimitives() {
   1.254 +        return primCounts != 0;
   1.255 +    }
   1.256 +    public boolean hasNonVoidPrimitives() {
   1.257 +        if (primCounts == 0)  return false;
   1.258 +        if (primitiveParameterCount() != 0)  return true;
   1.259 +        return (primitiveReturnCount() != 0 && returnCount() != 0);
   1.260 +    }
   1.261 +    public boolean hasLongPrimitives() {
   1.262 +        return (longPrimitiveParameterCount() | longPrimitiveReturnCount()) != 0;
   1.263 +    }
   1.264 +    public int parameterToArgSlot(int i) {
   1.265 +        return argToSlotTable[1+i];
   1.266 +    }
   1.267 +    public int argSlotToParameter(int argSlot) {
   1.268 +        // Note:  Empty slots are represented by zero in this table.
   1.269 +        // Valid arguments slots contain incremented entries, so as to be non-zero.
   1.270 +        // We return -1 the caller to mean an empty slot.
   1.271 +        return slotToArgTable[argSlot] - 1;
   1.272 +    }
   1.273 +
   1.274 +    static MethodTypeForm findForm(MethodType mt) {
   1.275 +        MethodType erased = canonicalize(mt, ERASE, ERASE);
   1.276 +        if (erased == null) {
   1.277 +            // It is already erased.  Make a new MethodTypeForm.
   1.278 +            return new MethodTypeForm(mt);
   1.279 +        } else {
   1.280 +            // Share the MethodTypeForm with the erased version.
   1.281 +            return erased.form();
   1.282 +        }
   1.283 +    }
   1.284 +
   1.285 +    /** Codes for {@link #canonicalize(java.lang.Class, int)}.
   1.286 +     * ERASE means change every reference to {@code Object}.
   1.287 +     * WRAP means convert primitives (including {@code void} to their
   1.288 +     * corresponding wrapper types.  UNWRAP means the reverse of WRAP.
   1.289 +     * INTS means convert all non-void primitive types to int or long,
   1.290 +     * according to size.  LONGS means convert all non-void primitives
   1.291 +     * to long, regardless of size.  RAW_RETURN means convert a type
   1.292 +     * (assumed to be a return type) to int if it is smaller than an int,
   1.293 +     * or if it is void.
   1.294 +     */
   1.295 +    public static final int NO_CHANGE = 0, ERASE = 1, WRAP = 2, UNWRAP = 3, INTS = 4, LONGS = 5, RAW_RETURN = 6;
   1.296 +
   1.297 +    /** Canonicalize the types in the given method type.
   1.298 +     * If any types change, intern the new type, and return it.
   1.299 +     * Otherwise return null.
   1.300 +     */
   1.301 +    public static MethodType canonicalize(MethodType mt, int howRet, int howArgs) {
   1.302 +        Class<?>[] ptypes = mt.ptypes();
   1.303 +        Class<?>[] ptc = MethodTypeForm.canonicalizes(ptypes, howArgs);
   1.304 +        Class<?> rtype = mt.returnType();
   1.305 +        Class<?> rtc = MethodTypeForm.canonicalize(rtype, howRet);
   1.306 +        if (ptc == null && rtc == null) {
   1.307 +            // It is already canonical.
   1.308 +            return null;
   1.309 +        }
   1.310 +        // Find the erased version of the method type:
   1.311 +        if (rtc == null)  rtc = rtype;
   1.312 +        if (ptc == null)  ptc = ptypes;
   1.313 +        return MethodType.makeImpl(rtc, ptc, true);
   1.314 +    }
   1.315 +
   1.316 +    /** Canonicalize the given return or param type.
   1.317 +     *  Return null if the type is already canonicalized.
   1.318 +     */
   1.319 +    static Class<?> canonicalize(Class<?> t, int how) {
   1.320 +        Class<?> ct;
   1.321 +        if (t == Object.class) {
   1.322 +            // no change, ever
   1.323 +        } else if (!t.isPrimitive()) {
   1.324 +            switch (how) {
   1.325 +                case UNWRAP:
   1.326 +                    ct = Wrapper.asPrimitiveType(t);
   1.327 +                    if (ct != t)  return ct;
   1.328 +                    break;
   1.329 +                case RAW_RETURN:
   1.330 +                case ERASE:
   1.331 +                    return Object.class;
   1.332 +            }
   1.333 +        } else if (t == void.class) {
   1.334 +            // no change, usually
   1.335 +            switch (how) {
   1.336 +                case RAW_RETURN:
   1.337 +                    return int.class;
   1.338 +                case WRAP:
   1.339 +                    return Void.class;
   1.340 +            }
   1.341 +        } else {
   1.342 +            // non-void primitive
   1.343 +            switch (how) {
   1.344 +                case WRAP:
   1.345 +                    return Wrapper.asWrapperType(t);
   1.346 +                case INTS:
   1.347 +                    if (t == int.class || t == long.class)
   1.348 +                        return null;  // no change
   1.349 +                    if (t == double.class)
   1.350 +                        return long.class;
   1.351 +                    return int.class;
   1.352 +                case LONGS:
   1.353 +                    if (t == long.class)
   1.354 +                        return null;  // no change
   1.355 +                    return long.class;
   1.356 +                case RAW_RETURN:
   1.357 +                    if (t == int.class || t == long.class ||
   1.358 +                        t == float.class || t == double.class)
   1.359 +                        return null;  // no change
   1.360 +                    // everything else returns as an int
   1.361 +                    return int.class;
   1.362 +            }
   1.363 +        }
   1.364 +        // no change; return null to signify
   1.365 +        return null;
   1.366 +    }
   1.367 +
   1.368 +    /** Canonicalize each param type in the given array.
   1.369 +     *  Return null if all types are already canonicalized.
   1.370 +     */
   1.371 +    static Class<?>[] canonicalizes(Class<?>[] ts, int how) {
   1.372 +        Class<?>[] cs = null;
   1.373 +        for (int imax = ts.length, i = 0; i < imax; i++) {
   1.374 +            Class<?> c = canonicalize(ts[i], how);
   1.375 +            if (c == void.class)
   1.376 +                c = null;  // a Void parameter was unwrapped to void; ignore
   1.377 +            if (c != null) {
   1.378 +                if (cs == null)
   1.379 +                    cs = ts.clone();
   1.380 +                cs[i] = c;
   1.381 +            }
   1.382 +        }
   1.383 +        return cs;
   1.384 +    }
   1.385 +
   1.386 +    @Override
   1.387 +    public String toString() {
   1.388 +        return "Form"+erasedType;
   1.389 +    }
   1.390 +
   1.391 +}