rt/emul/mini/src/main/java/java/lang/ClassValue.java
changeset 1985 cd1cc103a03c
parent 1984 87bb69774b64
     1.1 --- a/rt/emul/mini/src/main/java/java/lang/ClassValue.java	Tue Jan 17 06:16:06 2017 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,239 +0,0 @@
     1.4 -/*
     1.5 - * Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
     1.6 - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 - *
     1.8 - * This code is free software; you can redistribute it and/or modify it
     1.9 - * under the terms of the GNU General Public License version 2 only, as
    1.10 - * published by the Free Software Foundation.  Oracle designates this
    1.11 - * particular file as subject to the "Classpath" exception as provided
    1.12 - * by Oracle in the LICENSE file that accompanied this code.
    1.13 - *
    1.14 - * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 - * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 - * version 2 for more details (a copy is included in the LICENSE file that
    1.18 - * accompanied this code).
    1.19 - *
    1.20 - * You should have received a copy of the GNU General Public License version
    1.21 - * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 - *
    1.24 - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 - * or visit www.oracle.com if you need additional information or have any
    1.26 - * questions.
    1.27 - */
    1.28 -
    1.29 -package java.lang;
    1.30 -
    1.31 -import java.util.WeakHashMap;
    1.32 -import java.util.concurrent.atomic.AtomicInteger;
    1.33 -
    1.34 -/**
    1.35 - * Lazily associate a computed value with (potentially) every type.
    1.36 - * For example, if a dynamic language needs to construct a message dispatch
    1.37 - * table for each class encountered at a message send call site,
    1.38 - * it can use a {@code ClassValue} to cache information needed to
    1.39 - * perform the message send quickly, for each class encountered.
    1.40 - * @author John Rose, JSR 292 EG
    1.41 - * @since 1.7
    1.42 - */
    1.43 -public abstract class ClassValue<T> {
    1.44 -    /**
    1.45 -     * Sole constructor.  (For invocation by subclass constructors, typically
    1.46 -     * implicit.)
    1.47 -     */
    1.48 -    protected ClassValue() {
    1.49 -    }
    1.50 -
    1.51 -    /**
    1.52 -     * Computes the given class's derived value for this {@code ClassValue}.
    1.53 -     * <p>
    1.54 -     * This method will be invoked within the first thread that accesses
    1.55 -     * the value with the {@link #get get} method.
    1.56 -     * <p>
    1.57 -     * Normally, this method is invoked at most once per class,
    1.58 -     * but it may be invoked again if there has been a call to
    1.59 -     * {@link #remove remove}.
    1.60 -     * <p>
    1.61 -     * If this method throws an exception, the corresponding call to {@code get}
    1.62 -     * will terminate abnormally with that exception, and no class value will be recorded.
    1.63 -     *
    1.64 -     * @param type the type whose class value must be computed
    1.65 -     * @return the newly computed value associated with this {@code ClassValue}, for the given class or interface
    1.66 -     * @see #get
    1.67 -     * @see #remove
    1.68 -     */
    1.69 -    protected abstract T computeValue(Class<?> type);
    1.70 -
    1.71 -    /**
    1.72 -     * Returns the value for the given class.
    1.73 -     * If no value has yet been computed, it is obtained by
    1.74 -     * an invocation of the {@link #computeValue computeValue} method.
    1.75 -     * <p>
    1.76 -     * The actual installation of the value on the class
    1.77 -     * is performed atomically.
    1.78 -     * At that point, if several racing threads have
    1.79 -     * computed values, one is chosen, and returned to
    1.80 -     * all the racing threads.
    1.81 -     * <p>
    1.82 -     * The {@code type} parameter is typically a class, but it may be any type,
    1.83 -     * such as an interface, a primitive type (like {@code int.class}), or {@code void.class}.
    1.84 -     * <p>
    1.85 -     * In the absence of {@code remove} calls, a class value has a simple
    1.86 -     * state diagram:  uninitialized and initialized.
    1.87 -     * When {@code remove} calls are made,
    1.88 -     * the rules for value observation are more complex.
    1.89 -     * See the documentation for {@link #remove remove} for more information.
    1.90 -     *
    1.91 -     * @param type the type whose class value must be computed or retrieved
    1.92 -     * @return the current value associated with this {@code ClassValue}, for the given class or interface
    1.93 -     * @throws NullPointerException if the argument is null
    1.94 -     * @see #remove
    1.95 -     * @see #computeValue
    1.96 -     */
    1.97 -    public T get(Class<?> type) {
    1.98 -        ClassValueMap map = getMap(type);
    1.99 -        if (map != null) {
   1.100 -            Object x = map.get(this);
   1.101 -            if (x != null) {
   1.102 -                return (T) map.unmaskNull(x);
   1.103 -            }
   1.104 -        }
   1.105 -        return setComputedValue(type);
   1.106 -    }
   1.107 -
   1.108 -    /**
   1.109 -     * Removes the associated value for the given class.
   1.110 -     * If this value is subsequently {@linkplain #get read} for the same class,
   1.111 -     * its value will be reinitialized by invoking its {@link #computeValue computeValue} method.
   1.112 -     * This may result in an additional invocation of the
   1.113 -     * {@code computeValue} method for the given class.
   1.114 -     * <p>
   1.115 -     * In order to explain the interaction between {@code get} and {@code remove} calls,
   1.116 -     * we must model the state transitions of a class value to take into account
   1.117 -     * the alternation between uninitialized and initialized states.
   1.118 -     * To do this, number these states sequentially from zero, and note that
   1.119 -     * uninitialized (or removed) states are numbered with even numbers,
   1.120 -     * while initialized (or re-initialized) states have odd numbers.
   1.121 -     * <p>
   1.122 -     * When a thread {@code T} removes a class value in state {@code 2N},
   1.123 -     * nothing happens, since the class value is already uninitialized.
   1.124 -     * Otherwise, the state is advanced atomically to {@code 2N+1}.
   1.125 -     * <p>
   1.126 -     * When a thread {@code T} queries a class value in state {@code 2N},
   1.127 -     * the thread first attempts to initialize the class value to state {@code 2N+1}
   1.128 -     * by invoking {@code computeValue} and installing the resulting value.
   1.129 -     * <p>
   1.130 -     * When {@code T} attempts to install the newly computed value,
   1.131 -     * if the state is still at {@code 2N}, the class value will be initialized
   1.132 -     * with the computed value, advancing it to state {@code 2N+1}.
   1.133 -     * <p>
   1.134 -     * Otherwise, whether the new state is even or odd,
   1.135 -     * {@code T} will discard the newly computed value
   1.136 -     * and retry the {@code get} operation.
   1.137 -     * <p>
   1.138 -     * Discarding and retrying is an important proviso,
   1.139 -     * since otherwise {@code T} could potentially install
   1.140 -     * a disastrously stale value.  For example:
   1.141 -     * <ul>
   1.142 -     * <li>{@code T} calls {@code CV.get(C)} and sees state {@code 2N}
   1.143 -     * <li>{@code T} quickly computes a time-dependent value {@code V0} and gets ready to install it
   1.144 -     * <li>{@code T} is hit by an unlucky paging or scheduling event, and goes to sleep for a long time
   1.145 -     * <li>...meanwhile, {@code T2} also calls {@code CV.get(C)} and sees state {@code 2N}
   1.146 -     * <li>{@code T2} quickly computes a similar time-dependent value {@code V1} and installs it on {@code CV.get(C)}
   1.147 -     * <li>{@code T2} (or a third thread) then calls {@code CV.remove(C)}, undoing {@code T2}'s work
   1.148 -     * <li> the previous actions of {@code T2} are repeated several times
   1.149 -     * <li> also, the relevant computed values change over time: {@code V1}, {@code V2}, ...
   1.150 -     * <li>...meanwhile, {@code T} wakes up and attempts to install {@code V0}; <em>this must fail</em>
   1.151 -     * </ul>
   1.152 -     * We can assume in the above scenario that {@code CV.computeValue} uses locks to properly
   1.153 -     * observe the time-dependent states as it computes {@code V1}, etc.
   1.154 -     * This does not remove the threat of a stale value, since there is a window of time
   1.155 -     * between the return of {@code computeValue} in {@code T} and the installation
   1.156 -     * of the the new value.  No user synchronization is possible during this time.
   1.157 -     *
   1.158 -     * @param type the type whose class value must be removed
   1.159 -     * @throws NullPointerException if the argument is null
   1.160 -     */
   1.161 -    public void remove(Class<?> type) {
   1.162 -        ClassValueMap map = getMap(type);
   1.163 -        if (map != null) {
   1.164 -            synchronized (map) {
   1.165 -                map.remove(this);
   1.166 -            }
   1.167 -        }
   1.168 -    }
   1.169 -
   1.170 -    /// Implementation...
   1.171 -    // FIXME: Use a data structure here similar that of ThreadLocal (7030453).
   1.172 -
   1.173 -    private static final AtomicInteger STORE_BARRIER = new AtomicInteger();
   1.174 -
   1.175 -    /** Slow path for {@link #get}. */
   1.176 -    private T setComputedValue(Class<?> type) {
   1.177 -        ClassValueMap map = getMap(type);
   1.178 -        if (map == null) {
   1.179 -            map = initializeMap(type);
   1.180 -        }
   1.181 -        T value = computeValue(type);
   1.182 -        STORE_BARRIER.lazySet(0);
   1.183 -        // All stores pending from computeValue are completed.
   1.184 -        synchronized (map) {
   1.185 -            // Warm up the table with a null entry.
   1.186 -            map.preInitializeEntry(this);
   1.187 -        }
   1.188 -        STORE_BARRIER.lazySet(0);
   1.189 -        // All stores pending from table expansion are completed.
   1.190 -        synchronized (map) {
   1.191 -            value = (T) map.initializeEntry(this, value);
   1.192 -            // One might fear a possible race condition here
   1.193 -            // if the code for map.put has flushed the write
   1.194 -            // to map.table[*] before the writes to the Map.Entry
   1.195 -            // are done.  This is not possible, since we have
   1.196 -            // warmed up the table with an empty entry.
   1.197 -        }
   1.198 -        return value;
   1.199 -    }
   1.200 -
   1.201 -    // Replace this map by a per-class slot.
   1.202 -    private static final WeakHashMap<Class<?>, ClassValueMap> ROOT
   1.203 -        = new WeakHashMap<Class<?>, ClassValueMap>();
   1.204 -
   1.205 -    private static ClassValueMap getMap(Class<?> type) {
   1.206 -        type.getClass();  // test for null
   1.207 -        return ROOT.get(type);
   1.208 -    }
   1.209 -
   1.210 -    private static ClassValueMap initializeMap(Class<?> type) {
   1.211 -        synchronized (ClassValue.class) {
   1.212 -            ClassValueMap map = ROOT.get(type);
   1.213 -            if (map == null)
   1.214 -                ROOT.put(type, map = new ClassValueMap());
   1.215 -            return map;
   1.216 -        }
   1.217 -    }
   1.218 -
   1.219 -    static class ClassValueMap extends WeakHashMap<ClassValue, Object> {
   1.220 -        /** Make sure this table contains an Entry for the given key, even if it is empty. */
   1.221 -        void preInitializeEntry(ClassValue key) {
   1.222 -            if (!this.containsKey(key))
   1.223 -                this.put(key, null);
   1.224 -        }
   1.225 -        /** Make sure this table contains a non-empty Entry for the given key. */
   1.226 -        Object initializeEntry(ClassValue key, Object value) {
   1.227 -            Object prior = this.get(key);
   1.228 -            if (prior != null) {
   1.229 -                return unmaskNull(prior);
   1.230 -            }
   1.231 -            this.put(key, maskNull(value));
   1.232 -            return value;
   1.233 -        }
   1.234 -
   1.235 -        Object maskNull(Object x) {
   1.236 -            return x == null ? this : x;
   1.237 -        }
   1.238 -        Object unmaskNull(Object x) {
   1.239 -            return x == this ? null : x;
   1.240 -        }
   1.241 -    }
   1.242 -}