rt/emul/compact/src/main/java/java/lang/ClassValue.java
branchjdk8
changeset 1675 cd50c1894ce5
parent 1674 eca8e9c3ec3e
child 1678 35daab73e225
     1.1 --- a/rt/emul/compact/src/main/java/java/lang/ClassValue.java	Sun Aug 17 20:09:05 2014 +0200
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,760 +0,0 @@
     1.4 -/*
     1.5 - * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
     1.6 - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 - *
     1.8 - * This code is free software; you can redistribute it and/or modify it
     1.9 - * under the terms of the GNU General Public License version 2 only, as
    1.10 - * published by the Free Software Foundation.  Oracle designates this
    1.11 - * particular file as subject to the "Classpath" exception as provided
    1.12 - * by Oracle in the LICENSE file that accompanied this code.
    1.13 - *
    1.14 - * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 - * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 - * version 2 for more details (a copy is included in the LICENSE file that
    1.18 - * accompanied this code).
    1.19 - *
    1.20 - * You should have received a copy of the GNU General Public License version
    1.21 - * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 - *
    1.24 - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 - * or visit www.oracle.com if you need additional information or have any
    1.26 - * questions.
    1.27 - */
    1.28 -
    1.29 -package java.lang;
    1.30 -
    1.31 -import java.lang.ClassValue.ClassValueMap;
    1.32 -import java.util.WeakHashMap;
    1.33 -import java.lang.ref.WeakReference;
    1.34 -import java.util.concurrent.atomic.AtomicInteger;
    1.35 -
    1.36 -import static java.lang.ClassValue.ClassValueMap.probeHomeLocation;
    1.37 -import static java.lang.ClassValue.ClassValueMap.probeBackupLocations;
    1.38 -
    1.39 -/**
    1.40 - * Lazily associate a computed value with (potentially) every type.
    1.41 - * For example, if a dynamic language needs to construct a message dispatch
    1.42 - * table for each class encountered at a message send call site,
    1.43 - * it can use a {@code ClassValue} to cache information needed to
    1.44 - * perform the message send quickly, for each class encountered.
    1.45 - * @author John Rose, JSR 292 EG
    1.46 - * @since 1.7
    1.47 - */
    1.48 -public abstract class ClassValue<T> {
    1.49 -    /**
    1.50 -     * Sole constructor.  (For invocation by subclass constructors, typically
    1.51 -     * implicit.)
    1.52 -     */
    1.53 -    protected ClassValue() {
    1.54 -    }
    1.55 -
    1.56 -    /**
    1.57 -     * Computes the given class's derived value for this {@code ClassValue}.
    1.58 -     * <p>
    1.59 -     * This method will be invoked within the first thread that accesses
    1.60 -     * the value with the {@link #get get} method.
    1.61 -     * <p>
    1.62 -     * Normally, this method is invoked at most once per class,
    1.63 -     * but it may be invoked again if there has been a call to
    1.64 -     * {@link #remove remove}.
    1.65 -     * <p>
    1.66 -     * If this method throws an exception, the corresponding call to {@code get}
    1.67 -     * will terminate abnormally with that exception, and no class value will be recorded.
    1.68 -     *
    1.69 -     * @param type the type whose class value must be computed
    1.70 -     * @return the newly computed value associated with this {@code ClassValue}, for the given class or interface
    1.71 -     * @see #get
    1.72 -     * @see #remove
    1.73 -     */
    1.74 -    protected abstract T computeValue(Class<?> type);
    1.75 -
    1.76 -    /**
    1.77 -     * Returns the value for the given class.
    1.78 -     * If no value has yet been computed, it is obtained by
    1.79 -     * an invocation of the {@link #computeValue computeValue} method.
    1.80 -     * <p>
    1.81 -     * The actual installation of the value on the class
    1.82 -     * is performed atomically.
    1.83 -     * At that point, if several racing threads have
    1.84 -     * computed values, one is chosen, and returned to
    1.85 -     * all the racing threads.
    1.86 -     * <p>
    1.87 -     * The {@code type} parameter is typically a class, but it may be any type,
    1.88 -     * such as an interface, a primitive type (like {@code int.class}), or {@code void.class}.
    1.89 -     * <p>
    1.90 -     * In the absence of {@code remove} calls, a class value has a simple
    1.91 -     * state diagram:  uninitialized and initialized.
    1.92 -     * When {@code remove} calls are made,
    1.93 -     * the rules for value observation are more complex.
    1.94 -     * See the documentation for {@link #remove remove} for more information.
    1.95 -     *
    1.96 -     * @param type the type whose class value must be computed or retrieved
    1.97 -     * @return the current value associated with this {@code ClassValue}, for the given class or interface
    1.98 -     * @throws NullPointerException if the argument is null
    1.99 -     * @see #remove
   1.100 -     * @see #computeValue
   1.101 -     */
   1.102 -    public T get(Class<?> type) {
   1.103 -        // non-racing this.hashCodeForCache : final int
   1.104 -        Entry<?>[] cache;
   1.105 -        Entry<T> e = probeHomeLocation(cache = getCacheCarefully(type), this);
   1.106 -        // racing e : current value <=> stale value from current cache or from stale cache
   1.107 -        // invariant:  e is null or an Entry with readable Entry.version and Entry.value
   1.108 -        if (match(e))
   1.109 -            // invariant:  No false positive matches.  False negatives are OK if rare.
   1.110 -            // The key fact that makes this work: if this.version == e.version,
   1.111 -            // then this thread has a right to observe (final) e.value.
   1.112 -            return e.value();
   1.113 -        // The fast path can fail for any of these reasons:
   1.114 -        // 1. no entry has been computed yet
   1.115 -        // 2. hash code collision (before or after reduction mod cache.length)
   1.116 -        // 3. an entry has been removed (either on this type or another)
   1.117 -        // 4. the GC has somehow managed to delete e.version and clear the reference
   1.118 -        return getFromBackup(cache, type);
   1.119 -    }
   1.120 -
   1.121 -    /**
   1.122 -     * Removes the associated value for the given class.
   1.123 -     * If this value is subsequently {@linkplain #get read} for the same class,
   1.124 -     * its value will be reinitialized by invoking its {@link #computeValue computeValue} method.
   1.125 -     * This may result in an additional invocation of the
   1.126 -     * {@code computeValue} method for the given class.
   1.127 -     * <p>
   1.128 -     * In order to explain the interaction between {@code get} and {@code remove} calls,
   1.129 -     * we must model the state transitions of a class value to take into account
   1.130 -     * the alternation between uninitialized and initialized states.
   1.131 -     * To do this, number these states sequentially from zero, and note that
   1.132 -     * uninitialized (or removed) states are numbered with even numbers,
   1.133 -     * while initialized (or re-initialized) states have odd numbers.
   1.134 -     * <p>
   1.135 -     * When a thread {@code T} removes a class value in state {@code 2N},
   1.136 -     * nothing happens, since the class value is already uninitialized.
   1.137 -     * Otherwise, the state is advanced atomically to {@code 2N+1}.
   1.138 -     * <p>
   1.139 -     * When a thread {@code T} queries a class value in state {@code 2N},
   1.140 -     * the thread first attempts to initialize the class value to state {@code 2N+1}
   1.141 -     * by invoking {@code computeValue} and installing the resulting value.
   1.142 -     * <p>
   1.143 -     * When {@code T} attempts to install the newly computed value,
   1.144 -     * if the state is still at {@code 2N}, the class value will be initialized
   1.145 -     * with the computed value, advancing it to state {@code 2N+1}.
   1.146 -     * <p>
   1.147 -     * Otherwise, whether the new state is even or odd,
   1.148 -     * {@code T} will discard the newly computed value
   1.149 -     * and retry the {@code get} operation.
   1.150 -     * <p>
   1.151 -     * Discarding and retrying is an important proviso,
   1.152 -     * since otherwise {@code T} could potentially install
   1.153 -     * a disastrously stale value.  For example:
   1.154 -     * <ul>
   1.155 -     * <li>{@code T} calls {@code CV.get(C)} and sees state {@code 2N}
   1.156 -     * <li>{@code T} quickly computes a time-dependent value {@code V0} and gets ready to install it
   1.157 -     * <li>{@code T} is hit by an unlucky paging or scheduling event, and goes to sleep for a long time
   1.158 -     * <li>...meanwhile, {@code T2} also calls {@code CV.get(C)} and sees state {@code 2N}
   1.159 -     * <li>{@code T2} quickly computes a similar time-dependent value {@code V1} and installs it on {@code CV.get(C)}
   1.160 -     * <li>{@code T2} (or a third thread) then calls {@code CV.remove(C)}, undoing {@code T2}'s work
   1.161 -     * <li> the previous actions of {@code T2} are repeated several times
   1.162 -     * <li> also, the relevant computed values change over time: {@code V1}, {@code V2}, ...
   1.163 -     * <li>...meanwhile, {@code T} wakes up and attempts to install {@code V0}; <em>this must fail</em>
   1.164 -     * </ul>
   1.165 -     * We can assume in the above scenario that {@code CV.computeValue} uses locks to properly
   1.166 -     * observe the time-dependent states as it computes {@code V1}, etc.
   1.167 -     * This does not remove the threat of a stale value, since there is a window of time
   1.168 -     * between the return of {@code computeValue} in {@code T} and the installation
   1.169 -     * of the the new value.  No user synchronization is possible during this time.
   1.170 -     *
   1.171 -     * @param type the type whose class value must be removed
   1.172 -     * @throws NullPointerException if the argument is null
   1.173 -     */
   1.174 -    public void remove(Class<?> type) {
   1.175 -        ClassValueMap map = getMap(type);
   1.176 -        map.removeEntry(this);
   1.177 -    }
   1.178 -
   1.179 -    // Possible functionality for JSR 292 MR 1
   1.180 -    /*public*/ void put(Class<?> type, T value) {
   1.181 -        ClassValueMap map = getMap(type);
   1.182 -        map.changeEntry(this, value);
   1.183 -    }
   1.184 -
   1.185 -    /// --------
   1.186 -    /// Implementation...
   1.187 -    /// --------
   1.188 -
   1.189 -    /** Return the cache, if it exists, else a dummy empty cache. */
   1.190 -    private static Entry<?>[] getCacheCarefully(Class<?> type) {
   1.191 -        // racing type.classValueMap{.cacheArray} : null => new Entry[X] <=> new Entry[Y]
   1.192 -        ClassValueMap map = (ClassValueMap) type.classValueMap;
   1.193 -        if (map == null)  return EMPTY_CACHE;
   1.194 -        Entry<?>[] cache = map.getCache();
   1.195 -        return cache;
   1.196 -        // invariant:  returned value is safe to dereference and check for an Entry
   1.197 -    }
   1.198 -
   1.199 -    /** Initial, one-element, empty cache used by all Class instances.  Must never be filled. */
   1.200 -    private static final Entry<?>[] EMPTY_CACHE = { null };
   1.201 -
   1.202 -    /**
   1.203 -     * Slow tail of ClassValue.get to retry at nearby locations in the cache,
   1.204 -     * or take a slow lock and check the hash table.
   1.205 -     * Called only if the first probe was empty or a collision.
   1.206 -     * This is a separate method, so compilers can process it independently.
   1.207 -     */
   1.208 -    private T getFromBackup(Entry<?>[] cache, Class<?> type) {
   1.209 -        Entry<T> e = probeBackupLocations(cache, this);
   1.210 -        if (e != null)
   1.211 -            return e.value();
   1.212 -        return getFromHashMap(type);
   1.213 -    }
   1.214 -
   1.215 -    // Hack to suppress warnings on the (T) cast, which is a no-op.
   1.216 -    @SuppressWarnings("unchecked")
   1.217 -    Entry<T> castEntry(Entry<?> e) { return (Entry<T>) e; }
   1.218 -
   1.219 -    /** Called when the fast path of get fails, and cache reprobe also fails.
   1.220 -     */
   1.221 -    private T getFromHashMap(Class<?> type) {
   1.222 -        // The fail-safe recovery is to fall back to the underlying classValueMap.
   1.223 -        ClassValueMap map = getMap(type);
   1.224 -        for (;;) {
   1.225 -            Entry<T> e = map.startEntry(this);
   1.226 -            if (!e.isPromise())
   1.227 -                return e.value();
   1.228 -            try {
   1.229 -                // Try to make a real entry for the promised version.
   1.230 -                e = makeEntry(e.version(), computeValue(type));
   1.231 -            } finally {
   1.232 -                // Whether computeValue throws or returns normally,
   1.233 -                // be sure to remove the empty entry.
   1.234 -                e = map.finishEntry(this, e);
   1.235 -            }
   1.236 -            if (e != null)
   1.237 -                return e.value();
   1.238 -            // else try again, in case a racing thread called remove (so e == null)
   1.239 -        }
   1.240 -    }
   1.241 -
   1.242 -    /** Check that e is non-null, matches this ClassValue, and is live. */
   1.243 -    boolean match(Entry<?> e) {
   1.244 -        // racing e.version : null (blank) => unique Version token => null (GC-ed version)
   1.245 -        // non-racing this.version : v1 => v2 => ... (updates are read faithfully from volatile)
   1.246 -        return (e != null && e.get() == this.version);
   1.247 -        // invariant:  No false positives on version match.  Null is OK for false negative.
   1.248 -        // invariant:  If version matches, then e.value is readable (final set in Entry.<init>)
   1.249 -    }
   1.250 -
   1.251 -    /** Internal hash code for accessing Class.classValueMap.cacheArray. */
   1.252 -    final int hashCodeForCache = nextHashCode.getAndAdd(HASH_INCREMENT) & HASH_MASK;
   1.253 -
   1.254 -    /** Value stream for hashCodeForCache.  See similar structure in ThreadLocal. */
   1.255 -    private static final AtomicInteger nextHashCode = new AtomicInteger();
   1.256 -
   1.257 -    /** Good for power-of-two tables.  See similar structure in ThreadLocal. */
   1.258 -    private static final int HASH_INCREMENT = 0x61c88647;
   1.259 -
   1.260 -    /** Mask a hash code to be positive but not too large, to prevent wraparound. */
   1.261 -    static final int HASH_MASK = (-1 >>> 2);
   1.262 -
   1.263 -    /**
   1.264 -     * Private key for retrieval of this object from ClassValueMap.
   1.265 -     */
   1.266 -    static class Identity {
   1.267 -    }
   1.268 -    /**
   1.269 -     * This ClassValue's identity, expressed as an opaque object.
   1.270 -     * The main object {@code ClassValue.this} is incorrect since
   1.271 -     * subclasses may override {@code ClassValue.equals}, which
   1.272 -     * could confuse keys in the ClassValueMap.
   1.273 -     */
   1.274 -    final Identity identity = new Identity();
   1.275 -
   1.276 -    /**
   1.277 -     * Current version for retrieving this class value from the cache.
   1.278 -     * Any number of computeValue calls can be cached in association with one version.
   1.279 -     * But the version changes when a remove (on any type) is executed.
   1.280 -     * A version change invalidates all cache entries for the affected ClassValue,
   1.281 -     * by marking them as stale.  Stale cache entries do not force another call
   1.282 -     * to computeValue, but they do require a synchronized visit to a backing map.
   1.283 -     * <p>
   1.284 -     * All user-visible state changes on the ClassValue take place under
   1.285 -     * a lock inside the synchronized methods of ClassValueMap.
   1.286 -     * Readers (of ClassValue.get) are notified of such state changes
   1.287 -     * when this.version is bumped to a new token.
   1.288 -     * This variable must be volatile so that an unsynchronized reader
   1.289 -     * will receive the notification without delay.
   1.290 -     * <p>
   1.291 -     * If version were not volatile, one thread T1 could persistently hold onto
   1.292 -     * a stale value this.value == V1, while while another thread T2 advances
   1.293 -     * (under a lock) to this.value == V2.  This will typically be harmless,
   1.294 -     * but if T1 and T2 interact causally via some other channel, such that
   1.295 -     * T1's further actions are constrained (in the JMM) to happen after
   1.296 -     * the V2 event, then T1's observation of V1 will be an error.
   1.297 -     * <p>
   1.298 -     * The practical effect of making this.version be volatile is that it cannot
   1.299 -     * be hoisted out of a loop (by an optimizing JIT) or otherwise cached.
   1.300 -     * Some machines may also require a barrier instruction to execute
   1.301 -     * before this.version.
   1.302 -     */
   1.303 -    private volatile Version<T> version = new Version<>(this);
   1.304 -    Version<T> version() { return version; }
   1.305 -    void bumpVersion() { version = new Version<>(this); }
   1.306 -    static class Version<T> {
   1.307 -        private final ClassValue<T> classValue;
   1.308 -        private final Entry<T> promise = new Entry<>(this);
   1.309 -        Version(ClassValue<T> classValue) { this.classValue = classValue; }
   1.310 -        ClassValue<T> classValue() { return classValue; }
   1.311 -        Entry<T> promise() { return promise; }
   1.312 -        boolean isLive() { return classValue.version() == this; }
   1.313 -    }
   1.314 -
   1.315 -    /** One binding of a value to a class via a ClassValue.
   1.316 -     *  States are:<ul>
   1.317 -     *  <li> promise if value == Entry.this
   1.318 -     *  <li> else dead if version == null
   1.319 -     *  <li> else stale if version != classValue.version
   1.320 -     *  <li> else live </ul>
   1.321 -     *  Promises are never put into the cache; they only live in the
   1.322 -     *  backing map while a computeValue call is in flight.
   1.323 -     *  Once an entry goes stale, it can be reset at any time
   1.324 -     *  into the dead state.
   1.325 -     */
   1.326 -    static class Entry<T> extends WeakReference<Version<T>> {
   1.327 -        final Object value;  // usually of type T, but sometimes (Entry)this
   1.328 -        Entry(Version<T> version, T value) {
   1.329 -            super(version);
   1.330 -            this.value = value;  // for a regular entry, value is of type T
   1.331 -        }
   1.332 -        private void assertNotPromise() { assert(!isPromise()); }
   1.333 -        /** For creating a promise. */
   1.334 -        Entry(Version<T> version) {
   1.335 -            super(version);
   1.336 -            this.value = this;  // for a promise, value is not of type T, but Entry!
   1.337 -        }
   1.338 -        /** Fetch the value.  This entry must not be a promise. */
   1.339 -        @SuppressWarnings("unchecked")  // if !isPromise, type is T
   1.340 -        T value() { assertNotPromise(); return (T) value; }
   1.341 -        boolean isPromise() { return value == this; }
   1.342 -        Version<T> version() { return get(); }
   1.343 -        ClassValue<T> classValueOrNull() {
   1.344 -            Version<T> v = version();
   1.345 -            return (v == null) ? null : v.classValue();
   1.346 -        }
   1.347 -        boolean isLive() {
   1.348 -            Version<T> v = version();
   1.349 -            if (v == null)  return false;
   1.350 -            if (v.isLive())  return true;
   1.351 -            clear();
   1.352 -            return false;
   1.353 -        }
   1.354 -        Entry<T> refreshVersion(Version<T> v2) {
   1.355 -            assertNotPromise();
   1.356 -            @SuppressWarnings("unchecked")  // if !isPromise, type is T
   1.357 -            Entry<T> e2 = new Entry<>(v2, (T) value);
   1.358 -            clear();
   1.359 -            // value = null -- caller must drop
   1.360 -            return e2;
   1.361 -        }
   1.362 -        static final Entry<?> DEAD_ENTRY = new Entry<>(null, null);
   1.363 -    }
   1.364 -
   1.365 -    /** Return the backing map associated with this type. */
   1.366 -    private static ClassValueMap getMap(Class<?> type) {
   1.367 -        // racing type.classValueMap : null (blank) => unique ClassValueMap
   1.368 -        // if a null is observed, a map is created (lazily, synchronously, uniquely)
   1.369 -        // all further access to that map is synchronized
   1.370 -        ClassValueMap map = (ClassValueMap)type.classValueMap;
   1.371 -        if (map != null)  return map;
   1.372 -        return initializeMap(type);
   1.373 -    }
   1.374 -
   1.375 -    private static final Object CRITICAL_SECTION = new Object();
   1.376 -    private static ClassValueMap initializeMap(Class<?> type) {
   1.377 -        ClassValueMap map;
   1.378 -        synchronized (CRITICAL_SECTION) {  // private object to avoid deadlocks
   1.379 -            // happens about once per type
   1.380 -            if ((map = (ClassValueMap)type.classValueMap) == null)
   1.381 -                type.classValueMap = map = new ClassValueMap(type);
   1.382 -        }
   1.383 -            return map;
   1.384 -        }
   1.385 -
   1.386 -    static <T> Entry<T> makeEntry(Version<T> explicitVersion, T value) {
   1.387 -        // Note that explicitVersion might be different from this.version.
   1.388 -        return new Entry<>(explicitVersion, value);
   1.389 -
   1.390 -        // As soon as the Entry is put into the cache, the value will be
   1.391 -        // reachable via a data race (as defined by the Java Memory Model).
   1.392 -        // This race is benign, assuming the value object itself can be
   1.393 -        // read safely by multiple threads.  This is up to the user.
   1.394 -        //
   1.395 -        // The entry and version fields themselves can be safely read via
   1.396 -        // a race because they are either final or have controlled states.
   1.397 -        // If the pointer from the entry to the version is still null,
   1.398 -        // or if the version goes immediately dead and is nulled out,
   1.399 -        // the reader will take the slow path and retry under a lock.
   1.400 -    }
   1.401 -
   1.402 -    // The following class could also be top level and non-public:
   1.403 -
   1.404 -    /** A backing map for all ClassValues, relative a single given type.
   1.405 -     *  Gives a fully serialized "true state" for each pair (ClassValue cv, Class type).
   1.406 -     *  Also manages an unserialized fast-path cache.
   1.407 -     */
   1.408 -    static class ClassValueMap extends WeakHashMap<ClassValue.Identity, Entry<?>> {
   1.409 -        private final Class<?> type;
   1.410 -        private Entry<?>[] cacheArray;
   1.411 -        private int cacheLoad, cacheLoadLimit;
   1.412 -
   1.413 -        /** Number of entries initially allocated to each type when first used with any ClassValue.
   1.414 -         *  It would be pointless to make this much smaller than the Class and ClassValueMap objects themselves.
   1.415 -         *  Must be a power of 2.
   1.416 -         */
   1.417 -        private static final int INITIAL_ENTRIES = 32;
   1.418 -
   1.419 -        /** Build a backing map for ClassValues, relative the given type.
   1.420 -         *  Also, create an empty cache array and install it on the class.
   1.421 -         */
   1.422 -        ClassValueMap(Class<?> type) {
   1.423 -            this.type = type;
   1.424 -            sizeCache(INITIAL_ENTRIES);
   1.425 -        }
   1.426 -
   1.427 -        Entry<?>[] getCache() { return cacheArray; }
   1.428 -
   1.429 -        /** Initiate a query.  Store a promise (placeholder) if there is no value yet. */
   1.430 -        synchronized
   1.431 -        <T> Entry<T> startEntry(ClassValue<T> classValue) {
   1.432 -            @SuppressWarnings("unchecked")  // one map has entries for all value types <T>
   1.433 -            Entry<T> e = (Entry<T>) get(classValue.identity);
   1.434 -            Version<T> v = classValue.version();
   1.435 -            if (e == null) {
   1.436 -                e = v.promise();
   1.437 -                // The presence of a promise means that a value is pending for v.
   1.438 -                // Eventually, finishEntry will overwrite the promise.
   1.439 -                put(classValue.identity, e);
   1.440 -                // Note that the promise is never entered into the cache!
   1.441 -                return e;
   1.442 -            } else if (e.isPromise()) {
   1.443 -                // Somebody else has asked the same question.
   1.444 -                // Let the races begin!
   1.445 -                if (e.version() != v) {
   1.446 -                    e = v.promise();
   1.447 -                    put(classValue.identity, e);
   1.448 -                }
   1.449 -                return e;
   1.450 -            } else {
   1.451 -                // there is already a completed entry here; report it
   1.452 -                if (e.version() != v) {
   1.453 -                    // There is a stale but valid entry here; make it fresh again.
   1.454 -                    // Once an entry is in the hash table, we don't care what its version is.
   1.455 -                    e = e.refreshVersion(v);
   1.456 -                    put(classValue.identity, e);
   1.457 -                }
   1.458 -                // Add to the cache, to enable the fast path, next time.
   1.459 -                checkCacheLoad();
   1.460 -                addToCache(classValue, e);
   1.461 -                return e;
   1.462 -            }
   1.463 -        }
   1.464 -
   1.465 -        /** Finish a query.  Overwrite a matching placeholder.  Drop stale incoming values. */
   1.466 -        synchronized
   1.467 -        <T> Entry<T> finishEntry(ClassValue<T> classValue, Entry<T> e) {
   1.468 -            @SuppressWarnings("unchecked")  // one map has entries for all value types <T>
   1.469 -            Entry<T> e0 = (Entry<T>) get(classValue.identity);
   1.470 -            if (e == e0) {
   1.471 -                // We can get here during exception processing, unwinding from computeValue.
   1.472 -                assert(e.isPromise());
   1.473 -                remove(classValue.identity);
   1.474 -                return null;
   1.475 -            } else if (e0 != null && e0.isPromise() && e0.version() == e.version()) {
   1.476 -                // If e0 matches the intended entry, there has not been a remove call
   1.477 -                // between the previous startEntry and now.  So now overwrite e0.
   1.478 -                Version<T> v = classValue.version();
   1.479 -                if (e.version() != v)
   1.480 -                    e = e.refreshVersion(v);
   1.481 -                put(classValue.identity, e);
   1.482 -                // Add to the cache, to enable the fast path, next time.
   1.483 -                checkCacheLoad();
   1.484 -                addToCache(classValue, e);
   1.485 -                return e;
   1.486 -            } else {
   1.487 -                // Some sort of mismatch; caller must try again.
   1.488 -                return null;
   1.489 -            }
   1.490 -        }
   1.491 -
   1.492 -        /** Remove an entry. */
   1.493 -        synchronized
   1.494 -        void removeEntry(ClassValue<?> classValue) {
   1.495 -            Entry<?> e = remove(classValue.identity);
   1.496 -            if (e == null) {
   1.497 -                // Uninitialized, and no pending calls to computeValue.  No change.
   1.498 -            } else if (e.isPromise()) {
   1.499 -                // State is uninitialized, with a pending call to finishEntry.
   1.500 -                // Since remove is a no-op in such a state, keep the promise
   1.501 -                // by putting it back into the map.
   1.502 -                put(classValue.identity, e);
   1.503 -            } else {
   1.504 -                // In an initialized state.  Bump forward, and de-initialize.
   1.505 -                classValue.bumpVersion();
   1.506 -                // Make all cache elements for this guy go stale.
   1.507 -                removeStaleEntries(classValue);
   1.508 -            }
   1.509 -        }
   1.510 -
   1.511 -        /** Change the value for an entry. */
   1.512 -        synchronized
   1.513 -        <T> void changeEntry(ClassValue<T> classValue, T value) {
   1.514 -            @SuppressWarnings("unchecked")  // one map has entries for all value types <T>
   1.515 -            Entry<T> e0 = (Entry<T>) get(classValue.identity);
   1.516 -            Version<T> version = classValue.version();
   1.517 -            if (e0 != null) {
   1.518 -                if (e0.version() == version && e0.value() == value)
   1.519 -                    // no value change => no version change needed
   1.520 -                    return;
   1.521 -                classValue.bumpVersion();
   1.522 -                removeStaleEntries(classValue);
   1.523 -            }
   1.524 -            Entry<T> e = makeEntry(version, value);
   1.525 -            put(classValue.identity, e);
   1.526 -            // Add to the cache, to enable the fast path, next time.
   1.527 -            checkCacheLoad();
   1.528 -            addToCache(classValue, e);
   1.529 -        }
   1.530 -
   1.531 -        /// --------
   1.532 -        /// Cache management.
   1.533 -        /// --------
   1.534 -
   1.535 -        // Statics do not need synchronization.
   1.536 -
   1.537 -        /** Load the cache entry at the given (hashed) location. */
   1.538 -        static Entry<?> loadFromCache(Entry<?>[] cache, int i) {
   1.539 -            // non-racing cache.length : constant
   1.540 -            // racing cache[i & (mask)] : null <=> Entry
   1.541 -            return cache[i & (cache.length-1)];
   1.542 -            // invariant:  returned value is null or well-constructed (ready to match)
   1.543 -        }
   1.544 -
   1.545 -        /** Look in the cache, at the home location for the given ClassValue. */
   1.546 -        static <T> Entry<T> probeHomeLocation(Entry<?>[] cache, ClassValue<T> classValue) {
   1.547 -            return classValue.castEntry(loadFromCache(cache, classValue.hashCodeForCache));
   1.548 -        }
   1.549 -
   1.550 -        /** Given that first probe was a collision, retry at nearby locations. */
   1.551 -        static <T> Entry<T> probeBackupLocations(Entry<?>[] cache, ClassValue<T> classValue) {
   1.552 -            if (PROBE_LIMIT <= 0)  return null;
   1.553 -            // Probe the cache carefully, in a range of slots.
   1.554 -            int mask = (cache.length-1);
   1.555 -            int home = (classValue.hashCodeForCache & mask);
   1.556 -            Entry<?> e2 = cache[home];  // victim, if we find the real guy
   1.557 -            if (e2 == null) {
   1.558 -                return null;   // if nobody is at home, no need to search nearby
   1.559 -            }
   1.560 -            // assume !classValue.match(e2), but do not assert, because of races
   1.561 -            int pos2 = -1;
   1.562 -            for (int i = home + 1; i < home + PROBE_LIMIT; i++) {
   1.563 -                Entry<?> e = cache[i & mask];
   1.564 -                if (e == null) {
   1.565 -                    break;   // only search within non-null runs
   1.566 -                }
   1.567 -                if (classValue.match(e)) {
   1.568 -                    // relocate colliding entry e2 (from cache[home]) to first empty slot
   1.569 -                    cache[home] = e;
   1.570 -                    if (pos2 >= 0) {
   1.571 -                        cache[i & mask] = Entry.DEAD_ENTRY;
   1.572 -                    } else {
   1.573 -                        pos2 = i;
   1.574 -                    }
   1.575 -                    cache[pos2 & mask] = ((entryDislocation(cache, pos2, e2) < PROBE_LIMIT)
   1.576 -                                          ? e2                  // put e2 here if it fits
   1.577 -                                          : Entry.DEAD_ENTRY);
   1.578 -                    return classValue.castEntry(e);
   1.579 -                }
   1.580 -                // Remember first empty slot, if any:
   1.581 -                if (!e.isLive() && pos2 < 0)  pos2 = i;
   1.582 -            }
   1.583 -            return null;
   1.584 -        }
   1.585 -
   1.586 -        /** How far out of place is e? */
   1.587 -        private static int entryDislocation(Entry<?>[] cache, int pos, Entry<?> e) {
   1.588 -            ClassValue<?> cv = e.classValueOrNull();
   1.589 -            if (cv == null)  return 0;  // entry is not live!
   1.590 -            int mask = (cache.length-1);
   1.591 -            return (pos - cv.hashCodeForCache) & mask;
   1.592 -        }
   1.593 -
   1.594 -        /// --------
   1.595 -        /// Below this line all functions are private, and assume synchronized access.
   1.596 -        /// --------
   1.597 -
   1.598 -        private void sizeCache(int length) {
   1.599 -            assert((length & (length-1)) == 0);  // must be power of 2
   1.600 -            cacheLoad = 0;
   1.601 -            cacheLoadLimit = (int) ((double) length * CACHE_LOAD_LIMIT / 100);
   1.602 -            cacheArray = new Entry<?>[length];
   1.603 -        }
   1.604 -
   1.605 -        /** Make sure the cache load stays below its limit, if possible. */
   1.606 -        private void checkCacheLoad() {
   1.607 -            if (cacheLoad >= cacheLoadLimit) {
   1.608 -                reduceCacheLoad();
   1.609 -            }
   1.610 -        }
   1.611 -        private void reduceCacheLoad() {
   1.612 -            removeStaleEntries();
   1.613 -            if (cacheLoad < cacheLoadLimit)
   1.614 -                return;  // win
   1.615 -            Entry<?>[] oldCache = getCache();
   1.616 -            if (oldCache.length > HASH_MASK)
   1.617 -                return;  // lose
   1.618 -            sizeCache(oldCache.length * 2);
   1.619 -            for (Entry<?> e : oldCache) {
   1.620 -                if (e != null && e.isLive()) {
   1.621 -                    addToCache(e);
   1.622 -                }
   1.623 -            }
   1.624 -        }
   1.625 -
   1.626 -        /** Remove stale entries in the given range.
   1.627 -         *  Should be executed under a Map lock.
   1.628 -         */
   1.629 -        private void removeStaleEntries(Entry<?>[] cache, int begin, int count) {
   1.630 -            if (PROBE_LIMIT <= 0)  return;
   1.631 -            int mask = (cache.length-1);
   1.632 -            int removed = 0;
   1.633 -            for (int i = begin; i < begin + count; i++) {
   1.634 -                Entry<?> e = cache[i & mask];
   1.635 -                if (e == null || e.isLive())
   1.636 -                    continue;  // skip null and live entries
   1.637 -                Entry<?> replacement = null;
   1.638 -                if (PROBE_LIMIT > 1) {
   1.639 -                    // avoid breaking up a non-null run
   1.640 -                    replacement = findReplacement(cache, i);
   1.641 -                }
   1.642 -                cache[i & mask] = replacement;
   1.643 -                if (replacement == null)  removed += 1;
   1.644 -            }
   1.645 -            cacheLoad = Math.max(0, cacheLoad - removed);
   1.646 -        }
   1.647 -
   1.648 -        /** Clearing a cache slot risks disconnecting following entries
   1.649 -         *  from the head of a non-null run, which would allow them
   1.650 -         *  to be found via reprobes.  Find an entry after cache[begin]
   1.651 -         *  to plug into the hole, or return null if none is needed.
   1.652 -         */
   1.653 -        private Entry<?> findReplacement(Entry<?>[] cache, int home1) {
   1.654 -            Entry<?> replacement = null;
   1.655 -            int haveReplacement = -1, replacementPos = 0;
   1.656 -            int mask = (cache.length-1);
   1.657 -            for (int i2 = home1 + 1; i2 < home1 + PROBE_LIMIT; i2++) {
   1.658 -                Entry<?> e2 = cache[i2 & mask];
   1.659 -                if (e2 == null)  break;  // End of non-null run.
   1.660 -                if (!e2.isLive())  continue;  // Doomed anyway.
   1.661 -                int dis2 = entryDislocation(cache, i2, e2);
   1.662 -                if (dis2 == 0)  continue;  // e2 already optimally placed
   1.663 -                int home2 = i2 - dis2;
   1.664 -                if (home2 <= home1) {
   1.665 -                    // e2 can replace entry at cache[home1]
   1.666 -                    if (home2 == home1) {
   1.667 -                        // Put e2 exactly where he belongs.
   1.668 -                        haveReplacement = 1;
   1.669 -                        replacementPos = i2;
   1.670 -                        replacement = e2;
   1.671 -                    } else if (haveReplacement <= 0) {
   1.672 -                        haveReplacement = 0;
   1.673 -                        replacementPos = i2;
   1.674 -                        replacement = e2;
   1.675 -                    }
   1.676 -                    // And keep going, so we can favor larger dislocations.
   1.677 -                }
   1.678 -            }
   1.679 -            if (haveReplacement >= 0) {
   1.680 -                if (cache[(replacementPos+1) & mask] != null) {
   1.681 -                    // Be conservative, to avoid breaking up a non-null run.
   1.682 -                    cache[replacementPos & mask] = (Entry<?>) Entry.DEAD_ENTRY;
   1.683 -                } else {
   1.684 -                    cache[replacementPos & mask] = null;
   1.685 -                    cacheLoad -= 1;
   1.686 -                }
   1.687 -            }
   1.688 -            return replacement;
   1.689 -        }
   1.690 -
   1.691 -        /** Remove stale entries in the range near classValue. */
   1.692 -        private void removeStaleEntries(ClassValue<?> classValue) {
   1.693 -            removeStaleEntries(getCache(), classValue.hashCodeForCache, PROBE_LIMIT);
   1.694 -        }
   1.695 -
   1.696 -        /** Remove all stale entries, everywhere. */
   1.697 -        private void removeStaleEntries() {
   1.698 -            Entry<?>[] cache = getCache();
   1.699 -            removeStaleEntries(cache, 0, cache.length + PROBE_LIMIT - 1);
   1.700 -        }
   1.701 -
   1.702 -        /** Add the given entry to the cache, in its home location, unless it is out of date. */
   1.703 -        private <T> void addToCache(Entry<T> e) {
   1.704 -            ClassValue<T> classValue = e.classValueOrNull();
   1.705 -            if (classValue != null)
   1.706 -                addToCache(classValue, e);
   1.707 -        }
   1.708 -
   1.709 -        /** Add the given entry to the cache, in its home location. */
   1.710 -        private <T> void addToCache(ClassValue<T> classValue, Entry<T> e) {
   1.711 -            if (PROBE_LIMIT <= 0)  return;  // do not fill cache
   1.712 -            // Add e to the cache.
   1.713 -            Entry<?>[] cache = getCache();
   1.714 -            int mask = (cache.length-1);
   1.715 -            int home = classValue.hashCodeForCache & mask;
   1.716 -            Entry<?> e2 = placeInCache(cache, home, e, false);
   1.717 -            if (e2 == null)  return;  // done
   1.718 -            if (PROBE_LIMIT > 1) {
   1.719 -                // try to move e2 somewhere else in his probe range
   1.720 -                int dis2 = entryDislocation(cache, home, e2);
   1.721 -                int home2 = home - dis2;
   1.722 -                for (int i2 = home2; i2 < home2 + PROBE_LIMIT; i2++) {
   1.723 -                    if (placeInCache(cache, i2 & mask, e2, true) == null) {
   1.724 -                        return;
   1.725 -                    }
   1.726 -                }
   1.727 -            }
   1.728 -            // Note:  At this point, e2 is just dropped from the cache.
   1.729 -        }
   1.730 -
   1.731 -        /** Store the given entry.  Update cacheLoad, and return any live victim.
   1.732 -         *  'Gently' means return self rather than dislocating a live victim.
   1.733 -         */
   1.734 -        private Entry<?> placeInCache(Entry<?>[] cache, int pos, Entry<?> e, boolean gently) {
   1.735 -            Entry<?> e2 = overwrittenEntry(cache[pos]);
   1.736 -            if (gently && e2 != null) {
   1.737 -                // do not overwrite a live entry
   1.738 -                return e;
   1.739 -            } else {
   1.740 -                cache[pos] = e;
   1.741 -                return e2;
   1.742 -            }
   1.743 -        }
   1.744 -
   1.745 -        /** Note an entry that is about to be overwritten.
   1.746 -         *  If it is not live, quietly replace it by null.
   1.747 -         *  If it is an actual null, increment cacheLoad,
   1.748 -         *  because the caller is going to store something
   1.749 -         *  in its place.
   1.750 -         */
   1.751 -        private <T> Entry<T> overwrittenEntry(Entry<T> e2) {
   1.752 -            if (e2 == null)  cacheLoad += 1;
   1.753 -            else if (e2.isLive())  return e2;
   1.754 -            return null;
   1.755 -        }
   1.756 -
   1.757 -        /** Percent loading of cache before resize. */
   1.758 -        private static final int CACHE_LOAD_LIMIT = 67;  // 0..100
   1.759 -        /** Maximum number of probes to attempt. */
   1.760 -        private static final int PROBE_LIMIT      =  6;       // 1..
   1.761 -        // N.B.  Set PROBE_LIMIT=0 to disable all fast paths.
   1.762 -    }
   1.763 -}