emul/compact/src/main/java/java/util/Hashtable.java
changeset 772 d382dacfd73f
parent 771 4252bfc396fc
child 773 406faa8bc64f
     1.1 --- a/emul/compact/src/main/java/java/util/Hashtable.java	Tue Feb 26 14:55:55 2013 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,1005 +0,0 @@
     1.4 -/*
     1.5 - * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
     1.6 - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 - *
     1.8 - * This code is free software; you can redistribute it and/or modify it
     1.9 - * under the terms of the GNU General Public License version 2 only, as
    1.10 - * published by the Free Software Foundation.  Oracle designates this
    1.11 - * particular file as subject to the "Classpath" exception as provided
    1.12 - * by Oracle in the LICENSE file that accompanied this code.
    1.13 - *
    1.14 - * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 - * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 - * version 2 for more details (a copy is included in the LICENSE file that
    1.18 - * accompanied this code).
    1.19 - *
    1.20 - * You should have received a copy of the GNU General Public License version
    1.21 - * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 - *
    1.24 - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 - * or visit www.oracle.com if you need additional information or have any
    1.26 - * questions.
    1.27 - */
    1.28 -
    1.29 -package java.util;
    1.30 -import java.io.*;
    1.31 -
    1.32 -/**
    1.33 - * This class implements a hash table, which maps keys to values. Any
    1.34 - * non-<code>null</code> object can be used as a key or as a value. <p>
    1.35 - *
    1.36 - * To successfully store and retrieve objects from a hashtable, the
    1.37 - * objects used as keys must implement the <code>hashCode</code>
    1.38 - * method and the <code>equals</code> method. <p>
    1.39 - *
    1.40 - * An instance of <code>Hashtable</code> has two parameters that affect its
    1.41 - * performance: <i>initial capacity</i> and <i>load factor</i>.  The
    1.42 - * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the
    1.43 - * <i>initial capacity</i> is simply the capacity at the time the hash table
    1.44 - * is created.  Note that the hash table is <i>open</i>: in the case of a "hash
    1.45 - * collision", a single bucket stores multiple entries, which must be searched
    1.46 - * sequentially.  The <i>load factor</i> is a measure of how full the hash
    1.47 - * table is allowed to get before its capacity is automatically increased.
    1.48 - * The initial capacity and load factor parameters are merely hints to
    1.49 - * the implementation.  The exact details as to when and whether the rehash
    1.50 - * method is invoked are implementation-dependent.<p>
    1.51 - *
    1.52 - * Generally, the default load factor (.75) offers a good tradeoff between
    1.53 - * time and space costs.  Higher values decrease the space overhead but
    1.54 - * increase the time cost to look up an entry (which is reflected in most
    1.55 - * <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p>
    1.56 - *
    1.57 - * The initial capacity controls a tradeoff between wasted space and the
    1.58 - * need for <code>rehash</code> operations, which are time-consuming.
    1.59 - * No <code>rehash</code> operations will <i>ever</i> occur if the initial
    1.60 - * capacity is greater than the maximum number of entries the
    1.61 - * <tt>Hashtable</tt> will contain divided by its load factor.  However,
    1.62 - * setting the initial capacity too high can waste space.<p>
    1.63 - *
    1.64 - * If many entries are to be made into a <code>Hashtable</code>,
    1.65 - * creating it with a sufficiently large capacity may allow the
    1.66 - * entries to be inserted more efficiently than letting it perform
    1.67 - * automatic rehashing as needed to grow the table. <p>
    1.68 - *
    1.69 - * This example creates a hashtable of numbers. It uses the names of
    1.70 - * the numbers as keys:
    1.71 - * <pre>   {@code
    1.72 - *   Hashtable<String, Integer> numbers
    1.73 - *     = new Hashtable<String, Integer>();
    1.74 - *   numbers.put("one", 1);
    1.75 - *   numbers.put("two", 2);
    1.76 - *   numbers.put("three", 3);}</pre>
    1.77 - *
    1.78 - * <p>To retrieve a number, use the following code:
    1.79 - * <pre>   {@code
    1.80 - *   Integer n = numbers.get("two");
    1.81 - *   if (n != null) {
    1.82 - *     System.out.println("two = " + n);
    1.83 - *   }}</pre>
    1.84 - *
    1.85 - * <p>The iterators returned by the <tt>iterator</tt> method of the collections
    1.86 - * returned by all of this class's "collection view methods" are
    1.87 - * <em>fail-fast</em>: if the Hashtable is structurally modified at any time
    1.88 - * after the iterator is created, in any way except through the iterator's own
    1.89 - * <tt>remove</tt> method, the iterator will throw a {@link
    1.90 - * ConcurrentModificationException}.  Thus, in the face of concurrent
    1.91 - * modification, the iterator fails quickly and cleanly, rather than risking
    1.92 - * arbitrary, non-deterministic behavior at an undetermined time in the future.
    1.93 - * The Enumerations returned by Hashtable's keys and elements methods are
    1.94 - * <em>not</em> fail-fast.
    1.95 - *
    1.96 - * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
    1.97 - * as it is, generally speaking, impossible to make any hard guarantees in the
    1.98 - * presence of unsynchronized concurrent modification.  Fail-fast iterators
    1.99 - * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
   1.100 - * Therefore, it would be wrong to write a program that depended on this
   1.101 - * exception for its correctness: <i>the fail-fast behavior of iterators
   1.102 - * should be used only to detect bugs.</i>
   1.103 - *
   1.104 - * <p>As of the Java 2 platform v1.2, this class was retrofitted to
   1.105 - * implement the {@link Map} interface, making it a member of the
   1.106 - * <a href="{@docRoot}/../technotes/guides/collections/index.html">
   1.107 - *
   1.108 - * Java Collections Framework</a>.  Unlike the new collection
   1.109 - * implementations, {@code Hashtable} is synchronized.  If a
   1.110 - * thread-safe implementation is not needed, it is recommended to use
   1.111 - * {@link HashMap} in place of {@code Hashtable}.  If a thread-safe
   1.112 - * highly-concurrent implementation is desired, then it is recommended
   1.113 - * to use {@link java.util.concurrent.ConcurrentHashMap} in place of
   1.114 - * {@code Hashtable}.
   1.115 - *
   1.116 - * @author  Arthur van Hoff
   1.117 - * @author  Josh Bloch
   1.118 - * @author  Neal Gafter
   1.119 - * @see     Object#equals(java.lang.Object)
   1.120 - * @see     Object#hashCode()
   1.121 - * @see     Hashtable#rehash()
   1.122 - * @see     Collection
   1.123 - * @see     Map
   1.124 - * @see     HashMap
   1.125 - * @see     TreeMap
   1.126 - * @since JDK1.0
   1.127 - */
   1.128 -public class Hashtable<K,V>
   1.129 -    extends Dictionary<K,V>
   1.130 -    implements Map<K,V>, Cloneable, java.io.Serializable {
   1.131 -
   1.132 -    /**
   1.133 -     * The hash table data.
   1.134 -     */
   1.135 -    private transient Entry[] table;
   1.136 -
   1.137 -    /**
   1.138 -     * The total number of entries in the hash table.
   1.139 -     */
   1.140 -    private transient int count;
   1.141 -
   1.142 -    /**
   1.143 -     * The table is rehashed when its size exceeds this threshold.  (The
   1.144 -     * value of this field is (int)(capacity * loadFactor).)
   1.145 -     *
   1.146 -     * @serial
   1.147 -     */
   1.148 -    private int threshold;
   1.149 -
   1.150 -    /**
   1.151 -     * The load factor for the hashtable.
   1.152 -     *
   1.153 -     * @serial
   1.154 -     */
   1.155 -    private float loadFactor;
   1.156 -
   1.157 -    /**
   1.158 -     * The number of times this Hashtable has been structurally modified
   1.159 -     * Structural modifications are those that change the number of entries in
   1.160 -     * the Hashtable or otherwise modify its internal structure (e.g.,
   1.161 -     * rehash).  This field is used to make iterators on Collection-views of
   1.162 -     * the Hashtable fail-fast.  (See ConcurrentModificationException).
   1.163 -     */
   1.164 -    private transient int modCount = 0;
   1.165 -
   1.166 -    /** use serialVersionUID from JDK 1.0.2 for interoperability */
   1.167 -    private static final long serialVersionUID = 1421746759512286392L;
   1.168 -
   1.169 -    /**
   1.170 -     * Constructs a new, empty hashtable with the specified initial
   1.171 -     * capacity and the specified load factor.
   1.172 -     *
   1.173 -     * @param      initialCapacity   the initial capacity of the hashtable.
   1.174 -     * @param      loadFactor        the load factor of the hashtable.
   1.175 -     * @exception  IllegalArgumentException  if the initial capacity is less
   1.176 -     *             than zero, or if the load factor is nonpositive.
   1.177 -     */
   1.178 -    public Hashtable(int initialCapacity, float loadFactor) {
   1.179 -        if (initialCapacity < 0)
   1.180 -            throw new IllegalArgumentException("Illegal Capacity: "+
   1.181 -                                               initialCapacity);
   1.182 -        if (loadFactor <= 0 || Float.isNaN(loadFactor))
   1.183 -            throw new IllegalArgumentException("Illegal Load: "+loadFactor);
   1.184 -
   1.185 -        if (initialCapacity==0)
   1.186 -            initialCapacity = 1;
   1.187 -        this.loadFactor = loadFactor;
   1.188 -        table = new Entry[initialCapacity];
   1.189 -        threshold = (int)(initialCapacity * loadFactor);
   1.190 -    }
   1.191 -
   1.192 -    /**
   1.193 -     * Constructs a new, empty hashtable with the specified initial capacity
   1.194 -     * and default load factor (0.75).
   1.195 -     *
   1.196 -     * @param     initialCapacity   the initial capacity of the hashtable.
   1.197 -     * @exception IllegalArgumentException if the initial capacity is less
   1.198 -     *              than zero.
   1.199 -     */
   1.200 -    public Hashtable(int initialCapacity) {
   1.201 -        this(initialCapacity, 0.75f);
   1.202 -    }
   1.203 -
   1.204 -    /**
   1.205 -     * Constructs a new, empty hashtable with a default initial capacity (11)
   1.206 -     * and load factor (0.75).
   1.207 -     */
   1.208 -    public Hashtable() {
   1.209 -        this(11, 0.75f);
   1.210 -    }
   1.211 -
   1.212 -    /**
   1.213 -     * Constructs a new hashtable with the same mappings as the given
   1.214 -     * Map.  The hashtable is created with an initial capacity sufficient to
   1.215 -     * hold the mappings in the given Map and a default load factor (0.75).
   1.216 -     *
   1.217 -     * @param t the map whose mappings are to be placed in this map.
   1.218 -     * @throws NullPointerException if the specified map is null.
   1.219 -     * @since   1.2
   1.220 -     */
   1.221 -    public Hashtable(Map<? extends K, ? extends V> t) {
   1.222 -        this(Math.max(2*t.size(), 11), 0.75f);
   1.223 -        putAll(t);
   1.224 -    }
   1.225 -
   1.226 -    /**
   1.227 -     * Returns the number of keys in this hashtable.
   1.228 -     *
   1.229 -     * @return  the number of keys in this hashtable.
   1.230 -     */
   1.231 -    public synchronized int size() {
   1.232 -        return count;
   1.233 -    }
   1.234 -
   1.235 -    /**
   1.236 -     * Tests if this hashtable maps no keys to values.
   1.237 -     *
   1.238 -     * @return  <code>true</code> if this hashtable maps no keys to values;
   1.239 -     *          <code>false</code> otherwise.
   1.240 -     */
   1.241 -    public synchronized boolean isEmpty() {
   1.242 -        return count == 0;
   1.243 -    }
   1.244 -
   1.245 -    /**
   1.246 -     * Returns an enumeration of the keys in this hashtable.
   1.247 -     *
   1.248 -     * @return  an enumeration of the keys in this hashtable.
   1.249 -     * @see     Enumeration
   1.250 -     * @see     #elements()
   1.251 -     * @see     #keySet()
   1.252 -     * @see     Map
   1.253 -     */
   1.254 -    public synchronized Enumeration<K> keys() {
   1.255 -        return this.<K>getEnumeration(KEYS);
   1.256 -    }
   1.257 -
   1.258 -    /**
   1.259 -     * Returns an enumeration of the values in this hashtable.
   1.260 -     * Use the Enumeration methods on the returned object to fetch the elements
   1.261 -     * sequentially.
   1.262 -     *
   1.263 -     * @return  an enumeration of the values in this hashtable.
   1.264 -     * @see     java.util.Enumeration
   1.265 -     * @see     #keys()
   1.266 -     * @see     #values()
   1.267 -     * @see     Map
   1.268 -     */
   1.269 -    public synchronized Enumeration<V> elements() {
   1.270 -        return this.<V>getEnumeration(VALUES);
   1.271 -    }
   1.272 -
   1.273 -    /**
   1.274 -     * Tests if some key maps into the specified value in this hashtable.
   1.275 -     * This operation is more expensive than the {@link #containsKey
   1.276 -     * containsKey} method.
   1.277 -     *
   1.278 -     * <p>Note that this method is identical in functionality to
   1.279 -     * {@link #containsValue containsValue}, (which is part of the
   1.280 -     * {@link Map} interface in the collections framework).
   1.281 -     *
   1.282 -     * @param      value   a value to search for
   1.283 -     * @return     <code>true</code> if and only if some key maps to the
   1.284 -     *             <code>value</code> argument in this hashtable as
   1.285 -     *             determined by the <tt>equals</tt> method;
   1.286 -     *             <code>false</code> otherwise.
   1.287 -     * @exception  NullPointerException  if the value is <code>null</code>
   1.288 -     */
   1.289 -    public synchronized boolean contains(Object value) {
   1.290 -        if (value == null) {
   1.291 -            throw new NullPointerException();
   1.292 -        }
   1.293 -
   1.294 -        Entry tab[] = table;
   1.295 -        for (int i = tab.length ; i-- > 0 ;) {
   1.296 -            for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
   1.297 -                if (e.value.equals(value)) {
   1.298 -                    return true;
   1.299 -                }
   1.300 -            }
   1.301 -        }
   1.302 -        return false;
   1.303 -    }
   1.304 -
   1.305 -    /**
   1.306 -     * Returns true if this hashtable maps one or more keys to this value.
   1.307 -     *
   1.308 -     * <p>Note that this method is identical in functionality to {@link
   1.309 -     * #contains contains} (which predates the {@link Map} interface).
   1.310 -     *
   1.311 -     * @param value value whose presence in this hashtable is to be tested
   1.312 -     * @return <tt>true</tt> if this map maps one or more keys to the
   1.313 -     *         specified value
   1.314 -     * @throws NullPointerException  if the value is <code>null</code>
   1.315 -     * @since 1.2
   1.316 -     */
   1.317 -    public boolean containsValue(Object value) {
   1.318 -        return contains(value);
   1.319 -    }
   1.320 -
   1.321 -    /**
   1.322 -     * Tests if the specified object is a key in this hashtable.
   1.323 -     *
   1.324 -     * @param   key   possible key
   1.325 -     * @return  <code>true</code> if and only if the specified object
   1.326 -     *          is a key in this hashtable, as determined by the
   1.327 -     *          <tt>equals</tt> method; <code>false</code> otherwise.
   1.328 -     * @throws  NullPointerException  if the key is <code>null</code>
   1.329 -     * @see     #contains(Object)
   1.330 -     */
   1.331 -    public synchronized boolean containsKey(Object key) {
   1.332 -        Entry tab[] = table;
   1.333 -        int hash = key.hashCode();
   1.334 -        int index = (hash & 0x7FFFFFFF) % tab.length;
   1.335 -        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
   1.336 -            if ((e.hash == hash) && e.key.equals(key)) {
   1.337 -                return true;
   1.338 -            }
   1.339 -        }
   1.340 -        return false;
   1.341 -    }
   1.342 -
   1.343 -    /**
   1.344 -     * Returns the value to which the specified key is mapped,
   1.345 -     * or {@code null} if this map contains no mapping for the key.
   1.346 -     *
   1.347 -     * <p>More formally, if this map contains a mapping from a key
   1.348 -     * {@code k} to a value {@code v} such that {@code (key.equals(k))},
   1.349 -     * then this method returns {@code v}; otherwise it returns
   1.350 -     * {@code null}.  (There can be at most one such mapping.)
   1.351 -     *
   1.352 -     * @param key the key whose associated value is to be returned
   1.353 -     * @return the value to which the specified key is mapped, or
   1.354 -     *         {@code null} if this map contains no mapping for the key
   1.355 -     * @throws NullPointerException if the specified key is null
   1.356 -     * @see     #put(Object, Object)
   1.357 -     */
   1.358 -    public synchronized V get(Object key) {
   1.359 -        Entry tab[] = table;
   1.360 -        int hash = key.hashCode();
   1.361 -        int index = (hash & 0x7FFFFFFF) % tab.length;
   1.362 -        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
   1.363 -            if ((e.hash == hash) && e.key.equals(key)) {
   1.364 -                return e.value;
   1.365 -            }
   1.366 -        }
   1.367 -        return null;
   1.368 -    }
   1.369 -
   1.370 -    /**
   1.371 -     * The maximum size of array to allocate.
   1.372 -     * Some VMs reserve some header words in an array.
   1.373 -     * Attempts to allocate larger arrays may result in
   1.374 -     * OutOfMemoryError: Requested array size exceeds VM limit
   1.375 -     */
   1.376 -    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
   1.377 -
   1.378 -    /**
   1.379 -     * Increases the capacity of and internally reorganizes this
   1.380 -     * hashtable, in order to accommodate and access its entries more
   1.381 -     * efficiently.  This method is called automatically when the
   1.382 -     * number of keys in the hashtable exceeds this hashtable's capacity
   1.383 -     * and load factor.
   1.384 -     */
   1.385 -    protected void rehash() {
   1.386 -        int oldCapacity = table.length;
   1.387 -        Entry[] oldMap = table;
   1.388 -
   1.389 -        // overflow-conscious code
   1.390 -        int newCapacity = (oldCapacity << 1) + 1;
   1.391 -        if (newCapacity - MAX_ARRAY_SIZE > 0) {
   1.392 -            if (oldCapacity == MAX_ARRAY_SIZE)
   1.393 -                // Keep running with MAX_ARRAY_SIZE buckets
   1.394 -                return;
   1.395 -            newCapacity = MAX_ARRAY_SIZE;
   1.396 -        }
   1.397 -        Entry[] newMap = new Entry[newCapacity];
   1.398 -
   1.399 -        modCount++;
   1.400 -        threshold = (int)(newCapacity * loadFactor);
   1.401 -        table = newMap;
   1.402 -
   1.403 -        for (int i = oldCapacity ; i-- > 0 ;) {
   1.404 -            for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
   1.405 -                Entry<K,V> e = old;
   1.406 -                old = old.next;
   1.407 -
   1.408 -                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
   1.409 -                e.next = newMap[index];
   1.410 -                newMap[index] = e;
   1.411 -            }
   1.412 -        }
   1.413 -    }
   1.414 -
   1.415 -    /**
   1.416 -     * Maps the specified <code>key</code> to the specified
   1.417 -     * <code>value</code> in this hashtable. Neither the key nor the
   1.418 -     * value can be <code>null</code>. <p>
   1.419 -     *
   1.420 -     * The value can be retrieved by calling the <code>get</code> method
   1.421 -     * with a key that is equal to the original key.
   1.422 -     *
   1.423 -     * @param      key     the hashtable key
   1.424 -     * @param      value   the value
   1.425 -     * @return     the previous value of the specified key in this hashtable,
   1.426 -     *             or <code>null</code> if it did not have one
   1.427 -     * @exception  NullPointerException  if the key or value is
   1.428 -     *               <code>null</code>
   1.429 -     * @see     Object#equals(Object)
   1.430 -     * @see     #get(Object)
   1.431 -     */
   1.432 -    public synchronized V put(K key, V value) {
   1.433 -        // Make sure the value is not null
   1.434 -        if (value == null) {
   1.435 -            throw new NullPointerException();
   1.436 -        }
   1.437 -
   1.438 -        // Makes sure the key is not already in the hashtable.
   1.439 -        Entry tab[] = table;
   1.440 -        int hash = key.hashCode();
   1.441 -        int index = (hash & 0x7FFFFFFF) % tab.length;
   1.442 -        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
   1.443 -            if ((e.hash == hash) && e.key.equals(key)) {
   1.444 -                V old = e.value;
   1.445 -                e.value = value;
   1.446 -                return old;
   1.447 -            }
   1.448 -        }
   1.449 -
   1.450 -        modCount++;
   1.451 -        if (count >= threshold) {
   1.452 -            // Rehash the table if the threshold is exceeded
   1.453 -            rehash();
   1.454 -
   1.455 -            tab = table;
   1.456 -            index = (hash & 0x7FFFFFFF) % tab.length;
   1.457 -        }
   1.458 -
   1.459 -        // Creates the new entry.
   1.460 -        Entry<K,V> e = tab[index];
   1.461 -        tab[index] = new Entry<>(hash, key, value, e);
   1.462 -        count++;
   1.463 -        return null;
   1.464 -    }
   1.465 -
   1.466 -    /**
   1.467 -     * Removes the key (and its corresponding value) from this
   1.468 -     * hashtable. This method does nothing if the key is not in the hashtable.
   1.469 -     *
   1.470 -     * @param   key   the key that needs to be removed
   1.471 -     * @return  the value to which the key had been mapped in this hashtable,
   1.472 -     *          or <code>null</code> if the key did not have a mapping
   1.473 -     * @throws  NullPointerException  if the key is <code>null</code>
   1.474 -     */
   1.475 -    public synchronized V remove(Object key) {
   1.476 -        Entry tab[] = table;
   1.477 -        int hash = key.hashCode();
   1.478 -        int index = (hash & 0x7FFFFFFF) % tab.length;
   1.479 -        for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
   1.480 -            if ((e.hash == hash) && e.key.equals(key)) {
   1.481 -                modCount++;
   1.482 -                if (prev != null) {
   1.483 -                    prev.next = e.next;
   1.484 -                } else {
   1.485 -                    tab[index] = e.next;
   1.486 -                }
   1.487 -                count--;
   1.488 -                V oldValue = e.value;
   1.489 -                e.value = null;
   1.490 -                return oldValue;
   1.491 -            }
   1.492 -        }
   1.493 -        return null;
   1.494 -    }
   1.495 -
   1.496 -    /**
   1.497 -     * Copies all of the mappings from the specified map to this hashtable.
   1.498 -     * These mappings will replace any mappings that this hashtable had for any
   1.499 -     * of the keys currently in the specified map.
   1.500 -     *
   1.501 -     * @param t mappings to be stored in this map
   1.502 -     * @throws NullPointerException if the specified map is null
   1.503 -     * @since 1.2
   1.504 -     */
   1.505 -    public synchronized void putAll(Map<? extends K, ? extends V> t) {
   1.506 -        for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
   1.507 -            put(e.getKey(), e.getValue());
   1.508 -    }
   1.509 -
   1.510 -    /**
   1.511 -     * Clears this hashtable so that it contains no keys.
   1.512 -     */
   1.513 -    public synchronized void clear() {
   1.514 -        Entry tab[] = table;
   1.515 -        modCount++;
   1.516 -        for (int index = tab.length; --index >= 0; )
   1.517 -            tab[index] = null;
   1.518 -        count = 0;
   1.519 -    }
   1.520 -
   1.521 -    /**
   1.522 -     * Creates a shallow copy of this hashtable. All the structure of the
   1.523 -     * hashtable itself is copied, but the keys and values are not cloned.
   1.524 -     * This is a relatively expensive operation.
   1.525 -     *
   1.526 -     * @return  a clone of the hashtable
   1.527 -     */
   1.528 -    public synchronized Object clone() {
   1.529 -        try {
   1.530 -            Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
   1.531 -            t.table = new Entry[table.length];
   1.532 -            for (int i = table.length ; i-- > 0 ; ) {
   1.533 -                t.table[i] = (table[i] != null)
   1.534 -                    ? (Entry<K,V>) table[i].clone() : null;
   1.535 -            }
   1.536 -            t.keySet = null;
   1.537 -            t.entrySet = null;
   1.538 -            t.values = null;
   1.539 -            t.modCount = 0;
   1.540 -            return t;
   1.541 -        } catch (CloneNotSupportedException e) {
   1.542 -            // this shouldn't happen, since we are Cloneable
   1.543 -            throw new InternalError();
   1.544 -        }
   1.545 -    }
   1.546 -
   1.547 -    /**
   1.548 -     * Returns a string representation of this <tt>Hashtable</tt> object
   1.549 -     * in the form of a set of entries, enclosed in braces and separated
   1.550 -     * by the ASCII characters "<tt>,&nbsp;</tt>" (comma and space). Each
   1.551 -     * entry is rendered as the key, an equals sign <tt>=</tt>, and the
   1.552 -     * associated element, where the <tt>toString</tt> method is used to
   1.553 -     * convert the key and element to strings.
   1.554 -     *
   1.555 -     * @return  a string representation of this hashtable
   1.556 -     */
   1.557 -    public synchronized String toString() {
   1.558 -        int max = size() - 1;
   1.559 -        if (max == -1)
   1.560 -            return "{}";
   1.561 -
   1.562 -        StringBuilder sb = new StringBuilder();
   1.563 -        Iterator<Map.Entry<K,V>> it = entrySet().iterator();
   1.564 -
   1.565 -        sb.append('{');
   1.566 -        for (int i = 0; ; i++) {
   1.567 -            Map.Entry<K,V> e = it.next();
   1.568 -            K key = e.getKey();
   1.569 -            V value = e.getValue();
   1.570 -            sb.append(key   == this ? "(this Map)" : key.toString());
   1.571 -            sb.append('=');
   1.572 -            sb.append(value == this ? "(this Map)" : value.toString());
   1.573 -
   1.574 -            if (i == max)
   1.575 -                return sb.append('}').toString();
   1.576 -            sb.append(", ");
   1.577 -        }
   1.578 -    }
   1.579 -
   1.580 -
   1.581 -    private <T> Enumeration<T> getEnumeration(int type) {
   1.582 -        if (count == 0) {
   1.583 -            return Collections.emptyEnumeration();
   1.584 -        } else {
   1.585 -            return new Enumerator<>(type, false);
   1.586 -        }
   1.587 -    }
   1.588 -
   1.589 -    private <T> Iterator<T> getIterator(int type) {
   1.590 -        if (count == 0) {
   1.591 -            return Collections.emptyIterator();
   1.592 -        } else {
   1.593 -            return new Enumerator<>(type, true);
   1.594 -        }
   1.595 -    }
   1.596 -
   1.597 -    // Views
   1.598 -
   1.599 -    /**
   1.600 -     * Each of these fields are initialized to contain an instance of the
   1.601 -     * appropriate view the first time this view is requested.  The views are
   1.602 -     * stateless, so there's no reason to create more than one of each.
   1.603 -     */
   1.604 -    private transient volatile Set<K> keySet = null;
   1.605 -    private transient volatile Set<Map.Entry<K,V>> entrySet = null;
   1.606 -    private transient volatile Collection<V> values = null;
   1.607 -
   1.608 -    /**
   1.609 -     * Returns a {@link Set} view of the keys contained in this map.
   1.610 -     * The set is backed by the map, so changes to the map are
   1.611 -     * reflected in the set, and vice-versa.  If the map is modified
   1.612 -     * while an iteration over the set is in progress (except through
   1.613 -     * the iterator's own <tt>remove</tt> operation), the results of
   1.614 -     * the iteration are undefined.  The set supports element removal,
   1.615 -     * which removes the corresponding mapping from the map, via the
   1.616 -     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
   1.617 -     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
   1.618 -     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
   1.619 -     * operations.
   1.620 -     *
   1.621 -     * @since 1.2
   1.622 -     */
   1.623 -    public Set<K> keySet() {
   1.624 -        if (keySet == null)
   1.625 -            keySet = Collections.synchronizedSet(new KeySet(), this);
   1.626 -        return keySet;
   1.627 -    }
   1.628 -
   1.629 -    private class KeySet extends AbstractSet<K> {
   1.630 -        public Iterator<K> iterator() {
   1.631 -            return getIterator(KEYS);
   1.632 -        }
   1.633 -        public int size() {
   1.634 -            return count;
   1.635 -        }
   1.636 -        public boolean contains(Object o) {
   1.637 -            return containsKey(o);
   1.638 -        }
   1.639 -        public boolean remove(Object o) {
   1.640 -            return Hashtable.this.remove(o) != null;
   1.641 -        }
   1.642 -        public void clear() {
   1.643 -            Hashtable.this.clear();
   1.644 -        }
   1.645 -    }
   1.646 -
   1.647 -    /**
   1.648 -     * Returns a {@link Set} view of the mappings contained in this map.
   1.649 -     * The set is backed by the map, so changes to the map are
   1.650 -     * reflected in the set, and vice-versa.  If the map is modified
   1.651 -     * while an iteration over the set is in progress (except through
   1.652 -     * the iterator's own <tt>remove</tt> operation, or through the
   1.653 -     * <tt>setValue</tt> operation on a map entry returned by the
   1.654 -     * iterator) the results of the iteration are undefined.  The set
   1.655 -     * supports element removal, which removes the corresponding
   1.656 -     * mapping from the map, via the <tt>Iterator.remove</tt>,
   1.657 -     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
   1.658 -     * <tt>clear</tt> operations.  It does not support the
   1.659 -     * <tt>add</tt> or <tt>addAll</tt> operations.
   1.660 -     *
   1.661 -     * @since 1.2
   1.662 -     */
   1.663 -    public Set<Map.Entry<K,V>> entrySet() {
   1.664 -        if (entrySet==null)
   1.665 -            entrySet = Collections.synchronizedSet(new EntrySet(), this);
   1.666 -        return entrySet;
   1.667 -    }
   1.668 -
   1.669 -    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
   1.670 -        public Iterator<Map.Entry<K,V>> iterator() {
   1.671 -            return getIterator(ENTRIES);
   1.672 -        }
   1.673 -
   1.674 -        public boolean add(Map.Entry<K,V> o) {
   1.675 -            return super.add(o);
   1.676 -        }
   1.677 -
   1.678 -        public boolean contains(Object o) {
   1.679 -            if (!(o instanceof Map.Entry))
   1.680 -                return false;
   1.681 -            Map.Entry entry = (Map.Entry)o;
   1.682 -            Object key = entry.getKey();
   1.683 -            Entry[] tab = table;
   1.684 -            int hash = key.hashCode();
   1.685 -            int index = (hash & 0x7FFFFFFF) % tab.length;
   1.686 -
   1.687 -            for (Entry e = tab[index]; e != null; e = e.next)
   1.688 -                if (e.hash==hash && e.equals(entry))
   1.689 -                    return true;
   1.690 -            return false;
   1.691 -        }
   1.692 -
   1.693 -        public boolean remove(Object o) {
   1.694 -            if (!(o instanceof Map.Entry))
   1.695 -                return false;
   1.696 -            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
   1.697 -            K key = entry.getKey();
   1.698 -            Entry[] tab = table;
   1.699 -            int hash = key.hashCode();
   1.700 -            int index = (hash & 0x7FFFFFFF) % tab.length;
   1.701 -
   1.702 -            for (Entry<K,V> e = tab[index], prev = null; e != null;
   1.703 -                 prev = e, e = e.next) {
   1.704 -                if (e.hash==hash && e.equals(entry)) {
   1.705 -                    modCount++;
   1.706 -                    if (prev != null)
   1.707 -                        prev.next = e.next;
   1.708 -                    else
   1.709 -                        tab[index] = e.next;
   1.710 -
   1.711 -                    count--;
   1.712 -                    e.value = null;
   1.713 -                    return true;
   1.714 -                }
   1.715 -            }
   1.716 -            return false;
   1.717 -        }
   1.718 -
   1.719 -        public int size() {
   1.720 -            return count;
   1.721 -        }
   1.722 -
   1.723 -        public void clear() {
   1.724 -            Hashtable.this.clear();
   1.725 -        }
   1.726 -    }
   1.727 -
   1.728 -    /**
   1.729 -     * Returns a {@link Collection} view of the values contained in this map.
   1.730 -     * The collection is backed by the map, so changes to the map are
   1.731 -     * reflected in the collection, and vice-versa.  If the map is
   1.732 -     * modified while an iteration over the collection is in progress
   1.733 -     * (except through the iterator's own <tt>remove</tt> operation),
   1.734 -     * the results of the iteration are undefined.  The collection
   1.735 -     * supports element removal, which removes the corresponding
   1.736 -     * mapping from the map, via the <tt>Iterator.remove</tt>,
   1.737 -     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
   1.738 -     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
   1.739 -     * support the <tt>add</tt> or <tt>addAll</tt> operations.
   1.740 -     *
   1.741 -     * @since 1.2
   1.742 -     */
   1.743 -    public Collection<V> values() {
   1.744 -        if (values==null)
   1.745 -            values = Collections.synchronizedCollection(new ValueCollection(),
   1.746 -                                                        this);
   1.747 -        return values;
   1.748 -    }
   1.749 -
   1.750 -    private class ValueCollection extends AbstractCollection<V> {
   1.751 -        public Iterator<V> iterator() {
   1.752 -            return getIterator(VALUES);
   1.753 -        }
   1.754 -        public int size() {
   1.755 -            return count;
   1.756 -        }
   1.757 -        public boolean contains(Object o) {
   1.758 -            return containsValue(o);
   1.759 -        }
   1.760 -        public void clear() {
   1.761 -            Hashtable.this.clear();
   1.762 -        }
   1.763 -    }
   1.764 -
   1.765 -    // Comparison and hashing
   1.766 -
   1.767 -    /**
   1.768 -     * Compares the specified Object with this Map for equality,
   1.769 -     * as per the definition in the Map interface.
   1.770 -     *
   1.771 -     * @param  o object to be compared for equality with this hashtable
   1.772 -     * @return true if the specified Object is equal to this Map
   1.773 -     * @see Map#equals(Object)
   1.774 -     * @since 1.2
   1.775 -     */
   1.776 -    public synchronized boolean equals(Object o) {
   1.777 -        if (o == this)
   1.778 -            return true;
   1.779 -
   1.780 -        if (!(o instanceof Map))
   1.781 -            return false;
   1.782 -        Map<K,V> t = (Map<K,V>) o;
   1.783 -        if (t.size() != size())
   1.784 -            return false;
   1.785 -
   1.786 -        try {
   1.787 -            Iterator<Map.Entry<K,V>> i = entrySet().iterator();
   1.788 -            while (i.hasNext()) {
   1.789 -                Map.Entry<K,V> e = i.next();
   1.790 -                K key = e.getKey();
   1.791 -                V value = e.getValue();
   1.792 -                if (value == null) {
   1.793 -                    if (!(t.get(key)==null && t.containsKey(key)))
   1.794 -                        return false;
   1.795 -                } else {
   1.796 -                    if (!value.equals(t.get(key)))
   1.797 -                        return false;
   1.798 -                }
   1.799 -            }
   1.800 -        } catch (ClassCastException unused)   {
   1.801 -            return false;
   1.802 -        } catch (NullPointerException unused) {
   1.803 -            return false;
   1.804 -        }
   1.805 -
   1.806 -        return true;
   1.807 -    }
   1.808 -
   1.809 -    /**
   1.810 -     * Returns the hash code value for this Map as per the definition in the
   1.811 -     * Map interface.
   1.812 -     *
   1.813 -     * @see Map#hashCode()
   1.814 -     * @since 1.2
   1.815 -     */
   1.816 -    public synchronized int hashCode() {
   1.817 -        /*
   1.818 -         * This code detects the recursion caused by computing the hash code
   1.819 -         * of a self-referential hash table and prevents the stack overflow
   1.820 -         * that would otherwise result.  This allows certain 1.1-era
   1.821 -         * applets with self-referential hash tables to work.  This code
   1.822 -         * abuses the loadFactor field to do double-duty as a hashCode
   1.823 -         * in progress flag, so as not to worsen the space performance.
   1.824 -         * A negative load factor indicates that hash code computation is
   1.825 -         * in progress.
   1.826 -         */
   1.827 -        int h = 0;
   1.828 -        if (count == 0 || loadFactor < 0)
   1.829 -            return h;  // Returns zero
   1.830 -
   1.831 -        loadFactor = -loadFactor;  // Mark hashCode computation in progress
   1.832 -        Entry[] tab = table;
   1.833 -        for (int i = 0; i < tab.length; i++)
   1.834 -            for (Entry e = tab[i]; e != null; e = e.next)
   1.835 -                h += e.key.hashCode() ^ e.value.hashCode();
   1.836 -        loadFactor = -loadFactor;  // Mark hashCode computation complete
   1.837 -
   1.838 -        return h;
   1.839 -    }
   1.840 -
   1.841 -    /**
   1.842 -     * Hashtable collision list.
   1.843 -     */
   1.844 -    private static class Entry<K,V> implements Map.Entry<K,V> {
   1.845 -        int hash;
   1.846 -        K key;
   1.847 -        V value;
   1.848 -        Entry<K,V> next;
   1.849 -
   1.850 -        protected Entry(int hash, K key, V value, Entry<K,V> next) {
   1.851 -            this.hash = hash;
   1.852 -            this.key = key;
   1.853 -            this.value = value;
   1.854 -            this.next = next;
   1.855 -        }
   1.856 -
   1.857 -        protected Object clone() {
   1.858 -            return new Entry<>(hash, key, value,
   1.859 -                                  (next==null ? null : (Entry<K,V>) next.clone()));
   1.860 -        }
   1.861 -
   1.862 -        // Map.Entry Ops
   1.863 -
   1.864 -        public K getKey() {
   1.865 -            return key;
   1.866 -        }
   1.867 -
   1.868 -        public V getValue() {
   1.869 -            return value;
   1.870 -        }
   1.871 -
   1.872 -        public V setValue(V value) {
   1.873 -            if (value == null)
   1.874 -                throw new NullPointerException();
   1.875 -
   1.876 -            V oldValue = this.value;
   1.877 -            this.value = value;
   1.878 -            return oldValue;
   1.879 -        }
   1.880 -
   1.881 -        public boolean equals(Object o) {
   1.882 -            if (!(o instanceof Map.Entry))
   1.883 -                return false;
   1.884 -            Map.Entry e = (Map.Entry)o;
   1.885 -
   1.886 -            return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
   1.887 -               (value==null ? e.getValue()==null : value.equals(e.getValue()));
   1.888 -        }
   1.889 -
   1.890 -        public int hashCode() {
   1.891 -            return hash ^ (value==null ? 0 : value.hashCode());
   1.892 -        }
   1.893 -
   1.894 -        public String toString() {
   1.895 -            return key.toString()+"="+value.toString();
   1.896 -        }
   1.897 -    }
   1.898 -
   1.899 -    // Types of Enumerations/Iterations
   1.900 -    private static final int KEYS = 0;
   1.901 -    private static final int VALUES = 1;
   1.902 -    private static final int ENTRIES = 2;
   1.903 -
   1.904 -    /**
   1.905 -     * A hashtable enumerator class.  This class implements both the
   1.906 -     * Enumeration and Iterator interfaces, but individual instances
   1.907 -     * can be created with the Iterator methods disabled.  This is necessary
   1.908 -     * to avoid unintentionally increasing the capabilities granted a user
   1.909 -     * by passing an Enumeration.
   1.910 -     */
   1.911 -    private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
   1.912 -        Entry[] table = Hashtable.this.table;
   1.913 -        int index = table.length;
   1.914 -        Entry<K,V> entry = null;
   1.915 -        Entry<K,V> lastReturned = null;
   1.916 -        int type;
   1.917 -
   1.918 -        /**
   1.919 -         * Indicates whether this Enumerator is serving as an Iterator
   1.920 -         * or an Enumeration.  (true -> Iterator).
   1.921 -         */
   1.922 -        boolean iterator;
   1.923 -
   1.924 -        /**
   1.925 -         * The modCount value that the iterator believes that the backing
   1.926 -         * Hashtable should have.  If this expectation is violated, the iterator
   1.927 -         * has detected concurrent modification.
   1.928 -         */
   1.929 -        protected int expectedModCount = modCount;
   1.930 -
   1.931 -        Enumerator(int type, boolean iterator) {
   1.932 -            this.type = type;
   1.933 -            this.iterator = iterator;
   1.934 -        }
   1.935 -
   1.936 -        public boolean hasMoreElements() {
   1.937 -            Entry<K,V> e = entry;
   1.938 -            int i = index;
   1.939 -            Entry[] t = table;
   1.940 -            /* Use locals for faster loop iteration */
   1.941 -            while (e == null && i > 0) {
   1.942 -                e = t[--i];
   1.943 -            }
   1.944 -            entry = e;
   1.945 -            index = i;
   1.946 -            return e != null;
   1.947 -        }
   1.948 -
   1.949 -        public T nextElement() {
   1.950 -            Entry<K,V> et = entry;
   1.951 -            int i = index;
   1.952 -            Entry[] t = table;
   1.953 -            /* Use locals for faster loop iteration */
   1.954 -            while (et == null && i > 0) {
   1.955 -                et = t[--i];
   1.956 -            }
   1.957 -            entry = et;
   1.958 -            index = i;
   1.959 -            if (et != null) {
   1.960 -                Entry<K,V> e = lastReturned = entry;
   1.961 -                entry = e.next;
   1.962 -                return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
   1.963 -            }
   1.964 -            throw new NoSuchElementException("Hashtable Enumerator");
   1.965 -        }
   1.966 -
   1.967 -        // Iterator methods
   1.968 -        public boolean hasNext() {
   1.969 -            return hasMoreElements();
   1.970 -        }
   1.971 -
   1.972 -        public T next() {
   1.973 -            if (modCount != expectedModCount)
   1.974 -                throw new ConcurrentModificationException();
   1.975 -            return nextElement();
   1.976 -        }
   1.977 -
   1.978 -        public void remove() {
   1.979 -            if (!iterator)
   1.980 -                throw new UnsupportedOperationException();
   1.981 -            if (lastReturned == null)
   1.982 -                throw new IllegalStateException("Hashtable Enumerator");
   1.983 -            if (modCount != expectedModCount)
   1.984 -                throw new ConcurrentModificationException();
   1.985 -
   1.986 -            synchronized(Hashtable.this) {
   1.987 -                Entry[] tab = Hashtable.this.table;
   1.988 -                int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
   1.989 -
   1.990 -                for (Entry<K,V> e = tab[index], prev = null; e != null;
   1.991 -                     prev = e, e = e.next) {
   1.992 -                    if (e == lastReturned) {
   1.993 -                        modCount++;
   1.994 -                        expectedModCount++;
   1.995 -                        if (prev == null)
   1.996 -                            tab[index] = e.next;
   1.997 -                        else
   1.998 -                            prev.next = e.next;
   1.999 -                        count--;
  1.1000 -                        lastReturned = null;
  1.1001 -                        return;
  1.1002 -                    }
  1.1003 -                }
  1.1004 -                throw new ConcurrentModificationException();
  1.1005 -            }
  1.1006 -        }
  1.1007 -    }
  1.1008 -}