emul/mini/src/main/java/java/lang/Float.java
changeset 772 d382dacfd73f
parent 771 4252bfc396fc
child 773 406faa8bc64f
     1.1 --- a/emul/mini/src/main/java/java/lang/Float.java	Tue Feb 26 14:55:55 2013 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,909 +0,0 @@
     1.4 -/*
     1.5 - * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 - *
     1.8 - * This code is free software; you can redistribute it and/or modify it
     1.9 - * under the terms of the GNU General Public License version 2 only, as
    1.10 - * published by the Free Software Foundation.  Oracle designates this
    1.11 - * particular file as subject to the "Classpath" exception as provided
    1.12 - * by Oracle in the LICENSE file that accompanied this code.
    1.13 - *
    1.14 - * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 - * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 - * version 2 for more details (a copy is included in the LICENSE file that
    1.18 - * accompanied this code).
    1.19 - *
    1.20 - * You should have received a copy of the GNU General Public License version
    1.21 - * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 - *
    1.24 - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 - * or visit www.oracle.com if you need additional information or have any
    1.26 - * questions.
    1.27 - */
    1.28 -
    1.29 -package java.lang;
    1.30 -
    1.31 -import org.apidesign.bck2brwsr.core.JavaScriptBody;
    1.32 -
    1.33 -/**
    1.34 - * The {@code Float} class wraps a value of primitive type
    1.35 - * {@code float} in an object. An object of type
    1.36 - * {@code Float} contains a single field whose type is
    1.37 - * {@code float}.
    1.38 - *
    1.39 - * <p>In addition, this class provides several methods for converting a
    1.40 - * {@code float} to a {@code String} and a
    1.41 - * {@code String} to a {@code float}, as well as other
    1.42 - * constants and methods useful when dealing with a
    1.43 - * {@code float}.
    1.44 - *
    1.45 - * @author  Lee Boynton
    1.46 - * @author  Arthur van Hoff
    1.47 - * @author  Joseph D. Darcy
    1.48 - * @since JDK1.0
    1.49 - */
    1.50 -public final class Float extends Number implements Comparable<Float> {
    1.51 -    /**
    1.52 -     * A constant holding the positive infinity of type
    1.53 -     * {@code float}. It is equal to the value returned by
    1.54 -     * {@code Float.intBitsToFloat(0x7f800000)}.
    1.55 -     */
    1.56 -    public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
    1.57 -
    1.58 -    /**
    1.59 -     * A constant holding the negative infinity of type
    1.60 -     * {@code float}. It is equal to the value returned by
    1.61 -     * {@code Float.intBitsToFloat(0xff800000)}.
    1.62 -     */
    1.63 -    public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
    1.64 -
    1.65 -    /**
    1.66 -     * A constant holding a Not-a-Number (NaN) value of type
    1.67 -     * {@code float}.  It is equivalent to the value returned by
    1.68 -     * {@code Float.intBitsToFloat(0x7fc00000)}.
    1.69 -     */
    1.70 -    public static final float NaN = 0.0f / 0.0f;
    1.71 -
    1.72 -    /**
    1.73 -     * A constant holding the largest positive finite value of type
    1.74 -     * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
    1.75 -     * It is equal to the hexadecimal floating-point literal
    1.76 -     * {@code 0x1.fffffeP+127f} and also equal to
    1.77 -     * {@code Float.intBitsToFloat(0x7f7fffff)}.
    1.78 -     */
    1.79 -    public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
    1.80 -
    1.81 -    /**
    1.82 -     * A constant holding the smallest positive normal value of type
    1.83 -     * {@code float}, 2<sup>-126</sup>.  It is equal to the
    1.84 -     * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
    1.85 -     * equal to {@code Float.intBitsToFloat(0x00800000)}.
    1.86 -     *
    1.87 -     * @since 1.6
    1.88 -     */
    1.89 -    public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
    1.90 -
    1.91 -    /**
    1.92 -     * A constant holding the smallest positive nonzero value of type
    1.93 -     * {@code float}, 2<sup>-149</sup>. It is equal to the
    1.94 -     * hexadecimal floating-point literal {@code 0x0.000002P-126f}
    1.95 -     * and also equal to {@code Float.intBitsToFloat(0x1)}.
    1.96 -     */
    1.97 -    public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
    1.98 -
    1.99 -    /**
   1.100 -     * Maximum exponent a finite {@code float} variable may have.  It
   1.101 -     * is equal to the value returned by {@code
   1.102 -     * Math.getExponent(Float.MAX_VALUE)}.
   1.103 -     *
   1.104 -     * @since 1.6
   1.105 -     */
   1.106 -    public static final int MAX_EXPONENT = 127;
   1.107 -
   1.108 -    /**
   1.109 -     * Minimum exponent a normalized {@code float} variable may have.
   1.110 -     * It is equal to the value returned by {@code
   1.111 -     * Math.getExponent(Float.MIN_NORMAL)}.
   1.112 -     *
   1.113 -     * @since 1.6
   1.114 -     */
   1.115 -    public static final int MIN_EXPONENT = -126;
   1.116 -
   1.117 -    /**
   1.118 -     * The number of bits used to represent a {@code float} value.
   1.119 -     *
   1.120 -     * @since 1.5
   1.121 -     */
   1.122 -    public static final int SIZE = 32;
   1.123 -
   1.124 -    /**
   1.125 -     * The {@code Class} instance representing the primitive type
   1.126 -     * {@code float}.
   1.127 -     *
   1.128 -     * @since JDK1.1
   1.129 -     */
   1.130 -    public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
   1.131 -
   1.132 -    /**
   1.133 -     * Returns a string representation of the {@code float}
   1.134 -     * argument. All characters mentioned below are ASCII characters.
   1.135 -     * <ul>
   1.136 -     * <li>If the argument is NaN, the result is the string
   1.137 -     * "{@code NaN}".
   1.138 -     * <li>Otherwise, the result is a string that represents the sign and
   1.139 -     *     magnitude (absolute value) of the argument. If the sign is
   1.140 -     *     negative, the first character of the result is
   1.141 -     *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
   1.142 -     *     positive, no sign character appears in the result. As for
   1.143 -     *     the magnitude <i>m</i>:
   1.144 -     * <ul>
   1.145 -     * <li>If <i>m</i> is infinity, it is represented by the characters
   1.146 -     *     {@code "Infinity"}; thus, positive infinity produces
   1.147 -     *     the result {@code "Infinity"} and negative infinity
   1.148 -     *     produces the result {@code "-Infinity"}.
   1.149 -     * <li>If <i>m</i> is zero, it is represented by the characters
   1.150 -     *     {@code "0.0"}; thus, negative zero produces the result
   1.151 -     *     {@code "-0.0"} and positive zero produces the result
   1.152 -     *     {@code "0.0"}.
   1.153 -     * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
   1.154 -     *      less than 10<sup>7</sup>, then it is represented as the
   1.155 -     *      integer part of <i>m</i>, in decimal form with no leading
   1.156 -     *      zeroes, followed by '{@code .}'
   1.157 -     *      (<code>'&#92;u002E'</code>), followed by one or more
   1.158 -     *      decimal digits representing the fractional part of
   1.159 -     *      <i>m</i>.
   1.160 -     * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
   1.161 -     *      equal to 10<sup>7</sup>, then it is represented in
   1.162 -     *      so-called "computerized scientific notation." Let <i>n</i>
   1.163 -     *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
   1.164 -     *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
   1.165 -     *      be the mathematically exact quotient of <i>m</i> and
   1.166 -     *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
   1.167 -     *      The magnitude is then represented as the integer part of
   1.168 -     *      <i>a</i>, as a single decimal digit, followed by
   1.169 -     *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
   1.170 -     *      decimal digits representing the fractional part of
   1.171 -     *      <i>a</i>, followed by the letter '{@code E}'
   1.172 -     *      (<code>'&#92;u0045'</code>), followed by a representation
   1.173 -     *      of <i>n</i> as a decimal integer, as produced by the
   1.174 -     *      method {@link java.lang.Integer#toString(int)}.
   1.175 -     *
   1.176 -     * </ul>
   1.177 -     * </ul>
   1.178 -     * How many digits must be printed for the fractional part of
   1.179 -     * <i>m</i> or <i>a</i>? There must be at least one digit
   1.180 -     * to represent the fractional part, and beyond that as many, but
   1.181 -     * only as many, more digits as are needed to uniquely distinguish
   1.182 -     * the argument value from adjacent values of type
   1.183 -     * {@code float}. That is, suppose that <i>x</i> is the
   1.184 -     * exact mathematical value represented by the decimal
   1.185 -     * representation produced by this method for a finite nonzero
   1.186 -     * argument <i>f</i>. Then <i>f</i> must be the {@code float}
   1.187 -     * value nearest to <i>x</i>; or, if two {@code float} values are
   1.188 -     * equally close to <i>x</i>, then <i>f</i> must be one of
   1.189 -     * them and the least significant bit of the significand of
   1.190 -     * <i>f</i> must be {@code 0}.
   1.191 -     *
   1.192 -     * <p>To create localized string representations of a floating-point
   1.193 -     * value, use subclasses of {@link java.text.NumberFormat}.
   1.194 -     *
   1.195 -     * @param   f   the float to be converted.
   1.196 -     * @return a string representation of the argument.
   1.197 -     */
   1.198 -    public static String toString(float f) {
   1.199 -        return Double.toString(f);
   1.200 -    }
   1.201 -
   1.202 -    /**
   1.203 -     * Returns a hexadecimal string representation of the
   1.204 -     * {@code float} argument. All characters mentioned below are
   1.205 -     * ASCII characters.
   1.206 -     *
   1.207 -     * <ul>
   1.208 -     * <li>If the argument is NaN, the result is the string
   1.209 -     *     "{@code NaN}".
   1.210 -     * <li>Otherwise, the result is a string that represents the sign and
   1.211 -     * magnitude (absolute value) of the argument. If the sign is negative,
   1.212 -     * the first character of the result is '{@code -}'
   1.213 -     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
   1.214 -     * appears in the result. As for the magnitude <i>m</i>:
   1.215 -     *
   1.216 -     * <ul>
   1.217 -     * <li>If <i>m</i> is infinity, it is represented by the string
   1.218 -     * {@code "Infinity"}; thus, positive infinity produces the
   1.219 -     * result {@code "Infinity"} and negative infinity produces
   1.220 -     * the result {@code "-Infinity"}.
   1.221 -     *
   1.222 -     * <li>If <i>m</i> is zero, it is represented by the string
   1.223 -     * {@code "0x0.0p0"}; thus, negative zero produces the result
   1.224 -     * {@code "-0x0.0p0"} and positive zero produces the result
   1.225 -     * {@code "0x0.0p0"}.
   1.226 -     *
   1.227 -     * <li>If <i>m</i> is a {@code float} value with a
   1.228 -     * normalized representation, substrings are used to represent the
   1.229 -     * significand and exponent fields.  The significand is
   1.230 -     * represented by the characters {@code "0x1."}
   1.231 -     * followed by a lowercase hexadecimal representation of the rest
   1.232 -     * of the significand as a fraction.  Trailing zeros in the
   1.233 -     * hexadecimal representation are removed unless all the digits
   1.234 -     * are zero, in which case a single zero is used. Next, the
   1.235 -     * exponent is represented by {@code "p"} followed
   1.236 -     * by a decimal string of the unbiased exponent as if produced by
   1.237 -     * a call to {@link Integer#toString(int) Integer.toString} on the
   1.238 -     * exponent value.
   1.239 -     *
   1.240 -     * <li>If <i>m</i> is a {@code float} value with a subnormal
   1.241 -     * representation, the significand is represented by the
   1.242 -     * characters {@code "0x0."} followed by a
   1.243 -     * hexadecimal representation of the rest of the significand as a
   1.244 -     * fraction.  Trailing zeros in the hexadecimal representation are
   1.245 -     * removed. Next, the exponent is represented by
   1.246 -     * {@code "p-126"}.  Note that there must be at
   1.247 -     * least one nonzero digit in a subnormal significand.
   1.248 -     *
   1.249 -     * </ul>
   1.250 -     *
   1.251 -     * </ul>
   1.252 -     *
   1.253 -     * <table border>
   1.254 -     * <caption><h3>Examples</h3></caption>
   1.255 -     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
   1.256 -     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
   1.257 -     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
   1.258 -     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
   1.259 -     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
   1.260 -     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
   1.261 -     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
   1.262 -     * <tr><td>{@code Float.MAX_VALUE}</td>
   1.263 -     *     <td>{@code 0x1.fffffep127}</td>
   1.264 -     * <tr><td>{@code Minimum Normal Value}</td>
   1.265 -     *     <td>{@code 0x1.0p-126}</td>
   1.266 -     * <tr><td>{@code Maximum Subnormal Value}</td>
   1.267 -     *     <td>{@code 0x0.fffffep-126}</td>
   1.268 -     * <tr><td>{@code Float.MIN_VALUE}</td>
   1.269 -     *     <td>{@code 0x0.000002p-126}</td>
   1.270 -     * </table>
   1.271 -     * @param   f   the {@code float} to be converted.
   1.272 -     * @return a hex string representation of the argument.
   1.273 -     * @since 1.5
   1.274 -     * @author Joseph D. Darcy
   1.275 -     */
   1.276 -    public static String toHexString(float f) {
   1.277 -        throw new UnsupportedOperationException();
   1.278 -//        if (Math.abs(f) < FloatConsts.MIN_NORMAL
   1.279 -//            &&  f != 0.0f ) {// float subnormal
   1.280 -//            // Adjust exponent to create subnormal double, then
   1.281 -//            // replace subnormal double exponent with subnormal float
   1.282 -//            // exponent
   1.283 -//            String s = Double.toHexString(FpUtils.scalb((double)f,
   1.284 -//                                                        /* -1022+126 */
   1.285 -//                                                        DoubleConsts.MIN_EXPONENT-
   1.286 -//                                                        FloatConsts.MIN_EXPONENT));
   1.287 -//            return s.replaceFirst("p-1022$", "p-126");
   1.288 -//        }
   1.289 -//        else // double string will be the same as float string
   1.290 -//            return Double.toHexString(f);
   1.291 -    }
   1.292 -
   1.293 -    /**
   1.294 -     * Returns a {@code Float} object holding the
   1.295 -     * {@code float} value represented by the argument string
   1.296 -     * {@code s}.
   1.297 -     *
   1.298 -     * <p>If {@code s} is {@code null}, then a
   1.299 -     * {@code NullPointerException} is thrown.
   1.300 -     *
   1.301 -     * <p>Leading and trailing whitespace characters in {@code s}
   1.302 -     * are ignored.  Whitespace is removed as if by the {@link
   1.303 -     * String#trim} method; that is, both ASCII space and control
   1.304 -     * characters are removed. The rest of {@code s} should
   1.305 -     * constitute a <i>FloatValue</i> as described by the lexical
   1.306 -     * syntax rules:
   1.307 -     *
   1.308 -     * <blockquote>
   1.309 -     * <dl>
   1.310 -     * <dt><i>FloatValue:</i>
   1.311 -     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
   1.312 -     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
   1.313 -     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
   1.314 -     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
   1.315 -     * <dd><i>SignedInteger</i>
   1.316 -     * </dl>
   1.317 -     *
   1.318 -     * <p>
   1.319 -     *
   1.320 -     * <dl>
   1.321 -     * <dt><i>HexFloatingPointLiteral</i>:
   1.322 -     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
   1.323 -     * </dl>
   1.324 -     *
   1.325 -     * <p>
   1.326 -     *
   1.327 -     * <dl>
   1.328 -     * <dt><i>HexSignificand:</i>
   1.329 -     * <dd><i>HexNumeral</i>
   1.330 -     * <dd><i>HexNumeral</i> {@code .}
   1.331 -     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
   1.332 -     *     </i>{@code .}<i> HexDigits</i>
   1.333 -     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
   1.334 -     *     </i>{@code .} <i>HexDigits</i>
   1.335 -     * </dl>
   1.336 -     *
   1.337 -     * <p>
   1.338 -     *
   1.339 -     * <dl>
   1.340 -     * <dt><i>BinaryExponent:</i>
   1.341 -     * <dd><i>BinaryExponentIndicator SignedInteger</i>
   1.342 -     * </dl>
   1.343 -     *
   1.344 -     * <p>
   1.345 -     *
   1.346 -     * <dl>
   1.347 -     * <dt><i>BinaryExponentIndicator:</i>
   1.348 -     * <dd>{@code p}
   1.349 -     * <dd>{@code P}
   1.350 -     * </dl>
   1.351 -     *
   1.352 -     * </blockquote>
   1.353 -     *
   1.354 -     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
   1.355 -     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
   1.356 -     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
   1.357 -     * sections of
   1.358 -     * <cite>The Java&trade; Language Specification</cite>,
   1.359 -     * except that underscores are not accepted between digits.
   1.360 -     * If {@code s} does not have the form of
   1.361 -     * a <i>FloatValue</i>, then a {@code NumberFormatException}
   1.362 -     * is thrown. Otherwise, {@code s} is regarded as
   1.363 -     * representing an exact decimal value in the usual
   1.364 -     * "computerized scientific notation" or as an exact
   1.365 -     * hexadecimal value; this exact numerical value is then
   1.366 -     * conceptually converted to an "infinitely precise"
   1.367 -     * binary value that is then rounded to type {@code float}
   1.368 -     * by the usual round-to-nearest rule of IEEE 754 floating-point
   1.369 -     * arithmetic, which includes preserving the sign of a zero
   1.370 -     * value.
   1.371 -     *
   1.372 -     * Note that the round-to-nearest rule also implies overflow and
   1.373 -     * underflow behaviour; if the exact value of {@code s} is large
   1.374 -     * enough in magnitude (greater than or equal to ({@link
   1.375 -     * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
   1.376 -     * rounding to {@code float} will result in an infinity and if the
   1.377 -     * exact value of {@code s} is small enough in magnitude (less
   1.378 -     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
   1.379 -     * result in a zero.
   1.380 -     *
   1.381 -     * Finally, after rounding a {@code Float} object representing
   1.382 -     * this {@code float} value is returned.
   1.383 -     *
   1.384 -     * <p>To interpret localized string representations of a
   1.385 -     * floating-point value, use subclasses of {@link
   1.386 -     * java.text.NumberFormat}.
   1.387 -     *
   1.388 -     * <p>Note that trailing format specifiers, specifiers that
   1.389 -     * determine the type of a floating-point literal
   1.390 -     * ({@code 1.0f} is a {@code float} value;
   1.391 -     * {@code 1.0d} is a {@code double} value), do
   1.392 -     * <em>not</em> influence the results of this method.  In other
   1.393 -     * words, the numerical value of the input string is converted
   1.394 -     * directly to the target floating-point type.  In general, the
   1.395 -     * two-step sequence of conversions, string to {@code double}
   1.396 -     * followed by {@code double} to {@code float}, is
   1.397 -     * <em>not</em> equivalent to converting a string directly to
   1.398 -     * {@code float}.  For example, if first converted to an
   1.399 -     * intermediate {@code double} and then to
   1.400 -     * {@code float}, the string<br>
   1.401 -     * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
   1.402 -     * results in the {@code float} value
   1.403 -     * {@code 1.0000002f}; if the string is converted directly to
   1.404 -     * {@code float}, <code>1.000000<b>1</b>f</code> results.
   1.405 -     *
   1.406 -     * <p>To avoid calling this method on an invalid string and having
   1.407 -     * a {@code NumberFormatException} be thrown, the documentation
   1.408 -     * for {@link Double#valueOf Double.valueOf} lists a regular
   1.409 -     * expression which can be used to screen the input.
   1.410 -     *
   1.411 -     * @param   s   the string to be parsed.
   1.412 -     * @return  a {@code Float} object holding the value
   1.413 -     *          represented by the {@code String} argument.
   1.414 -     * @throws  NumberFormatException  if the string does not contain a
   1.415 -     *          parsable number.
   1.416 -     */
   1.417 -    public static Float valueOf(String s) throws NumberFormatException {
   1.418 -        throw new UnsupportedOperationException();
   1.419 -//        return new Float(FloatingDecimal.readJavaFormatString(s).floatValue());
   1.420 -    }
   1.421 -
   1.422 -    /**
   1.423 -     * Returns a {@code Float} instance representing the specified
   1.424 -     * {@code float} value.
   1.425 -     * If a new {@code Float} instance is not required, this method
   1.426 -     * should generally be used in preference to the constructor
   1.427 -     * {@link #Float(float)}, as this method is likely to yield
   1.428 -     * significantly better space and time performance by caching
   1.429 -     * frequently requested values.
   1.430 -     *
   1.431 -     * @param  f a float value.
   1.432 -     * @return a {@code Float} instance representing {@code f}.
   1.433 -     * @since  1.5
   1.434 -     */
   1.435 -    public static Float valueOf(float f) {
   1.436 -        return new Float(f);
   1.437 -    }
   1.438 -
   1.439 -    /**
   1.440 -     * Returns a new {@code float} initialized to the value
   1.441 -     * represented by the specified {@code String}, as performed
   1.442 -     * by the {@code valueOf} method of class {@code Float}.
   1.443 -     *
   1.444 -     * @param  s the string to be parsed.
   1.445 -     * @return the {@code float} value represented by the string
   1.446 -     *         argument.
   1.447 -     * @throws NullPointerException  if the string is null
   1.448 -     * @throws NumberFormatException if the string does not contain a
   1.449 -     *               parsable {@code float}.
   1.450 -     * @see    java.lang.Float#valueOf(String)
   1.451 -     * @since 1.2
   1.452 -     */
   1.453 -    public static float parseFloat(String s) throws NumberFormatException {
   1.454 -        throw new UnsupportedOperationException();
   1.455 -//        return FloatingDecimal.readJavaFormatString(s).floatValue();
   1.456 -    }
   1.457 -
   1.458 -    /**
   1.459 -     * Returns {@code true} if the specified number is a
   1.460 -     * Not-a-Number (NaN) value, {@code false} otherwise.
   1.461 -     *
   1.462 -     * @param   v   the value to be tested.
   1.463 -     * @return  {@code true} if the argument is NaN;
   1.464 -     *          {@code false} otherwise.
   1.465 -     */
   1.466 -    static public boolean isNaN(float v) {
   1.467 -        return (v != v);
   1.468 -    }
   1.469 -
   1.470 -    /**
   1.471 -     * Returns {@code true} if the specified number is infinitely
   1.472 -     * large in magnitude, {@code false} otherwise.
   1.473 -     *
   1.474 -     * @param   v   the value to be tested.
   1.475 -     * @return  {@code true} if the argument is positive infinity or
   1.476 -     *          negative infinity; {@code false} otherwise.
   1.477 -     */
   1.478 -    static public boolean isInfinite(float v) {
   1.479 -        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
   1.480 -    }
   1.481 -
   1.482 -    /**
   1.483 -     * The value of the Float.
   1.484 -     *
   1.485 -     * @serial
   1.486 -     */
   1.487 -    private final float value;
   1.488 -
   1.489 -    /**
   1.490 -     * Constructs a newly allocated {@code Float} object that
   1.491 -     * represents the primitive {@code float} argument.
   1.492 -     *
   1.493 -     * @param   value   the value to be represented by the {@code Float}.
   1.494 -     */
   1.495 -    public Float(float value) {
   1.496 -        this.value = value;
   1.497 -    }
   1.498 -
   1.499 -    /**
   1.500 -     * Constructs a newly allocated {@code Float} object that
   1.501 -     * represents the argument converted to type {@code float}.
   1.502 -     *
   1.503 -     * @param   value   the value to be represented by the {@code Float}.
   1.504 -     */
   1.505 -    public Float(double value) {
   1.506 -        this.value = (float)value;
   1.507 -    }
   1.508 -
   1.509 -    /**
   1.510 -     * Constructs a newly allocated {@code Float} object that
   1.511 -     * represents the floating-point value of type {@code float}
   1.512 -     * represented by the string. The string is converted to a
   1.513 -     * {@code float} value as if by the {@code valueOf} method.
   1.514 -     *
   1.515 -     * @param      s   a string to be converted to a {@code Float}.
   1.516 -     * @throws  NumberFormatException  if the string does not contain a
   1.517 -     *               parsable number.
   1.518 -     * @see        java.lang.Float#valueOf(java.lang.String)
   1.519 -     */
   1.520 -    public Float(String s) throws NumberFormatException {
   1.521 -        // REMIND: this is inefficient
   1.522 -        this(valueOf(s).floatValue());
   1.523 -    }
   1.524 -
   1.525 -    /**
   1.526 -     * Returns {@code true} if this {@code Float} value is a
   1.527 -     * Not-a-Number (NaN), {@code false} otherwise.
   1.528 -     *
   1.529 -     * @return  {@code true} if the value represented by this object is
   1.530 -     *          NaN; {@code false} otherwise.
   1.531 -     */
   1.532 -    public boolean isNaN() {
   1.533 -        return isNaN(value);
   1.534 -    }
   1.535 -
   1.536 -    /**
   1.537 -     * Returns {@code true} if this {@code Float} value is
   1.538 -     * infinitely large in magnitude, {@code false} otherwise.
   1.539 -     *
   1.540 -     * @return  {@code true} if the value represented by this object is
   1.541 -     *          positive infinity or negative infinity;
   1.542 -     *          {@code false} otherwise.
   1.543 -     */
   1.544 -    public boolean isInfinite() {
   1.545 -        return isInfinite(value);
   1.546 -    }
   1.547 -
   1.548 -    /**
   1.549 -     * Returns a string representation of this {@code Float} object.
   1.550 -     * The primitive {@code float} value represented by this object
   1.551 -     * is converted to a {@code String} exactly as if by the method
   1.552 -     * {@code toString} of one argument.
   1.553 -     *
   1.554 -     * @return  a {@code String} representation of this object.
   1.555 -     * @see java.lang.Float#toString(float)
   1.556 -     */
   1.557 -    public String toString() {
   1.558 -        return Float.toString(value);
   1.559 -    }
   1.560 -
   1.561 -    /**
   1.562 -     * Returns the value of this {@code Float} as a {@code byte} (by
   1.563 -     * casting to a {@code byte}).
   1.564 -     *
   1.565 -     * @return  the {@code float} value represented by this object
   1.566 -     *          converted to type {@code byte}
   1.567 -     */
   1.568 -    public byte byteValue() {
   1.569 -        return (byte)value;
   1.570 -    }
   1.571 -
   1.572 -    /**
   1.573 -     * Returns the value of this {@code Float} as a {@code short} (by
   1.574 -     * casting to a {@code short}).
   1.575 -     *
   1.576 -     * @return  the {@code float} value represented by this object
   1.577 -     *          converted to type {@code short}
   1.578 -     * @since JDK1.1
   1.579 -     */
   1.580 -    public short shortValue() {
   1.581 -        return (short)value;
   1.582 -    }
   1.583 -
   1.584 -    /**
   1.585 -     * Returns the value of this {@code Float} as an {@code int} (by
   1.586 -     * casting to type {@code int}).
   1.587 -     *
   1.588 -     * @return  the {@code float} value represented by this object
   1.589 -     *          converted to type {@code int}
   1.590 -     */
   1.591 -    public int intValue() {
   1.592 -        return (int)value;
   1.593 -    }
   1.594 -
   1.595 -    /**
   1.596 -     * Returns value of this {@code Float} as a {@code long} (by
   1.597 -     * casting to type {@code long}).
   1.598 -     *
   1.599 -     * @return  the {@code float} value represented by this object
   1.600 -     *          converted to type {@code long}
   1.601 -     */
   1.602 -    public long longValue() {
   1.603 -        return (long)value;
   1.604 -    }
   1.605 -
   1.606 -    /**
   1.607 -     * Returns the {@code float} value of this {@code Float} object.
   1.608 -     *
   1.609 -     * @return the {@code float} value represented by this object
   1.610 -     */
   1.611 -    public float floatValue() {
   1.612 -        return value;
   1.613 -    }
   1.614 -
   1.615 -    /**
   1.616 -     * Returns the {@code double} value of this {@code Float} object.
   1.617 -     *
   1.618 -     * @return the {@code float} value represented by this
   1.619 -     *         object is converted to type {@code double} and the
   1.620 -     *         result of the conversion is returned.
   1.621 -     */
   1.622 -    public double doubleValue() {
   1.623 -        return (double)value;
   1.624 -    }
   1.625 -
   1.626 -    /**
   1.627 -     * Returns a hash code for this {@code Float} object. The
   1.628 -     * result is the integer bit representation, exactly as produced
   1.629 -     * by the method {@link #floatToIntBits(float)}, of the primitive
   1.630 -     * {@code float} value represented by this {@code Float}
   1.631 -     * object.
   1.632 -     *
   1.633 -     * @return a hash code value for this object.
   1.634 -     */
   1.635 -    public int hashCode() {
   1.636 -        return floatToIntBits(value);
   1.637 -    }
   1.638 -
   1.639 -    /**
   1.640 -
   1.641 -     * Compares this object against the specified object.  The result
   1.642 -     * is {@code true} if and only if the argument is not
   1.643 -     * {@code null} and is a {@code Float} object that
   1.644 -     * represents a {@code float} with the same value as the
   1.645 -     * {@code float} represented by this object. For this
   1.646 -     * purpose, two {@code float} values are considered to be the
   1.647 -     * same if and only if the method {@link #floatToIntBits(float)}
   1.648 -     * returns the identical {@code int} value when applied to
   1.649 -     * each.
   1.650 -     *
   1.651 -     * <p>Note that in most cases, for two instances of class
   1.652 -     * {@code Float}, {@code f1} and {@code f2}, the value
   1.653 -     * of {@code f1.equals(f2)} is {@code true} if and only if
   1.654 -     *
   1.655 -     * <blockquote><pre>
   1.656 -     *   f1.floatValue() == f2.floatValue()
   1.657 -     * </pre></blockquote>
   1.658 -     *
   1.659 -     * <p>also has the value {@code true}. However, there are two exceptions:
   1.660 -     * <ul>
   1.661 -     * <li>If {@code f1} and {@code f2} both represent
   1.662 -     *     {@code Float.NaN}, then the {@code equals} method returns
   1.663 -     *     {@code true}, even though {@code Float.NaN==Float.NaN}
   1.664 -     *     has the value {@code false}.
   1.665 -     * <li>If {@code f1} represents {@code +0.0f} while
   1.666 -     *     {@code f2} represents {@code -0.0f}, or vice
   1.667 -     *     versa, the {@code equal} test has the value
   1.668 -     *     {@code false}, even though {@code 0.0f==-0.0f}
   1.669 -     *     has the value {@code true}.
   1.670 -     * </ul>
   1.671 -     *
   1.672 -     * This definition allows hash tables to operate properly.
   1.673 -     *
   1.674 -     * @param obj the object to be compared
   1.675 -     * @return  {@code true} if the objects are the same;
   1.676 -     *          {@code false} otherwise.
   1.677 -     * @see java.lang.Float#floatToIntBits(float)
   1.678 -     */
   1.679 -    public boolean equals(Object obj) {
   1.680 -        return (obj instanceof Float)
   1.681 -               && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
   1.682 -    }
   1.683 -
   1.684 -    /**
   1.685 -     * Returns a representation of the specified floating-point value
   1.686 -     * according to the IEEE 754 floating-point "single format" bit
   1.687 -     * layout.
   1.688 -     *
   1.689 -     * <p>Bit 31 (the bit that is selected by the mask
   1.690 -     * {@code 0x80000000}) represents the sign of the floating-point
   1.691 -     * number.
   1.692 -     * Bits 30-23 (the bits that are selected by the mask
   1.693 -     * {@code 0x7f800000}) represent the exponent.
   1.694 -     * Bits 22-0 (the bits that are selected by the mask
   1.695 -     * {@code 0x007fffff}) represent the significand (sometimes called
   1.696 -     * the mantissa) of the floating-point number.
   1.697 -     *
   1.698 -     * <p>If the argument is positive infinity, the result is
   1.699 -     * {@code 0x7f800000}.
   1.700 -     *
   1.701 -     * <p>If the argument is negative infinity, the result is
   1.702 -     * {@code 0xff800000}.
   1.703 -     *
   1.704 -     * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
   1.705 -     *
   1.706 -     * <p>In all cases, the result is an integer that, when given to the
   1.707 -     * {@link #intBitsToFloat(int)} method, will produce a floating-point
   1.708 -     * value the same as the argument to {@code floatToIntBits}
   1.709 -     * (except all NaN values are collapsed to a single
   1.710 -     * "canonical" NaN value).
   1.711 -     *
   1.712 -     * @param   value   a floating-point number.
   1.713 -     * @return the bits that represent the floating-point number.
   1.714 -     */
   1.715 -    public static int floatToIntBits(float value) {
   1.716 -        throw new UnsupportedOperationException();
   1.717 -//        int result = floatToRawIntBits(value);
   1.718 -//        // Check for NaN based on values of bit fields, maximum
   1.719 -//        // exponent and nonzero significand.
   1.720 -//        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
   1.721 -//              FloatConsts.EXP_BIT_MASK) &&
   1.722 -//             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
   1.723 -//            result = 0x7fc00000;
   1.724 -//        return result;
   1.725 -    }
   1.726 -
   1.727 -    /**
   1.728 -     * Returns a representation of the specified floating-point value
   1.729 -     * according to the IEEE 754 floating-point "single format" bit
   1.730 -     * layout, preserving Not-a-Number (NaN) values.
   1.731 -     *
   1.732 -     * <p>Bit 31 (the bit that is selected by the mask
   1.733 -     * {@code 0x80000000}) represents the sign of the floating-point
   1.734 -     * number.
   1.735 -     * Bits 30-23 (the bits that are selected by the mask
   1.736 -     * {@code 0x7f800000}) represent the exponent.
   1.737 -     * Bits 22-0 (the bits that are selected by the mask
   1.738 -     * {@code 0x007fffff}) represent the significand (sometimes called
   1.739 -     * the mantissa) of the floating-point number.
   1.740 -     *
   1.741 -     * <p>If the argument is positive infinity, the result is
   1.742 -     * {@code 0x7f800000}.
   1.743 -     *
   1.744 -     * <p>If the argument is negative infinity, the result is
   1.745 -     * {@code 0xff800000}.
   1.746 -     *
   1.747 -     * <p>If the argument is NaN, the result is the integer representing
   1.748 -     * the actual NaN value.  Unlike the {@code floatToIntBits}
   1.749 -     * method, {@code floatToRawIntBits} does not collapse all the
   1.750 -     * bit patterns encoding a NaN to a single "canonical"
   1.751 -     * NaN value.
   1.752 -     *
   1.753 -     * <p>In all cases, the result is an integer that, when given to the
   1.754 -     * {@link #intBitsToFloat(int)} method, will produce a
   1.755 -     * floating-point value the same as the argument to
   1.756 -     * {@code floatToRawIntBits}.
   1.757 -     *
   1.758 -     * @param   value   a floating-point number.
   1.759 -     * @return the bits that represent the floating-point number.
   1.760 -     * @since 1.3
   1.761 -     */
   1.762 -    public static native int floatToRawIntBits(float value);
   1.763 -
   1.764 -    /**
   1.765 -     * Returns the {@code float} value corresponding to a given
   1.766 -     * bit representation.
   1.767 -     * The argument is considered to be a representation of a
   1.768 -     * floating-point value according to the IEEE 754 floating-point
   1.769 -     * "single format" bit layout.
   1.770 -     *
   1.771 -     * <p>If the argument is {@code 0x7f800000}, the result is positive
   1.772 -     * infinity.
   1.773 -     *
   1.774 -     * <p>If the argument is {@code 0xff800000}, the result is negative
   1.775 -     * infinity.
   1.776 -     *
   1.777 -     * <p>If the argument is any value in the range
   1.778 -     * {@code 0x7f800001} through {@code 0x7fffffff} or in
   1.779 -     * the range {@code 0xff800001} through
   1.780 -     * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
   1.781 -     * floating-point operation provided by Java can distinguish
   1.782 -     * between two NaN values of the same type with different bit
   1.783 -     * patterns.  Distinct values of NaN are only distinguishable by
   1.784 -     * use of the {@code Float.floatToRawIntBits} method.
   1.785 -     *
   1.786 -     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
   1.787 -     * values that can be computed from the argument:
   1.788 -     *
   1.789 -     * <blockquote><pre>
   1.790 -     * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
   1.791 -     * int e = ((bits &gt;&gt; 23) & 0xff);
   1.792 -     * int m = (e == 0) ?
   1.793 -     *                 (bits & 0x7fffff) &lt;&lt; 1 :
   1.794 -     *                 (bits & 0x7fffff) | 0x800000;
   1.795 -     * </pre></blockquote>
   1.796 -     *
   1.797 -     * Then the floating-point result equals the value of the mathematical
   1.798 -     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
   1.799 -     *
   1.800 -     * <p>Note that this method may not be able to return a
   1.801 -     * {@code float} NaN with exactly same bit pattern as the
   1.802 -     * {@code int} argument.  IEEE 754 distinguishes between two
   1.803 -     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
   1.804 -     * differences between the two kinds of NaN are generally not
   1.805 -     * visible in Java.  Arithmetic operations on signaling NaNs turn
   1.806 -     * them into quiet NaNs with a different, but often similar, bit
   1.807 -     * pattern.  However, on some processors merely copying a
   1.808 -     * signaling NaN also performs that conversion.  In particular,
   1.809 -     * copying a signaling NaN to return it to the calling method may
   1.810 -     * perform this conversion.  So {@code intBitsToFloat} may
   1.811 -     * not be able to return a {@code float} with a signaling NaN
   1.812 -     * bit pattern.  Consequently, for some {@code int} values,
   1.813 -     * {@code floatToRawIntBits(intBitsToFloat(start))} may
   1.814 -     * <i>not</i> equal {@code start}.  Moreover, which
   1.815 -     * particular bit patterns represent signaling NaNs is platform
   1.816 -     * dependent; although all NaN bit patterns, quiet or signaling,
   1.817 -     * must be in the NaN range identified above.
   1.818 -     *
   1.819 -     * @param   bits   an integer.
   1.820 -     * @return  the {@code float} floating-point value with the same bit
   1.821 -     *          pattern.
   1.822 -     */
   1.823 -    @JavaScriptBody(args = "bits",
   1.824 -        body = 
   1.825 -          "var s = ((bits >> 31) == 0) ? 1 : -1;\n"
   1.826 -        + "var e = ((bits >> 23) & 0xff);\n"
   1.827 -        + "if (e === 0xff) {\n"
   1.828 -        + "    if ((bits & 0x7fffff) === 0) {\n"
   1.829 -        + "        return (s > 0) ? Number.POSITIVE_INFINITY"
   1.830 -                              + " : Number.NEGATIVE_INFINITY;\n"
   1.831 -        + "    }\n"
   1.832 -        + "    return Number.NaN;\n"
   1.833 -        + "}\n"
   1.834 -        + "var m = (e == 0) ?\n"
   1.835 -        + "  (bits & 0x7fffff) << 1 :\n"
   1.836 -        + "  (bits & 0x7fffff) | 0x800000;\n"
   1.837 -        + "return s * m * Math.pow(2.0, e - 150);\n"
   1.838 -    )
   1.839 -    public static native float intBitsToFloat(int bits);
   1.840 -
   1.841 -    /**
   1.842 -     * Compares two {@code Float} objects numerically.  There are
   1.843 -     * two ways in which comparisons performed by this method differ
   1.844 -     * from those performed by the Java language numerical comparison
   1.845 -     * operators ({@code <, <=, ==, >=, >}) when
   1.846 -     * applied to primitive {@code float} values:
   1.847 -     *
   1.848 -     * <ul><li>
   1.849 -     *          {@code Float.NaN} is considered by this method to
   1.850 -     *          be equal to itself and greater than all other
   1.851 -     *          {@code float} values
   1.852 -     *          (including {@code Float.POSITIVE_INFINITY}).
   1.853 -     * <li>
   1.854 -     *          {@code 0.0f} is considered by this method to be greater
   1.855 -     *          than {@code -0.0f}.
   1.856 -     * </ul>
   1.857 -     *
   1.858 -     * This ensures that the <i>natural ordering</i> of {@code Float}
   1.859 -     * objects imposed by this method is <i>consistent with equals</i>.
   1.860 -     *
   1.861 -     * @param   anotherFloat   the {@code Float} to be compared.
   1.862 -     * @return  the value {@code 0} if {@code anotherFloat} is
   1.863 -     *          numerically equal to this {@code Float}; a value
   1.864 -     *          less than {@code 0} if this {@code Float}
   1.865 -     *          is numerically less than {@code anotherFloat};
   1.866 -     *          and a value greater than {@code 0} if this
   1.867 -     *          {@code Float} is numerically greater than
   1.868 -     *          {@code anotherFloat}.
   1.869 -     *
   1.870 -     * @since   1.2
   1.871 -     * @see Comparable#compareTo(Object)
   1.872 -     */
   1.873 -    public int compareTo(Float anotherFloat) {
   1.874 -        return Float.compare(value, anotherFloat.value);
   1.875 -    }
   1.876 -
   1.877 -    /**
   1.878 -     * Compares the two specified {@code float} values. The sign
   1.879 -     * of the integer value returned is the same as that of the
   1.880 -     * integer that would be returned by the call:
   1.881 -     * <pre>
   1.882 -     *    new Float(f1).compareTo(new Float(f2))
   1.883 -     * </pre>
   1.884 -     *
   1.885 -     * @param   f1        the first {@code float} to compare.
   1.886 -     * @param   f2        the second {@code float} to compare.
   1.887 -     * @return  the value {@code 0} if {@code f1} is
   1.888 -     *          numerically equal to {@code f2}; a value less than
   1.889 -     *          {@code 0} if {@code f1} is numerically less than
   1.890 -     *          {@code f2}; and a value greater than {@code 0}
   1.891 -     *          if {@code f1} is numerically greater than
   1.892 -     *          {@code f2}.
   1.893 -     * @since 1.4
   1.894 -     */
   1.895 -    public static int compare(float f1, float f2) {
   1.896 -        if (f1 < f2)
   1.897 -            return -1;           // Neither val is NaN, thisVal is smaller
   1.898 -        if (f1 > f2)
   1.899 -            return 1;            // Neither val is NaN, thisVal is larger
   1.900 -
   1.901 -        // Cannot use floatToRawIntBits because of possibility of NaNs.
   1.902 -        int thisBits    = Float.floatToIntBits(f1);
   1.903 -        int anotherBits = Float.floatToIntBits(f2);
   1.904 -
   1.905 -        return (thisBits == anotherBits ?  0 : // Values are equal
   1.906 -                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
   1.907 -                 1));                          // (0.0, -0.0) or (NaN, !NaN)
   1.908 -    }
   1.909 -
   1.910 -    /** use serialVersionUID from JDK 1.0.2 for interoperability */
   1.911 -    private static final long serialVersionUID = -2671257302660747028L;
   1.912 -}