rt/emul/compact/src/main/java/java/util/Arrays.java
changeset 772 d382dacfd73f
parent 636 8d0be6a9a809
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/util/Arrays.java	Tue Feb 26 16:54:16 2013 +0100
     1.3 @@ -0,0 +1,3670 @@
     1.4 +/*
     1.5 + * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.util;
    1.30 +
    1.31 +import java.lang.reflect.*;
    1.32 +
    1.33 +/**
    1.34 + * This class contains various methods for manipulating arrays (such as
    1.35 + * sorting and searching). This class also contains a static factory
    1.36 + * that allows arrays to be viewed as lists.
    1.37 + *
    1.38 + * <p>The methods in this class all throw a {@code NullPointerException},
    1.39 + * if the specified array reference is null, except where noted.
    1.40 + *
    1.41 + * <p>The documentation for the methods contained in this class includes
    1.42 + * briefs description of the <i>implementations</i>. Such descriptions should
    1.43 + * be regarded as <i>implementation notes</i>, rather than parts of the
    1.44 + * <i>specification</i>. Implementors should feel free to substitute other
    1.45 + * algorithms, so long as the specification itself is adhered to. (For
    1.46 + * example, the algorithm used by {@code sort(Object[])} does not have to be
    1.47 + * a MergeSort, but it does have to be <i>stable</i>.)
    1.48 + *
    1.49 + * <p>This class is a member of the
    1.50 + * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    1.51 + * Java Collections Framework</a>.
    1.52 + *
    1.53 + * @author Josh Bloch
    1.54 + * @author Neal Gafter
    1.55 + * @author John Rose
    1.56 + * @since  1.2
    1.57 + */
    1.58 +public class Arrays {
    1.59 +
    1.60 +    // Suppresses default constructor, ensuring non-instantiability.
    1.61 +    private Arrays() {}
    1.62 +
    1.63 +    /*
    1.64 +     * Sorting of primitive type arrays.
    1.65 +     */
    1.66 +
    1.67 +    /**
    1.68 +     * Sorts the specified array into ascending numerical order.
    1.69 +     *
    1.70 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
    1.71 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
    1.72 +     * offers O(n log(n)) performance on many data sets that cause other
    1.73 +     * quicksorts to degrade to quadratic performance, and is typically
    1.74 +     * faster than traditional (one-pivot) Quicksort implementations.
    1.75 +     *
    1.76 +     * @param a the array to be sorted
    1.77 +     */
    1.78 +    public static void sort(int[] a) {
    1.79 +        DualPivotQuicksort.sort(a);
    1.80 +    }
    1.81 +
    1.82 +    /**
    1.83 +     * Sorts the specified range of the array into ascending order. The range
    1.84 +     * to be sorted extends from the index {@code fromIndex}, inclusive, to
    1.85 +     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
    1.86 +     * the range to be sorted is empty.
    1.87 +     *
    1.88 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
    1.89 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
    1.90 +     * offers O(n log(n)) performance on many data sets that cause other
    1.91 +     * quicksorts to degrade to quadratic performance, and is typically
    1.92 +     * faster than traditional (one-pivot) Quicksort implementations.
    1.93 +     *
    1.94 +     * @param a the array to be sorted
    1.95 +     * @param fromIndex the index of the first element, inclusive, to be sorted
    1.96 +     * @param toIndex the index of the last element, exclusive, to be sorted
    1.97 +     *
    1.98 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
    1.99 +     * @throws ArrayIndexOutOfBoundsException
   1.100 +     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
   1.101 +     */
   1.102 +    public static void sort(int[] a, int fromIndex, int toIndex) {
   1.103 +        rangeCheck(a.length, fromIndex, toIndex);
   1.104 +        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
   1.105 +    }
   1.106 +
   1.107 +    /**
   1.108 +     * Sorts the specified array into ascending numerical order.
   1.109 +     *
   1.110 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.111 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.112 +     * offers O(n log(n)) performance on many data sets that cause other
   1.113 +     * quicksorts to degrade to quadratic performance, and is typically
   1.114 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.115 +     *
   1.116 +     * @param a the array to be sorted
   1.117 +     */
   1.118 +    public static void sort(long[] a) {
   1.119 +        DualPivotQuicksort.sort(a);
   1.120 +    }
   1.121 +
   1.122 +    /**
   1.123 +     * Sorts the specified range of the array into ascending order. The range
   1.124 +     * to be sorted extends from the index {@code fromIndex}, inclusive, to
   1.125 +     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
   1.126 +     * the range to be sorted is empty.
   1.127 +     *
   1.128 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.129 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.130 +     * offers O(n log(n)) performance on many data sets that cause other
   1.131 +     * quicksorts to degrade to quadratic performance, and is typically
   1.132 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.133 +     *
   1.134 +     * @param a the array to be sorted
   1.135 +     * @param fromIndex the index of the first element, inclusive, to be sorted
   1.136 +     * @param toIndex the index of the last element, exclusive, to be sorted
   1.137 +     *
   1.138 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
   1.139 +     * @throws ArrayIndexOutOfBoundsException
   1.140 +     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
   1.141 +     */
   1.142 +    public static void sort(long[] a, int fromIndex, int toIndex) {
   1.143 +        rangeCheck(a.length, fromIndex, toIndex);
   1.144 +        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
   1.145 +    }
   1.146 +
   1.147 +    /**
   1.148 +     * Sorts the specified array into ascending numerical order.
   1.149 +     *
   1.150 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.151 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.152 +     * offers O(n log(n)) performance on many data sets that cause other
   1.153 +     * quicksorts to degrade to quadratic performance, and is typically
   1.154 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.155 +     *
   1.156 +     * @param a the array to be sorted
   1.157 +     */
   1.158 +    public static void sort(short[] a) {
   1.159 +        DualPivotQuicksort.sort(a);
   1.160 +    }
   1.161 +
   1.162 +    /**
   1.163 +     * Sorts the specified range of the array into ascending order. The range
   1.164 +     * to be sorted extends from the index {@code fromIndex}, inclusive, to
   1.165 +     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
   1.166 +     * the range to be sorted is empty.
   1.167 +     *
   1.168 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.169 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.170 +     * offers O(n log(n)) performance on many data sets that cause other
   1.171 +     * quicksorts to degrade to quadratic performance, and is typically
   1.172 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.173 +     *
   1.174 +     * @param a the array to be sorted
   1.175 +     * @param fromIndex the index of the first element, inclusive, to be sorted
   1.176 +     * @param toIndex the index of the last element, exclusive, to be sorted
   1.177 +     *
   1.178 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
   1.179 +     * @throws ArrayIndexOutOfBoundsException
   1.180 +     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
   1.181 +     */
   1.182 +    public static void sort(short[] a, int fromIndex, int toIndex) {
   1.183 +        rangeCheck(a.length, fromIndex, toIndex);
   1.184 +        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
   1.185 +    }
   1.186 +
   1.187 +    /**
   1.188 +     * Sorts the specified array into ascending numerical order.
   1.189 +     *
   1.190 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.191 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.192 +     * offers O(n log(n)) performance on many data sets that cause other
   1.193 +     * quicksorts to degrade to quadratic performance, and is typically
   1.194 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.195 +     *
   1.196 +     * @param a the array to be sorted
   1.197 +     */
   1.198 +    public static void sort(char[] a) {
   1.199 +        DualPivotQuicksort.sort(a);
   1.200 +    }
   1.201 +
   1.202 +    /**
   1.203 +     * Sorts the specified range of the array into ascending order. The range
   1.204 +     * to be sorted extends from the index {@code fromIndex}, inclusive, to
   1.205 +     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
   1.206 +     * the range to be sorted is empty.
   1.207 +     *
   1.208 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.209 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.210 +     * offers O(n log(n)) performance on many data sets that cause other
   1.211 +     * quicksorts to degrade to quadratic performance, and is typically
   1.212 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.213 +     *
   1.214 +     * @param a the array to be sorted
   1.215 +     * @param fromIndex the index of the first element, inclusive, to be sorted
   1.216 +     * @param toIndex the index of the last element, exclusive, to be sorted
   1.217 +     *
   1.218 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
   1.219 +     * @throws ArrayIndexOutOfBoundsException
   1.220 +     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
   1.221 +     */
   1.222 +    public static void sort(char[] a, int fromIndex, int toIndex) {
   1.223 +        rangeCheck(a.length, fromIndex, toIndex);
   1.224 +        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
   1.225 +    }
   1.226 +
   1.227 +    /**
   1.228 +     * Sorts the specified array into ascending numerical order.
   1.229 +     *
   1.230 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.231 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.232 +     * offers O(n log(n)) performance on many data sets that cause other
   1.233 +     * quicksorts to degrade to quadratic performance, and is typically
   1.234 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.235 +     *
   1.236 +     * @param a the array to be sorted
   1.237 +     */
   1.238 +    public static void sort(byte[] a) {
   1.239 +        DualPivotQuicksort.sort(a);
   1.240 +    }
   1.241 +
   1.242 +    /**
   1.243 +     * Sorts the specified range of the array into ascending order. The range
   1.244 +     * to be sorted extends from the index {@code fromIndex}, inclusive, to
   1.245 +     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
   1.246 +     * the range to be sorted is empty.
   1.247 +     *
   1.248 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.249 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.250 +     * offers O(n log(n)) performance on many data sets that cause other
   1.251 +     * quicksorts to degrade to quadratic performance, and is typically
   1.252 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.253 +     *
   1.254 +     * @param a the array to be sorted
   1.255 +     * @param fromIndex the index of the first element, inclusive, to be sorted
   1.256 +     * @param toIndex the index of the last element, exclusive, to be sorted
   1.257 +     *
   1.258 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
   1.259 +     * @throws ArrayIndexOutOfBoundsException
   1.260 +     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
   1.261 +     */
   1.262 +    public static void sort(byte[] a, int fromIndex, int toIndex) {
   1.263 +        rangeCheck(a.length, fromIndex, toIndex);
   1.264 +        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
   1.265 +    }
   1.266 +
   1.267 +    /**
   1.268 +     * Sorts the specified array into ascending numerical order.
   1.269 +     *
   1.270 +     * <p>The {@code <} relation does not provide a total order on all float
   1.271 +     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
   1.272 +     * value compares neither less than, greater than, nor equal to any value,
   1.273 +     * even itself. This method uses the total order imposed by the method
   1.274 +     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
   1.275 +     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
   1.276 +     * other value and all {@code Float.NaN} values are considered equal.
   1.277 +     *
   1.278 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.279 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.280 +     * offers O(n log(n)) performance on many data sets that cause other
   1.281 +     * quicksorts to degrade to quadratic performance, and is typically
   1.282 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.283 +     *
   1.284 +     * @param a the array to be sorted
   1.285 +     */
   1.286 +    public static void sort(float[] a) {
   1.287 +        DualPivotQuicksort.sort(a);
   1.288 +    }
   1.289 +
   1.290 +    /**
   1.291 +     * Sorts the specified range of the array into ascending order. The range
   1.292 +     * to be sorted extends from the index {@code fromIndex}, inclusive, to
   1.293 +     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
   1.294 +     * the range to be sorted is empty.
   1.295 +     *
   1.296 +     * <p>The {@code <} relation does not provide a total order on all float
   1.297 +     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
   1.298 +     * value compares neither less than, greater than, nor equal to any value,
   1.299 +     * even itself. This method uses the total order imposed by the method
   1.300 +     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
   1.301 +     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
   1.302 +     * other value and all {@code Float.NaN} values are considered equal.
   1.303 +     *
   1.304 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.305 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.306 +     * offers O(n log(n)) performance on many data sets that cause other
   1.307 +     * quicksorts to degrade to quadratic performance, and is typically
   1.308 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.309 +     *
   1.310 +     * @param a the array to be sorted
   1.311 +     * @param fromIndex the index of the first element, inclusive, to be sorted
   1.312 +     * @param toIndex the index of the last element, exclusive, to be sorted
   1.313 +     *
   1.314 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
   1.315 +     * @throws ArrayIndexOutOfBoundsException
   1.316 +     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
   1.317 +     */
   1.318 +    public static void sort(float[] a, int fromIndex, int toIndex) {
   1.319 +        rangeCheck(a.length, fromIndex, toIndex);
   1.320 +        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
   1.321 +    }
   1.322 +
   1.323 +    /**
   1.324 +     * Sorts the specified array into ascending numerical order.
   1.325 +     *
   1.326 +     * <p>The {@code <} relation does not provide a total order on all double
   1.327 +     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
   1.328 +     * value compares neither less than, greater than, nor equal to any value,
   1.329 +     * even itself. This method uses the total order imposed by the method
   1.330 +     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
   1.331 +     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
   1.332 +     * other value and all {@code Double.NaN} values are considered equal.
   1.333 +     *
   1.334 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.335 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.336 +     * offers O(n log(n)) performance on many data sets that cause other
   1.337 +     * quicksorts to degrade to quadratic performance, and is typically
   1.338 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.339 +     *
   1.340 +     * @param a the array to be sorted
   1.341 +     */
   1.342 +    public static void sort(double[] a) {
   1.343 +        DualPivotQuicksort.sort(a);
   1.344 +    }
   1.345 +
   1.346 +    /**
   1.347 +     * Sorts the specified range of the array into ascending order. The range
   1.348 +     * to be sorted extends from the index {@code fromIndex}, inclusive, to
   1.349 +     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
   1.350 +     * the range to be sorted is empty.
   1.351 +     *
   1.352 +     * <p>The {@code <} relation does not provide a total order on all double
   1.353 +     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
   1.354 +     * value compares neither less than, greater than, nor equal to any value,
   1.355 +     * even itself. This method uses the total order imposed by the method
   1.356 +     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
   1.357 +     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
   1.358 +     * other value and all {@code Double.NaN} values are considered equal.
   1.359 +     *
   1.360 +     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
   1.361 +     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
   1.362 +     * offers O(n log(n)) performance on many data sets that cause other
   1.363 +     * quicksorts to degrade to quadratic performance, and is typically
   1.364 +     * faster than traditional (one-pivot) Quicksort implementations.
   1.365 +     *
   1.366 +     * @param a the array to be sorted
   1.367 +     * @param fromIndex the index of the first element, inclusive, to be sorted
   1.368 +     * @param toIndex the index of the last element, exclusive, to be sorted
   1.369 +     *
   1.370 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
   1.371 +     * @throws ArrayIndexOutOfBoundsException
   1.372 +     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
   1.373 +     */
   1.374 +    public static void sort(double[] a, int fromIndex, int toIndex) {
   1.375 +        rangeCheck(a.length, fromIndex, toIndex);
   1.376 +        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
   1.377 +    }
   1.378 +
   1.379 +    /*
   1.380 +     * Sorting of complex type arrays.
   1.381 +     */
   1.382 +
   1.383 +    /**
   1.384 +     * Old merge sort implementation can be selected (for
   1.385 +     * compatibility with broken comparators) using a system property.
   1.386 +     * Cannot be a static boolean in the enclosing class due to
   1.387 +     * circular dependencies. To be removed in a future release.
   1.388 +     */
   1.389 +    static final class LegacyMergeSort {
   1.390 +        private static final boolean userRequested = false;
   1.391 +    }
   1.392 +
   1.393 +    /*
   1.394 +     * If this platform has an optimizing VM, check whether ComparableTimSort
   1.395 +     * offers any performance benefit over TimSort in conjunction with a
   1.396 +     * comparator that returns:
   1.397 +     *    {@code ((Comparable)first).compareTo(Second)}.
   1.398 +     * If not, you are better off deleting ComparableTimSort to
   1.399 +     * eliminate the code duplication.  In other words, the commented
   1.400 +     * out code below is the preferable implementation for sorting
   1.401 +     * arrays of Comparables if it offers sufficient performance.
   1.402 +     */
   1.403 +
   1.404 +//    /**
   1.405 +//     * A comparator that implements the natural ordering of a group of
   1.406 +//     * mutually comparable elements.  Using this comparator saves us
   1.407 +//     * from duplicating most of the code in this file (one version for
   1.408 +//     * Comparables, one for explicit Comparators).
   1.409 +//     */
   1.410 +//    private static final Comparator<Object> NATURAL_ORDER =
   1.411 +//            new Comparator<Object>() {
   1.412 +//        @SuppressWarnings("unchecked")
   1.413 +//        public int compare(Object first, Object second) {
   1.414 +//            return ((Comparable<Object>)first).compareTo(second);
   1.415 +//        }
   1.416 +//    };
   1.417 +//
   1.418 +//    public static void sort(Object[] a) {
   1.419 +//        sort(a, 0, a.length, NATURAL_ORDER);
   1.420 +//    }
   1.421 +//
   1.422 +//    public static void sort(Object[] a, int fromIndex, int toIndex) {
   1.423 +//        sort(a, fromIndex, toIndex, NATURAL_ORDER);
   1.424 +//    }
   1.425 +
   1.426 +    /**
   1.427 +     * Sorts the specified array of objects into ascending order, according
   1.428 +     * to the {@linkplain Comparable natural ordering} of its elements.
   1.429 +     * All elements in the array must implement the {@link Comparable}
   1.430 +     * interface.  Furthermore, all elements in the array must be
   1.431 +     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must
   1.432 +     * not throw a {@code ClassCastException} for any elements {@code e1}
   1.433 +     * and {@code e2} in the array).
   1.434 +     *
   1.435 +     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
   1.436 +     * not be reordered as a result of the sort.
   1.437 +     *
   1.438 +     * <p>Implementation note: This implementation is a stable, adaptive,
   1.439 +     * iterative mergesort that requires far fewer than n lg(n) comparisons
   1.440 +     * when the input array is partially sorted, while offering the
   1.441 +     * performance of a traditional mergesort when the input array is
   1.442 +     * randomly ordered.  If the input array is nearly sorted, the
   1.443 +     * implementation requires approximately n comparisons.  Temporary
   1.444 +     * storage requirements vary from a small constant for nearly sorted
   1.445 +     * input arrays to n/2 object references for randomly ordered input
   1.446 +     * arrays.
   1.447 +     *
   1.448 +     * <p>The implementation takes equal advantage of ascending and
   1.449 +     * descending order in its input array, and can take advantage of
   1.450 +     * ascending and descending order in different parts of the the same
   1.451 +     * input array.  It is well-suited to merging two or more sorted arrays:
   1.452 +     * simply concatenate the arrays and sort the resulting array.
   1.453 +     *
   1.454 +     * <p>The implementation was adapted from Tim Peters's list sort for Python
   1.455 +     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
   1.456 +     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
   1.457 +     * Sorting and Information Theoretic Complexity", in Proceedings of the
   1.458 +     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
   1.459 +     * January 1993.
   1.460 +     *
   1.461 +     * @param a the array to be sorted
   1.462 +     * @throws ClassCastException if the array contains elements that are not
   1.463 +     *         <i>mutually comparable</i> (for example, strings and integers)
   1.464 +     * @throws IllegalArgumentException (optional) if the natural
   1.465 +     *         ordering of the array elements is found to violate the
   1.466 +     *         {@link Comparable} contract
   1.467 +     */
   1.468 +    public static void sort(Object[] a) {
   1.469 +        if (LegacyMergeSort.userRequested)
   1.470 +            legacyMergeSort(a);
   1.471 +        else
   1.472 +            ComparableTimSort.sort(a);
   1.473 +    }
   1.474 +
   1.475 +    /** To be removed in a future release. */
   1.476 +    private static void legacyMergeSort(Object[] a) {
   1.477 +        Object[] aux = a.clone();
   1.478 +        mergeSort(aux, a, 0, a.length, 0);
   1.479 +    }
   1.480 +
   1.481 +    /**
   1.482 +     * Sorts the specified range of the specified array of objects into
   1.483 +     * ascending order, according to the
   1.484 +     * {@linkplain Comparable natural ordering} of its
   1.485 +     * elements.  The range to be sorted extends from index
   1.486 +     * {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive.
   1.487 +     * (If {@code fromIndex==toIndex}, the range to be sorted is empty.)  All
   1.488 +     * elements in this range must implement the {@link Comparable}
   1.489 +     * interface.  Furthermore, all elements in this range must be <i>mutually
   1.490 +     * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
   1.491 +     * {@code ClassCastException} for any elements {@code e1} and
   1.492 +     * {@code e2} in the array).
   1.493 +     *
   1.494 +     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
   1.495 +     * not be reordered as a result of the sort.
   1.496 +     *
   1.497 +     * <p>Implementation note: This implementation is a stable, adaptive,
   1.498 +     * iterative mergesort that requires far fewer than n lg(n) comparisons
   1.499 +     * when the input array is partially sorted, while offering the
   1.500 +     * performance of a traditional mergesort when the input array is
   1.501 +     * randomly ordered.  If the input array is nearly sorted, the
   1.502 +     * implementation requires approximately n comparisons.  Temporary
   1.503 +     * storage requirements vary from a small constant for nearly sorted
   1.504 +     * input arrays to n/2 object references for randomly ordered input
   1.505 +     * arrays.
   1.506 +     *
   1.507 +     * <p>The implementation takes equal advantage of ascending and
   1.508 +     * descending order in its input array, and can take advantage of
   1.509 +     * ascending and descending order in different parts of the the same
   1.510 +     * input array.  It is well-suited to merging two or more sorted arrays:
   1.511 +     * simply concatenate the arrays and sort the resulting array.
   1.512 +     *
   1.513 +     * <p>The implementation was adapted from Tim Peters's list sort for Python
   1.514 +     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
   1.515 +     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
   1.516 +     * Sorting and Information Theoretic Complexity", in Proceedings of the
   1.517 +     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
   1.518 +     * January 1993.
   1.519 +     *
   1.520 +     * @param a the array to be sorted
   1.521 +     * @param fromIndex the index of the first element (inclusive) to be
   1.522 +     *        sorted
   1.523 +     * @param toIndex the index of the last element (exclusive) to be sorted
   1.524 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
   1.525 +     *         (optional) if the natural ordering of the array elements is
   1.526 +     *         found to violate the {@link Comparable} contract
   1.527 +     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
   1.528 +     *         {@code toIndex > a.length}
   1.529 +     * @throws ClassCastException if the array contains elements that are
   1.530 +     *         not <i>mutually comparable</i> (for example, strings and
   1.531 +     *         integers).
   1.532 +     */
   1.533 +    public static void sort(Object[] a, int fromIndex, int toIndex) {
   1.534 +        if (LegacyMergeSort.userRequested)
   1.535 +            legacyMergeSort(a, fromIndex, toIndex);
   1.536 +        else
   1.537 +            ComparableTimSort.sort(a, fromIndex, toIndex);
   1.538 +    }
   1.539 +
   1.540 +    /** To be removed in a future release. */
   1.541 +    private static void legacyMergeSort(Object[] a,
   1.542 +                                        int fromIndex, int toIndex) {
   1.543 +        rangeCheck(a.length, fromIndex, toIndex);
   1.544 +        Object[] aux = copyOfRange(a, fromIndex, toIndex);
   1.545 +        mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
   1.546 +    }
   1.547 +
   1.548 +    /**
   1.549 +     * Tuning parameter: list size at or below which insertion sort will be
   1.550 +     * used in preference to mergesort.
   1.551 +     * To be removed in a future release.
   1.552 +     */
   1.553 +    private static final int INSERTIONSORT_THRESHOLD = 7;
   1.554 +
   1.555 +    /**
   1.556 +     * Src is the source array that starts at index 0
   1.557 +     * Dest is the (possibly larger) array destination with a possible offset
   1.558 +     * low is the index in dest to start sorting
   1.559 +     * high is the end index in dest to end sorting
   1.560 +     * off is the offset to generate corresponding low, high in src
   1.561 +     * To be removed in a future release.
   1.562 +     */
   1.563 +    private static void mergeSort(Object[] src,
   1.564 +                                  Object[] dest,
   1.565 +                                  int low,
   1.566 +                                  int high,
   1.567 +                                  int off) {
   1.568 +        int length = high - low;
   1.569 +
   1.570 +        // Insertion sort on smallest arrays
   1.571 +        if (length < INSERTIONSORT_THRESHOLD) {
   1.572 +            for (int i=low; i<high; i++)
   1.573 +                for (int j=i; j>low &&
   1.574 +                         ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
   1.575 +                    swap(dest, j, j-1);
   1.576 +            return;
   1.577 +        }
   1.578 +
   1.579 +        // Recursively sort halves of dest into src
   1.580 +        int destLow  = low;
   1.581 +        int destHigh = high;
   1.582 +        low  += off;
   1.583 +        high += off;
   1.584 +        int mid = (low + high) >>> 1;
   1.585 +        mergeSort(dest, src, low, mid, -off);
   1.586 +        mergeSort(dest, src, mid, high, -off);
   1.587 +
   1.588 +        // If list is already sorted, just copy from src to dest.  This is an
   1.589 +        // optimization that results in faster sorts for nearly ordered lists.
   1.590 +        if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
   1.591 +            System.arraycopy(src, low, dest, destLow, length);
   1.592 +            return;
   1.593 +        }
   1.594 +
   1.595 +        // Merge sorted halves (now in src) into dest
   1.596 +        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
   1.597 +            if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
   1.598 +                dest[i] = src[p++];
   1.599 +            else
   1.600 +                dest[i] = src[q++];
   1.601 +        }
   1.602 +    }
   1.603 +
   1.604 +    /**
   1.605 +     * Swaps x[a] with x[b].
   1.606 +     */
   1.607 +    private static void swap(Object[] x, int a, int b) {
   1.608 +        Object t = x[a];
   1.609 +        x[a] = x[b];
   1.610 +        x[b] = t;
   1.611 +    }
   1.612 +
   1.613 +    /**
   1.614 +     * Sorts the specified array of objects according to the order induced by
   1.615 +     * the specified comparator.  All elements in the array must be
   1.616 +     * <i>mutually comparable</i> by the specified comparator (that is,
   1.617 +     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
   1.618 +     * for any elements {@code e1} and {@code e2} in the array).
   1.619 +     *
   1.620 +     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
   1.621 +     * not be reordered as a result of the sort.
   1.622 +     *
   1.623 +     * <p>Implementation note: This implementation is a stable, adaptive,
   1.624 +     * iterative mergesort that requires far fewer than n lg(n) comparisons
   1.625 +     * when the input array is partially sorted, while offering the
   1.626 +     * performance of a traditional mergesort when the input array is
   1.627 +     * randomly ordered.  If the input array is nearly sorted, the
   1.628 +     * implementation requires approximately n comparisons.  Temporary
   1.629 +     * storage requirements vary from a small constant for nearly sorted
   1.630 +     * input arrays to n/2 object references for randomly ordered input
   1.631 +     * arrays.
   1.632 +     *
   1.633 +     * <p>The implementation takes equal advantage of ascending and
   1.634 +     * descending order in its input array, and can take advantage of
   1.635 +     * ascending and descending order in different parts of the the same
   1.636 +     * input array.  It is well-suited to merging two or more sorted arrays:
   1.637 +     * simply concatenate the arrays and sort the resulting array.
   1.638 +     *
   1.639 +     * <p>The implementation was adapted from Tim Peters's list sort for Python
   1.640 +     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
   1.641 +     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
   1.642 +     * Sorting and Information Theoretic Complexity", in Proceedings of the
   1.643 +     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
   1.644 +     * January 1993.
   1.645 +     *
   1.646 +     * @param a the array to be sorted
   1.647 +     * @param c the comparator to determine the order of the array.  A
   1.648 +     *        {@code null} value indicates that the elements'
   1.649 +     *        {@linkplain Comparable natural ordering} should be used.
   1.650 +     * @throws ClassCastException if the array contains elements that are
   1.651 +     *         not <i>mutually comparable</i> using the specified comparator
   1.652 +     * @throws IllegalArgumentException (optional) if the comparator is
   1.653 +     *         found to violate the {@link Comparator} contract
   1.654 +     */
   1.655 +    public static <T> void sort(T[] a, Comparator<? super T> c) {
   1.656 +        if (LegacyMergeSort.userRequested)
   1.657 +            legacyMergeSort(a, c);
   1.658 +        else
   1.659 +            TimSort.sort(a, c);
   1.660 +    }
   1.661 +
   1.662 +    /** To be removed in a future release. */
   1.663 +    private static <T> void legacyMergeSort(T[] a, Comparator<? super T> c) {
   1.664 +        T[] aux = a.clone();
   1.665 +        if (c==null)
   1.666 +            mergeSort(aux, a, 0, a.length, 0);
   1.667 +        else
   1.668 +            mergeSort(aux, a, 0, a.length, 0, c);
   1.669 +    }
   1.670 +
   1.671 +    /**
   1.672 +     * Sorts the specified range of the specified array of objects according
   1.673 +     * to the order induced by the specified comparator.  The range to be
   1.674 +     * sorted extends from index {@code fromIndex}, inclusive, to index
   1.675 +     * {@code toIndex}, exclusive.  (If {@code fromIndex==toIndex}, the
   1.676 +     * range to be sorted is empty.)  All elements in the range must be
   1.677 +     * <i>mutually comparable</i> by the specified comparator (that is,
   1.678 +     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
   1.679 +     * for any elements {@code e1} and {@code e2} in the range).
   1.680 +     *
   1.681 +     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
   1.682 +     * not be reordered as a result of the sort.
   1.683 +     *
   1.684 +     * <p>Implementation note: This implementation is a stable, adaptive,
   1.685 +     * iterative mergesort that requires far fewer than n lg(n) comparisons
   1.686 +     * when the input array is partially sorted, while offering the
   1.687 +     * performance of a traditional mergesort when the input array is
   1.688 +     * randomly ordered.  If the input array is nearly sorted, the
   1.689 +     * implementation requires approximately n comparisons.  Temporary
   1.690 +     * storage requirements vary from a small constant for nearly sorted
   1.691 +     * input arrays to n/2 object references for randomly ordered input
   1.692 +     * arrays.
   1.693 +     *
   1.694 +     * <p>The implementation takes equal advantage of ascending and
   1.695 +     * descending order in its input array, and can take advantage of
   1.696 +     * ascending and descending order in different parts of the the same
   1.697 +     * input array.  It is well-suited to merging two or more sorted arrays:
   1.698 +     * simply concatenate the arrays and sort the resulting array.
   1.699 +     *
   1.700 +     * <p>The implementation was adapted from Tim Peters's list sort for Python
   1.701 +     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
   1.702 +     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
   1.703 +     * Sorting and Information Theoretic Complexity", in Proceedings of the
   1.704 +     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
   1.705 +     * January 1993.
   1.706 +     *
   1.707 +     * @param a the array to be sorted
   1.708 +     * @param fromIndex the index of the first element (inclusive) to be
   1.709 +     *        sorted
   1.710 +     * @param toIndex the index of the last element (exclusive) to be sorted
   1.711 +     * @param c the comparator to determine the order of the array.  A
   1.712 +     *        {@code null} value indicates that the elements'
   1.713 +     *        {@linkplain Comparable natural ordering} should be used.
   1.714 +     * @throws ClassCastException if the array contains elements that are not
   1.715 +     *         <i>mutually comparable</i> using the specified comparator.
   1.716 +     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
   1.717 +     *         (optional) if the comparator is found to violate the
   1.718 +     *         {@link Comparator} contract
   1.719 +     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
   1.720 +     *         {@code toIndex > a.length}
   1.721 +     */
   1.722 +    public static <T> void sort(T[] a, int fromIndex, int toIndex,
   1.723 +                                Comparator<? super T> c) {
   1.724 +        if (LegacyMergeSort.userRequested)
   1.725 +            legacyMergeSort(a, fromIndex, toIndex, c);
   1.726 +        else
   1.727 +            TimSort.sort(a, fromIndex, toIndex, c);
   1.728 +    }
   1.729 +
   1.730 +    /** To be removed in a future release. */
   1.731 +    private static <T> void legacyMergeSort(T[] a, int fromIndex, int toIndex,
   1.732 +                                            Comparator<? super T> c) {
   1.733 +        rangeCheck(a.length, fromIndex, toIndex);
   1.734 +        T[] aux = copyOfRange(a, fromIndex, toIndex);
   1.735 +        if (c==null)
   1.736 +            mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
   1.737 +        else
   1.738 +            mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c);
   1.739 +    }
   1.740 +
   1.741 +    /**
   1.742 +     * Src is the source array that starts at index 0
   1.743 +     * Dest is the (possibly larger) array destination with a possible offset
   1.744 +     * low is the index in dest to start sorting
   1.745 +     * high is the end index in dest to end sorting
   1.746 +     * off is the offset into src corresponding to low in dest
   1.747 +     * To be removed in a future release.
   1.748 +     */
   1.749 +    private static void mergeSort(Object[] src,
   1.750 +                                  Object[] dest,
   1.751 +                                  int low, int high, int off,
   1.752 +                                  Comparator c) {
   1.753 +        int length = high - low;
   1.754 +
   1.755 +        // Insertion sort on smallest arrays
   1.756 +        if (length < INSERTIONSORT_THRESHOLD) {
   1.757 +            for (int i=low; i<high; i++)
   1.758 +                for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--)
   1.759 +                    swap(dest, j, j-1);
   1.760 +            return;
   1.761 +        }
   1.762 +
   1.763 +        // Recursively sort halves of dest into src
   1.764 +        int destLow  = low;
   1.765 +        int destHigh = high;
   1.766 +        low  += off;
   1.767 +        high += off;
   1.768 +        int mid = (low + high) >>> 1;
   1.769 +        mergeSort(dest, src, low, mid, -off, c);
   1.770 +        mergeSort(dest, src, mid, high, -off, c);
   1.771 +
   1.772 +        // If list is already sorted, just copy from src to dest.  This is an
   1.773 +        // optimization that results in faster sorts for nearly ordered lists.
   1.774 +        if (c.compare(src[mid-1], src[mid]) <= 0) {
   1.775 +           System.arraycopy(src, low, dest, destLow, length);
   1.776 +           return;
   1.777 +        }
   1.778 +
   1.779 +        // Merge sorted halves (now in src) into dest
   1.780 +        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
   1.781 +            if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0)
   1.782 +                dest[i] = src[p++];
   1.783 +            else
   1.784 +                dest[i] = src[q++];
   1.785 +        }
   1.786 +    }
   1.787 +
   1.788 +    /**
   1.789 +     * Checks that {@code fromIndex} and {@code toIndex} are in
   1.790 +     * the range and throws an appropriate exception, if they aren't.
   1.791 +     */
   1.792 +    private static void rangeCheck(int length, int fromIndex, int toIndex) {
   1.793 +        if (fromIndex > toIndex) {
   1.794 +            throw new IllegalArgumentException(
   1.795 +                "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
   1.796 +        }
   1.797 +        if (fromIndex < 0) {
   1.798 +            throw new ArrayIndexOutOfBoundsException(fromIndex);
   1.799 +        }
   1.800 +        if (toIndex > length) {
   1.801 +            throw new ArrayIndexOutOfBoundsException(toIndex);
   1.802 +        }
   1.803 +    }
   1.804 +
   1.805 +    // Searching
   1.806 +
   1.807 +    /**
   1.808 +     * Searches the specified array of longs for the specified value using the
   1.809 +     * binary search algorithm.  The array must be sorted (as
   1.810 +     * by the {@link #sort(long[])} method) prior to making this call.  If it
   1.811 +     * is not sorted, the results are undefined.  If the array contains
   1.812 +     * multiple elements with the specified value, there is no guarantee which
   1.813 +     * one will be found.
   1.814 +     *
   1.815 +     * @param a the array to be searched
   1.816 +     * @param key the value to be searched for
   1.817 +     * @return index of the search key, if it is contained in the array;
   1.818 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   1.819 +     *         <i>insertion point</i> is defined as the point at which the
   1.820 +     *         key would be inserted into the array: the index of the first
   1.821 +     *         element greater than the key, or <tt>a.length</tt> if all
   1.822 +     *         elements in the array are less than the specified key.  Note
   1.823 +     *         that this guarantees that the return value will be &gt;= 0 if
   1.824 +     *         and only if the key is found.
   1.825 +     */
   1.826 +    public static int binarySearch(long[] a, long key) {
   1.827 +        return binarySearch0(a, 0, a.length, key);
   1.828 +    }
   1.829 +
   1.830 +    /**
   1.831 +     * Searches a range of
   1.832 +     * the specified array of longs for the specified value using the
   1.833 +     * binary search algorithm.
   1.834 +     * The range must be sorted (as
   1.835 +     * by the {@link #sort(long[], int, int)} method)
   1.836 +     * prior to making this call.  If it
   1.837 +     * is not sorted, the results are undefined.  If the range contains
   1.838 +     * multiple elements with the specified value, there is no guarantee which
   1.839 +     * one will be found.
   1.840 +     *
   1.841 +     * @param a the array to be searched
   1.842 +     * @param fromIndex the index of the first element (inclusive) to be
   1.843 +     *          searched
   1.844 +     * @param toIndex the index of the last element (exclusive) to be searched
   1.845 +     * @param key the value to be searched for
   1.846 +     * @return index of the search key, if it is contained in the array
   1.847 +     *         within the specified range;
   1.848 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   1.849 +     *         <i>insertion point</i> is defined as the point at which the
   1.850 +     *         key would be inserted into the array: the index of the first
   1.851 +     *         element in the range greater than the key,
   1.852 +     *         or <tt>toIndex</tt> if all
   1.853 +     *         elements in the range are less than the specified key.  Note
   1.854 +     *         that this guarantees that the return value will be &gt;= 0 if
   1.855 +     *         and only if the key is found.
   1.856 +     * @throws IllegalArgumentException
   1.857 +     *         if {@code fromIndex > toIndex}
   1.858 +     * @throws ArrayIndexOutOfBoundsException
   1.859 +     *         if {@code fromIndex < 0 or toIndex > a.length}
   1.860 +     * @since 1.6
   1.861 +     */
   1.862 +    public static int binarySearch(long[] a, int fromIndex, int toIndex,
   1.863 +                                   long key) {
   1.864 +        rangeCheck(a.length, fromIndex, toIndex);
   1.865 +        return binarySearch0(a, fromIndex, toIndex, key);
   1.866 +    }
   1.867 +
   1.868 +    // Like public version, but without range checks.
   1.869 +    private static int binarySearch0(long[] a, int fromIndex, int toIndex,
   1.870 +                                     long key) {
   1.871 +        int low = fromIndex;
   1.872 +        int high = toIndex - 1;
   1.873 +
   1.874 +        while (low <= high) {
   1.875 +            int mid = (low + high) >>> 1;
   1.876 +            long midVal = a[mid];
   1.877 +
   1.878 +            if (midVal < key)
   1.879 +                low = mid + 1;
   1.880 +            else if (midVal > key)
   1.881 +                high = mid - 1;
   1.882 +            else
   1.883 +                return mid; // key found
   1.884 +        }
   1.885 +        return -(low + 1);  // key not found.
   1.886 +    }
   1.887 +
   1.888 +    /**
   1.889 +     * Searches the specified array of ints for the specified value using the
   1.890 +     * binary search algorithm.  The array must be sorted (as
   1.891 +     * by the {@link #sort(int[])} method) prior to making this call.  If it
   1.892 +     * is not sorted, the results are undefined.  If the array contains
   1.893 +     * multiple elements with the specified value, there is no guarantee which
   1.894 +     * one will be found.
   1.895 +     *
   1.896 +     * @param a the array to be searched
   1.897 +     * @param key the value to be searched for
   1.898 +     * @return index of the search key, if it is contained in the array;
   1.899 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   1.900 +     *         <i>insertion point</i> is defined as the point at which the
   1.901 +     *         key would be inserted into the array: the index of the first
   1.902 +     *         element greater than the key, or <tt>a.length</tt> if all
   1.903 +     *         elements in the array are less than the specified key.  Note
   1.904 +     *         that this guarantees that the return value will be &gt;= 0 if
   1.905 +     *         and only if the key is found.
   1.906 +     */
   1.907 +    public static int binarySearch(int[] a, int key) {
   1.908 +        return binarySearch0(a, 0, a.length, key);
   1.909 +    }
   1.910 +
   1.911 +    /**
   1.912 +     * Searches a range of
   1.913 +     * the specified array of ints for the specified value using the
   1.914 +     * binary search algorithm.
   1.915 +     * The range must be sorted (as
   1.916 +     * by the {@link #sort(int[], int, int)} method)
   1.917 +     * prior to making this call.  If it
   1.918 +     * is not sorted, the results are undefined.  If the range contains
   1.919 +     * multiple elements with the specified value, there is no guarantee which
   1.920 +     * one will be found.
   1.921 +     *
   1.922 +     * @param a the array to be searched
   1.923 +     * @param fromIndex the index of the first element (inclusive) to be
   1.924 +     *          searched
   1.925 +     * @param toIndex the index of the last element (exclusive) to be searched
   1.926 +     * @param key the value to be searched for
   1.927 +     * @return index of the search key, if it is contained in the array
   1.928 +     *         within the specified range;
   1.929 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   1.930 +     *         <i>insertion point</i> is defined as the point at which the
   1.931 +     *         key would be inserted into the array: the index of the first
   1.932 +     *         element in the range greater than the key,
   1.933 +     *         or <tt>toIndex</tt> if all
   1.934 +     *         elements in the range are less than the specified key.  Note
   1.935 +     *         that this guarantees that the return value will be &gt;= 0 if
   1.936 +     *         and only if the key is found.
   1.937 +     * @throws IllegalArgumentException
   1.938 +     *         if {@code fromIndex > toIndex}
   1.939 +     * @throws ArrayIndexOutOfBoundsException
   1.940 +     *         if {@code fromIndex < 0 or toIndex > a.length}
   1.941 +     * @since 1.6
   1.942 +     */
   1.943 +    public static int binarySearch(int[] a, int fromIndex, int toIndex,
   1.944 +                                   int key) {
   1.945 +        rangeCheck(a.length, fromIndex, toIndex);
   1.946 +        return binarySearch0(a, fromIndex, toIndex, key);
   1.947 +    }
   1.948 +
   1.949 +    // Like public version, but without range checks.
   1.950 +    private static int binarySearch0(int[] a, int fromIndex, int toIndex,
   1.951 +                                     int key) {
   1.952 +        int low = fromIndex;
   1.953 +        int high = toIndex - 1;
   1.954 +
   1.955 +        while (low <= high) {
   1.956 +            int mid = (low + high) >>> 1;
   1.957 +            int midVal = a[mid];
   1.958 +
   1.959 +            if (midVal < key)
   1.960 +                low = mid + 1;
   1.961 +            else if (midVal > key)
   1.962 +                high = mid - 1;
   1.963 +            else
   1.964 +                return mid; // key found
   1.965 +        }
   1.966 +        return -(low + 1);  // key not found.
   1.967 +    }
   1.968 +
   1.969 +    /**
   1.970 +     * Searches the specified array of shorts for the specified value using
   1.971 +     * the binary search algorithm.  The array must be sorted
   1.972 +     * (as by the {@link #sort(short[])} method) prior to making this call.  If
   1.973 +     * it is not sorted, the results are undefined.  If the array contains
   1.974 +     * multiple elements with the specified value, there is no guarantee which
   1.975 +     * one will be found.
   1.976 +     *
   1.977 +     * @param a the array to be searched
   1.978 +     * @param key the value to be searched for
   1.979 +     * @return index of the search key, if it is contained in the array;
   1.980 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
   1.981 +     *         <i>insertion point</i> is defined as the point at which the
   1.982 +     *         key would be inserted into the array: the index of the first
   1.983 +     *         element greater than the key, or <tt>a.length</tt> if all
   1.984 +     *         elements in the array are less than the specified key.  Note
   1.985 +     *         that this guarantees that the return value will be &gt;= 0 if
   1.986 +     *         and only if the key is found.
   1.987 +     */
   1.988 +    public static int binarySearch(short[] a, short key) {
   1.989 +        return binarySearch0(a, 0, a.length, key);
   1.990 +    }
   1.991 +
   1.992 +    /**
   1.993 +     * Searches a range of
   1.994 +     * the specified array of shorts for the specified value using
   1.995 +     * the binary search algorithm.
   1.996 +     * The range must be sorted
   1.997 +     * (as by the {@link #sort(short[], int, int)} method)
   1.998 +     * prior to making this call.  If
   1.999 +     * it is not sorted, the results are undefined.  If the range contains
  1.1000 +     * multiple elements with the specified value, there is no guarantee which
  1.1001 +     * one will be found.
  1.1002 +     *
  1.1003 +     * @param a the array to be searched
  1.1004 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1005 +     *          searched
  1.1006 +     * @param toIndex the index of the last element (exclusive) to be searched
  1.1007 +     * @param key the value to be searched for
  1.1008 +     * @return index of the search key, if it is contained in the array
  1.1009 +     *         within the specified range;
  1.1010 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1011 +     *         <i>insertion point</i> is defined as the point at which the
  1.1012 +     *         key would be inserted into the array: the index of the first
  1.1013 +     *         element in the range greater than the key,
  1.1014 +     *         or <tt>toIndex</tt> if all
  1.1015 +     *         elements in the range are less than the specified key.  Note
  1.1016 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1017 +     *         and only if the key is found.
  1.1018 +     * @throws IllegalArgumentException
  1.1019 +     *         if {@code fromIndex > toIndex}
  1.1020 +     * @throws ArrayIndexOutOfBoundsException
  1.1021 +     *         if {@code fromIndex < 0 or toIndex > a.length}
  1.1022 +     * @since 1.6
  1.1023 +     */
  1.1024 +    public static int binarySearch(short[] a, int fromIndex, int toIndex,
  1.1025 +                                   short key) {
  1.1026 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1027 +        return binarySearch0(a, fromIndex, toIndex, key);
  1.1028 +    }
  1.1029 +
  1.1030 +    // Like public version, but without range checks.
  1.1031 +    private static int binarySearch0(short[] a, int fromIndex, int toIndex,
  1.1032 +                                     short key) {
  1.1033 +        int low = fromIndex;
  1.1034 +        int high = toIndex - 1;
  1.1035 +
  1.1036 +        while (low <= high) {
  1.1037 +            int mid = (low + high) >>> 1;
  1.1038 +            short midVal = a[mid];
  1.1039 +
  1.1040 +            if (midVal < key)
  1.1041 +                low = mid + 1;
  1.1042 +            else if (midVal > key)
  1.1043 +                high = mid - 1;
  1.1044 +            else
  1.1045 +                return mid; // key found
  1.1046 +        }
  1.1047 +        return -(low + 1);  // key not found.
  1.1048 +    }
  1.1049 +
  1.1050 +    /**
  1.1051 +     * Searches the specified array of chars for the specified value using the
  1.1052 +     * binary search algorithm.  The array must be sorted (as
  1.1053 +     * by the {@link #sort(char[])} method) prior to making this call.  If it
  1.1054 +     * is not sorted, the results are undefined.  If the array contains
  1.1055 +     * multiple elements with the specified value, there is no guarantee which
  1.1056 +     * one will be found.
  1.1057 +     *
  1.1058 +     * @param a the array to be searched
  1.1059 +     * @param key the value to be searched for
  1.1060 +     * @return index of the search key, if it is contained in the array;
  1.1061 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1062 +     *         <i>insertion point</i> is defined as the point at which the
  1.1063 +     *         key would be inserted into the array: the index of the first
  1.1064 +     *         element greater than the key, or <tt>a.length</tt> if all
  1.1065 +     *         elements in the array are less than the specified key.  Note
  1.1066 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1067 +     *         and only if the key is found.
  1.1068 +     */
  1.1069 +    public static int binarySearch(char[] a, char key) {
  1.1070 +        return binarySearch0(a, 0, a.length, key);
  1.1071 +    }
  1.1072 +
  1.1073 +    /**
  1.1074 +     * Searches a range of
  1.1075 +     * the specified array of chars for the specified value using the
  1.1076 +     * binary search algorithm.
  1.1077 +     * The range must be sorted (as
  1.1078 +     * by the {@link #sort(char[], int, int)} method)
  1.1079 +     * prior to making this call.  If it
  1.1080 +     * is not sorted, the results are undefined.  If the range contains
  1.1081 +     * multiple elements with the specified value, there is no guarantee which
  1.1082 +     * one will be found.
  1.1083 +     *
  1.1084 +     * @param a the array to be searched
  1.1085 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1086 +     *          searched
  1.1087 +     * @param toIndex the index of the last element (exclusive) to be searched
  1.1088 +     * @param key the value to be searched for
  1.1089 +     * @return index of the search key, if it is contained in the array
  1.1090 +     *         within the specified range;
  1.1091 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1092 +     *         <i>insertion point</i> is defined as the point at which the
  1.1093 +     *         key would be inserted into the array: the index of the first
  1.1094 +     *         element in the range greater than the key,
  1.1095 +     *         or <tt>toIndex</tt> if all
  1.1096 +     *         elements in the range are less than the specified key.  Note
  1.1097 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1098 +     *         and only if the key is found.
  1.1099 +     * @throws IllegalArgumentException
  1.1100 +     *         if {@code fromIndex > toIndex}
  1.1101 +     * @throws ArrayIndexOutOfBoundsException
  1.1102 +     *         if {@code fromIndex < 0 or toIndex > a.length}
  1.1103 +     * @since 1.6
  1.1104 +     */
  1.1105 +    public static int binarySearch(char[] a, int fromIndex, int toIndex,
  1.1106 +                                   char key) {
  1.1107 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1108 +        return binarySearch0(a, fromIndex, toIndex, key);
  1.1109 +    }
  1.1110 +
  1.1111 +    // Like public version, but without range checks.
  1.1112 +    private static int binarySearch0(char[] a, int fromIndex, int toIndex,
  1.1113 +                                     char key) {
  1.1114 +        int low = fromIndex;
  1.1115 +        int high = toIndex - 1;
  1.1116 +
  1.1117 +        while (low <= high) {
  1.1118 +            int mid = (low + high) >>> 1;
  1.1119 +            char midVal = a[mid];
  1.1120 +
  1.1121 +            if (midVal < key)
  1.1122 +                low = mid + 1;
  1.1123 +            else if (midVal > key)
  1.1124 +                high = mid - 1;
  1.1125 +            else
  1.1126 +                return mid; // key found
  1.1127 +        }
  1.1128 +        return -(low + 1);  // key not found.
  1.1129 +    }
  1.1130 +
  1.1131 +    /**
  1.1132 +     * Searches the specified array of bytes for the specified value using the
  1.1133 +     * binary search algorithm.  The array must be sorted (as
  1.1134 +     * by the {@link #sort(byte[])} method) prior to making this call.  If it
  1.1135 +     * is not sorted, the results are undefined.  If the array contains
  1.1136 +     * multiple elements with the specified value, there is no guarantee which
  1.1137 +     * one will be found.
  1.1138 +     *
  1.1139 +     * @param a the array to be searched
  1.1140 +     * @param key the value to be searched for
  1.1141 +     * @return index of the search key, if it is contained in the array;
  1.1142 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1143 +     *         <i>insertion point</i> is defined as the point at which the
  1.1144 +     *         key would be inserted into the array: the index of the first
  1.1145 +     *         element greater than the key, or <tt>a.length</tt> if all
  1.1146 +     *         elements in the array are less than the specified key.  Note
  1.1147 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1148 +     *         and only if the key is found.
  1.1149 +     */
  1.1150 +    public static int binarySearch(byte[] a, byte key) {
  1.1151 +        return binarySearch0(a, 0, a.length, key);
  1.1152 +    }
  1.1153 +
  1.1154 +    /**
  1.1155 +     * Searches a range of
  1.1156 +     * the specified array of bytes for the specified value using the
  1.1157 +     * binary search algorithm.
  1.1158 +     * The range must be sorted (as
  1.1159 +     * by the {@link #sort(byte[], int, int)} method)
  1.1160 +     * prior to making this call.  If it
  1.1161 +     * is not sorted, the results are undefined.  If the range contains
  1.1162 +     * multiple elements with the specified value, there is no guarantee which
  1.1163 +     * one will be found.
  1.1164 +     *
  1.1165 +     * @param a the array to be searched
  1.1166 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1167 +     *          searched
  1.1168 +     * @param toIndex the index of the last element (exclusive) to be searched
  1.1169 +     * @param key the value to be searched for
  1.1170 +     * @return index of the search key, if it is contained in the array
  1.1171 +     *         within the specified range;
  1.1172 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1173 +     *         <i>insertion point</i> is defined as the point at which the
  1.1174 +     *         key would be inserted into the array: the index of the first
  1.1175 +     *         element in the range greater than the key,
  1.1176 +     *         or <tt>toIndex</tt> if all
  1.1177 +     *         elements in the range are less than the specified key.  Note
  1.1178 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1179 +     *         and only if the key is found.
  1.1180 +     * @throws IllegalArgumentException
  1.1181 +     *         if {@code fromIndex > toIndex}
  1.1182 +     * @throws ArrayIndexOutOfBoundsException
  1.1183 +     *         if {@code fromIndex < 0 or toIndex > a.length}
  1.1184 +     * @since 1.6
  1.1185 +     */
  1.1186 +    public static int binarySearch(byte[] a, int fromIndex, int toIndex,
  1.1187 +                                   byte key) {
  1.1188 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1189 +        return binarySearch0(a, fromIndex, toIndex, key);
  1.1190 +    }
  1.1191 +
  1.1192 +    // Like public version, but without range checks.
  1.1193 +    private static int binarySearch0(byte[] a, int fromIndex, int toIndex,
  1.1194 +                                     byte key) {
  1.1195 +        int low = fromIndex;
  1.1196 +        int high = toIndex - 1;
  1.1197 +
  1.1198 +        while (low <= high) {
  1.1199 +            int mid = (low + high) >>> 1;
  1.1200 +            byte midVal = a[mid];
  1.1201 +
  1.1202 +            if (midVal < key)
  1.1203 +                low = mid + 1;
  1.1204 +            else if (midVal > key)
  1.1205 +                high = mid - 1;
  1.1206 +            else
  1.1207 +                return mid; // key found
  1.1208 +        }
  1.1209 +        return -(low + 1);  // key not found.
  1.1210 +    }
  1.1211 +
  1.1212 +    /**
  1.1213 +     * Searches the specified array of doubles for the specified value using
  1.1214 +     * the binary search algorithm.  The array must be sorted
  1.1215 +     * (as by the {@link #sort(double[])} method) prior to making this call.
  1.1216 +     * If it is not sorted, the results are undefined.  If the array contains
  1.1217 +     * multiple elements with the specified value, there is no guarantee which
  1.1218 +     * one will be found.  This method considers all NaN values to be
  1.1219 +     * equivalent and equal.
  1.1220 +     *
  1.1221 +     * @param a the array to be searched
  1.1222 +     * @param key the value to be searched for
  1.1223 +     * @return index of the search key, if it is contained in the array;
  1.1224 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1225 +     *         <i>insertion point</i> is defined as the point at which the
  1.1226 +     *         key would be inserted into the array: the index of the first
  1.1227 +     *         element greater than the key, or <tt>a.length</tt> if all
  1.1228 +     *         elements in the array are less than the specified key.  Note
  1.1229 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1230 +     *         and only if the key is found.
  1.1231 +     */
  1.1232 +    public static int binarySearch(double[] a, double key) {
  1.1233 +        return binarySearch0(a, 0, a.length, key);
  1.1234 +    }
  1.1235 +
  1.1236 +    /**
  1.1237 +     * Searches a range of
  1.1238 +     * the specified array of doubles for the specified value using
  1.1239 +     * the binary search algorithm.
  1.1240 +     * The range must be sorted
  1.1241 +     * (as by the {@link #sort(double[], int, int)} method)
  1.1242 +     * prior to making this call.
  1.1243 +     * If it is not sorted, the results are undefined.  If the range contains
  1.1244 +     * multiple elements with the specified value, there is no guarantee which
  1.1245 +     * one will be found.  This method considers all NaN values to be
  1.1246 +     * equivalent and equal.
  1.1247 +     *
  1.1248 +     * @param a the array to be searched
  1.1249 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1250 +     *          searched
  1.1251 +     * @param toIndex the index of the last element (exclusive) to be searched
  1.1252 +     * @param key the value to be searched for
  1.1253 +     * @return index of the search key, if it is contained in the array
  1.1254 +     *         within the specified range;
  1.1255 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1256 +     *         <i>insertion point</i> is defined as the point at which the
  1.1257 +     *         key would be inserted into the array: the index of the first
  1.1258 +     *         element in the range greater than the key,
  1.1259 +     *         or <tt>toIndex</tt> if all
  1.1260 +     *         elements in the range are less than the specified key.  Note
  1.1261 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1262 +     *         and only if the key is found.
  1.1263 +     * @throws IllegalArgumentException
  1.1264 +     *         if {@code fromIndex > toIndex}
  1.1265 +     * @throws ArrayIndexOutOfBoundsException
  1.1266 +     *         if {@code fromIndex < 0 or toIndex > a.length}
  1.1267 +     * @since 1.6
  1.1268 +     */
  1.1269 +    public static int binarySearch(double[] a, int fromIndex, int toIndex,
  1.1270 +                                   double key) {
  1.1271 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1272 +        return binarySearch0(a, fromIndex, toIndex, key);
  1.1273 +    }
  1.1274 +
  1.1275 +    // Like public version, but without range checks.
  1.1276 +    private static int binarySearch0(double[] a, int fromIndex, int toIndex,
  1.1277 +                                     double key) {
  1.1278 +        int low = fromIndex;
  1.1279 +        int high = toIndex - 1;
  1.1280 +
  1.1281 +        while (low <= high) {
  1.1282 +            int mid = (low + high) >>> 1;
  1.1283 +            double midVal = a[mid];
  1.1284 +
  1.1285 +            if (midVal < key)
  1.1286 +                low = mid + 1;  // Neither val is NaN, thisVal is smaller
  1.1287 +            else if (midVal > key)
  1.1288 +                high = mid - 1; // Neither val is NaN, thisVal is larger
  1.1289 +            else {
  1.1290 +                long midBits = Double.doubleToLongBits(midVal);
  1.1291 +                long keyBits = Double.doubleToLongBits(key);
  1.1292 +                if (midBits == keyBits)     // Values are equal
  1.1293 +                    return mid;             // Key found
  1.1294 +                else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN)
  1.1295 +                    low = mid + 1;
  1.1296 +                else                        // (0.0, -0.0) or (NaN, !NaN)
  1.1297 +                    high = mid - 1;
  1.1298 +            }
  1.1299 +        }
  1.1300 +        return -(low + 1);  // key not found.
  1.1301 +    }
  1.1302 +
  1.1303 +    /**
  1.1304 +     * Searches the specified array of floats for the specified value using
  1.1305 +     * the binary search algorithm. The array must be sorted
  1.1306 +     * (as by the {@link #sort(float[])} method) prior to making this call. If
  1.1307 +     * it is not sorted, the results are undefined. If the array contains
  1.1308 +     * multiple elements with the specified value, there is no guarantee which
  1.1309 +     * one will be found. This method considers all NaN values to be
  1.1310 +     * equivalent and equal.
  1.1311 +     *
  1.1312 +     * @param a the array to be searched
  1.1313 +     * @param key the value to be searched for
  1.1314 +     * @return index of the search key, if it is contained in the array;
  1.1315 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
  1.1316 +     *         <i>insertion point</i> is defined as the point at which the
  1.1317 +     *         key would be inserted into the array: the index of the first
  1.1318 +     *         element greater than the key, or <tt>a.length</tt> if all
  1.1319 +     *         elements in the array are less than the specified key. Note
  1.1320 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1321 +     *         and only if the key is found.
  1.1322 +     */
  1.1323 +    public static int binarySearch(float[] a, float key) {
  1.1324 +        return binarySearch0(a, 0, a.length, key);
  1.1325 +    }
  1.1326 +
  1.1327 +    /**
  1.1328 +     * Searches a range of
  1.1329 +     * the specified array of floats for the specified value using
  1.1330 +     * the binary search algorithm.
  1.1331 +     * The range must be sorted
  1.1332 +     * (as by the {@link #sort(float[], int, int)} method)
  1.1333 +     * prior to making this call. If
  1.1334 +     * it is not sorted, the results are undefined. If the range contains
  1.1335 +     * multiple elements with the specified value, there is no guarantee which
  1.1336 +     * one will be found. This method considers all NaN values to be
  1.1337 +     * equivalent and equal.
  1.1338 +     *
  1.1339 +     * @param a the array to be searched
  1.1340 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1341 +     *          searched
  1.1342 +     * @param toIndex the index of the last element (exclusive) to be searched
  1.1343 +     * @param key the value to be searched for
  1.1344 +     * @return index of the search key, if it is contained in the array
  1.1345 +     *         within the specified range;
  1.1346 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
  1.1347 +     *         <i>insertion point</i> is defined as the point at which the
  1.1348 +     *         key would be inserted into the array: the index of the first
  1.1349 +     *         element in the range greater than the key,
  1.1350 +     *         or <tt>toIndex</tt> if all
  1.1351 +     *         elements in the range are less than the specified key. Note
  1.1352 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1353 +     *         and only if the key is found.
  1.1354 +     * @throws IllegalArgumentException
  1.1355 +     *         if {@code fromIndex > toIndex}
  1.1356 +     * @throws ArrayIndexOutOfBoundsException
  1.1357 +     *         if {@code fromIndex < 0 or toIndex > a.length}
  1.1358 +     * @since 1.6
  1.1359 +     */
  1.1360 +    public static int binarySearch(float[] a, int fromIndex, int toIndex,
  1.1361 +                                   float key) {
  1.1362 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1363 +        return binarySearch0(a, fromIndex, toIndex, key);
  1.1364 +    }
  1.1365 +
  1.1366 +    // Like public version, but without range checks.
  1.1367 +    private static int binarySearch0(float[] a, int fromIndex, int toIndex,
  1.1368 +                                     float key) {
  1.1369 +        int low = fromIndex;
  1.1370 +        int high = toIndex - 1;
  1.1371 +
  1.1372 +        while (low <= high) {
  1.1373 +            int mid = (low + high) >>> 1;
  1.1374 +            float midVal = a[mid];
  1.1375 +
  1.1376 +            if (midVal < key)
  1.1377 +                low = mid + 1;  // Neither val is NaN, thisVal is smaller
  1.1378 +            else if (midVal > key)
  1.1379 +                high = mid - 1; // Neither val is NaN, thisVal is larger
  1.1380 +            else {
  1.1381 +                int midBits = Float.floatToIntBits(midVal);
  1.1382 +                int keyBits = Float.floatToIntBits(key);
  1.1383 +                if (midBits == keyBits)     // Values are equal
  1.1384 +                    return mid;             // Key found
  1.1385 +                else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN)
  1.1386 +                    low = mid + 1;
  1.1387 +                else                        // (0.0, -0.0) or (NaN, !NaN)
  1.1388 +                    high = mid - 1;
  1.1389 +            }
  1.1390 +        }
  1.1391 +        return -(low + 1);  // key not found.
  1.1392 +    }
  1.1393 +
  1.1394 +    /**
  1.1395 +     * Searches the specified array for the specified object using the binary
  1.1396 +     * search algorithm. The array must be sorted into ascending order
  1.1397 +     * according to the
  1.1398 +     * {@linkplain Comparable natural ordering}
  1.1399 +     * of its elements (as by the
  1.1400 +     * {@link #sort(Object[])} method) prior to making this call.
  1.1401 +     * If it is not sorted, the results are undefined.
  1.1402 +     * (If the array contains elements that are not mutually comparable (for
  1.1403 +     * example, strings and integers), it <i>cannot</i> be sorted according
  1.1404 +     * to the natural ordering of its elements, hence results are undefined.)
  1.1405 +     * If the array contains multiple
  1.1406 +     * elements equal to the specified object, there is no guarantee which
  1.1407 +     * one will be found.
  1.1408 +     *
  1.1409 +     * @param a the array to be searched
  1.1410 +     * @param key the value to be searched for
  1.1411 +     * @return index of the search key, if it is contained in the array;
  1.1412 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1413 +     *         <i>insertion point</i> is defined as the point at which the
  1.1414 +     *         key would be inserted into the array: the index of the first
  1.1415 +     *         element greater than the key, or <tt>a.length</tt> if all
  1.1416 +     *         elements in the array are less than the specified key.  Note
  1.1417 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1418 +     *         and only if the key is found.
  1.1419 +     * @throws ClassCastException if the search key is not comparable to the
  1.1420 +     *         elements of the array.
  1.1421 +     */
  1.1422 +    public static int binarySearch(Object[] a, Object key) {
  1.1423 +        return binarySearch0(a, 0, a.length, key);
  1.1424 +    }
  1.1425 +
  1.1426 +    /**
  1.1427 +     * Searches a range of
  1.1428 +     * the specified array for the specified object using the binary
  1.1429 +     * search algorithm.
  1.1430 +     * The range must be sorted into ascending order
  1.1431 +     * according to the
  1.1432 +     * {@linkplain Comparable natural ordering}
  1.1433 +     * of its elements (as by the
  1.1434 +     * {@link #sort(Object[], int, int)} method) prior to making this
  1.1435 +     * call.  If it is not sorted, the results are undefined.
  1.1436 +     * (If the range contains elements that are not mutually comparable (for
  1.1437 +     * example, strings and integers), it <i>cannot</i> be sorted according
  1.1438 +     * to the natural ordering of its elements, hence results are undefined.)
  1.1439 +     * If the range contains multiple
  1.1440 +     * elements equal to the specified object, there is no guarantee which
  1.1441 +     * one will be found.
  1.1442 +     *
  1.1443 +     * @param a the array to be searched
  1.1444 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1445 +     *          searched
  1.1446 +     * @param toIndex the index of the last element (exclusive) to be searched
  1.1447 +     * @param key the value to be searched for
  1.1448 +     * @return index of the search key, if it is contained in the array
  1.1449 +     *         within the specified range;
  1.1450 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1451 +     *         <i>insertion point</i> is defined as the point at which the
  1.1452 +     *         key would be inserted into the array: the index of the first
  1.1453 +     *         element in the range greater than the key,
  1.1454 +     *         or <tt>toIndex</tt> if all
  1.1455 +     *         elements in the range are less than the specified key.  Note
  1.1456 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1457 +     *         and only if the key is found.
  1.1458 +     * @throws ClassCastException if the search key is not comparable to the
  1.1459 +     *         elements of the array within the specified range.
  1.1460 +     * @throws IllegalArgumentException
  1.1461 +     *         if {@code fromIndex > toIndex}
  1.1462 +     * @throws ArrayIndexOutOfBoundsException
  1.1463 +     *         if {@code fromIndex < 0 or toIndex > a.length}
  1.1464 +     * @since 1.6
  1.1465 +     */
  1.1466 +    public static int binarySearch(Object[] a, int fromIndex, int toIndex,
  1.1467 +                                   Object key) {
  1.1468 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1469 +        return binarySearch0(a, fromIndex, toIndex, key);
  1.1470 +    }
  1.1471 +
  1.1472 +    // Like public version, but without range checks.
  1.1473 +    private static int binarySearch0(Object[] a, int fromIndex, int toIndex,
  1.1474 +                                     Object key) {
  1.1475 +        int low = fromIndex;
  1.1476 +        int high = toIndex - 1;
  1.1477 +
  1.1478 +        while (low <= high) {
  1.1479 +            int mid = (low + high) >>> 1;
  1.1480 +            Comparable midVal = (Comparable)a[mid];
  1.1481 +            int cmp = midVal.compareTo(key);
  1.1482 +
  1.1483 +            if (cmp < 0)
  1.1484 +                low = mid + 1;
  1.1485 +            else if (cmp > 0)
  1.1486 +                high = mid - 1;
  1.1487 +            else
  1.1488 +                return mid; // key found
  1.1489 +        }
  1.1490 +        return -(low + 1);  // key not found.
  1.1491 +    }
  1.1492 +
  1.1493 +    /**
  1.1494 +     * Searches the specified array for the specified object using the binary
  1.1495 +     * search algorithm.  The array must be sorted into ascending order
  1.1496 +     * according to the specified comparator (as by the
  1.1497 +     * {@link #sort(Object[], Comparator) sort(T[], Comparator)}
  1.1498 +     * method) prior to making this call.  If it is
  1.1499 +     * not sorted, the results are undefined.
  1.1500 +     * If the array contains multiple
  1.1501 +     * elements equal to the specified object, there is no guarantee which one
  1.1502 +     * will be found.
  1.1503 +     *
  1.1504 +     * @param a the array to be searched
  1.1505 +     * @param key the value to be searched for
  1.1506 +     * @param c the comparator by which the array is ordered.  A
  1.1507 +     *        <tt>null</tt> value indicates that the elements'
  1.1508 +     *        {@linkplain Comparable natural ordering} should be used.
  1.1509 +     * @return index of the search key, if it is contained in the array;
  1.1510 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1511 +     *         <i>insertion point</i> is defined as the point at which the
  1.1512 +     *         key would be inserted into the array: the index of the first
  1.1513 +     *         element greater than the key, or <tt>a.length</tt> if all
  1.1514 +     *         elements in the array are less than the specified key.  Note
  1.1515 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1516 +     *         and only if the key is found.
  1.1517 +     * @throws ClassCastException if the array contains elements that are not
  1.1518 +     *         <i>mutually comparable</i> using the specified comparator,
  1.1519 +     *         or the search key is not comparable to the
  1.1520 +     *         elements of the array using this comparator.
  1.1521 +     */
  1.1522 +    public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c) {
  1.1523 +        return binarySearch0(a, 0, a.length, key, c);
  1.1524 +    }
  1.1525 +
  1.1526 +    /**
  1.1527 +     * Searches a range of
  1.1528 +     * the specified array for the specified object using the binary
  1.1529 +     * search algorithm.
  1.1530 +     * The range must be sorted into ascending order
  1.1531 +     * according to the specified comparator (as by the
  1.1532 +     * {@link #sort(Object[], int, int, Comparator)
  1.1533 +     * sort(T[], int, int, Comparator)}
  1.1534 +     * method) prior to making this call.
  1.1535 +     * If it is not sorted, the results are undefined.
  1.1536 +     * If the range contains multiple elements equal to the specified object,
  1.1537 +     * there is no guarantee which one will be found.
  1.1538 +     *
  1.1539 +     * @param a the array to be searched
  1.1540 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1541 +     *          searched
  1.1542 +     * @param toIndex the index of the last element (exclusive) to be searched
  1.1543 +     * @param key the value to be searched for
  1.1544 +     * @param c the comparator by which the array is ordered.  A
  1.1545 +     *        <tt>null</tt> value indicates that the elements'
  1.1546 +     *        {@linkplain Comparable natural ordering} should be used.
  1.1547 +     * @return index of the search key, if it is contained in the array
  1.1548 +     *         within the specified range;
  1.1549 +     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
  1.1550 +     *         <i>insertion point</i> is defined as the point at which the
  1.1551 +     *         key would be inserted into the array: the index of the first
  1.1552 +     *         element in the range greater than the key,
  1.1553 +     *         or <tt>toIndex</tt> if all
  1.1554 +     *         elements in the range are less than the specified key.  Note
  1.1555 +     *         that this guarantees that the return value will be &gt;= 0 if
  1.1556 +     *         and only if the key is found.
  1.1557 +     * @throws ClassCastException if the range contains elements that are not
  1.1558 +     *         <i>mutually comparable</i> using the specified comparator,
  1.1559 +     *         or the search key is not comparable to the
  1.1560 +     *         elements in the range using this comparator.
  1.1561 +     * @throws IllegalArgumentException
  1.1562 +     *         if {@code fromIndex > toIndex}
  1.1563 +     * @throws ArrayIndexOutOfBoundsException
  1.1564 +     *         if {@code fromIndex < 0 or toIndex > a.length}
  1.1565 +     * @since 1.6
  1.1566 +     */
  1.1567 +    public static <T> int binarySearch(T[] a, int fromIndex, int toIndex,
  1.1568 +                                       T key, Comparator<? super T> c) {
  1.1569 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1570 +        return binarySearch0(a, fromIndex, toIndex, key, c);
  1.1571 +    }
  1.1572 +
  1.1573 +    // Like public version, but without range checks.
  1.1574 +    private static <T> int binarySearch0(T[] a, int fromIndex, int toIndex,
  1.1575 +                                         T key, Comparator<? super T> c) {
  1.1576 +        if (c == null) {
  1.1577 +            return binarySearch0(a, fromIndex, toIndex, key);
  1.1578 +        }
  1.1579 +        int low = fromIndex;
  1.1580 +        int high = toIndex - 1;
  1.1581 +
  1.1582 +        while (low <= high) {
  1.1583 +            int mid = (low + high) >>> 1;
  1.1584 +            T midVal = a[mid];
  1.1585 +            int cmp = c.compare(midVal, key);
  1.1586 +            if (cmp < 0)
  1.1587 +                low = mid + 1;
  1.1588 +            else if (cmp > 0)
  1.1589 +                high = mid - 1;
  1.1590 +            else
  1.1591 +                return mid; // key found
  1.1592 +        }
  1.1593 +        return -(low + 1);  // key not found.
  1.1594 +    }
  1.1595 +
  1.1596 +    // Equality Testing
  1.1597 +
  1.1598 +    /**
  1.1599 +     * Returns <tt>true</tt> if the two specified arrays of longs are
  1.1600 +     * <i>equal</i> to one another.  Two arrays are considered equal if both
  1.1601 +     * arrays contain the same number of elements, and all corresponding pairs
  1.1602 +     * of elements in the two arrays are equal.  In other words, two arrays
  1.1603 +     * are equal if they contain the same elements in the same order.  Also,
  1.1604 +     * two array references are considered equal if both are <tt>null</tt>.<p>
  1.1605 +     *
  1.1606 +     * @param a one array to be tested for equality
  1.1607 +     * @param a2 the other array to be tested for equality
  1.1608 +     * @return <tt>true</tt> if the two arrays are equal
  1.1609 +     */
  1.1610 +    public static boolean equals(long[] a, long[] a2) {
  1.1611 +        if (a==a2)
  1.1612 +            return true;
  1.1613 +        if (a==null || a2==null)
  1.1614 +            return false;
  1.1615 +
  1.1616 +        int length = a.length;
  1.1617 +        if (a2.length != length)
  1.1618 +            return false;
  1.1619 +
  1.1620 +        for (int i=0; i<length; i++)
  1.1621 +            if (a[i] != a2[i])
  1.1622 +                return false;
  1.1623 +
  1.1624 +        return true;
  1.1625 +    }
  1.1626 +
  1.1627 +    /**
  1.1628 +     * Returns <tt>true</tt> if the two specified arrays of ints are
  1.1629 +     * <i>equal</i> to one another.  Two arrays are considered equal if both
  1.1630 +     * arrays contain the same number of elements, and all corresponding pairs
  1.1631 +     * of elements in the two arrays are equal.  In other words, two arrays
  1.1632 +     * are equal if they contain the same elements in the same order.  Also,
  1.1633 +     * two array references are considered equal if both are <tt>null</tt>.<p>
  1.1634 +     *
  1.1635 +     * @param a one array to be tested for equality
  1.1636 +     * @param a2 the other array to be tested for equality
  1.1637 +     * @return <tt>true</tt> if the two arrays are equal
  1.1638 +     */
  1.1639 +    public static boolean equals(int[] a, int[] a2) {
  1.1640 +        if (a==a2)
  1.1641 +            return true;
  1.1642 +        if (a==null || a2==null)
  1.1643 +            return false;
  1.1644 +
  1.1645 +        int length = a.length;
  1.1646 +        if (a2.length != length)
  1.1647 +            return false;
  1.1648 +
  1.1649 +        for (int i=0; i<length; i++)
  1.1650 +            if (a[i] != a2[i])
  1.1651 +                return false;
  1.1652 +
  1.1653 +        return true;
  1.1654 +    }
  1.1655 +
  1.1656 +    /**
  1.1657 +     * Returns <tt>true</tt> if the two specified arrays of shorts are
  1.1658 +     * <i>equal</i> to one another.  Two arrays are considered equal if both
  1.1659 +     * arrays contain the same number of elements, and all corresponding pairs
  1.1660 +     * of elements in the two arrays are equal.  In other words, two arrays
  1.1661 +     * are equal if they contain the same elements in the same order.  Also,
  1.1662 +     * two array references are considered equal if both are <tt>null</tt>.<p>
  1.1663 +     *
  1.1664 +     * @param a one array to be tested for equality
  1.1665 +     * @param a2 the other array to be tested for equality
  1.1666 +     * @return <tt>true</tt> if the two arrays are equal
  1.1667 +     */
  1.1668 +    public static boolean equals(short[] a, short a2[]) {
  1.1669 +        if (a==a2)
  1.1670 +            return true;
  1.1671 +        if (a==null || a2==null)
  1.1672 +            return false;
  1.1673 +
  1.1674 +        int length = a.length;
  1.1675 +        if (a2.length != length)
  1.1676 +            return false;
  1.1677 +
  1.1678 +        for (int i=0; i<length; i++)
  1.1679 +            if (a[i] != a2[i])
  1.1680 +                return false;
  1.1681 +
  1.1682 +        return true;
  1.1683 +    }
  1.1684 +
  1.1685 +    /**
  1.1686 +     * Returns <tt>true</tt> if the two specified arrays of chars are
  1.1687 +     * <i>equal</i> to one another.  Two arrays are considered equal if both
  1.1688 +     * arrays contain the same number of elements, and all corresponding pairs
  1.1689 +     * of elements in the two arrays are equal.  In other words, two arrays
  1.1690 +     * are equal if they contain the same elements in the same order.  Also,
  1.1691 +     * two array references are considered equal if both are <tt>null</tt>.<p>
  1.1692 +     *
  1.1693 +     * @param a one array to be tested for equality
  1.1694 +     * @param a2 the other array to be tested for equality
  1.1695 +     * @return <tt>true</tt> if the two arrays are equal
  1.1696 +     */
  1.1697 +    public static boolean equals(char[] a, char[] a2) {
  1.1698 +        if (a==a2)
  1.1699 +            return true;
  1.1700 +        if (a==null || a2==null)
  1.1701 +            return false;
  1.1702 +
  1.1703 +        int length = a.length;
  1.1704 +        if (a2.length != length)
  1.1705 +            return false;
  1.1706 +
  1.1707 +        for (int i=0; i<length; i++)
  1.1708 +            if (a[i] != a2[i])
  1.1709 +                return false;
  1.1710 +
  1.1711 +        return true;
  1.1712 +    }
  1.1713 +
  1.1714 +    /**
  1.1715 +     * Returns <tt>true</tt> if the two specified arrays of bytes are
  1.1716 +     * <i>equal</i> to one another.  Two arrays are considered equal if both
  1.1717 +     * arrays contain the same number of elements, and all corresponding pairs
  1.1718 +     * of elements in the two arrays are equal.  In other words, two arrays
  1.1719 +     * are equal if they contain the same elements in the same order.  Also,
  1.1720 +     * two array references are considered equal if both are <tt>null</tt>.<p>
  1.1721 +     *
  1.1722 +     * @param a one array to be tested for equality
  1.1723 +     * @param a2 the other array to be tested for equality
  1.1724 +     * @return <tt>true</tt> if the two arrays are equal
  1.1725 +     */
  1.1726 +    public static boolean equals(byte[] a, byte[] a2) {
  1.1727 +        if (a==a2)
  1.1728 +            return true;
  1.1729 +        if (a==null || a2==null)
  1.1730 +            return false;
  1.1731 +
  1.1732 +        int length = a.length;
  1.1733 +        if (a2.length != length)
  1.1734 +            return false;
  1.1735 +
  1.1736 +        for (int i=0; i<length; i++)
  1.1737 +            if (a[i] != a2[i])
  1.1738 +                return false;
  1.1739 +
  1.1740 +        return true;
  1.1741 +    }
  1.1742 +
  1.1743 +    /**
  1.1744 +     * Returns <tt>true</tt> if the two specified arrays of booleans are
  1.1745 +     * <i>equal</i> to one another.  Two arrays are considered equal if both
  1.1746 +     * arrays contain the same number of elements, and all corresponding pairs
  1.1747 +     * of elements in the two arrays are equal.  In other words, two arrays
  1.1748 +     * are equal if they contain the same elements in the same order.  Also,
  1.1749 +     * two array references are considered equal if both are <tt>null</tt>.<p>
  1.1750 +     *
  1.1751 +     * @param a one array to be tested for equality
  1.1752 +     * @param a2 the other array to be tested for equality
  1.1753 +     * @return <tt>true</tt> if the two arrays are equal
  1.1754 +     */
  1.1755 +    public static boolean equals(boolean[] a, boolean[] a2) {
  1.1756 +        if (a==a2)
  1.1757 +            return true;
  1.1758 +        if (a==null || a2==null)
  1.1759 +            return false;
  1.1760 +
  1.1761 +        int length = a.length;
  1.1762 +        if (a2.length != length)
  1.1763 +            return false;
  1.1764 +
  1.1765 +        for (int i=0; i<length; i++)
  1.1766 +            if (a[i] != a2[i])
  1.1767 +                return false;
  1.1768 +
  1.1769 +        return true;
  1.1770 +    }
  1.1771 +
  1.1772 +    /**
  1.1773 +     * Returns <tt>true</tt> if the two specified arrays of doubles are
  1.1774 +     * <i>equal</i> to one another.  Two arrays are considered equal if both
  1.1775 +     * arrays contain the same number of elements, and all corresponding pairs
  1.1776 +     * of elements in the two arrays are equal.  In other words, two arrays
  1.1777 +     * are equal if they contain the same elements in the same order.  Also,
  1.1778 +     * two array references are considered equal if both are <tt>null</tt>.<p>
  1.1779 +     *
  1.1780 +     * Two doubles <tt>d1</tt> and <tt>d2</tt> are considered equal if:
  1.1781 +     * <pre>    <tt>new Double(d1).equals(new Double(d2))</tt></pre>
  1.1782 +     * (Unlike the <tt>==</tt> operator, this method considers
  1.1783 +     * <tt>NaN</tt> equals to itself, and 0.0d unequal to -0.0d.)
  1.1784 +     *
  1.1785 +     * @param a one array to be tested for equality
  1.1786 +     * @param a2 the other array to be tested for equality
  1.1787 +     * @return <tt>true</tt> if the two arrays are equal
  1.1788 +     * @see Double#equals(Object)
  1.1789 +     */
  1.1790 +    public static boolean equals(double[] a, double[] a2) {
  1.1791 +        if (a==a2)
  1.1792 +            return true;
  1.1793 +        if (a==null || a2==null)
  1.1794 +            return false;
  1.1795 +
  1.1796 +        int length = a.length;
  1.1797 +        if (a2.length != length)
  1.1798 +            return false;
  1.1799 +
  1.1800 +        for (int i=0; i<length; i++)
  1.1801 +            if (Double.doubleToLongBits(a[i])!=Double.doubleToLongBits(a2[i]))
  1.1802 +                return false;
  1.1803 +
  1.1804 +        return true;
  1.1805 +    }
  1.1806 +
  1.1807 +    /**
  1.1808 +     * Returns <tt>true</tt> if the two specified arrays of floats are
  1.1809 +     * <i>equal</i> to one another.  Two arrays are considered equal if both
  1.1810 +     * arrays contain the same number of elements, and all corresponding pairs
  1.1811 +     * of elements in the two arrays are equal.  In other words, two arrays
  1.1812 +     * are equal if they contain the same elements in the same order.  Also,
  1.1813 +     * two array references are considered equal if both are <tt>null</tt>.<p>
  1.1814 +     *
  1.1815 +     * Two floats <tt>f1</tt> and <tt>f2</tt> are considered equal if:
  1.1816 +     * <pre>    <tt>new Float(f1).equals(new Float(f2))</tt></pre>
  1.1817 +     * (Unlike the <tt>==</tt> operator, this method considers
  1.1818 +     * <tt>NaN</tt> equals to itself, and 0.0f unequal to -0.0f.)
  1.1819 +     *
  1.1820 +     * @param a one array to be tested for equality
  1.1821 +     * @param a2 the other array to be tested for equality
  1.1822 +     * @return <tt>true</tt> if the two arrays are equal
  1.1823 +     * @see Float#equals(Object)
  1.1824 +     */
  1.1825 +    public static boolean equals(float[] a, float[] a2) {
  1.1826 +        if (a==a2)
  1.1827 +            return true;
  1.1828 +        if (a==null || a2==null)
  1.1829 +            return false;
  1.1830 +
  1.1831 +        int length = a.length;
  1.1832 +        if (a2.length != length)
  1.1833 +            return false;
  1.1834 +
  1.1835 +        for (int i=0; i<length; i++)
  1.1836 +            if (Float.floatToIntBits(a[i])!=Float.floatToIntBits(a2[i]))
  1.1837 +                return false;
  1.1838 +
  1.1839 +        return true;
  1.1840 +    }
  1.1841 +
  1.1842 +    /**
  1.1843 +     * Returns <tt>true</tt> if the two specified arrays of Objects are
  1.1844 +     * <i>equal</i> to one another.  The two arrays are considered equal if
  1.1845 +     * both arrays contain the same number of elements, and all corresponding
  1.1846 +     * pairs of elements in the two arrays are equal.  Two objects <tt>e1</tt>
  1.1847 +     * and <tt>e2</tt> are considered <i>equal</i> if <tt>(e1==null ? e2==null
  1.1848 +     * : e1.equals(e2))</tt>.  In other words, the two arrays are equal if
  1.1849 +     * they contain the same elements in the same order.  Also, two array
  1.1850 +     * references are considered equal if both are <tt>null</tt>.<p>
  1.1851 +     *
  1.1852 +     * @param a one array to be tested for equality
  1.1853 +     * @param a2 the other array to be tested for equality
  1.1854 +     * @return <tt>true</tt> if the two arrays are equal
  1.1855 +     */
  1.1856 +    public static boolean equals(Object[] a, Object[] a2) {
  1.1857 +        if (a==a2)
  1.1858 +            return true;
  1.1859 +        if (a==null || a2==null)
  1.1860 +            return false;
  1.1861 +
  1.1862 +        int length = a.length;
  1.1863 +        if (a2.length != length)
  1.1864 +            return false;
  1.1865 +
  1.1866 +        for (int i=0; i<length; i++) {
  1.1867 +            Object o1 = a[i];
  1.1868 +            Object o2 = a2[i];
  1.1869 +            if (!(o1==null ? o2==null : o1.equals(o2)))
  1.1870 +                return false;
  1.1871 +        }
  1.1872 +
  1.1873 +        return true;
  1.1874 +    }
  1.1875 +
  1.1876 +    // Filling
  1.1877 +
  1.1878 +    /**
  1.1879 +     * Assigns the specified long value to each element of the specified array
  1.1880 +     * of longs.
  1.1881 +     *
  1.1882 +     * @param a the array to be filled
  1.1883 +     * @param val the value to be stored in all elements of the array
  1.1884 +     */
  1.1885 +    public static void fill(long[] a, long val) {
  1.1886 +        for (int i = 0, len = a.length; i < len; i++)
  1.1887 +            a[i] = val;
  1.1888 +    }
  1.1889 +
  1.1890 +    /**
  1.1891 +     * Assigns the specified long value to each element of the specified
  1.1892 +     * range of the specified array of longs.  The range to be filled
  1.1893 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.1894 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.1895 +     * range to be filled is empty.)
  1.1896 +     *
  1.1897 +     * @param a the array to be filled
  1.1898 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1899 +     *        filled with the specified value
  1.1900 +     * @param toIndex the index of the last element (exclusive) to be
  1.1901 +     *        filled with the specified value
  1.1902 +     * @param val the value to be stored in all elements of the array
  1.1903 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.1904 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.1905 +     *         <tt>toIndex &gt; a.length</tt>
  1.1906 +     */
  1.1907 +    public static void fill(long[] a, int fromIndex, int toIndex, long val) {
  1.1908 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1909 +        for (int i = fromIndex; i < toIndex; i++)
  1.1910 +            a[i] = val;
  1.1911 +    }
  1.1912 +
  1.1913 +    /**
  1.1914 +     * Assigns the specified int value to each element of the specified array
  1.1915 +     * of ints.
  1.1916 +     *
  1.1917 +     * @param a the array to be filled
  1.1918 +     * @param val the value to be stored in all elements of the array
  1.1919 +     */
  1.1920 +    public static void fill(int[] a, int val) {
  1.1921 +        for (int i = 0, len = a.length; i < len; i++)
  1.1922 +            a[i] = val;
  1.1923 +    }
  1.1924 +
  1.1925 +    /**
  1.1926 +     * Assigns the specified int value to each element of the specified
  1.1927 +     * range of the specified array of ints.  The range to be filled
  1.1928 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.1929 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.1930 +     * range to be filled is empty.)
  1.1931 +     *
  1.1932 +     * @param a the array to be filled
  1.1933 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1934 +     *        filled with the specified value
  1.1935 +     * @param toIndex the index of the last element (exclusive) to be
  1.1936 +     *        filled with the specified value
  1.1937 +     * @param val the value to be stored in all elements of the array
  1.1938 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.1939 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.1940 +     *         <tt>toIndex &gt; a.length</tt>
  1.1941 +     */
  1.1942 +    public static void fill(int[] a, int fromIndex, int toIndex, int val) {
  1.1943 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1944 +        for (int i = fromIndex; i < toIndex; i++)
  1.1945 +            a[i] = val;
  1.1946 +    }
  1.1947 +
  1.1948 +    /**
  1.1949 +     * Assigns the specified short value to each element of the specified array
  1.1950 +     * of shorts.
  1.1951 +     *
  1.1952 +     * @param a the array to be filled
  1.1953 +     * @param val the value to be stored in all elements of the array
  1.1954 +     */
  1.1955 +    public static void fill(short[] a, short val) {
  1.1956 +        for (int i = 0, len = a.length; i < len; i++)
  1.1957 +            a[i] = val;
  1.1958 +    }
  1.1959 +
  1.1960 +    /**
  1.1961 +     * Assigns the specified short value to each element of the specified
  1.1962 +     * range of the specified array of shorts.  The range to be filled
  1.1963 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.1964 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.1965 +     * range to be filled is empty.)
  1.1966 +     *
  1.1967 +     * @param a the array to be filled
  1.1968 +     * @param fromIndex the index of the first element (inclusive) to be
  1.1969 +     *        filled with the specified value
  1.1970 +     * @param toIndex the index of the last element (exclusive) to be
  1.1971 +     *        filled with the specified value
  1.1972 +     * @param val the value to be stored in all elements of the array
  1.1973 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.1974 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.1975 +     *         <tt>toIndex &gt; a.length</tt>
  1.1976 +     */
  1.1977 +    public static void fill(short[] a, int fromIndex, int toIndex, short val) {
  1.1978 +        rangeCheck(a.length, fromIndex, toIndex);
  1.1979 +        for (int i = fromIndex; i < toIndex; i++)
  1.1980 +            a[i] = val;
  1.1981 +    }
  1.1982 +
  1.1983 +    /**
  1.1984 +     * Assigns the specified char value to each element of the specified array
  1.1985 +     * of chars.
  1.1986 +     *
  1.1987 +     * @param a the array to be filled
  1.1988 +     * @param val the value to be stored in all elements of the array
  1.1989 +     */
  1.1990 +    public static void fill(char[] a, char val) {
  1.1991 +        for (int i = 0, len = a.length; i < len; i++)
  1.1992 +            a[i] = val;
  1.1993 +    }
  1.1994 +
  1.1995 +    /**
  1.1996 +     * Assigns the specified char value to each element of the specified
  1.1997 +     * range of the specified array of chars.  The range to be filled
  1.1998 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.1999 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.2000 +     * range to be filled is empty.)
  1.2001 +     *
  1.2002 +     * @param a the array to be filled
  1.2003 +     * @param fromIndex the index of the first element (inclusive) to be
  1.2004 +     *        filled with the specified value
  1.2005 +     * @param toIndex the index of the last element (exclusive) to be
  1.2006 +     *        filled with the specified value
  1.2007 +     * @param val the value to be stored in all elements of the array
  1.2008 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.2009 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.2010 +     *         <tt>toIndex &gt; a.length</tt>
  1.2011 +     */
  1.2012 +    public static void fill(char[] a, int fromIndex, int toIndex, char val) {
  1.2013 +        rangeCheck(a.length, fromIndex, toIndex);
  1.2014 +        for (int i = fromIndex; i < toIndex; i++)
  1.2015 +            a[i] = val;
  1.2016 +    }
  1.2017 +
  1.2018 +    /**
  1.2019 +     * Assigns the specified byte value to each element of the specified array
  1.2020 +     * of bytes.
  1.2021 +     *
  1.2022 +     * @param a the array to be filled
  1.2023 +     * @param val the value to be stored in all elements of the array
  1.2024 +     */
  1.2025 +    public static void fill(byte[] a, byte val) {
  1.2026 +        for (int i = 0, len = a.length; i < len; i++)
  1.2027 +            a[i] = val;
  1.2028 +    }
  1.2029 +
  1.2030 +    /**
  1.2031 +     * Assigns the specified byte value to each element of the specified
  1.2032 +     * range of the specified array of bytes.  The range to be filled
  1.2033 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.2034 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.2035 +     * range to be filled is empty.)
  1.2036 +     *
  1.2037 +     * @param a the array to be filled
  1.2038 +     * @param fromIndex the index of the first element (inclusive) to be
  1.2039 +     *        filled with the specified value
  1.2040 +     * @param toIndex the index of the last element (exclusive) to be
  1.2041 +     *        filled with the specified value
  1.2042 +     * @param val the value to be stored in all elements of the array
  1.2043 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.2044 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.2045 +     *         <tt>toIndex &gt; a.length</tt>
  1.2046 +     */
  1.2047 +    public static void fill(byte[] a, int fromIndex, int toIndex, byte val) {
  1.2048 +        rangeCheck(a.length, fromIndex, toIndex);
  1.2049 +        for (int i = fromIndex; i < toIndex; i++)
  1.2050 +            a[i] = val;
  1.2051 +    }
  1.2052 +
  1.2053 +    /**
  1.2054 +     * Assigns the specified boolean value to each element of the specified
  1.2055 +     * array of booleans.
  1.2056 +     *
  1.2057 +     * @param a the array to be filled
  1.2058 +     * @param val the value to be stored in all elements of the array
  1.2059 +     */
  1.2060 +    public static void fill(boolean[] a, boolean val) {
  1.2061 +        for (int i = 0, len = a.length; i < len; i++)
  1.2062 +            a[i] = val;
  1.2063 +    }
  1.2064 +
  1.2065 +    /**
  1.2066 +     * Assigns the specified boolean value to each element of the specified
  1.2067 +     * range of the specified array of booleans.  The range to be filled
  1.2068 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.2069 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.2070 +     * range to be filled is empty.)
  1.2071 +     *
  1.2072 +     * @param a the array to be filled
  1.2073 +     * @param fromIndex the index of the first element (inclusive) to be
  1.2074 +     *        filled with the specified value
  1.2075 +     * @param toIndex the index of the last element (exclusive) to be
  1.2076 +     *        filled with the specified value
  1.2077 +     * @param val the value to be stored in all elements of the array
  1.2078 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.2079 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.2080 +     *         <tt>toIndex &gt; a.length</tt>
  1.2081 +     */
  1.2082 +    public static void fill(boolean[] a, int fromIndex, int toIndex,
  1.2083 +                            boolean val) {
  1.2084 +        rangeCheck(a.length, fromIndex, toIndex);
  1.2085 +        for (int i = fromIndex; i < toIndex; i++)
  1.2086 +            a[i] = val;
  1.2087 +    }
  1.2088 +
  1.2089 +    /**
  1.2090 +     * Assigns the specified double value to each element of the specified
  1.2091 +     * array of doubles.
  1.2092 +     *
  1.2093 +     * @param a the array to be filled
  1.2094 +     * @param val the value to be stored in all elements of the array
  1.2095 +     */
  1.2096 +    public static void fill(double[] a, double val) {
  1.2097 +        for (int i = 0, len = a.length; i < len; i++)
  1.2098 +            a[i] = val;
  1.2099 +    }
  1.2100 +
  1.2101 +    /**
  1.2102 +     * Assigns the specified double value to each element of the specified
  1.2103 +     * range of the specified array of doubles.  The range to be filled
  1.2104 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.2105 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.2106 +     * range to be filled is empty.)
  1.2107 +     *
  1.2108 +     * @param a the array to be filled
  1.2109 +     * @param fromIndex the index of the first element (inclusive) to be
  1.2110 +     *        filled with the specified value
  1.2111 +     * @param toIndex the index of the last element (exclusive) to be
  1.2112 +     *        filled with the specified value
  1.2113 +     * @param val the value to be stored in all elements of the array
  1.2114 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.2115 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.2116 +     *         <tt>toIndex &gt; a.length</tt>
  1.2117 +     */
  1.2118 +    public static void fill(double[] a, int fromIndex, int toIndex,double val){
  1.2119 +        rangeCheck(a.length, fromIndex, toIndex);
  1.2120 +        for (int i = fromIndex; i < toIndex; i++)
  1.2121 +            a[i] = val;
  1.2122 +    }
  1.2123 +
  1.2124 +    /**
  1.2125 +     * Assigns the specified float value to each element of the specified array
  1.2126 +     * of floats.
  1.2127 +     *
  1.2128 +     * @param a the array to be filled
  1.2129 +     * @param val the value to be stored in all elements of the array
  1.2130 +     */
  1.2131 +    public static void fill(float[] a, float val) {
  1.2132 +        for (int i = 0, len = a.length; i < len; i++)
  1.2133 +            a[i] = val;
  1.2134 +    }
  1.2135 +
  1.2136 +    /**
  1.2137 +     * Assigns the specified float value to each element of the specified
  1.2138 +     * range of the specified array of floats.  The range to be filled
  1.2139 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.2140 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.2141 +     * range to be filled is empty.)
  1.2142 +     *
  1.2143 +     * @param a the array to be filled
  1.2144 +     * @param fromIndex the index of the first element (inclusive) to be
  1.2145 +     *        filled with the specified value
  1.2146 +     * @param toIndex the index of the last element (exclusive) to be
  1.2147 +     *        filled with the specified value
  1.2148 +     * @param val the value to be stored in all elements of the array
  1.2149 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.2150 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.2151 +     *         <tt>toIndex &gt; a.length</tt>
  1.2152 +     */
  1.2153 +    public static void fill(float[] a, int fromIndex, int toIndex, float val) {
  1.2154 +        rangeCheck(a.length, fromIndex, toIndex);
  1.2155 +        for (int i = fromIndex; i < toIndex; i++)
  1.2156 +            a[i] = val;
  1.2157 +    }
  1.2158 +
  1.2159 +    /**
  1.2160 +     * Assigns the specified Object reference to each element of the specified
  1.2161 +     * array of Objects.
  1.2162 +     *
  1.2163 +     * @param a the array to be filled
  1.2164 +     * @param val the value to be stored in all elements of the array
  1.2165 +     * @throws ArrayStoreException if the specified value is not of a
  1.2166 +     *         runtime type that can be stored in the specified array
  1.2167 +     */
  1.2168 +    public static void fill(Object[] a, Object val) {
  1.2169 +        for (int i = 0, len = a.length; i < len; i++)
  1.2170 +            a[i] = val;
  1.2171 +    }
  1.2172 +
  1.2173 +    /**
  1.2174 +     * Assigns the specified Object reference to each element of the specified
  1.2175 +     * range of the specified array of Objects.  The range to be filled
  1.2176 +     * extends from index <tt>fromIndex</tt>, inclusive, to index
  1.2177 +     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
  1.2178 +     * range to be filled is empty.)
  1.2179 +     *
  1.2180 +     * @param a the array to be filled
  1.2181 +     * @param fromIndex the index of the first element (inclusive) to be
  1.2182 +     *        filled with the specified value
  1.2183 +     * @param toIndex the index of the last element (exclusive) to be
  1.2184 +     *        filled with the specified value
  1.2185 +     * @param val the value to be stored in all elements of the array
  1.2186 +     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
  1.2187 +     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
  1.2188 +     *         <tt>toIndex &gt; a.length</tt>
  1.2189 +     * @throws ArrayStoreException if the specified value is not of a
  1.2190 +     *         runtime type that can be stored in the specified array
  1.2191 +     */
  1.2192 +    public static void fill(Object[] a, int fromIndex, int toIndex, Object val) {
  1.2193 +        rangeCheck(a.length, fromIndex, toIndex);
  1.2194 +        for (int i = fromIndex; i < toIndex; i++)
  1.2195 +            a[i] = val;
  1.2196 +    }
  1.2197 +
  1.2198 +    // Cloning
  1.2199 +
  1.2200 +    /**
  1.2201 +     * Copies the specified array, truncating or padding with nulls (if necessary)
  1.2202 +     * so the copy has the specified length.  For all indices that are
  1.2203 +     * valid in both the original array and the copy, the two arrays will
  1.2204 +     * contain identical values.  For any indices that are valid in the
  1.2205 +     * copy but not the original, the copy will contain <tt>null</tt>.
  1.2206 +     * Such indices will exist if and only if the specified length
  1.2207 +     * is greater than that of the original array.
  1.2208 +     * The resulting array is of exactly the same class as the original array.
  1.2209 +     *
  1.2210 +     * @param original the array to be copied
  1.2211 +     * @param newLength the length of the copy to be returned
  1.2212 +     * @return a copy of the original array, truncated or padded with nulls
  1.2213 +     *     to obtain the specified length
  1.2214 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2215 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2216 +     * @since 1.6
  1.2217 +     */
  1.2218 +    public static <T> T[] copyOf(T[] original, int newLength) {
  1.2219 +        return (T[]) copyOf(original, newLength, original.getClass());
  1.2220 +    }
  1.2221 +
  1.2222 +    /**
  1.2223 +     * Copies the specified array, truncating or padding with nulls (if necessary)
  1.2224 +     * so the copy has the specified length.  For all indices that are
  1.2225 +     * valid in both the original array and the copy, the two arrays will
  1.2226 +     * contain identical values.  For any indices that are valid in the
  1.2227 +     * copy but not the original, the copy will contain <tt>null</tt>.
  1.2228 +     * Such indices will exist if and only if the specified length
  1.2229 +     * is greater than that of the original array.
  1.2230 +     * The resulting array is of the class <tt>newType</tt>.
  1.2231 +     *
  1.2232 +     * @param original the array to be copied
  1.2233 +     * @param newLength the length of the copy to be returned
  1.2234 +     * @param newType the class of the copy to be returned
  1.2235 +     * @return a copy of the original array, truncated or padded with nulls
  1.2236 +     *     to obtain the specified length
  1.2237 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2238 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2239 +     * @throws ArrayStoreException if an element copied from
  1.2240 +     *     <tt>original</tt> is not of a runtime type that can be stored in
  1.2241 +     *     an array of class <tt>newType</tt>
  1.2242 +     * @since 1.6
  1.2243 +     */
  1.2244 +    public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
  1.2245 +        T[] copy = ((Object)newType == (Object)Object[].class)
  1.2246 +            ? (T[]) new Object[newLength]
  1.2247 +            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
  1.2248 +        System.arraycopy(original, 0, copy, 0,
  1.2249 +                         Math.min(original.length, newLength));
  1.2250 +        return copy;
  1.2251 +    }
  1.2252 +
  1.2253 +    /**
  1.2254 +     * Copies the specified array, truncating or padding with zeros (if necessary)
  1.2255 +     * so the copy has the specified length.  For all indices that are
  1.2256 +     * valid in both the original array and the copy, the two arrays will
  1.2257 +     * contain identical values.  For any indices that are valid in the
  1.2258 +     * copy but not the original, the copy will contain <tt>(byte)0</tt>.
  1.2259 +     * Such indices will exist if and only if the specified length
  1.2260 +     * is greater than that of the original array.
  1.2261 +     *
  1.2262 +     * @param original the array to be copied
  1.2263 +     * @param newLength the length of the copy to be returned
  1.2264 +     * @return a copy of the original array, truncated or padded with zeros
  1.2265 +     *     to obtain the specified length
  1.2266 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2267 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2268 +     * @since 1.6
  1.2269 +     */
  1.2270 +    public static byte[] copyOf(byte[] original, int newLength) {
  1.2271 +        byte[] copy = new byte[newLength];
  1.2272 +        System.arraycopy(original, 0, copy, 0,
  1.2273 +                         Math.min(original.length, newLength));
  1.2274 +        return copy;
  1.2275 +    }
  1.2276 +
  1.2277 +    /**
  1.2278 +     * Copies the specified array, truncating or padding with zeros (if necessary)
  1.2279 +     * so the copy has the specified length.  For all indices that are
  1.2280 +     * valid in both the original array and the copy, the two arrays will
  1.2281 +     * contain identical values.  For any indices that are valid in the
  1.2282 +     * copy but not the original, the copy will contain <tt>(short)0</tt>.
  1.2283 +     * Such indices will exist if and only if the specified length
  1.2284 +     * is greater than that of the original array.
  1.2285 +     *
  1.2286 +     * @param original the array to be copied
  1.2287 +     * @param newLength the length of the copy to be returned
  1.2288 +     * @return a copy of the original array, truncated or padded with zeros
  1.2289 +     *     to obtain the specified length
  1.2290 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2291 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2292 +     * @since 1.6
  1.2293 +     */
  1.2294 +    public static short[] copyOf(short[] original, int newLength) {
  1.2295 +        short[] copy = new short[newLength];
  1.2296 +        System.arraycopy(original, 0, copy, 0,
  1.2297 +                         Math.min(original.length, newLength));
  1.2298 +        return copy;
  1.2299 +    }
  1.2300 +
  1.2301 +    /**
  1.2302 +     * Copies the specified array, truncating or padding with zeros (if necessary)
  1.2303 +     * so the copy has the specified length.  For all indices that are
  1.2304 +     * valid in both the original array and the copy, the two arrays will
  1.2305 +     * contain identical values.  For any indices that are valid in the
  1.2306 +     * copy but not the original, the copy will contain <tt>0</tt>.
  1.2307 +     * Such indices will exist if and only if the specified length
  1.2308 +     * is greater than that of the original array.
  1.2309 +     *
  1.2310 +     * @param original the array to be copied
  1.2311 +     * @param newLength the length of the copy to be returned
  1.2312 +     * @return a copy of the original array, truncated or padded with zeros
  1.2313 +     *     to obtain the specified length
  1.2314 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2315 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2316 +     * @since 1.6
  1.2317 +     */
  1.2318 +    public static int[] copyOf(int[] original, int newLength) {
  1.2319 +        int[] copy = new int[newLength];
  1.2320 +        System.arraycopy(original, 0, copy, 0,
  1.2321 +                         Math.min(original.length, newLength));
  1.2322 +        return copy;
  1.2323 +    }
  1.2324 +
  1.2325 +    /**
  1.2326 +     * Copies the specified array, truncating or padding with zeros (if necessary)
  1.2327 +     * so the copy has the specified length.  For all indices that are
  1.2328 +     * valid in both the original array and the copy, the two arrays will
  1.2329 +     * contain identical values.  For any indices that are valid in the
  1.2330 +     * copy but not the original, the copy will contain <tt>0L</tt>.
  1.2331 +     * Such indices will exist if and only if the specified length
  1.2332 +     * is greater than that of the original array.
  1.2333 +     *
  1.2334 +     * @param original the array to be copied
  1.2335 +     * @param newLength the length of the copy to be returned
  1.2336 +     * @return a copy of the original array, truncated or padded with zeros
  1.2337 +     *     to obtain the specified length
  1.2338 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2339 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2340 +     * @since 1.6
  1.2341 +     */
  1.2342 +    public static long[] copyOf(long[] original, int newLength) {
  1.2343 +        long[] copy = new long[newLength];
  1.2344 +        System.arraycopy(original, 0, copy, 0,
  1.2345 +                         Math.min(original.length, newLength));
  1.2346 +        return copy;
  1.2347 +    }
  1.2348 +
  1.2349 +    /**
  1.2350 +     * Copies the specified array, truncating or padding with null characters (if necessary)
  1.2351 +     * so the copy has the specified length.  For all indices that are valid
  1.2352 +     * in both the original array and the copy, the two arrays will contain
  1.2353 +     * identical values.  For any indices that are valid in the copy but not
  1.2354 +     * the original, the copy will contain <tt>'\\u000'</tt>.  Such indices
  1.2355 +     * will exist if and only if the specified length is greater than that of
  1.2356 +     * the original array.
  1.2357 +     *
  1.2358 +     * @param original the array to be copied
  1.2359 +     * @param newLength the length of the copy to be returned
  1.2360 +     * @return a copy of the original array, truncated or padded with null characters
  1.2361 +     *     to obtain the specified length
  1.2362 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2363 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2364 +     * @since 1.6
  1.2365 +     */
  1.2366 +    public static char[] copyOf(char[] original, int newLength) {
  1.2367 +        char[] copy = new char[newLength];
  1.2368 +        System.arraycopy(original, 0, copy, 0,
  1.2369 +                         Math.min(original.length, newLength));
  1.2370 +        return copy;
  1.2371 +    }
  1.2372 +
  1.2373 +    /**
  1.2374 +     * Copies the specified array, truncating or padding with zeros (if necessary)
  1.2375 +     * so the copy has the specified length.  For all indices that are
  1.2376 +     * valid in both the original array and the copy, the two arrays will
  1.2377 +     * contain identical values.  For any indices that are valid in the
  1.2378 +     * copy but not the original, the copy will contain <tt>0f</tt>.
  1.2379 +     * Such indices will exist if and only if the specified length
  1.2380 +     * is greater than that of the original array.
  1.2381 +     *
  1.2382 +     * @param original the array to be copied
  1.2383 +     * @param newLength the length of the copy to be returned
  1.2384 +     * @return a copy of the original array, truncated or padded with zeros
  1.2385 +     *     to obtain the specified length
  1.2386 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2387 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2388 +     * @since 1.6
  1.2389 +     */
  1.2390 +    public static float[] copyOf(float[] original, int newLength) {
  1.2391 +        float[] copy = new float[newLength];
  1.2392 +        System.arraycopy(original, 0, copy, 0,
  1.2393 +                         Math.min(original.length, newLength));
  1.2394 +        return copy;
  1.2395 +    }
  1.2396 +
  1.2397 +    /**
  1.2398 +     * Copies the specified array, truncating or padding with zeros (if necessary)
  1.2399 +     * so the copy has the specified length.  For all indices that are
  1.2400 +     * valid in both the original array and the copy, the two arrays will
  1.2401 +     * contain identical values.  For any indices that are valid in the
  1.2402 +     * copy but not the original, the copy will contain <tt>0d</tt>.
  1.2403 +     * Such indices will exist if and only if the specified length
  1.2404 +     * is greater than that of the original array.
  1.2405 +     *
  1.2406 +     * @param original the array to be copied
  1.2407 +     * @param newLength the length of the copy to be returned
  1.2408 +     * @return a copy of the original array, truncated or padded with zeros
  1.2409 +     *     to obtain the specified length
  1.2410 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2411 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2412 +     * @since 1.6
  1.2413 +     */
  1.2414 +    public static double[] copyOf(double[] original, int newLength) {
  1.2415 +        double[] copy = new double[newLength];
  1.2416 +        System.arraycopy(original, 0, copy, 0,
  1.2417 +                         Math.min(original.length, newLength));
  1.2418 +        return copy;
  1.2419 +    }
  1.2420 +
  1.2421 +    /**
  1.2422 +     * Copies the specified array, truncating or padding with <tt>false</tt> (if necessary)
  1.2423 +     * so the copy has the specified length.  For all indices that are
  1.2424 +     * valid in both the original array and the copy, the two arrays will
  1.2425 +     * contain identical values.  For any indices that are valid in the
  1.2426 +     * copy but not the original, the copy will contain <tt>false</tt>.
  1.2427 +     * Such indices will exist if and only if the specified length
  1.2428 +     * is greater than that of the original array.
  1.2429 +     *
  1.2430 +     * @param original the array to be copied
  1.2431 +     * @param newLength the length of the copy to be returned
  1.2432 +     * @return a copy of the original array, truncated or padded with false elements
  1.2433 +     *     to obtain the specified length
  1.2434 +     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
  1.2435 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2436 +     * @since 1.6
  1.2437 +     */
  1.2438 +    public static boolean[] copyOf(boolean[] original, int newLength) {
  1.2439 +        boolean[] copy = new boolean[newLength];
  1.2440 +        System.arraycopy(original, 0, copy, 0,
  1.2441 +                         Math.min(original.length, newLength));
  1.2442 +        return copy;
  1.2443 +    }
  1.2444 +
  1.2445 +    /**
  1.2446 +     * Copies the specified range of the specified array into a new array.
  1.2447 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2448 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2449 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2450 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2451 +     * Values from subsequent elements in the original array are placed into
  1.2452 +     * subsequent elements in the copy.  The final index of the range
  1.2453 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2454 +     * may be greater than <tt>original.length</tt>, in which case
  1.2455 +     * <tt>null</tt> is placed in all elements of the copy whose index is
  1.2456 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2457 +     * of the returned array will be <tt>to - from</tt>.
  1.2458 +     * <p>
  1.2459 +     * The resulting array is of exactly the same class as the original array.
  1.2460 +     *
  1.2461 +     * @param original the array from which a range is to be copied
  1.2462 +     * @param from the initial index of the range to be copied, inclusive
  1.2463 +     * @param to the final index of the range to be copied, exclusive.
  1.2464 +     *     (This index may lie outside the array.)
  1.2465 +     * @return a new array containing the specified range from the original array,
  1.2466 +     *     truncated or padded with nulls to obtain the required length
  1.2467 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2468 +     *     or {@code from > original.length}
  1.2469 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2470 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2471 +     * @since 1.6
  1.2472 +     */
  1.2473 +    public static <T> T[] copyOfRange(T[] original, int from, int to) {
  1.2474 +        return copyOfRange(original, from, to, (Class<T[]>) original.getClass());
  1.2475 +    }
  1.2476 +
  1.2477 +    /**
  1.2478 +     * Copies the specified range of the specified array into a new array.
  1.2479 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2480 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2481 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2482 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2483 +     * Values from subsequent elements in the original array are placed into
  1.2484 +     * subsequent elements in the copy.  The final index of the range
  1.2485 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2486 +     * may be greater than <tt>original.length</tt>, in which case
  1.2487 +     * <tt>null</tt> is placed in all elements of the copy whose index is
  1.2488 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2489 +     * of the returned array will be <tt>to - from</tt>.
  1.2490 +     * The resulting array is of the class <tt>newType</tt>.
  1.2491 +     *
  1.2492 +     * @param original the array from which a range is to be copied
  1.2493 +     * @param from the initial index of the range to be copied, inclusive
  1.2494 +     * @param to the final index of the range to be copied, exclusive.
  1.2495 +     *     (This index may lie outside the array.)
  1.2496 +     * @param newType the class of the copy to be returned
  1.2497 +     * @return a new array containing the specified range from the original array,
  1.2498 +     *     truncated or padded with nulls to obtain the required length
  1.2499 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2500 +     *     or {@code from > original.length}
  1.2501 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2502 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2503 +     * @throws ArrayStoreException if an element copied from
  1.2504 +     *     <tt>original</tt> is not of a runtime type that can be stored in
  1.2505 +     *     an array of class <tt>newType</tt>.
  1.2506 +     * @since 1.6
  1.2507 +     */
  1.2508 +    public static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType) {
  1.2509 +        int newLength = to - from;
  1.2510 +        if (newLength < 0)
  1.2511 +            throw new IllegalArgumentException(from + " > " + to);
  1.2512 +        T[] copy = ((Object)newType == (Object)Object[].class)
  1.2513 +            ? (T[]) new Object[newLength]
  1.2514 +            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
  1.2515 +        System.arraycopy(original, from, copy, 0,
  1.2516 +                         Math.min(original.length - from, newLength));
  1.2517 +        return copy;
  1.2518 +    }
  1.2519 +
  1.2520 +    /**
  1.2521 +     * Copies the specified range of the specified array into a new array.
  1.2522 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2523 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2524 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2525 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2526 +     * Values from subsequent elements in the original array are placed into
  1.2527 +     * subsequent elements in the copy.  The final index of the range
  1.2528 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2529 +     * may be greater than <tt>original.length</tt>, in which case
  1.2530 +     * <tt>(byte)0</tt> is placed in all elements of the copy whose index is
  1.2531 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2532 +     * of the returned array will be <tt>to - from</tt>.
  1.2533 +     *
  1.2534 +     * @param original the array from which a range is to be copied
  1.2535 +     * @param from the initial index of the range to be copied, inclusive
  1.2536 +     * @param to the final index of the range to be copied, exclusive.
  1.2537 +     *     (This index may lie outside the array.)
  1.2538 +     * @return a new array containing the specified range from the original array,
  1.2539 +     *     truncated or padded with zeros to obtain the required length
  1.2540 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2541 +     *     or {@code from > original.length}
  1.2542 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2543 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2544 +     * @since 1.6
  1.2545 +     */
  1.2546 +    public static byte[] copyOfRange(byte[] original, int from, int to) {
  1.2547 +        int newLength = to - from;
  1.2548 +        if (newLength < 0)
  1.2549 +            throw new IllegalArgumentException(from + " > " + to);
  1.2550 +        byte[] copy = new byte[newLength];
  1.2551 +        System.arraycopy(original, from, copy, 0,
  1.2552 +                         Math.min(original.length - from, newLength));
  1.2553 +        return copy;
  1.2554 +    }
  1.2555 +
  1.2556 +    /**
  1.2557 +     * Copies the specified range of the specified array into a new array.
  1.2558 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2559 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2560 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2561 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2562 +     * Values from subsequent elements in the original array are placed into
  1.2563 +     * subsequent elements in the copy.  The final index of the range
  1.2564 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2565 +     * may be greater than <tt>original.length</tt>, in which case
  1.2566 +     * <tt>(short)0</tt> is placed in all elements of the copy whose index is
  1.2567 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2568 +     * of the returned array will be <tt>to - from</tt>.
  1.2569 +     *
  1.2570 +     * @param original the array from which a range is to be copied
  1.2571 +     * @param from the initial index of the range to be copied, inclusive
  1.2572 +     * @param to the final index of the range to be copied, exclusive.
  1.2573 +     *     (This index may lie outside the array.)
  1.2574 +     * @return a new array containing the specified range from the original array,
  1.2575 +     *     truncated or padded with zeros to obtain the required length
  1.2576 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2577 +     *     or {@code from > original.length}
  1.2578 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2579 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2580 +     * @since 1.6
  1.2581 +     */
  1.2582 +    public static short[] copyOfRange(short[] original, int from, int to) {
  1.2583 +        int newLength = to - from;
  1.2584 +        if (newLength < 0)
  1.2585 +            throw new IllegalArgumentException(from + " > " + to);
  1.2586 +        short[] copy = new short[newLength];
  1.2587 +        System.arraycopy(original, from, copy, 0,
  1.2588 +                         Math.min(original.length - from, newLength));
  1.2589 +        return copy;
  1.2590 +    }
  1.2591 +
  1.2592 +    /**
  1.2593 +     * Copies the specified range of the specified array into a new array.
  1.2594 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2595 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2596 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2597 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2598 +     * Values from subsequent elements in the original array are placed into
  1.2599 +     * subsequent elements in the copy.  The final index of the range
  1.2600 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2601 +     * may be greater than <tt>original.length</tt>, in which case
  1.2602 +     * <tt>0</tt> is placed in all elements of the copy whose index is
  1.2603 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2604 +     * of the returned array will be <tt>to - from</tt>.
  1.2605 +     *
  1.2606 +     * @param original the array from which a range is to be copied
  1.2607 +     * @param from the initial index of the range to be copied, inclusive
  1.2608 +     * @param to the final index of the range to be copied, exclusive.
  1.2609 +     *     (This index may lie outside the array.)
  1.2610 +     * @return a new array containing the specified range from the original array,
  1.2611 +     *     truncated or padded with zeros to obtain the required length
  1.2612 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2613 +     *     or {@code from > original.length}
  1.2614 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2615 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2616 +     * @since 1.6
  1.2617 +     */
  1.2618 +    public static int[] copyOfRange(int[] original, int from, int to) {
  1.2619 +        int newLength = to - from;
  1.2620 +        if (newLength < 0)
  1.2621 +            throw new IllegalArgumentException(from + " > " + to);
  1.2622 +        int[] copy = new int[newLength];
  1.2623 +        System.arraycopy(original, from, copy, 0,
  1.2624 +                         Math.min(original.length - from, newLength));
  1.2625 +        return copy;
  1.2626 +    }
  1.2627 +
  1.2628 +    /**
  1.2629 +     * Copies the specified range of the specified array into a new array.
  1.2630 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2631 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2632 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2633 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2634 +     * Values from subsequent elements in the original array are placed into
  1.2635 +     * subsequent elements in the copy.  The final index of the range
  1.2636 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2637 +     * may be greater than <tt>original.length</tt>, in which case
  1.2638 +     * <tt>0L</tt> is placed in all elements of the copy whose index is
  1.2639 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2640 +     * of the returned array will be <tt>to - from</tt>.
  1.2641 +     *
  1.2642 +     * @param original the array from which a range is to be copied
  1.2643 +     * @param from the initial index of the range to be copied, inclusive
  1.2644 +     * @param to the final index of the range to be copied, exclusive.
  1.2645 +     *     (This index may lie outside the array.)
  1.2646 +     * @return a new array containing the specified range from the original array,
  1.2647 +     *     truncated or padded with zeros to obtain the required length
  1.2648 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2649 +     *     or {@code from > original.length}
  1.2650 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2651 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2652 +     * @since 1.6
  1.2653 +     */
  1.2654 +    public static long[] copyOfRange(long[] original, int from, int to) {
  1.2655 +        int newLength = to - from;
  1.2656 +        if (newLength < 0)
  1.2657 +            throw new IllegalArgumentException(from + " > " + to);
  1.2658 +        long[] copy = new long[newLength];
  1.2659 +        System.arraycopy(original, from, copy, 0,
  1.2660 +                         Math.min(original.length - from, newLength));
  1.2661 +        return copy;
  1.2662 +    }
  1.2663 +
  1.2664 +    /**
  1.2665 +     * Copies the specified range of the specified array into a new array.
  1.2666 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2667 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2668 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2669 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2670 +     * Values from subsequent elements in the original array are placed into
  1.2671 +     * subsequent elements in the copy.  The final index of the range
  1.2672 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2673 +     * may be greater than <tt>original.length</tt>, in which case
  1.2674 +     * <tt>'\\u000'</tt> is placed in all elements of the copy whose index is
  1.2675 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2676 +     * of the returned array will be <tt>to - from</tt>.
  1.2677 +     *
  1.2678 +     * @param original the array from which a range is to be copied
  1.2679 +     * @param from the initial index of the range to be copied, inclusive
  1.2680 +     * @param to the final index of the range to be copied, exclusive.
  1.2681 +     *     (This index may lie outside the array.)
  1.2682 +     * @return a new array containing the specified range from the original array,
  1.2683 +     *     truncated or padded with null characters to obtain the required length
  1.2684 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2685 +     *     or {@code from > original.length}
  1.2686 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2687 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2688 +     * @since 1.6
  1.2689 +     */
  1.2690 +    public static char[] copyOfRange(char[] original, int from, int to) {
  1.2691 +        int newLength = to - from;
  1.2692 +        if (newLength < 0)
  1.2693 +            throw new IllegalArgumentException(from + " > " + to);
  1.2694 +        char[] copy = new char[newLength];
  1.2695 +        System.arraycopy(original, from, copy, 0,
  1.2696 +                         Math.min(original.length - from, newLength));
  1.2697 +        return copy;
  1.2698 +    }
  1.2699 +
  1.2700 +    /**
  1.2701 +     * Copies the specified range of the specified array into a new array.
  1.2702 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2703 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2704 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2705 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2706 +     * Values from subsequent elements in the original array are placed into
  1.2707 +     * subsequent elements in the copy.  The final index of the range
  1.2708 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2709 +     * may be greater than <tt>original.length</tt>, in which case
  1.2710 +     * <tt>0f</tt> is placed in all elements of the copy whose index is
  1.2711 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2712 +     * of the returned array will be <tt>to - from</tt>.
  1.2713 +     *
  1.2714 +     * @param original the array from which a range is to be copied
  1.2715 +     * @param from the initial index of the range to be copied, inclusive
  1.2716 +     * @param to the final index of the range to be copied, exclusive.
  1.2717 +     *     (This index may lie outside the array.)
  1.2718 +     * @return a new array containing the specified range from the original array,
  1.2719 +     *     truncated or padded with zeros to obtain the required length
  1.2720 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2721 +     *     or {@code from > original.length}
  1.2722 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2723 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2724 +     * @since 1.6
  1.2725 +     */
  1.2726 +    public static float[] copyOfRange(float[] original, int from, int to) {
  1.2727 +        int newLength = to - from;
  1.2728 +        if (newLength < 0)
  1.2729 +            throw new IllegalArgumentException(from + " > " + to);
  1.2730 +        float[] copy = new float[newLength];
  1.2731 +        System.arraycopy(original, from, copy, 0,
  1.2732 +                         Math.min(original.length - from, newLength));
  1.2733 +        return copy;
  1.2734 +    }
  1.2735 +
  1.2736 +    /**
  1.2737 +     * Copies the specified range of the specified array into a new array.
  1.2738 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2739 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2740 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2741 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2742 +     * Values from subsequent elements in the original array are placed into
  1.2743 +     * subsequent elements in the copy.  The final index of the range
  1.2744 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2745 +     * may be greater than <tt>original.length</tt>, in which case
  1.2746 +     * <tt>0d</tt> is placed in all elements of the copy whose index is
  1.2747 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2748 +     * of the returned array will be <tt>to - from</tt>.
  1.2749 +     *
  1.2750 +     * @param original the array from which a range is to be copied
  1.2751 +     * @param from the initial index of the range to be copied, inclusive
  1.2752 +     * @param to the final index of the range to be copied, exclusive.
  1.2753 +     *     (This index may lie outside the array.)
  1.2754 +     * @return a new array containing the specified range from the original array,
  1.2755 +     *     truncated or padded with zeros to obtain the required length
  1.2756 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2757 +     *     or {@code from > original.length}
  1.2758 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2759 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2760 +     * @since 1.6
  1.2761 +     */
  1.2762 +    public static double[] copyOfRange(double[] original, int from, int to) {
  1.2763 +        int newLength = to - from;
  1.2764 +        if (newLength < 0)
  1.2765 +            throw new IllegalArgumentException(from + " > " + to);
  1.2766 +        double[] copy = new double[newLength];
  1.2767 +        System.arraycopy(original, from, copy, 0,
  1.2768 +                         Math.min(original.length - from, newLength));
  1.2769 +        return copy;
  1.2770 +    }
  1.2771 +
  1.2772 +    /**
  1.2773 +     * Copies the specified range of the specified array into a new array.
  1.2774 +     * The initial index of the range (<tt>from</tt>) must lie between zero
  1.2775 +     * and <tt>original.length</tt>, inclusive.  The value at
  1.2776 +     * <tt>original[from]</tt> is placed into the initial element of the copy
  1.2777 +     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
  1.2778 +     * Values from subsequent elements in the original array are placed into
  1.2779 +     * subsequent elements in the copy.  The final index of the range
  1.2780 +     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
  1.2781 +     * may be greater than <tt>original.length</tt>, in which case
  1.2782 +     * <tt>false</tt> is placed in all elements of the copy whose index is
  1.2783 +     * greater than or equal to <tt>original.length - from</tt>.  The length
  1.2784 +     * of the returned array will be <tt>to - from</tt>.
  1.2785 +     *
  1.2786 +     * @param original the array from which a range is to be copied
  1.2787 +     * @param from the initial index of the range to be copied, inclusive
  1.2788 +     * @param to the final index of the range to be copied, exclusive.
  1.2789 +     *     (This index may lie outside the array.)
  1.2790 +     * @return a new array containing the specified range from the original array,
  1.2791 +     *     truncated or padded with false elements to obtain the required length
  1.2792 +     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
  1.2793 +     *     or {@code from > original.length}
  1.2794 +     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
  1.2795 +     * @throws NullPointerException if <tt>original</tt> is null
  1.2796 +     * @since 1.6
  1.2797 +     */
  1.2798 +    public static boolean[] copyOfRange(boolean[] original, int from, int to) {
  1.2799 +        int newLength = to - from;
  1.2800 +        if (newLength < 0)
  1.2801 +            throw new IllegalArgumentException(from + " > " + to);
  1.2802 +        boolean[] copy = new boolean[newLength];
  1.2803 +        System.arraycopy(original, from, copy, 0,
  1.2804 +                         Math.min(original.length - from, newLength));
  1.2805 +        return copy;
  1.2806 +    }
  1.2807 +
  1.2808 +    // Misc
  1.2809 +
  1.2810 +    /**
  1.2811 +     * Returns a fixed-size list backed by the specified array.  (Changes to
  1.2812 +     * the returned list "write through" to the array.)  This method acts
  1.2813 +     * as bridge between array-based and collection-based APIs, in
  1.2814 +     * combination with {@link Collection#toArray}.  The returned list is
  1.2815 +     * serializable and implements {@link RandomAccess}.
  1.2816 +     *
  1.2817 +     * <p>This method also provides a convenient way to create a fixed-size
  1.2818 +     * list initialized to contain several elements:
  1.2819 +     * <pre>
  1.2820 +     *     List&lt;String&gt; stooges = Arrays.asList("Larry", "Moe", "Curly");
  1.2821 +     * </pre>
  1.2822 +     *
  1.2823 +     * @param a the array by which the list will be backed
  1.2824 +     * @return a list view of the specified array
  1.2825 +     */
  1.2826 +    @SafeVarargs
  1.2827 +    public static <T> List<T> asList(T... a) {
  1.2828 +        return new ArrayList<>(a);
  1.2829 +    }
  1.2830 +
  1.2831 +    /**
  1.2832 +     * @serial include
  1.2833 +     */
  1.2834 +    private static class ArrayList<E> extends AbstractList<E>
  1.2835 +        implements RandomAccess, java.io.Serializable
  1.2836 +    {
  1.2837 +        private static final long serialVersionUID = -2764017481108945198L;
  1.2838 +        private final E[] a;
  1.2839 +
  1.2840 +        ArrayList(E[] array) {
  1.2841 +            if (array==null)
  1.2842 +                throw new NullPointerException();
  1.2843 +            a = array;
  1.2844 +        }
  1.2845 +
  1.2846 +        public int size() {
  1.2847 +            return a.length;
  1.2848 +        }
  1.2849 +
  1.2850 +        public Object[] toArray() {
  1.2851 +            return a.clone();
  1.2852 +        }
  1.2853 +
  1.2854 +        public <T> T[] toArray(T[] a) {
  1.2855 +            int size = size();
  1.2856 +            if (a.length < size)
  1.2857 +                return Arrays.copyOf(this.a, size,
  1.2858 +                                     (Class<? extends T[]>) a.getClass());
  1.2859 +            System.arraycopy(this.a, 0, a, 0, size);
  1.2860 +            if (a.length > size)
  1.2861 +                a[size] = null;
  1.2862 +            return a;
  1.2863 +        }
  1.2864 +
  1.2865 +        public E get(int index) {
  1.2866 +            return a[index];
  1.2867 +        }
  1.2868 +
  1.2869 +        public E set(int index, E element) {
  1.2870 +            E oldValue = a[index];
  1.2871 +            a[index] = element;
  1.2872 +            return oldValue;
  1.2873 +        }
  1.2874 +
  1.2875 +        public int indexOf(Object o) {
  1.2876 +            if (o==null) {
  1.2877 +                for (int i=0; i<a.length; i++)
  1.2878 +                    if (a[i]==null)
  1.2879 +                        return i;
  1.2880 +            } else {
  1.2881 +                for (int i=0; i<a.length; i++)
  1.2882 +                    if (o.equals(a[i]))
  1.2883 +                        return i;
  1.2884 +            }
  1.2885 +            return -1;
  1.2886 +        }
  1.2887 +
  1.2888 +        public boolean contains(Object o) {
  1.2889 +            return indexOf(o) != -1;
  1.2890 +        }
  1.2891 +    }
  1.2892 +
  1.2893 +    /**
  1.2894 +     * Returns a hash code based on the contents of the specified array.
  1.2895 +     * For any two <tt>long</tt> arrays <tt>a</tt> and <tt>b</tt>
  1.2896 +     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.2897 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.2898 +     *
  1.2899 +     * <p>The value returned by this method is the same value that would be
  1.2900 +     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
  1.2901 +     * method on a {@link List} containing a sequence of {@link Long}
  1.2902 +     * instances representing the elements of <tt>a</tt> in the same order.
  1.2903 +     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
  1.2904 +     *
  1.2905 +     * @param a the array whose hash value to compute
  1.2906 +     * @return a content-based hash code for <tt>a</tt>
  1.2907 +     * @since 1.5
  1.2908 +     */
  1.2909 +    public static int hashCode(long a[]) {
  1.2910 +        if (a == null)
  1.2911 +            return 0;
  1.2912 +
  1.2913 +        int result = 1;
  1.2914 +        for (long element : a) {
  1.2915 +            int elementHash = (int)(element ^ (element >>> 32));
  1.2916 +            result = 31 * result + elementHash;
  1.2917 +        }
  1.2918 +
  1.2919 +        return result;
  1.2920 +    }
  1.2921 +
  1.2922 +    /**
  1.2923 +     * Returns a hash code based on the contents of the specified array.
  1.2924 +     * For any two non-null <tt>int</tt> arrays <tt>a</tt> and <tt>b</tt>
  1.2925 +     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.2926 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.2927 +     *
  1.2928 +     * <p>The value returned by this method is the same value that would be
  1.2929 +     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
  1.2930 +     * method on a {@link List} containing a sequence of {@link Integer}
  1.2931 +     * instances representing the elements of <tt>a</tt> in the same order.
  1.2932 +     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
  1.2933 +     *
  1.2934 +     * @param a the array whose hash value to compute
  1.2935 +     * @return a content-based hash code for <tt>a</tt>
  1.2936 +     * @since 1.5
  1.2937 +     */
  1.2938 +    public static int hashCode(int a[]) {
  1.2939 +        if (a == null)
  1.2940 +            return 0;
  1.2941 +
  1.2942 +        int result = 1;
  1.2943 +        for (int element : a)
  1.2944 +            result = 31 * result + element;
  1.2945 +
  1.2946 +        return result;
  1.2947 +    }
  1.2948 +
  1.2949 +    /**
  1.2950 +     * Returns a hash code based on the contents of the specified array.
  1.2951 +     * For any two <tt>short</tt> arrays <tt>a</tt> and <tt>b</tt>
  1.2952 +     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.2953 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.2954 +     *
  1.2955 +     * <p>The value returned by this method is the same value that would be
  1.2956 +     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
  1.2957 +     * method on a {@link List} containing a sequence of {@link Short}
  1.2958 +     * instances representing the elements of <tt>a</tt> in the same order.
  1.2959 +     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
  1.2960 +     *
  1.2961 +     * @param a the array whose hash value to compute
  1.2962 +     * @return a content-based hash code for <tt>a</tt>
  1.2963 +     * @since 1.5
  1.2964 +     */
  1.2965 +    public static int hashCode(short a[]) {
  1.2966 +        if (a == null)
  1.2967 +            return 0;
  1.2968 +
  1.2969 +        int result = 1;
  1.2970 +        for (short element : a)
  1.2971 +            result = 31 * result + element;
  1.2972 +
  1.2973 +        return result;
  1.2974 +    }
  1.2975 +
  1.2976 +    /**
  1.2977 +     * Returns a hash code based on the contents of the specified array.
  1.2978 +     * For any two <tt>char</tt> arrays <tt>a</tt> and <tt>b</tt>
  1.2979 +     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.2980 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.2981 +     *
  1.2982 +     * <p>The value returned by this method is the same value that would be
  1.2983 +     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
  1.2984 +     * method on a {@link List} containing a sequence of {@link Character}
  1.2985 +     * instances representing the elements of <tt>a</tt> in the same order.
  1.2986 +     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
  1.2987 +     *
  1.2988 +     * @param a the array whose hash value to compute
  1.2989 +     * @return a content-based hash code for <tt>a</tt>
  1.2990 +     * @since 1.5
  1.2991 +     */
  1.2992 +    public static int hashCode(char a[]) {
  1.2993 +        if (a == null)
  1.2994 +            return 0;
  1.2995 +
  1.2996 +        int result = 1;
  1.2997 +        for (char element : a)
  1.2998 +            result = 31 * result + element;
  1.2999 +
  1.3000 +        return result;
  1.3001 +    }
  1.3002 +
  1.3003 +    /**
  1.3004 +     * Returns a hash code based on the contents of the specified array.
  1.3005 +     * For any two <tt>byte</tt> arrays <tt>a</tt> and <tt>b</tt>
  1.3006 +     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.3007 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.3008 +     *
  1.3009 +     * <p>The value returned by this method is the same value that would be
  1.3010 +     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
  1.3011 +     * method on a {@link List} containing a sequence of {@link Byte}
  1.3012 +     * instances representing the elements of <tt>a</tt> in the same order.
  1.3013 +     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
  1.3014 +     *
  1.3015 +     * @param a the array whose hash value to compute
  1.3016 +     * @return a content-based hash code for <tt>a</tt>
  1.3017 +     * @since 1.5
  1.3018 +     */
  1.3019 +    public static int hashCode(byte a[]) {
  1.3020 +        if (a == null)
  1.3021 +            return 0;
  1.3022 +
  1.3023 +        int result = 1;
  1.3024 +        for (byte element : a)
  1.3025 +            result = 31 * result + element;
  1.3026 +
  1.3027 +        return result;
  1.3028 +    }
  1.3029 +
  1.3030 +    /**
  1.3031 +     * Returns a hash code based on the contents of the specified array.
  1.3032 +     * For any two <tt>boolean</tt> arrays <tt>a</tt> and <tt>b</tt>
  1.3033 +     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.3034 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.3035 +     *
  1.3036 +     * <p>The value returned by this method is the same value that would be
  1.3037 +     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
  1.3038 +     * method on a {@link List} containing a sequence of {@link Boolean}
  1.3039 +     * instances representing the elements of <tt>a</tt> in the same order.
  1.3040 +     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
  1.3041 +     *
  1.3042 +     * @param a the array whose hash value to compute
  1.3043 +     * @return a content-based hash code for <tt>a</tt>
  1.3044 +     * @since 1.5
  1.3045 +     */
  1.3046 +    public static int hashCode(boolean a[]) {
  1.3047 +        if (a == null)
  1.3048 +            return 0;
  1.3049 +
  1.3050 +        int result = 1;
  1.3051 +        for (boolean element : a)
  1.3052 +            result = 31 * result + (element ? 1231 : 1237);
  1.3053 +
  1.3054 +        return result;
  1.3055 +    }
  1.3056 +
  1.3057 +    /**
  1.3058 +     * Returns a hash code based on the contents of the specified array.
  1.3059 +     * For any two <tt>float</tt> arrays <tt>a</tt> and <tt>b</tt>
  1.3060 +     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.3061 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.3062 +     *
  1.3063 +     * <p>The value returned by this method is the same value that would be
  1.3064 +     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
  1.3065 +     * method on a {@link List} containing a sequence of {@link Float}
  1.3066 +     * instances representing the elements of <tt>a</tt> in the same order.
  1.3067 +     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
  1.3068 +     *
  1.3069 +     * @param a the array whose hash value to compute
  1.3070 +     * @return a content-based hash code for <tt>a</tt>
  1.3071 +     * @since 1.5
  1.3072 +     */
  1.3073 +    public static int hashCode(float a[]) {
  1.3074 +        if (a == null)
  1.3075 +            return 0;
  1.3076 +
  1.3077 +        int result = 1;
  1.3078 +        for (float element : a)
  1.3079 +            result = 31 * result + Float.floatToIntBits(element);
  1.3080 +
  1.3081 +        return result;
  1.3082 +    }
  1.3083 +
  1.3084 +    /**
  1.3085 +     * Returns a hash code based on the contents of the specified array.
  1.3086 +     * For any two <tt>double</tt> arrays <tt>a</tt> and <tt>b</tt>
  1.3087 +     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.3088 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.3089 +     *
  1.3090 +     * <p>The value returned by this method is the same value that would be
  1.3091 +     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
  1.3092 +     * method on a {@link List} containing a sequence of {@link Double}
  1.3093 +     * instances representing the elements of <tt>a</tt> in the same order.
  1.3094 +     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
  1.3095 +     *
  1.3096 +     * @param a the array whose hash value to compute
  1.3097 +     * @return a content-based hash code for <tt>a</tt>
  1.3098 +     * @since 1.5
  1.3099 +     */
  1.3100 +    public static int hashCode(double a[]) {
  1.3101 +        if (a == null)
  1.3102 +            return 0;
  1.3103 +
  1.3104 +        int result = 1;
  1.3105 +        for (double element : a) {
  1.3106 +            long bits = Double.doubleToLongBits(element);
  1.3107 +            result = 31 * result + (int)(bits ^ (bits >>> 32));
  1.3108 +        }
  1.3109 +        return result;
  1.3110 +    }
  1.3111 +
  1.3112 +    /**
  1.3113 +     * Returns a hash code based on the contents of the specified array.  If
  1.3114 +     * the array contains other arrays as elements, the hash code is based on
  1.3115 +     * their identities rather than their contents.  It is therefore
  1.3116 +     * acceptable to invoke this method on an array that contains itself as an
  1.3117 +     * element,  either directly or indirectly through one or more levels of
  1.3118 +     * arrays.
  1.3119 +     *
  1.3120 +     * <p>For any two arrays <tt>a</tt> and <tt>b</tt> such that
  1.3121 +     * <tt>Arrays.equals(a, b)</tt>, it is also the case that
  1.3122 +     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
  1.3123 +     *
  1.3124 +     * <p>The value returned by this method is equal to the value that would
  1.3125 +     * be returned by <tt>Arrays.asList(a).hashCode()</tt>, unless <tt>a</tt>
  1.3126 +     * is <tt>null</tt>, in which case <tt>0</tt> is returned.
  1.3127 +     *
  1.3128 +     * @param a the array whose content-based hash code to compute
  1.3129 +     * @return a content-based hash code for <tt>a</tt>
  1.3130 +     * @see #deepHashCode(Object[])
  1.3131 +     * @since 1.5
  1.3132 +     */
  1.3133 +    public static int hashCode(Object a[]) {
  1.3134 +        if (a == null)
  1.3135 +            return 0;
  1.3136 +
  1.3137 +        int result = 1;
  1.3138 +
  1.3139 +        for (Object element : a)
  1.3140 +            result = 31 * result + (element == null ? 0 : element.hashCode());
  1.3141 +
  1.3142 +        return result;
  1.3143 +    }
  1.3144 +
  1.3145 +    /**
  1.3146 +     * Returns a hash code based on the "deep contents" of the specified
  1.3147 +     * array.  If the array contains other arrays as elements, the
  1.3148 +     * hash code is based on their contents and so on, ad infinitum.
  1.3149 +     * It is therefore unacceptable to invoke this method on an array that
  1.3150 +     * contains itself as an element, either directly or indirectly through
  1.3151 +     * one or more levels of arrays.  The behavior of such an invocation is
  1.3152 +     * undefined.
  1.3153 +     *
  1.3154 +     * <p>For any two arrays <tt>a</tt> and <tt>b</tt> such that
  1.3155 +     * <tt>Arrays.deepEquals(a, b)</tt>, it is also the case that
  1.3156 +     * <tt>Arrays.deepHashCode(a) == Arrays.deepHashCode(b)</tt>.
  1.3157 +     *
  1.3158 +     * <p>The computation of the value returned by this method is similar to
  1.3159 +     * that of the value returned by {@link List#hashCode()} on a list
  1.3160 +     * containing the same elements as <tt>a</tt> in the same order, with one
  1.3161 +     * difference: If an element <tt>e</tt> of <tt>a</tt> is itself an array,
  1.3162 +     * its hash code is computed not by calling <tt>e.hashCode()</tt>, but as
  1.3163 +     * by calling the appropriate overloading of <tt>Arrays.hashCode(e)</tt>
  1.3164 +     * if <tt>e</tt> is an array of a primitive type, or as by calling
  1.3165 +     * <tt>Arrays.deepHashCode(e)</tt> recursively if <tt>e</tt> is an array
  1.3166 +     * of a reference type.  If <tt>a</tt> is <tt>null</tt>, this method
  1.3167 +     * returns 0.
  1.3168 +     *
  1.3169 +     * @param a the array whose deep-content-based hash code to compute
  1.3170 +     * @return a deep-content-based hash code for <tt>a</tt>
  1.3171 +     * @see #hashCode(Object[])
  1.3172 +     * @since 1.5
  1.3173 +     */
  1.3174 +    public static int deepHashCode(Object a[]) {
  1.3175 +        if (a == null)
  1.3176 +            return 0;
  1.3177 +
  1.3178 +        int result = 1;
  1.3179 +
  1.3180 +        for (Object element : a) {
  1.3181 +            int elementHash = 0;
  1.3182 +            if (element instanceof Object[])
  1.3183 +                elementHash = deepHashCode((Object[]) element);
  1.3184 +            else if (element instanceof byte[])
  1.3185 +                elementHash = hashCode((byte[]) element);
  1.3186 +            else if (element instanceof short[])
  1.3187 +                elementHash = hashCode((short[]) element);
  1.3188 +            else if (element instanceof int[])
  1.3189 +                elementHash = hashCode((int[]) element);
  1.3190 +            else if (element instanceof long[])
  1.3191 +                elementHash = hashCode((long[]) element);
  1.3192 +            else if (element instanceof char[])
  1.3193 +                elementHash = hashCode((char[]) element);
  1.3194 +            else if (element instanceof float[])
  1.3195 +                elementHash = hashCode((float[]) element);
  1.3196 +            else if (element instanceof double[])
  1.3197 +                elementHash = hashCode((double[]) element);
  1.3198 +            else if (element instanceof boolean[])
  1.3199 +                elementHash = hashCode((boolean[]) element);
  1.3200 +            else if (element != null)
  1.3201 +                elementHash = element.hashCode();
  1.3202 +
  1.3203 +            result = 31 * result + elementHash;
  1.3204 +        }
  1.3205 +
  1.3206 +        return result;
  1.3207 +    }
  1.3208 +
  1.3209 +    /**
  1.3210 +     * Returns <tt>true</tt> if the two specified arrays are <i>deeply
  1.3211 +     * equal</i> to one another.  Unlike the {@link #equals(Object[],Object[])}
  1.3212 +     * method, this method is appropriate for use with nested arrays of
  1.3213 +     * arbitrary depth.
  1.3214 +     *
  1.3215 +     * <p>Two array references are considered deeply equal if both
  1.3216 +     * are <tt>null</tt>, or if they refer to arrays that contain the same
  1.3217 +     * number of elements and all corresponding pairs of elements in the two
  1.3218 +     * arrays are deeply equal.
  1.3219 +     *
  1.3220 +     * <p>Two possibly <tt>null</tt> elements <tt>e1</tt> and <tt>e2</tt> are
  1.3221 +     * deeply equal if any of the following conditions hold:
  1.3222 +     * <ul>
  1.3223 +     *    <li> <tt>e1</tt> and <tt>e2</tt> are both arrays of object reference
  1.3224 +     *         types, and <tt>Arrays.deepEquals(e1, e2) would return true</tt>
  1.3225 +     *    <li> <tt>e1</tt> and <tt>e2</tt> are arrays of the same primitive
  1.3226 +     *         type, and the appropriate overloading of
  1.3227 +     *         <tt>Arrays.equals(e1, e2)</tt> would return true.
  1.3228 +     *    <li> <tt>e1 == e2</tt>
  1.3229 +     *    <li> <tt>e1.equals(e2)</tt> would return true.
  1.3230 +     * </ul>
  1.3231 +     * Note that this definition permits <tt>null</tt> elements at any depth.
  1.3232 +     *
  1.3233 +     * <p>If either of the specified arrays contain themselves as elements
  1.3234 +     * either directly or indirectly through one or more levels of arrays,
  1.3235 +     * the behavior of this method is undefined.
  1.3236 +     *
  1.3237 +     * @param a1 one array to be tested for equality
  1.3238 +     * @param a2 the other array to be tested for equality
  1.3239 +     * @return <tt>true</tt> if the two arrays are equal
  1.3240 +     * @see #equals(Object[],Object[])
  1.3241 +     * @see Objects#deepEquals(Object, Object)
  1.3242 +     * @since 1.5
  1.3243 +     */
  1.3244 +    public static boolean deepEquals(Object[] a1, Object[] a2) {
  1.3245 +        if (a1 == a2)
  1.3246 +            return true;
  1.3247 +        if (a1 == null || a2==null)
  1.3248 +            return false;
  1.3249 +        int length = a1.length;
  1.3250 +        if (a2.length != length)
  1.3251 +            return false;
  1.3252 +
  1.3253 +        for (int i = 0; i < length; i++) {
  1.3254 +            Object e1 = a1[i];
  1.3255 +            Object e2 = a2[i];
  1.3256 +
  1.3257 +            if (e1 == e2)
  1.3258 +                continue;
  1.3259 +            if (e1 == null)
  1.3260 +                return false;
  1.3261 +
  1.3262 +            // Figure out whether the two elements are equal
  1.3263 +            boolean eq = deepEquals0(e1, e2);
  1.3264 +
  1.3265 +            if (!eq)
  1.3266 +                return false;
  1.3267 +        }
  1.3268 +        return true;
  1.3269 +    }
  1.3270 +
  1.3271 +    static boolean deepEquals0(Object e1, Object e2) {
  1.3272 +        assert e1 != null;
  1.3273 +        boolean eq;
  1.3274 +        if (e1 instanceof Object[] && e2 instanceof Object[])
  1.3275 +            eq = deepEquals ((Object[]) e1, (Object[]) e2);
  1.3276 +        else if (e1 instanceof byte[] && e2 instanceof byte[])
  1.3277 +            eq = equals((byte[]) e1, (byte[]) e2);
  1.3278 +        else if (e1 instanceof short[] && e2 instanceof short[])
  1.3279 +            eq = equals((short[]) e1, (short[]) e2);
  1.3280 +        else if (e1 instanceof int[] && e2 instanceof int[])
  1.3281 +            eq = equals((int[]) e1, (int[]) e2);
  1.3282 +        else if (e1 instanceof long[] && e2 instanceof long[])
  1.3283 +            eq = equals((long[]) e1, (long[]) e2);
  1.3284 +        else if (e1 instanceof char[] && e2 instanceof char[])
  1.3285 +            eq = equals((char[]) e1, (char[]) e2);
  1.3286 +        else if (e1 instanceof float[] && e2 instanceof float[])
  1.3287 +            eq = equals((float[]) e1, (float[]) e2);
  1.3288 +        else if (e1 instanceof double[] && e2 instanceof double[])
  1.3289 +            eq = equals((double[]) e1, (double[]) e2);
  1.3290 +        else if (e1 instanceof boolean[] && e2 instanceof boolean[])
  1.3291 +            eq = equals((boolean[]) e1, (boolean[]) e2);
  1.3292 +        else
  1.3293 +            eq = e1.equals(e2);
  1.3294 +        return eq;
  1.3295 +    }
  1.3296 +
  1.3297 +    /**
  1.3298 +     * Returns a string representation of the contents of the specified array.
  1.3299 +     * The string representation consists of a list of the array's elements,
  1.3300 +     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
  1.3301 +     * separated by the characters <tt>", "</tt> (a comma followed by a
  1.3302 +     * space).  Elements are converted to strings as by
  1.3303 +     * <tt>String.valueOf(long)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
  1.3304 +     * is <tt>null</tt>.
  1.3305 +     *
  1.3306 +     * @param a the array whose string representation to return
  1.3307 +     * @return a string representation of <tt>a</tt>
  1.3308 +     * @since 1.5
  1.3309 +     */
  1.3310 +    public static String toString(long[] a) {
  1.3311 +        if (a == null)
  1.3312 +            return "null";
  1.3313 +        int iMax = a.length - 1;
  1.3314 +        if (iMax == -1)
  1.3315 +            return "[]";
  1.3316 +
  1.3317 +        StringBuilder b = new StringBuilder();
  1.3318 +        b.append('[');
  1.3319 +        for (int i = 0; ; i++) {
  1.3320 +            b.append(a[i]);
  1.3321 +            if (i == iMax)
  1.3322 +                return b.append(']').toString();
  1.3323 +            b.append(", ");
  1.3324 +        }
  1.3325 +    }
  1.3326 +
  1.3327 +    /**
  1.3328 +     * Returns a string representation of the contents of the specified array.
  1.3329 +     * The string representation consists of a list of the array's elements,
  1.3330 +     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
  1.3331 +     * separated by the characters <tt>", "</tt> (a comma followed by a
  1.3332 +     * space).  Elements are converted to strings as by
  1.3333 +     * <tt>String.valueOf(int)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt> is
  1.3334 +     * <tt>null</tt>.
  1.3335 +     *
  1.3336 +     * @param a the array whose string representation to return
  1.3337 +     * @return a string representation of <tt>a</tt>
  1.3338 +     * @since 1.5
  1.3339 +     */
  1.3340 +    public static String toString(int[] a) {
  1.3341 +        if (a == null)
  1.3342 +            return "null";
  1.3343 +        int iMax = a.length - 1;
  1.3344 +        if (iMax == -1)
  1.3345 +            return "[]";
  1.3346 +
  1.3347 +        StringBuilder b = new StringBuilder();
  1.3348 +        b.append('[');
  1.3349 +        for (int i = 0; ; i++) {
  1.3350 +            b.append(a[i]);
  1.3351 +            if (i == iMax)
  1.3352 +                return b.append(']').toString();
  1.3353 +            b.append(", ");
  1.3354 +        }
  1.3355 +    }
  1.3356 +
  1.3357 +    /**
  1.3358 +     * Returns a string representation of the contents of the specified array.
  1.3359 +     * The string representation consists of a list of the array's elements,
  1.3360 +     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
  1.3361 +     * separated by the characters <tt>", "</tt> (a comma followed by a
  1.3362 +     * space).  Elements are converted to strings as by
  1.3363 +     * <tt>String.valueOf(short)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
  1.3364 +     * is <tt>null</tt>.
  1.3365 +     *
  1.3366 +     * @param a the array whose string representation to return
  1.3367 +     * @return a string representation of <tt>a</tt>
  1.3368 +     * @since 1.5
  1.3369 +     */
  1.3370 +    public static String toString(short[] a) {
  1.3371 +        if (a == null)
  1.3372 +            return "null";
  1.3373 +        int iMax = a.length - 1;
  1.3374 +        if (iMax == -1)
  1.3375 +            return "[]";
  1.3376 +
  1.3377 +        StringBuilder b = new StringBuilder();
  1.3378 +        b.append('[');
  1.3379 +        for (int i = 0; ; i++) {
  1.3380 +            b.append(a[i]);
  1.3381 +            if (i == iMax)
  1.3382 +                return b.append(']').toString();
  1.3383 +            b.append(", ");
  1.3384 +        }
  1.3385 +    }
  1.3386 +
  1.3387 +    /**
  1.3388 +     * Returns a string representation of the contents of the specified array.
  1.3389 +     * The string representation consists of a list of the array's elements,
  1.3390 +     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
  1.3391 +     * separated by the characters <tt>", "</tt> (a comma followed by a
  1.3392 +     * space).  Elements are converted to strings as by
  1.3393 +     * <tt>String.valueOf(char)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
  1.3394 +     * is <tt>null</tt>.
  1.3395 +     *
  1.3396 +     * @param a the array whose string representation to return
  1.3397 +     * @return a string representation of <tt>a</tt>
  1.3398 +     * @since 1.5
  1.3399 +     */
  1.3400 +    public static String toString(char[] a) {
  1.3401 +        if (a == null)
  1.3402 +            return "null";
  1.3403 +        int iMax = a.length - 1;
  1.3404 +        if (iMax == -1)
  1.3405 +            return "[]";
  1.3406 +
  1.3407 +        StringBuilder b = new StringBuilder();
  1.3408 +        b.append('[');
  1.3409 +        for (int i = 0; ; i++) {
  1.3410 +            b.append(a[i]);
  1.3411 +            if (i == iMax)
  1.3412 +                return b.append(']').toString();
  1.3413 +            b.append(", ");
  1.3414 +        }
  1.3415 +    }
  1.3416 +
  1.3417 +    /**
  1.3418 +     * Returns a string representation of the contents of the specified array.
  1.3419 +     * The string representation consists of a list of the array's elements,
  1.3420 +     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements
  1.3421 +     * are separated by the characters <tt>", "</tt> (a comma followed
  1.3422 +     * by a space).  Elements are converted to strings as by
  1.3423 +     * <tt>String.valueOf(byte)</tt>.  Returns <tt>"null"</tt> if
  1.3424 +     * <tt>a</tt> is <tt>null</tt>.
  1.3425 +     *
  1.3426 +     * @param a the array whose string representation to return
  1.3427 +     * @return a string representation of <tt>a</tt>
  1.3428 +     * @since 1.5
  1.3429 +     */
  1.3430 +    public static String toString(byte[] a) {
  1.3431 +        if (a == null)
  1.3432 +            return "null";
  1.3433 +        int iMax = a.length - 1;
  1.3434 +        if (iMax == -1)
  1.3435 +            return "[]";
  1.3436 +
  1.3437 +        StringBuilder b = new StringBuilder();
  1.3438 +        b.append('[');
  1.3439 +        for (int i = 0; ; i++) {
  1.3440 +            b.append(a[i]);
  1.3441 +            if (i == iMax)
  1.3442 +                return b.append(']').toString();
  1.3443 +            b.append(", ");
  1.3444 +        }
  1.3445 +    }
  1.3446 +
  1.3447 +    /**
  1.3448 +     * Returns a string representation of the contents of the specified array.
  1.3449 +     * The string representation consists of a list of the array's elements,
  1.3450 +     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
  1.3451 +     * separated by the characters <tt>", "</tt> (a comma followed by a
  1.3452 +     * space).  Elements are converted to strings as by
  1.3453 +     * <tt>String.valueOf(boolean)</tt>.  Returns <tt>"null"</tt> if
  1.3454 +     * <tt>a</tt> is <tt>null</tt>.
  1.3455 +     *
  1.3456 +     * @param a the array whose string representation to return
  1.3457 +     * @return a string representation of <tt>a</tt>
  1.3458 +     * @since 1.5
  1.3459 +     */
  1.3460 +    public static String toString(boolean[] a) {
  1.3461 +        if (a == null)
  1.3462 +            return "null";
  1.3463 +        int iMax = a.length - 1;
  1.3464 +        if (iMax == -1)
  1.3465 +            return "[]";
  1.3466 +
  1.3467 +        StringBuilder b = new StringBuilder();
  1.3468 +        b.append('[');
  1.3469 +        for (int i = 0; ; i++) {
  1.3470 +            b.append(a[i]);
  1.3471 +            if (i == iMax)
  1.3472 +                return b.append(']').toString();
  1.3473 +            b.append(", ");
  1.3474 +        }
  1.3475 +    }
  1.3476 +
  1.3477 +    /**
  1.3478 +     * Returns a string representation of the contents of the specified array.
  1.3479 +     * The string representation consists of a list of the array's elements,
  1.3480 +     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
  1.3481 +     * separated by the characters <tt>", "</tt> (a comma followed by a
  1.3482 +     * space).  Elements are converted to strings as by
  1.3483 +     * <tt>String.valueOf(float)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
  1.3484 +     * is <tt>null</tt>.
  1.3485 +     *
  1.3486 +     * @param a the array whose string representation to return
  1.3487 +     * @return a string representation of <tt>a</tt>
  1.3488 +     * @since 1.5
  1.3489 +     */
  1.3490 +    public static String toString(float[] a) {
  1.3491 +        if (a == null)
  1.3492 +            return "null";
  1.3493 +
  1.3494 +        int iMax = a.length - 1;
  1.3495 +        if (iMax == -1)
  1.3496 +            return "[]";
  1.3497 +
  1.3498 +        StringBuilder b = new StringBuilder();
  1.3499 +        b.append('[');
  1.3500 +        for (int i = 0; ; i++) {
  1.3501 +            b.append(a[i]);
  1.3502 +            if (i == iMax)
  1.3503 +                return b.append(']').toString();
  1.3504 +            b.append(", ");
  1.3505 +        }
  1.3506 +    }
  1.3507 +
  1.3508 +    /**
  1.3509 +     * Returns a string representation of the contents of the specified array.
  1.3510 +     * The string representation consists of a list of the array's elements,
  1.3511 +     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
  1.3512 +     * separated by the characters <tt>", "</tt> (a comma followed by a
  1.3513 +     * space).  Elements are converted to strings as by
  1.3514 +     * <tt>String.valueOf(double)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
  1.3515 +     * is <tt>null</tt>.
  1.3516 +     *
  1.3517 +     * @param a the array whose string representation to return
  1.3518 +     * @return a string representation of <tt>a</tt>
  1.3519 +     * @since 1.5
  1.3520 +     */
  1.3521 +    public static String toString(double[] a) {
  1.3522 +        if (a == null)
  1.3523 +            return "null";
  1.3524 +        int iMax = a.length - 1;
  1.3525 +        if (iMax == -1)
  1.3526 +            return "[]";
  1.3527 +
  1.3528 +        StringBuilder b = new StringBuilder();
  1.3529 +        b.append('[');
  1.3530 +        for (int i = 0; ; i++) {
  1.3531 +            b.append(a[i]);
  1.3532 +            if (i == iMax)
  1.3533 +                return b.append(']').toString();
  1.3534 +            b.append(", ");
  1.3535 +        }
  1.3536 +    }
  1.3537 +
  1.3538 +    /**
  1.3539 +     * Returns a string representation of the contents of the specified array.
  1.3540 +     * If the array contains other arrays as elements, they are converted to
  1.3541 +     * strings by the {@link Object#toString} method inherited from
  1.3542 +     * <tt>Object</tt>, which describes their <i>identities</i> rather than
  1.3543 +     * their contents.
  1.3544 +     *
  1.3545 +     * <p>The value returned by this method is equal to the value that would
  1.3546 +     * be returned by <tt>Arrays.asList(a).toString()</tt>, unless <tt>a</tt>
  1.3547 +     * is <tt>null</tt>, in which case <tt>"null"</tt> is returned.
  1.3548 +     *
  1.3549 +     * @param a the array whose string representation to return
  1.3550 +     * @return a string representation of <tt>a</tt>
  1.3551 +     * @see #deepToString(Object[])
  1.3552 +     * @since 1.5
  1.3553 +     */
  1.3554 +    public static String toString(Object[] a) {
  1.3555 +        if (a == null)
  1.3556 +            return "null";
  1.3557 +
  1.3558 +        int iMax = a.length - 1;
  1.3559 +        if (iMax == -1)
  1.3560 +            return "[]";
  1.3561 +
  1.3562 +        StringBuilder b = new StringBuilder();
  1.3563 +        b.append('[');
  1.3564 +        for (int i = 0; ; i++) {
  1.3565 +            b.append(String.valueOf(a[i]));
  1.3566 +            if (i == iMax)
  1.3567 +                return b.append(']').toString();
  1.3568 +            b.append(", ");
  1.3569 +        }
  1.3570 +    }
  1.3571 +
  1.3572 +    /**
  1.3573 +     * Returns a string representation of the "deep contents" of the specified
  1.3574 +     * array.  If the array contains other arrays as elements, the string
  1.3575 +     * representation contains their contents and so on.  This method is
  1.3576 +     * designed for converting multidimensional arrays to strings.
  1.3577 +     *
  1.3578 +     * <p>The string representation consists of a list of the array's
  1.3579 +     * elements, enclosed in square brackets (<tt>"[]"</tt>).  Adjacent
  1.3580 +     * elements are separated by the characters <tt>", "</tt> (a comma
  1.3581 +     * followed by a space).  Elements are converted to strings as by
  1.3582 +     * <tt>String.valueOf(Object)</tt>, unless they are themselves
  1.3583 +     * arrays.
  1.3584 +     *
  1.3585 +     * <p>If an element <tt>e</tt> is an array of a primitive type, it is
  1.3586 +     * converted to a string as by invoking the appropriate overloading of
  1.3587 +     * <tt>Arrays.toString(e)</tt>.  If an element <tt>e</tt> is an array of a
  1.3588 +     * reference type, it is converted to a string as by invoking
  1.3589 +     * this method recursively.
  1.3590 +     *
  1.3591 +     * <p>To avoid infinite recursion, if the specified array contains itself
  1.3592 +     * as an element, or contains an indirect reference to itself through one
  1.3593 +     * or more levels of arrays, the self-reference is converted to the string
  1.3594 +     * <tt>"[...]"</tt>.  For example, an array containing only a reference
  1.3595 +     * to itself would be rendered as <tt>"[[...]]"</tt>.
  1.3596 +     *
  1.3597 +     * <p>This method returns <tt>"null"</tt> if the specified array
  1.3598 +     * is <tt>null</tt>.
  1.3599 +     *
  1.3600 +     * @param a the array whose string representation to return
  1.3601 +     * @return a string representation of <tt>a</tt>
  1.3602 +     * @see #toString(Object[])
  1.3603 +     * @since 1.5
  1.3604 +     */
  1.3605 +    public static String deepToString(Object[] a) {
  1.3606 +        if (a == null)
  1.3607 +            return "null";
  1.3608 +
  1.3609 +        int bufLen = 20 * a.length;
  1.3610 +        if (a.length != 0 && bufLen <= 0)
  1.3611 +            bufLen = Integer.MAX_VALUE;
  1.3612 +        StringBuilder buf = new StringBuilder(bufLen);
  1.3613 +        deepToString(a, buf, new HashSet<Object[]>());
  1.3614 +        return buf.toString();
  1.3615 +    }
  1.3616 +
  1.3617 +    private static void deepToString(Object[] a, StringBuilder buf,
  1.3618 +                                     Set<Object[]> dejaVu) {
  1.3619 +        if (a == null) {
  1.3620 +            buf.append("null");
  1.3621 +            return;
  1.3622 +        }
  1.3623 +        int iMax = a.length - 1;
  1.3624 +        if (iMax == -1) {
  1.3625 +            buf.append("[]");
  1.3626 +            return;
  1.3627 +        }
  1.3628 +
  1.3629 +        dejaVu.add(a);
  1.3630 +        buf.append('[');
  1.3631 +        for (int i = 0; ; i++) {
  1.3632 +
  1.3633 +            Object element = a[i];
  1.3634 +            if (element == null) {
  1.3635 +                buf.append("null");
  1.3636 +            } else {
  1.3637 +                Class eClass = element.getClass();
  1.3638 +
  1.3639 +                if (eClass.isArray()) {
  1.3640 +                    if (eClass == byte[].class)
  1.3641 +                        buf.append(toString((byte[]) element));
  1.3642 +                    else if (eClass == short[].class)
  1.3643 +                        buf.append(toString((short[]) element));
  1.3644 +                    else if (eClass == int[].class)
  1.3645 +                        buf.append(toString((int[]) element));
  1.3646 +                    else if (eClass == long[].class)
  1.3647 +                        buf.append(toString((long[]) element));
  1.3648 +                    else if (eClass == char[].class)
  1.3649 +                        buf.append(toString((char[]) element));
  1.3650 +                    else if (eClass == float[].class)
  1.3651 +                        buf.append(toString((float[]) element));
  1.3652 +                    else if (eClass == double[].class)
  1.3653 +                        buf.append(toString((double[]) element));
  1.3654 +                    else if (eClass == boolean[].class)
  1.3655 +                        buf.append(toString((boolean[]) element));
  1.3656 +                    else { // element is an array of object references
  1.3657 +                        if (dejaVu.contains(element))
  1.3658 +                            buf.append("[...]");
  1.3659 +                        else
  1.3660 +                            deepToString((Object[])element, buf, dejaVu);
  1.3661 +                    }
  1.3662 +                } else {  // element is non-null and not an array
  1.3663 +                    buf.append(element.toString());
  1.3664 +                }
  1.3665 +            }
  1.3666 +            if (i == iMax)
  1.3667 +                break;
  1.3668 +            buf.append(", ");
  1.3669 +        }
  1.3670 +        buf.append(']');
  1.3671 +        dejaVu.remove(a);
  1.3672 +    }
  1.3673 +}