rt/emul/compact/src/main/java/java/util/DualPivotQuicksort.java
changeset 772 d382dacfd73f
parent 559 9ec5ddf175b5
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/util/DualPivotQuicksort.java	Tue Feb 26 16:54:16 2013 +0100
     1.3 @@ -0,0 +1,3018 @@
     1.4 +/*
     1.5 + * Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.util;
    1.30 +
    1.31 +/**
    1.32 + * This class implements the Dual-Pivot Quicksort algorithm by
    1.33 + * Vladimir Yaroslavskiy, Jon Bentley, and Josh Bloch. The algorithm
    1.34 + * offers O(n log(n)) performance on many data sets that cause other
    1.35 + * quicksorts to degrade to quadratic performance, and is typically
    1.36 + * faster than traditional (one-pivot) Quicksort implementations.
    1.37 + *
    1.38 + * @author Vladimir Yaroslavskiy
    1.39 + * @author Jon Bentley
    1.40 + * @author Josh Bloch
    1.41 + *
    1.42 + * @version 2011.02.11 m765.827.12i:5\7pm
    1.43 + * @since 1.7
    1.44 + */
    1.45 +final class DualPivotQuicksort {
    1.46 +
    1.47 +    /**
    1.48 +     * Prevents instantiation.
    1.49 +     */
    1.50 +    private DualPivotQuicksort() {}
    1.51 +
    1.52 +    /*
    1.53 +     * Tuning parameters.
    1.54 +     */
    1.55 +
    1.56 +    /**
    1.57 +     * The maximum number of runs in merge sort.
    1.58 +     */
    1.59 +    private static final int MAX_RUN_COUNT = 67;
    1.60 +
    1.61 +    /**
    1.62 +     * The maximum length of run in merge sort.
    1.63 +     */
    1.64 +    private static final int MAX_RUN_LENGTH = 33;
    1.65 +
    1.66 +    /**
    1.67 +     * If the length of an array to be sorted is less than this
    1.68 +     * constant, Quicksort is used in preference to merge sort.
    1.69 +     */
    1.70 +    private static final int QUICKSORT_THRESHOLD = 286;
    1.71 +
    1.72 +    /**
    1.73 +     * If the length of an array to be sorted is less than this
    1.74 +     * constant, insertion sort is used in preference to Quicksort.
    1.75 +     */
    1.76 +    private static final int INSERTION_SORT_THRESHOLD = 47;
    1.77 +
    1.78 +    /**
    1.79 +     * If the length of a byte array to be sorted is greater than this
    1.80 +     * constant, counting sort is used in preference to insertion sort.
    1.81 +     */
    1.82 +    private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 29;
    1.83 +
    1.84 +    /**
    1.85 +     * If the length of a short or char array to be sorted is greater
    1.86 +     * than this constant, counting sort is used in preference to Quicksort.
    1.87 +     */
    1.88 +    private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 3200;
    1.89 +
    1.90 +    /*
    1.91 +     * Sorting methods for seven primitive types.
    1.92 +     */
    1.93 +
    1.94 +    /**
    1.95 +     * Sorts the specified array.
    1.96 +     *
    1.97 +     * @param a the array to be sorted
    1.98 +     */
    1.99 +    public static void sort(int[] a) {
   1.100 +        sort(a, 0, a.length - 1);
   1.101 +    }
   1.102 +
   1.103 +    /**
   1.104 +     * Sorts the specified range of the array.
   1.105 +     *
   1.106 +     * @param a the array to be sorted
   1.107 +     * @param left the index of the first element, inclusive, to be sorted
   1.108 +     * @param right the index of the last element, inclusive, to be sorted
   1.109 +     */
   1.110 +    public static void sort(int[] a, int left, int right) {
   1.111 +        // Use Quicksort on small arrays
   1.112 +        if (right - left < QUICKSORT_THRESHOLD) {
   1.113 +            sort(a, left, right, true);
   1.114 +            return;
   1.115 +        }
   1.116 +
   1.117 +        /*
   1.118 +         * Index run[i] is the start of i-th run
   1.119 +         * (ascending or descending sequence).
   1.120 +         */
   1.121 +        int[] run = new int[MAX_RUN_COUNT + 1];
   1.122 +        int count = 0; run[0] = left;
   1.123 +
   1.124 +        // Check if the array is nearly sorted
   1.125 +        for (int k = left; k < right; run[count] = k) {
   1.126 +            if (a[k] < a[k + 1]) { // ascending
   1.127 +                while (++k <= right && a[k - 1] <= a[k]);
   1.128 +            } else if (a[k] > a[k + 1]) { // descending
   1.129 +                while (++k <= right && a[k - 1] >= a[k]);
   1.130 +                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
   1.131 +                    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
   1.132 +                }
   1.133 +            } else { // equal
   1.134 +                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
   1.135 +                    if (--m == 0) {
   1.136 +                        sort(a, left, right, true);
   1.137 +                        return;
   1.138 +                    }
   1.139 +                }
   1.140 +            }
   1.141 +
   1.142 +            /*
   1.143 +             * The array is not highly structured,
   1.144 +             * use Quicksort instead of merge sort.
   1.145 +             */
   1.146 +            if (++count == MAX_RUN_COUNT) {
   1.147 +                sort(a, left, right, true);
   1.148 +                return;
   1.149 +            }
   1.150 +        }
   1.151 +
   1.152 +        // Check special cases
   1.153 +        if (run[count] == right++) { // The last run contains one element
   1.154 +            run[++count] = right;
   1.155 +        } else if (count == 1) { // The array is already sorted
   1.156 +            return;
   1.157 +        }
   1.158 +
   1.159 +        /*
   1.160 +         * Create temporary array, which is used for merging.
   1.161 +         * Implementation note: variable "right" is increased by 1.
   1.162 +         */
   1.163 +        int[] b; byte odd = 0;
   1.164 +        for (int n = 1; (n <<= 1) < count; odd ^= 1);
   1.165 +
   1.166 +        if (odd == 0) {
   1.167 +            b = a; a = new int[b.length];
   1.168 +            for (int i = left - 1; ++i < right; a[i] = b[i]);
   1.169 +        } else {
   1.170 +            b = new int[a.length];
   1.171 +        }
   1.172 +
   1.173 +        // Merging
   1.174 +        for (int last; count > 1; count = last) {
   1.175 +            for (int k = (last = 0) + 2; k <= count; k += 2) {
   1.176 +                int hi = run[k], mi = run[k - 1];
   1.177 +                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
   1.178 +                    if (q >= hi || p < mi && a[p] <= a[q]) {
   1.179 +                        b[i] = a[p++];
   1.180 +                    } else {
   1.181 +                        b[i] = a[q++];
   1.182 +                    }
   1.183 +                }
   1.184 +                run[++last] = hi;
   1.185 +            }
   1.186 +            if ((count & 1) != 0) {
   1.187 +                for (int i = right, lo = run[count - 1]; --i >= lo;
   1.188 +                    b[i] = a[i]
   1.189 +                );
   1.190 +                run[++last] = right;
   1.191 +            }
   1.192 +            int[] t = a; a = b; b = t;
   1.193 +        }
   1.194 +    }
   1.195 +
   1.196 +    /**
   1.197 +     * Sorts the specified range of the array by Dual-Pivot Quicksort.
   1.198 +     *
   1.199 +     * @param a the array to be sorted
   1.200 +     * @param left the index of the first element, inclusive, to be sorted
   1.201 +     * @param right the index of the last element, inclusive, to be sorted
   1.202 +     * @param leftmost indicates if this part is the leftmost in the range
   1.203 +     */
   1.204 +    private static void sort(int[] a, int left, int right, boolean leftmost) {
   1.205 +        int length = right - left + 1;
   1.206 +
   1.207 +        // Use insertion sort on tiny arrays
   1.208 +        if (length < INSERTION_SORT_THRESHOLD) {
   1.209 +            if (leftmost) {
   1.210 +                /*
   1.211 +                 * Traditional (without sentinel) insertion sort,
   1.212 +                 * optimized for server VM, is used in case of
   1.213 +                 * the leftmost part.
   1.214 +                 */
   1.215 +                for (int i = left, j = i; i < right; j = ++i) {
   1.216 +                    int ai = a[i + 1];
   1.217 +                    while (ai < a[j]) {
   1.218 +                        a[j + 1] = a[j];
   1.219 +                        if (j-- == left) {
   1.220 +                            break;
   1.221 +                        }
   1.222 +                    }
   1.223 +                    a[j + 1] = ai;
   1.224 +                }
   1.225 +            } else {
   1.226 +                /*
   1.227 +                 * Skip the longest ascending sequence.
   1.228 +                 */
   1.229 +                do {
   1.230 +                    if (left >= right) {
   1.231 +                        return;
   1.232 +                    }
   1.233 +                } while (a[++left] >= a[left - 1]);
   1.234 +
   1.235 +                /*
   1.236 +                 * Every element from adjoining part plays the role
   1.237 +                 * of sentinel, therefore this allows us to avoid the
   1.238 +                 * left range check on each iteration. Moreover, we use
   1.239 +                 * the more optimized algorithm, so called pair insertion
   1.240 +                 * sort, which is faster (in the context of Quicksort)
   1.241 +                 * than traditional implementation of insertion sort.
   1.242 +                 */
   1.243 +                for (int k = left; ++left <= right; k = ++left) {
   1.244 +                    int a1 = a[k], a2 = a[left];
   1.245 +
   1.246 +                    if (a1 < a2) {
   1.247 +                        a2 = a1; a1 = a[left];
   1.248 +                    }
   1.249 +                    while (a1 < a[--k]) {
   1.250 +                        a[k + 2] = a[k];
   1.251 +                    }
   1.252 +                    a[++k + 1] = a1;
   1.253 +
   1.254 +                    while (a2 < a[--k]) {
   1.255 +                        a[k + 1] = a[k];
   1.256 +                    }
   1.257 +                    a[k + 1] = a2;
   1.258 +                }
   1.259 +                int last = a[right];
   1.260 +
   1.261 +                while (last < a[--right]) {
   1.262 +                    a[right + 1] = a[right];
   1.263 +                }
   1.264 +                a[right + 1] = last;
   1.265 +            }
   1.266 +            return;
   1.267 +        }
   1.268 +
   1.269 +        // Inexpensive approximation of length / 7
   1.270 +        int seventh = (length >> 3) + (length >> 6) + 1;
   1.271 +
   1.272 +        /*
   1.273 +         * Sort five evenly spaced elements around (and including) the
   1.274 +         * center element in the range. These elements will be used for
   1.275 +         * pivot selection as described below. The choice for spacing
   1.276 +         * these elements was empirically determined to work well on
   1.277 +         * a wide variety of inputs.
   1.278 +         */
   1.279 +        int e3 = (left + right) >>> 1; // The midpoint
   1.280 +        int e2 = e3 - seventh;
   1.281 +        int e1 = e2 - seventh;
   1.282 +        int e4 = e3 + seventh;
   1.283 +        int e5 = e4 + seventh;
   1.284 +
   1.285 +        // Sort these elements using insertion sort
   1.286 +        if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
   1.287 +
   1.288 +        if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
   1.289 +            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
   1.290 +        }
   1.291 +        if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
   1.292 +            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
   1.293 +                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
   1.294 +            }
   1.295 +        }
   1.296 +        if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
   1.297 +            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
   1.298 +                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
   1.299 +                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
   1.300 +                }
   1.301 +            }
   1.302 +        }
   1.303 +
   1.304 +        // Pointers
   1.305 +        int less  = left;  // The index of the first element of center part
   1.306 +        int great = right; // The index before the first element of right part
   1.307 +
   1.308 +        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
   1.309 +            /*
   1.310 +             * Use the second and fourth of the five sorted elements as pivots.
   1.311 +             * These values are inexpensive approximations of the first and
   1.312 +             * second terciles of the array. Note that pivot1 <= pivot2.
   1.313 +             */
   1.314 +            int pivot1 = a[e2];
   1.315 +            int pivot2 = a[e4];
   1.316 +
   1.317 +            /*
   1.318 +             * The first and the last elements to be sorted are moved to the
   1.319 +             * locations formerly occupied by the pivots. When partitioning
   1.320 +             * is complete, the pivots are swapped back into their final
   1.321 +             * positions, and excluded from subsequent sorting.
   1.322 +             */
   1.323 +            a[e2] = a[left];
   1.324 +            a[e4] = a[right];
   1.325 +
   1.326 +            /*
   1.327 +             * Skip elements, which are less or greater than pivot values.
   1.328 +             */
   1.329 +            while (a[++less] < pivot1);
   1.330 +            while (a[--great] > pivot2);
   1.331 +
   1.332 +            /*
   1.333 +             * Partitioning:
   1.334 +             *
   1.335 +             *   left part           center part                   right part
   1.336 +             * +--------------------------------------------------------------+
   1.337 +             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
   1.338 +             * +--------------------------------------------------------------+
   1.339 +             *               ^                          ^       ^
   1.340 +             *               |                          |       |
   1.341 +             *              less                        k     great
   1.342 +             *
   1.343 +             * Invariants:
   1.344 +             *
   1.345 +             *              all in (left, less)   < pivot1
   1.346 +             *    pivot1 <= all in [less, k)     <= pivot2
   1.347 +             *              all in (great, right) > pivot2
   1.348 +             *
   1.349 +             * Pointer k is the first index of ?-part.
   1.350 +             */
   1.351 +            outer:
   1.352 +            for (int k = less - 1; ++k <= great; ) {
   1.353 +                int ak = a[k];
   1.354 +                if (ak < pivot1) { // Move a[k] to left part
   1.355 +                    a[k] = a[less];
   1.356 +                    /*
   1.357 +                     * Here and below we use "a[i] = b; i++;" instead
   1.358 +                     * of "a[i++] = b;" due to performance issue.
   1.359 +                     */
   1.360 +                    a[less] = ak;
   1.361 +                    ++less;
   1.362 +                } else if (ak > pivot2) { // Move a[k] to right part
   1.363 +                    while (a[great] > pivot2) {
   1.364 +                        if (great-- == k) {
   1.365 +                            break outer;
   1.366 +                        }
   1.367 +                    }
   1.368 +                    if (a[great] < pivot1) { // a[great] <= pivot2
   1.369 +                        a[k] = a[less];
   1.370 +                        a[less] = a[great];
   1.371 +                        ++less;
   1.372 +                    } else { // pivot1 <= a[great] <= pivot2
   1.373 +                        a[k] = a[great];
   1.374 +                    }
   1.375 +                    /*
   1.376 +                     * Here and below we use "a[i] = b; i--;" instead
   1.377 +                     * of "a[i--] = b;" due to performance issue.
   1.378 +                     */
   1.379 +                    a[great] = ak;
   1.380 +                    --great;
   1.381 +                }
   1.382 +            }
   1.383 +
   1.384 +            // Swap pivots into their final positions
   1.385 +            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
   1.386 +            a[right] = a[great + 1]; a[great + 1] = pivot2;
   1.387 +
   1.388 +            // Sort left and right parts recursively, excluding known pivots
   1.389 +            sort(a, left, less - 2, leftmost);
   1.390 +            sort(a, great + 2, right, false);
   1.391 +
   1.392 +            /*
   1.393 +             * If center part is too large (comprises > 4/7 of the array),
   1.394 +             * swap internal pivot values to ends.
   1.395 +             */
   1.396 +            if (less < e1 && e5 < great) {
   1.397 +                /*
   1.398 +                 * Skip elements, which are equal to pivot values.
   1.399 +                 */
   1.400 +                while (a[less] == pivot1) {
   1.401 +                    ++less;
   1.402 +                }
   1.403 +
   1.404 +                while (a[great] == pivot2) {
   1.405 +                    --great;
   1.406 +                }
   1.407 +
   1.408 +                /*
   1.409 +                 * Partitioning:
   1.410 +                 *
   1.411 +                 *   left part         center part                  right part
   1.412 +                 * +----------------------------------------------------------+
   1.413 +                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
   1.414 +                 * +----------------------------------------------------------+
   1.415 +                 *              ^                        ^       ^
   1.416 +                 *              |                        |       |
   1.417 +                 *             less                      k     great
   1.418 +                 *
   1.419 +                 * Invariants:
   1.420 +                 *
   1.421 +                 *              all in (*,  less) == pivot1
   1.422 +                 *     pivot1 < all in [less,  k)  < pivot2
   1.423 +                 *              all in (great, *) == pivot2
   1.424 +                 *
   1.425 +                 * Pointer k is the first index of ?-part.
   1.426 +                 */
   1.427 +                outer:
   1.428 +                for (int k = less - 1; ++k <= great; ) {
   1.429 +                    int ak = a[k];
   1.430 +                    if (ak == pivot1) { // Move a[k] to left part
   1.431 +                        a[k] = a[less];
   1.432 +                        a[less] = ak;
   1.433 +                        ++less;
   1.434 +                    } else if (ak == pivot2) { // Move a[k] to right part
   1.435 +                        while (a[great] == pivot2) {
   1.436 +                            if (great-- == k) {
   1.437 +                                break outer;
   1.438 +                            }
   1.439 +                        }
   1.440 +                        if (a[great] == pivot1) { // a[great] < pivot2
   1.441 +                            a[k] = a[less];
   1.442 +                            /*
   1.443 +                             * Even though a[great] equals to pivot1, the
   1.444 +                             * assignment a[less] = pivot1 may be incorrect,
   1.445 +                             * if a[great] and pivot1 are floating-point zeros
   1.446 +                             * of different signs. Therefore in float and
   1.447 +                             * double sorting methods we have to use more
   1.448 +                             * accurate assignment a[less] = a[great].
   1.449 +                             */
   1.450 +                            a[less] = pivot1;
   1.451 +                            ++less;
   1.452 +                        } else { // pivot1 < a[great] < pivot2
   1.453 +                            a[k] = a[great];
   1.454 +                        }
   1.455 +                        a[great] = ak;
   1.456 +                        --great;
   1.457 +                    }
   1.458 +                }
   1.459 +            }
   1.460 +
   1.461 +            // Sort center part recursively
   1.462 +            sort(a, less, great, false);
   1.463 +
   1.464 +        } else { // Partitioning with one pivot
   1.465 +            /*
   1.466 +             * Use the third of the five sorted elements as pivot.
   1.467 +             * This value is inexpensive approximation of the median.
   1.468 +             */
   1.469 +            int pivot = a[e3];
   1.470 +
   1.471 +            /*
   1.472 +             * Partitioning degenerates to the traditional 3-way
   1.473 +             * (or "Dutch National Flag") schema:
   1.474 +             *
   1.475 +             *   left part    center part              right part
   1.476 +             * +-------------------------------------------------+
   1.477 +             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
   1.478 +             * +-------------------------------------------------+
   1.479 +             *              ^              ^        ^
   1.480 +             *              |              |        |
   1.481 +             *             less            k      great
   1.482 +             *
   1.483 +             * Invariants:
   1.484 +             *
   1.485 +             *   all in (left, less)   < pivot
   1.486 +             *   all in [less, k)     == pivot
   1.487 +             *   all in (great, right) > pivot
   1.488 +             *
   1.489 +             * Pointer k is the first index of ?-part.
   1.490 +             */
   1.491 +            for (int k = less; k <= great; ++k) {
   1.492 +                if (a[k] == pivot) {
   1.493 +                    continue;
   1.494 +                }
   1.495 +                int ak = a[k];
   1.496 +                if (ak < pivot) { // Move a[k] to left part
   1.497 +                    a[k] = a[less];
   1.498 +                    a[less] = ak;
   1.499 +                    ++less;
   1.500 +                } else { // a[k] > pivot - Move a[k] to right part
   1.501 +                    while (a[great] > pivot) {
   1.502 +                        --great;
   1.503 +                    }
   1.504 +                    if (a[great] < pivot) { // a[great] <= pivot
   1.505 +                        a[k] = a[less];
   1.506 +                        a[less] = a[great];
   1.507 +                        ++less;
   1.508 +                    } else { // a[great] == pivot
   1.509 +                        /*
   1.510 +                         * Even though a[great] equals to pivot, the
   1.511 +                         * assignment a[k] = pivot may be incorrect,
   1.512 +                         * if a[great] and pivot are floating-point
   1.513 +                         * zeros of different signs. Therefore in float
   1.514 +                         * and double sorting methods we have to use
   1.515 +                         * more accurate assignment a[k] = a[great].
   1.516 +                         */
   1.517 +                        a[k] = pivot;
   1.518 +                    }
   1.519 +                    a[great] = ak;
   1.520 +                    --great;
   1.521 +                }
   1.522 +            }
   1.523 +
   1.524 +            /*
   1.525 +             * Sort left and right parts recursively.
   1.526 +             * All elements from center part are equal
   1.527 +             * and, therefore, already sorted.
   1.528 +             */
   1.529 +            sort(a, left, less - 1, leftmost);
   1.530 +            sort(a, great + 1, right, false);
   1.531 +        }
   1.532 +    }
   1.533 +
   1.534 +    /**
   1.535 +     * Sorts the specified array.
   1.536 +     *
   1.537 +     * @param a the array to be sorted
   1.538 +     */
   1.539 +    public static void sort(long[] a) {
   1.540 +        sort(a, 0, a.length - 1);
   1.541 +    }
   1.542 +
   1.543 +    /**
   1.544 +     * Sorts the specified range of the array.
   1.545 +     *
   1.546 +     * @param a the array to be sorted
   1.547 +     * @param left the index of the first element, inclusive, to be sorted
   1.548 +     * @param right the index of the last element, inclusive, to be sorted
   1.549 +     */
   1.550 +    public static void sort(long[] a, int left, int right) {
   1.551 +        // Use Quicksort on small arrays
   1.552 +        if (right - left < QUICKSORT_THRESHOLD) {
   1.553 +            sort(a, left, right, true);
   1.554 +            return;
   1.555 +        }
   1.556 +
   1.557 +        /*
   1.558 +         * Index run[i] is the start of i-th run
   1.559 +         * (ascending or descending sequence).
   1.560 +         */
   1.561 +        int[] run = new int[MAX_RUN_COUNT + 1];
   1.562 +        int count = 0; run[0] = left;
   1.563 +
   1.564 +        // Check if the array is nearly sorted
   1.565 +        for (int k = left; k < right; run[count] = k) {
   1.566 +            if (a[k] < a[k + 1]) { // ascending
   1.567 +                while (++k <= right && a[k - 1] <= a[k]);
   1.568 +            } else if (a[k] > a[k + 1]) { // descending
   1.569 +                while (++k <= right && a[k - 1] >= a[k]);
   1.570 +                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
   1.571 +                    long t = a[lo]; a[lo] = a[hi]; a[hi] = t;
   1.572 +                }
   1.573 +            } else { // equal
   1.574 +                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
   1.575 +                    if (--m == 0) {
   1.576 +                        sort(a, left, right, true);
   1.577 +                        return;
   1.578 +                    }
   1.579 +                }
   1.580 +            }
   1.581 +
   1.582 +            /*
   1.583 +             * The array is not highly structured,
   1.584 +             * use Quicksort instead of merge sort.
   1.585 +             */
   1.586 +            if (++count == MAX_RUN_COUNT) {
   1.587 +                sort(a, left, right, true);
   1.588 +                return;
   1.589 +            }
   1.590 +        }
   1.591 +
   1.592 +        // Check special cases
   1.593 +        if (run[count] == right++) { // The last run contains one element
   1.594 +            run[++count] = right;
   1.595 +        } else if (count == 1) { // The array is already sorted
   1.596 +            return;
   1.597 +        }
   1.598 +
   1.599 +        /*
   1.600 +         * Create temporary array, which is used for merging.
   1.601 +         * Implementation note: variable "right" is increased by 1.
   1.602 +         */
   1.603 +        long[] b; byte odd = 0;
   1.604 +        for (int n = 1; (n <<= 1) < count; odd ^= 1);
   1.605 +
   1.606 +        if (odd == 0) {
   1.607 +            b = a; a = new long[b.length];
   1.608 +            for (int i = left - 1; ++i < right; a[i] = b[i]);
   1.609 +        } else {
   1.610 +            b = new long[a.length];
   1.611 +        }
   1.612 +
   1.613 +        // Merging
   1.614 +        for (int last; count > 1; count = last) {
   1.615 +            for (int k = (last = 0) + 2; k <= count; k += 2) {
   1.616 +                int hi = run[k], mi = run[k - 1];
   1.617 +                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
   1.618 +                    if (q >= hi || p < mi && a[p] <= a[q]) {
   1.619 +                        b[i] = a[p++];
   1.620 +                    } else {
   1.621 +                        b[i] = a[q++];
   1.622 +                    }
   1.623 +                }
   1.624 +                run[++last] = hi;
   1.625 +            }
   1.626 +            if ((count & 1) != 0) {
   1.627 +                for (int i = right, lo = run[count - 1]; --i >= lo;
   1.628 +                    b[i] = a[i]
   1.629 +                );
   1.630 +                run[++last] = right;
   1.631 +            }
   1.632 +            long[] t = a; a = b; b = t;
   1.633 +        }
   1.634 +    }
   1.635 +
   1.636 +    /**
   1.637 +     * Sorts the specified range of the array by Dual-Pivot Quicksort.
   1.638 +     *
   1.639 +     * @param a the array to be sorted
   1.640 +     * @param left the index of the first element, inclusive, to be sorted
   1.641 +     * @param right the index of the last element, inclusive, to be sorted
   1.642 +     * @param leftmost indicates if this part is the leftmost in the range
   1.643 +     */
   1.644 +    private static void sort(long[] a, int left, int right, boolean leftmost) {
   1.645 +        int length = right - left + 1;
   1.646 +
   1.647 +        // Use insertion sort on tiny arrays
   1.648 +        if (length < INSERTION_SORT_THRESHOLD) {
   1.649 +            if (leftmost) {
   1.650 +                /*
   1.651 +                 * Traditional (without sentinel) insertion sort,
   1.652 +                 * optimized for server VM, is used in case of
   1.653 +                 * the leftmost part.
   1.654 +                 */
   1.655 +                for (int i = left, j = i; i < right; j = ++i) {
   1.656 +                    long ai = a[i + 1];
   1.657 +                    while (ai < a[j]) {
   1.658 +                        a[j + 1] = a[j];
   1.659 +                        if (j-- == left) {
   1.660 +                            break;
   1.661 +                        }
   1.662 +                    }
   1.663 +                    a[j + 1] = ai;
   1.664 +                }
   1.665 +            } else {
   1.666 +                /*
   1.667 +                 * Skip the longest ascending sequence.
   1.668 +                 */
   1.669 +                do {
   1.670 +                    if (left >= right) {
   1.671 +                        return;
   1.672 +                    }
   1.673 +                } while (a[++left] >= a[left - 1]);
   1.674 +
   1.675 +                /*
   1.676 +                 * Every element from adjoining part plays the role
   1.677 +                 * of sentinel, therefore this allows us to avoid the
   1.678 +                 * left range check on each iteration. Moreover, we use
   1.679 +                 * the more optimized algorithm, so called pair insertion
   1.680 +                 * sort, which is faster (in the context of Quicksort)
   1.681 +                 * than traditional implementation of insertion sort.
   1.682 +                 */
   1.683 +                for (int k = left; ++left <= right; k = ++left) {
   1.684 +                    long a1 = a[k], a2 = a[left];
   1.685 +
   1.686 +                    if (a1 < a2) {
   1.687 +                        a2 = a1; a1 = a[left];
   1.688 +                    }
   1.689 +                    while (a1 < a[--k]) {
   1.690 +                        a[k + 2] = a[k];
   1.691 +                    }
   1.692 +                    a[++k + 1] = a1;
   1.693 +
   1.694 +                    while (a2 < a[--k]) {
   1.695 +                        a[k + 1] = a[k];
   1.696 +                    }
   1.697 +                    a[k + 1] = a2;
   1.698 +                }
   1.699 +                long last = a[right];
   1.700 +
   1.701 +                while (last < a[--right]) {
   1.702 +                    a[right + 1] = a[right];
   1.703 +                }
   1.704 +                a[right + 1] = last;
   1.705 +            }
   1.706 +            return;
   1.707 +        }
   1.708 +
   1.709 +        // Inexpensive approximation of length / 7
   1.710 +        int seventh = (length >> 3) + (length >> 6) + 1;
   1.711 +
   1.712 +        /*
   1.713 +         * Sort five evenly spaced elements around (and including) the
   1.714 +         * center element in the range. These elements will be used for
   1.715 +         * pivot selection as described below. The choice for spacing
   1.716 +         * these elements was empirically determined to work well on
   1.717 +         * a wide variety of inputs.
   1.718 +         */
   1.719 +        int e3 = (left + right) >>> 1; // The midpoint
   1.720 +        int e2 = e3 - seventh;
   1.721 +        int e1 = e2 - seventh;
   1.722 +        int e4 = e3 + seventh;
   1.723 +        int e5 = e4 + seventh;
   1.724 +
   1.725 +        // Sort these elements using insertion sort
   1.726 +        if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
   1.727 +
   1.728 +        if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t;
   1.729 +            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
   1.730 +        }
   1.731 +        if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t;
   1.732 +            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
   1.733 +                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
   1.734 +            }
   1.735 +        }
   1.736 +        if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t;
   1.737 +            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
   1.738 +                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
   1.739 +                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
   1.740 +                }
   1.741 +            }
   1.742 +        }
   1.743 +
   1.744 +        // Pointers
   1.745 +        int less  = left;  // The index of the first element of center part
   1.746 +        int great = right; // The index before the first element of right part
   1.747 +
   1.748 +        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
   1.749 +            /*
   1.750 +             * Use the second and fourth of the five sorted elements as pivots.
   1.751 +             * These values are inexpensive approximations of the first and
   1.752 +             * second terciles of the array. Note that pivot1 <= pivot2.
   1.753 +             */
   1.754 +            long pivot1 = a[e2];
   1.755 +            long pivot2 = a[e4];
   1.756 +
   1.757 +            /*
   1.758 +             * The first and the last elements to be sorted are moved to the
   1.759 +             * locations formerly occupied by the pivots. When partitioning
   1.760 +             * is complete, the pivots are swapped back into their final
   1.761 +             * positions, and excluded from subsequent sorting.
   1.762 +             */
   1.763 +            a[e2] = a[left];
   1.764 +            a[e4] = a[right];
   1.765 +
   1.766 +            /*
   1.767 +             * Skip elements, which are less or greater than pivot values.
   1.768 +             */
   1.769 +            while (a[++less] < pivot1);
   1.770 +            while (a[--great] > pivot2);
   1.771 +
   1.772 +            /*
   1.773 +             * Partitioning:
   1.774 +             *
   1.775 +             *   left part           center part                   right part
   1.776 +             * +--------------------------------------------------------------+
   1.777 +             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
   1.778 +             * +--------------------------------------------------------------+
   1.779 +             *               ^                          ^       ^
   1.780 +             *               |                          |       |
   1.781 +             *              less                        k     great
   1.782 +             *
   1.783 +             * Invariants:
   1.784 +             *
   1.785 +             *              all in (left, less)   < pivot1
   1.786 +             *    pivot1 <= all in [less, k)     <= pivot2
   1.787 +             *              all in (great, right) > pivot2
   1.788 +             *
   1.789 +             * Pointer k is the first index of ?-part.
   1.790 +             */
   1.791 +            outer:
   1.792 +            for (int k = less - 1; ++k <= great; ) {
   1.793 +                long ak = a[k];
   1.794 +                if (ak < pivot1) { // Move a[k] to left part
   1.795 +                    a[k] = a[less];
   1.796 +                    /*
   1.797 +                     * Here and below we use "a[i] = b; i++;" instead
   1.798 +                     * of "a[i++] = b;" due to performance issue.
   1.799 +                     */
   1.800 +                    a[less] = ak;
   1.801 +                    ++less;
   1.802 +                } else if (ak > pivot2) { // Move a[k] to right part
   1.803 +                    while (a[great] > pivot2) {
   1.804 +                        if (great-- == k) {
   1.805 +                            break outer;
   1.806 +                        }
   1.807 +                    }
   1.808 +                    if (a[great] < pivot1) { // a[great] <= pivot2
   1.809 +                        a[k] = a[less];
   1.810 +                        a[less] = a[great];
   1.811 +                        ++less;
   1.812 +                    } else { // pivot1 <= a[great] <= pivot2
   1.813 +                        a[k] = a[great];
   1.814 +                    }
   1.815 +                    /*
   1.816 +                     * Here and below we use "a[i] = b; i--;" instead
   1.817 +                     * of "a[i--] = b;" due to performance issue.
   1.818 +                     */
   1.819 +                    a[great] = ak;
   1.820 +                    --great;
   1.821 +                }
   1.822 +            }
   1.823 +
   1.824 +            // Swap pivots into their final positions
   1.825 +            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
   1.826 +            a[right] = a[great + 1]; a[great + 1] = pivot2;
   1.827 +
   1.828 +            // Sort left and right parts recursively, excluding known pivots
   1.829 +            sort(a, left, less - 2, leftmost);
   1.830 +            sort(a, great + 2, right, false);
   1.831 +
   1.832 +            /*
   1.833 +             * If center part is too large (comprises > 4/7 of the array),
   1.834 +             * swap internal pivot values to ends.
   1.835 +             */
   1.836 +            if (less < e1 && e5 < great) {
   1.837 +                /*
   1.838 +                 * Skip elements, which are equal to pivot values.
   1.839 +                 */
   1.840 +                while (a[less] == pivot1) {
   1.841 +                    ++less;
   1.842 +                }
   1.843 +
   1.844 +                while (a[great] == pivot2) {
   1.845 +                    --great;
   1.846 +                }
   1.847 +
   1.848 +                /*
   1.849 +                 * Partitioning:
   1.850 +                 *
   1.851 +                 *   left part         center part                  right part
   1.852 +                 * +----------------------------------------------------------+
   1.853 +                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
   1.854 +                 * +----------------------------------------------------------+
   1.855 +                 *              ^                        ^       ^
   1.856 +                 *              |                        |       |
   1.857 +                 *             less                      k     great
   1.858 +                 *
   1.859 +                 * Invariants:
   1.860 +                 *
   1.861 +                 *              all in (*,  less) == pivot1
   1.862 +                 *     pivot1 < all in [less,  k)  < pivot2
   1.863 +                 *              all in (great, *) == pivot2
   1.864 +                 *
   1.865 +                 * Pointer k is the first index of ?-part.
   1.866 +                 */
   1.867 +                outer:
   1.868 +                for (int k = less - 1; ++k <= great; ) {
   1.869 +                    long ak = a[k];
   1.870 +                    if (ak == pivot1) { // Move a[k] to left part
   1.871 +                        a[k] = a[less];
   1.872 +                        a[less] = ak;
   1.873 +                        ++less;
   1.874 +                    } else if (ak == pivot2) { // Move a[k] to right part
   1.875 +                        while (a[great] == pivot2) {
   1.876 +                            if (great-- == k) {
   1.877 +                                break outer;
   1.878 +                            }
   1.879 +                        }
   1.880 +                        if (a[great] == pivot1) { // a[great] < pivot2
   1.881 +                            a[k] = a[less];
   1.882 +                            /*
   1.883 +                             * Even though a[great] equals to pivot1, the
   1.884 +                             * assignment a[less] = pivot1 may be incorrect,
   1.885 +                             * if a[great] and pivot1 are floating-point zeros
   1.886 +                             * of different signs. Therefore in float and
   1.887 +                             * double sorting methods we have to use more
   1.888 +                             * accurate assignment a[less] = a[great].
   1.889 +                             */
   1.890 +                            a[less] = pivot1;
   1.891 +                            ++less;
   1.892 +                        } else { // pivot1 < a[great] < pivot2
   1.893 +                            a[k] = a[great];
   1.894 +                        }
   1.895 +                        a[great] = ak;
   1.896 +                        --great;
   1.897 +                    }
   1.898 +                }
   1.899 +            }
   1.900 +
   1.901 +            // Sort center part recursively
   1.902 +            sort(a, less, great, false);
   1.903 +
   1.904 +        } else { // Partitioning with one pivot
   1.905 +            /*
   1.906 +             * Use the third of the five sorted elements as pivot.
   1.907 +             * This value is inexpensive approximation of the median.
   1.908 +             */
   1.909 +            long pivot = a[e3];
   1.910 +
   1.911 +            /*
   1.912 +             * Partitioning degenerates to the traditional 3-way
   1.913 +             * (or "Dutch National Flag") schema:
   1.914 +             *
   1.915 +             *   left part    center part              right part
   1.916 +             * +-------------------------------------------------+
   1.917 +             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
   1.918 +             * +-------------------------------------------------+
   1.919 +             *              ^              ^        ^
   1.920 +             *              |              |        |
   1.921 +             *             less            k      great
   1.922 +             *
   1.923 +             * Invariants:
   1.924 +             *
   1.925 +             *   all in (left, less)   < pivot
   1.926 +             *   all in [less, k)     == pivot
   1.927 +             *   all in (great, right) > pivot
   1.928 +             *
   1.929 +             * Pointer k is the first index of ?-part.
   1.930 +             */
   1.931 +            for (int k = less; k <= great; ++k) {
   1.932 +                if (a[k] == pivot) {
   1.933 +                    continue;
   1.934 +                }
   1.935 +                long ak = a[k];
   1.936 +                if (ak < pivot) { // Move a[k] to left part
   1.937 +                    a[k] = a[less];
   1.938 +                    a[less] = ak;
   1.939 +                    ++less;
   1.940 +                } else { // a[k] > pivot - Move a[k] to right part
   1.941 +                    while (a[great] > pivot) {
   1.942 +                        --great;
   1.943 +                    }
   1.944 +                    if (a[great] < pivot) { // a[great] <= pivot
   1.945 +                        a[k] = a[less];
   1.946 +                        a[less] = a[great];
   1.947 +                        ++less;
   1.948 +                    } else { // a[great] == pivot
   1.949 +                        /*
   1.950 +                         * Even though a[great] equals to pivot, the
   1.951 +                         * assignment a[k] = pivot may be incorrect,
   1.952 +                         * if a[great] and pivot are floating-point
   1.953 +                         * zeros of different signs. Therefore in float
   1.954 +                         * and double sorting methods we have to use
   1.955 +                         * more accurate assignment a[k] = a[great].
   1.956 +                         */
   1.957 +                        a[k] = pivot;
   1.958 +                    }
   1.959 +                    a[great] = ak;
   1.960 +                    --great;
   1.961 +                }
   1.962 +            }
   1.963 +
   1.964 +            /*
   1.965 +             * Sort left and right parts recursively.
   1.966 +             * All elements from center part are equal
   1.967 +             * and, therefore, already sorted.
   1.968 +             */
   1.969 +            sort(a, left, less - 1, leftmost);
   1.970 +            sort(a, great + 1, right, false);
   1.971 +        }
   1.972 +    }
   1.973 +
   1.974 +    /**
   1.975 +     * Sorts the specified array.
   1.976 +     *
   1.977 +     * @param a the array to be sorted
   1.978 +     */
   1.979 +    public static void sort(short[] a) {
   1.980 +        sort(a, 0, a.length - 1);
   1.981 +    }
   1.982 +
   1.983 +    /**
   1.984 +     * Sorts the specified range of the array.
   1.985 +     *
   1.986 +     * @param a the array to be sorted
   1.987 +     * @param left the index of the first element, inclusive, to be sorted
   1.988 +     * @param right the index of the last element, inclusive, to be sorted
   1.989 +     */
   1.990 +    public static void sort(short[] a, int left, int right) {
   1.991 +        // Use counting sort on large arrays
   1.992 +        if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
   1.993 +            int[] count = new int[NUM_SHORT_VALUES];
   1.994 +
   1.995 +            for (int i = left - 1; ++i <= right;
   1.996 +                count[a[i] - Short.MIN_VALUE]++
   1.997 +            );
   1.998 +            for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {
   1.999 +                while (count[--i] == 0);
  1.1000 +                short value = (short) (i + Short.MIN_VALUE);
  1.1001 +                int s = count[i];
  1.1002 +
  1.1003 +                do {
  1.1004 +                    a[--k] = value;
  1.1005 +                } while (--s > 0);
  1.1006 +            }
  1.1007 +        } else { // Use Dual-Pivot Quicksort on small arrays
  1.1008 +            doSort(a, left, right);
  1.1009 +        }
  1.1010 +    }
  1.1011 +
  1.1012 +    /** The number of distinct short values. */
  1.1013 +    private static final int NUM_SHORT_VALUES = 1 << 16;
  1.1014 +
  1.1015 +    /**
  1.1016 +     * Sorts the specified range of the array.
  1.1017 +     *
  1.1018 +     * @param a the array to be sorted
  1.1019 +     * @param left the index of the first element, inclusive, to be sorted
  1.1020 +     * @param right the index of the last element, inclusive, to be sorted
  1.1021 +     */
  1.1022 +    private static void doSort(short[] a, int left, int right) {
  1.1023 +        // Use Quicksort on small arrays
  1.1024 +        if (right - left < QUICKSORT_THRESHOLD) {
  1.1025 +            sort(a, left, right, true);
  1.1026 +            return;
  1.1027 +        }
  1.1028 +
  1.1029 +        /*
  1.1030 +         * Index run[i] is the start of i-th run
  1.1031 +         * (ascending or descending sequence).
  1.1032 +         */
  1.1033 +        int[] run = new int[MAX_RUN_COUNT + 1];
  1.1034 +        int count = 0; run[0] = left;
  1.1035 +
  1.1036 +        // Check if the array is nearly sorted
  1.1037 +        for (int k = left; k < right; run[count] = k) {
  1.1038 +            if (a[k] < a[k + 1]) { // ascending
  1.1039 +                while (++k <= right && a[k - 1] <= a[k]);
  1.1040 +            } else if (a[k] > a[k + 1]) { // descending
  1.1041 +                while (++k <= right && a[k - 1] >= a[k]);
  1.1042 +                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
  1.1043 +                    short t = a[lo]; a[lo] = a[hi]; a[hi] = t;
  1.1044 +                }
  1.1045 +            } else { // equal
  1.1046 +                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
  1.1047 +                    if (--m == 0) {
  1.1048 +                        sort(a, left, right, true);
  1.1049 +                        return;
  1.1050 +                    }
  1.1051 +                }
  1.1052 +            }
  1.1053 +
  1.1054 +            /*
  1.1055 +             * The array is not highly structured,
  1.1056 +             * use Quicksort instead of merge sort.
  1.1057 +             */
  1.1058 +            if (++count == MAX_RUN_COUNT) {
  1.1059 +                sort(a, left, right, true);
  1.1060 +                return;
  1.1061 +            }
  1.1062 +        }
  1.1063 +
  1.1064 +        // Check special cases
  1.1065 +        if (run[count] == right++) { // The last run contains one element
  1.1066 +            run[++count] = right;
  1.1067 +        } else if (count == 1) { // The array is already sorted
  1.1068 +            return;
  1.1069 +        }
  1.1070 +
  1.1071 +        /*
  1.1072 +         * Create temporary array, which is used for merging.
  1.1073 +         * Implementation note: variable "right" is increased by 1.
  1.1074 +         */
  1.1075 +        short[] b; byte odd = 0;
  1.1076 +        for (int n = 1; (n <<= 1) < count; odd ^= 1);
  1.1077 +
  1.1078 +        if (odd == 0) {
  1.1079 +            b = a; a = new short[b.length];
  1.1080 +            for (int i = left - 1; ++i < right; a[i] = b[i]);
  1.1081 +        } else {
  1.1082 +            b = new short[a.length];
  1.1083 +        }
  1.1084 +
  1.1085 +        // Merging
  1.1086 +        for (int last; count > 1; count = last) {
  1.1087 +            for (int k = (last = 0) + 2; k <= count; k += 2) {
  1.1088 +                int hi = run[k], mi = run[k - 1];
  1.1089 +                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
  1.1090 +                    if (q >= hi || p < mi && a[p] <= a[q]) {
  1.1091 +                        b[i] = a[p++];
  1.1092 +                    } else {
  1.1093 +                        b[i] = a[q++];
  1.1094 +                    }
  1.1095 +                }
  1.1096 +                run[++last] = hi;
  1.1097 +            }
  1.1098 +            if ((count & 1) != 0) {
  1.1099 +                for (int i = right, lo = run[count - 1]; --i >= lo;
  1.1100 +                    b[i] = a[i]
  1.1101 +                );
  1.1102 +                run[++last] = right;
  1.1103 +            }
  1.1104 +            short[] t = a; a = b; b = t;
  1.1105 +        }
  1.1106 +    }
  1.1107 +
  1.1108 +    /**
  1.1109 +     * Sorts the specified range of the array by Dual-Pivot Quicksort.
  1.1110 +     *
  1.1111 +     * @param a the array to be sorted
  1.1112 +     * @param left the index of the first element, inclusive, to be sorted
  1.1113 +     * @param right the index of the last element, inclusive, to be sorted
  1.1114 +     * @param leftmost indicates if this part is the leftmost in the range
  1.1115 +     */
  1.1116 +    private static void sort(short[] a, int left, int right, boolean leftmost) {
  1.1117 +        int length = right - left + 1;
  1.1118 +
  1.1119 +        // Use insertion sort on tiny arrays
  1.1120 +        if (length < INSERTION_SORT_THRESHOLD) {
  1.1121 +            if (leftmost) {
  1.1122 +                /*
  1.1123 +                 * Traditional (without sentinel) insertion sort,
  1.1124 +                 * optimized for server VM, is used in case of
  1.1125 +                 * the leftmost part.
  1.1126 +                 */
  1.1127 +                for (int i = left, j = i; i < right; j = ++i) {
  1.1128 +                    short ai = a[i + 1];
  1.1129 +                    while (ai < a[j]) {
  1.1130 +                        a[j + 1] = a[j];
  1.1131 +                        if (j-- == left) {
  1.1132 +                            break;
  1.1133 +                        }
  1.1134 +                    }
  1.1135 +                    a[j + 1] = ai;
  1.1136 +                }
  1.1137 +            } else {
  1.1138 +                /*
  1.1139 +                 * Skip the longest ascending sequence.
  1.1140 +                 */
  1.1141 +                do {
  1.1142 +                    if (left >= right) {
  1.1143 +                        return;
  1.1144 +                    }
  1.1145 +                } while (a[++left] >= a[left - 1]);
  1.1146 +
  1.1147 +                /*
  1.1148 +                 * Every element from adjoining part plays the role
  1.1149 +                 * of sentinel, therefore this allows us to avoid the
  1.1150 +                 * left range check on each iteration. Moreover, we use
  1.1151 +                 * the more optimized algorithm, so called pair insertion
  1.1152 +                 * sort, which is faster (in the context of Quicksort)
  1.1153 +                 * than traditional implementation of insertion sort.
  1.1154 +                 */
  1.1155 +                for (int k = left; ++left <= right; k = ++left) {
  1.1156 +                    short a1 = a[k], a2 = a[left];
  1.1157 +
  1.1158 +                    if (a1 < a2) {
  1.1159 +                        a2 = a1; a1 = a[left];
  1.1160 +                    }
  1.1161 +                    while (a1 < a[--k]) {
  1.1162 +                        a[k + 2] = a[k];
  1.1163 +                    }
  1.1164 +                    a[++k + 1] = a1;
  1.1165 +
  1.1166 +                    while (a2 < a[--k]) {
  1.1167 +                        a[k + 1] = a[k];
  1.1168 +                    }
  1.1169 +                    a[k + 1] = a2;
  1.1170 +                }
  1.1171 +                short last = a[right];
  1.1172 +
  1.1173 +                while (last < a[--right]) {
  1.1174 +                    a[right + 1] = a[right];
  1.1175 +                }
  1.1176 +                a[right + 1] = last;
  1.1177 +            }
  1.1178 +            return;
  1.1179 +        }
  1.1180 +
  1.1181 +        // Inexpensive approximation of length / 7
  1.1182 +        int seventh = (length >> 3) + (length >> 6) + 1;
  1.1183 +
  1.1184 +        /*
  1.1185 +         * Sort five evenly spaced elements around (and including) the
  1.1186 +         * center element in the range. These elements will be used for
  1.1187 +         * pivot selection as described below. The choice for spacing
  1.1188 +         * these elements was empirically determined to work well on
  1.1189 +         * a wide variety of inputs.
  1.1190 +         */
  1.1191 +        int e3 = (left + right) >>> 1; // The midpoint
  1.1192 +        int e2 = e3 - seventh;
  1.1193 +        int e1 = e2 - seventh;
  1.1194 +        int e4 = e3 + seventh;
  1.1195 +        int e5 = e4 + seventh;
  1.1196 +
  1.1197 +        // Sort these elements using insertion sort
  1.1198 +        if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
  1.1199 +
  1.1200 +        if (a[e3] < a[e2]) { short t = a[e3]; a[e3] = a[e2]; a[e2] = t;
  1.1201 +            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.1202 +        }
  1.1203 +        if (a[e4] < a[e3]) { short t = a[e4]; a[e4] = a[e3]; a[e3] = t;
  1.1204 +            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
  1.1205 +                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.1206 +            }
  1.1207 +        }
  1.1208 +        if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t;
  1.1209 +            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
  1.1210 +                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
  1.1211 +                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.1212 +                }
  1.1213 +            }
  1.1214 +        }
  1.1215 +
  1.1216 +        // Pointers
  1.1217 +        int less  = left;  // The index of the first element of center part
  1.1218 +        int great = right; // The index before the first element of right part
  1.1219 +
  1.1220 +        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
  1.1221 +            /*
  1.1222 +             * Use the second and fourth of the five sorted elements as pivots.
  1.1223 +             * These values are inexpensive approximations of the first and
  1.1224 +             * second terciles of the array. Note that pivot1 <= pivot2.
  1.1225 +             */
  1.1226 +            short pivot1 = a[e2];
  1.1227 +            short pivot2 = a[e4];
  1.1228 +
  1.1229 +            /*
  1.1230 +             * The first and the last elements to be sorted are moved to the
  1.1231 +             * locations formerly occupied by the pivots. When partitioning
  1.1232 +             * is complete, the pivots are swapped back into their final
  1.1233 +             * positions, and excluded from subsequent sorting.
  1.1234 +             */
  1.1235 +            a[e2] = a[left];
  1.1236 +            a[e4] = a[right];
  1.1237 +
  1.1238 +            /*
  1.1239 +             * Skip elements, which are less or greater than pivot values.
  1.1240 +             */
  1.1241 +            while (a[++less] < pivot1);
  1.1242 +            while (a[--great] > pivot2);
  1.1243 +
  1.1244 +            /*
  1.1245 +             * Partitioning:
  1.1246 +             *
  1.1247 +             *   left part           center part                   right part
  1.1248 +             * +--------------------------------------------------------------+
  1.1249 +             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
  1.1250 +             * +--------------------------------------------------------------+
  1.1251 +             *               ^                          ^       ^
  1.1252 +             *               |                          |       |
  1.1253 +             *              less                        k     great
  1.1254 +             *
  1.1255 +             * Invariants:
  1.1256 +             *
  1.1257 +             *              all in (left, less)   < pivot1
  1.1258 +             *    pivot1 <= all in [less, k)     <= pivot2
  1.1259 +             *              all in (great, right) > pivot2
  1.1260 +             *
  1.1261 +             * Pointer k is the first index of ?-part.
  1.1262 +             */
  1.1263 +            outer:
  1.1264 +            for (int k = less - 1; ++k <= great; ) {
  1.1265 +                short ak = a[k];
  1.1266 +                if (ak < pivot1) { // Move a[k] to left part
  1.1267 +                    a[k] = a[less];
  1.1268 +                    /*
  1.1269 +                     * Here and below we use "a[i] = b; i++;" instead
  1.1270 +                     * of "a[i++] = b;" due to performance issue.
  1.1271 +                     */
  1.1272 +                    a[less] = ak;
  1.1273 +                    ++less;
  1.1274 +                } else if (ak > pivot2) { // Move a[k] to right part
  1.1275 +                    while (a[great] > pivot2) {
  1.1276 +                        if (great-- == k) {
  1.1277 +                            break outer;
  1.1278 +                        }
  1.1279 +                    }
  1.1280 +                    if (a[great] < pivot1) { // a[great] <= pivot2
  1.1281 +                        a[k] = a[less];
  1.1282 +                        a[less] = a[great];
  1.1283 +                        ++less;
  1.1284 +                    } else { // pivot1 <= a[great] <= pivot2
  1.1285 +                        a[k] = a[great];
  1.1286 +                    }
  1.1287 +                    /*
  1.1288 +                     * Here and below we use "a[i] = b; i--;" instead
  1.1289 +                     * of "a[i--] = b;" due to performance issue.
  1.1290 +                     */
  1.1291 +                    a[great] = ak;
  1.1292 +                    --great;
  1.1293 +                }
  1.1294 +            }
  1.1295 +
  1.1296 +            // Swap pivots into their final positions
  1.1297 +            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
  1.1298 +            a[right] = a[great + 1]; a[great + 1] = pivot2;
  1.1299 +
  1.1300 +            // Sort left and right parts recursively, excluding known pivots
  1.1301 +            sort(a, left, less - 2, leftmost);
  1.1302 +            sort(a, great + 2, right, false);
  1.1303 +
  1.1304 +            /*
  1.1305 +             * If center part is too large (comprises > 4/7 of the array),
  1.1306 +             * swap internal pivot values to ends.
  1.1307 +             */
  1.1308 +            if (less < e1 && e5 < great) {
  1.1309 +                /*
  1.1310 +                 * Skip elements, which are equal to pivot values.
  1.1311 +                 */
  1.1312 +                while (a[less] == pivot1) {
  1.1313 +                    ++less;
  1.1314 +                }
  1.1315 +
  1.1316 +                while (a[great] == pivot2) {
  1.1317 +                    --great;
  1.1318 +                }
  1.1319 +
  1.1320 +                /*
  1.1321 +                 * Partitioning:
  1.1322 +                 *
  1.1323 +                 *   left part         center part                  right part
  1.1324 +                 * +----------------------------------------------------------+
  1.1325 +                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
  1.1326 +                 * +----------------------------------------------------------+
  1.1327 +                 *              ^                        ^       ^
  1.1328 +                 *              |                        |       |
  1.1329 +                 *             less                      k     great
  1.1330 +                 *
  1.1331 +                 * Invariants:
  1.1332 +                 *
  1.1333 +                 *              all in (*,  less) == pivot1
  1.1334 +                 *     pivot1 < all in [less,  k)  < pivot2
  1.1335 +                 *              all in (great, *) == pivot2
  1.1336 +                 *
  1.1337 +                 * Pointer k is the first index of ?-part.
  1.1338 +                 */
  1.1339 +                outer:
  1.1340 +                for (int k = less - 1; ++k <= great; ) {
  1.1341 +                    short ak = a[k];
  1.1342 +                    if (ak == pivot1) { // Move a[k] to left part
  1.1343 +                        a[k] = a[less];
  1.1344 +                        a[less] = ak;
  1.1345 +                        ++less;
  1.1346 +                    } else if (ak == pivot2) { // Move a[k] to right part
  1.1347 +                        while (a[great] == pivot2) {
  1.1348 +                            if (great-- == k) {
  1.1349 +                                break outer;
  1.1350 +                            }
  1.1351 +                        }
  1.1352 +                        if (a[great] == pivot1) { // a[great] < pivot2
  1.1353 +                            a[k] = a[less];
  1.1354 +                            /*
  1.1355 +                             * Even though a[great] equals to pivot1, the
  1.1356 +                             * assignment a[less] = pivot1 may be incorrect,
  1.1357 +                             * if a[great] and pivot1 are floating-point zeros
  1.1358 +                             * of different signs. Therefore in float and
  1.1359 +                             * double sorting methods we have to use more
  1.1360 +                             * accurate assignment a[less] = a[great].
  1.1361 +                             */
  1.1362 +                            a[less] = pivot1;
  1.1363 +                            ++less;
  1.1364 +                        } else { // pivot1 < a[great] < pivot2
  1.1365 +                            a[k] = a[great];
  1.1366 +                        }
  1.1367 +                        a[great] = ak;
  1.1368 +                        --great;
  1.1369 +                    }
  1.1370 +                }
  1.1371 +            }
  1.1372 +
  1.1373 +            // Sort center part recursively
  1.1374 +            sort(a, less, great, false);
  1.1375 +
  1.1376 +        } else { // Partitioning with one pivot
  1.1377 +            /*
  1.1378 +             * Use the third of the five sorted elements as pivot.
  1.1379 +             * This value is inexpensive approximation of the median.
  1.1380 +             */
  1.1381 +            short pivot = a[e3];
  1.1382 +
  1.1383 +            /*
  1.1384 +             * Partitioning degenerates to the traditional 3-way
  1.1385 +             * (or "Dutch National Flag") schema:
  1.1386 +             *
  1.1387 +             *   left part    center part              right part
  1.1388 +             * +-------------------------------------------------+
  1.1389 +             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
  1.1390 +             * +-------------------------------------------------+
  1.1391 +             *              ^              ^        ^
  1.1392 +             *              |              |        |
  1.1393 +             *             less            k      great
  1.1394 +             *
  1.1395 +             * Invariants:
  1.1396 +             *
  1.1397 +             *   all in (left, less)   < pivot
  1.1398 +             *   all in [less, k)     == pivot
  1.1399 +             *   all in (great, right) > pivot
  1.1400 +             *
  1.1401 +             * Pointer k is the first index of ?-part.
  1.1402 +             */
  1.1403 +            for (int k = less; k <= great; ++k) {
  1.1404 +                if (a[k] == pivot) {
  1.1405 +                    continue;
  1.1406 +                }
  1.1407 +                short ak = a[k];
  1.1408 +                if (ak < pivot) { // Move a[k] to left part
  1.1409 +                    a[k] = a[less];
  1.1410 +                    a[less] = ak;
  1.1411 +                    ++less;
  1.1412 +                } else { // a[k] > pivot - Move a[k] to right part
  1.1413 +                    while (a[great] > pivot) {
  1.1414 +                        --great;
  1.1415 +                    }
  1.1416 +                    if (a[great] < pivot) { // a[great] <= pivot
  1.1417 +                        a[k] = a[less];
  1.1418 +                        a[less] = a[great];
  1.1419 +                        ++less;
  1.1420 +                    } else { // a[great] == pivot
  1.1421 +                        /*
  1.1422 +                         * Even though a[great] equals to pivot, the
  1.1423 +                         * assignment a[k] = pivot may be incorrect,
  1.1424 +                         * if a[great] and pivot are floating-point
  1.1425 +                         * zeros of different signs. Therefore in float
  1.1426 +                         * and double sorting methods we have to use
  1.1427 +                         * more accurate assignment a[k] = a[great].
  1.1428 +                         */
  1.1429 +                        a[k] = pivot;
  1.1430 +                    }
  1.1431 +                    a[great] = ak;
  1.1432 +                    --great;
  1.1433 +                }
  1.1434 +            }
  1.1435 +
  1.1436 +            /*
  1.1437 +             * Sort left and right parts recursively.
  1.1438 +             * All elements from center part are equal
  1.1439 +             * and, therefore, already sorted.
  1.1440 +             */
  1.1441 +            sort(a, left, less - 1, leftmost);
  1.1442 +            sort(a, great + 1, right, false);
  1.1443 +        }
  1.1444 +    }
  1.1445 +
  1.1446 +    /**
  1.1447 +     * Sorts the specified array.
  1.1448 +     *
  1.1449 +     * @param a the array to be sorted
  1.1450 +     */
  1.1451 +    public static void sort(char[] a) {
  1.1452 +        sort(a, 0, a.length - 1);
  1.1453 +    }
  1.1454 +
  1.1455 +    /**
  1.1456 +     * Sorts the specified range of the array.
  1.1457 +     *
  1.1458 +     * @param a the array to be sorted
  1.1459 +     * @param left the index of the first element, inclusive, to be sorted
  1.1460 +     * @param right the index of the last element, inclusive, to be sorted
  1.1461 +     */
  1.1462 +    public static void sort(char[] a, int left, int right) {
  1.1463 +        // Use counting sort on large arrays
  1.1464 +        if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
  1.1465 +            int[] count = new int[NUM_CHAR_VALUES];
  1.1466 +
  1.1467 +            for (int i = left - 1; ++i <= right;
  1.1468 +                count[a[i]]++
  1.1469 +            );
  1.1470 +            for (int i = NUM_CHAR_VALUES, k = right + 1; k > left; ) {
  1.1471 +                while (count[--i] == 0);
  1.1472 +                char value = (char) i;
  1.1473 +                int s = count[i];
  1.1474 +
  1.1475 +                do {
  1.1476 +                    a[--k] = value;
  1.1477 +                } while (--s > 0);
  1.1478 +            }
  1.1479 +        } else { // Use Dual-Pivot Quicksort on small arrays
  1.1480 +            doSort(a, left, right);
  1.1481 +        }
  1.1482 +    }
  1.1483 +
  1.1484 +    /** The number of distinct char values. */
  1.1485 +    private static final int NUM_CHAR_VALUES = 1 << 16;
  1.1486 +
  1.1487 +    /**
  1.1488 +     * Sorts the specified range of the array.
  1.1489 +     *
  1.1490 +     * @param a the array to be sorted
  1.1491 +     * @param left the index of the first element, inclusive, to be sorted
  1.1492 +     * @param right the index of the last element, inclusive, to be sorted
  1.1493 +     */
  1.1494 +    private static void doSort(char[] a, int left, int right) {
  1.1495 +        // Use Quicksort on small arrays
  1.1496 +        if (right - left < QUICKSORT_THRESHOLD) {
  1.1497 +            sort(a, left, right, true);
  1.1498 +            return;
  1.1499 +        }
  1.1500 +
  1.1501 +        /*
  1.1502 +         * Index run[i] is the start of i-th run
  1.1503 +         * (ascending or descending sequence).
  1.1504 +         */
  1.1505 +        int[] run = new int[MAX_RUN_COUNT + 1];
  1.1506 +        int count = 0; run[0] = left;
  1.1507 +
  1.1508 +        // Check if the array is nearly sorted
  1.1509 +        for (int k = left; k < right; run[count] = k) {
  1.1510 +            if (a[k] < a[k + 1]) { // ascending
  1.1511 +                while (++k <= right && a[k - 1] <= a[k]);
  1.1512 +            } else if (a[k] > a[k + 1]) { // descending
  1.1513 +                while (++k <= right && a[k - 1] >= a[k]);
  1.1514 +                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
  1.1515 +                    char t = a[lo]; a[lo] = a[hi]; a[hi] = t;
  1.1516 +                }
  1.1517 +            } else { // equal
  1.1518 +                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
  1.1519 +                    if (--m == 0) {
  1.1520 +                        sort(a, left, right, true);
  1.1521 +                        return;
  1.1522 +                    }
  1.1523 +                }
  1.1524 +            }
  1.1525 +
  1.1526 +            /*
  1.1527 +             * The array is not highly structured,
  1.1528 +             * use Quicksort instead of merge sort.
  1.1529 +             */
  1.1530 +            if (++count == MAX_RUN_COUNT) {
  1.1531 +                sort(a, left, right, true);
  1.1532 +                return;
  1.1533 +            }
  1.1534 +        }
  1.1535 +
  1.1536 +        // Check special cases
  1.1537 +        if (run[count] == right++) { // The last run contains one element
  1.1538 +            run[++count] = right;
  1.1539 +        } else if (count == 1) { // The array is already sorted
  1.1540 +            return;
  1.1541 +        }
  1.1542 +
  1.1543 +        /*
  1.1544 +         * Create temporary array, which is used for merging.
  1.1545 +         * Implementation note: variable "right" is increased by 1.
  1.1546 +         */
  1.1547 +        char[] b; byte odd = 0;
  1.1548 +        for (int n = 1; (n <<= 1) < count; odd ^= 1);
  1.1549 +
  1.1550 +        if (odd == 0) {
  1.1551 +            b = a; a = new char[b.length];
  1.1552 +            for (int i = left - 1; ++i < right; a[i] = b[i]);
  1.1553 +        } else {
  1.1554 +            b = new char[a.length];
  1.1555 +        }
  1.1556 +
  1.1557 +        // Merging
  1.1558 +        for (int last; count > 1; count = last) {
  1.1559 +            for (int k = (last = 0) + 2; k <= count; k += 2) {
  1.1560 +                int hi = run[k], mi = run[k - 1];
  1.1561 +                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
  1.1562 +                    if (q >= hi || p < mi && a[p] <= a[q]) {
  1.1563 +                        b[i] = a[p++];
  1.1564 +                    } else {
  1.1565 +                        b[i] = a[q++];
  1.1566 +                    }
  1.1567 +                }
  1.1568 +                run[++last] = hi;
  1.1569 +            }
  1.1570 +            if ((count & 1) != 0) {
  1.1571 +                for (int i = right, lo = run[count - 1]; --i >= lo;
  1.1572 +                    b[i] = a[i]
  1.1573 +                );
  1.1574 +                run[++last] = right;
  1.1575 +            }
  1.1576 +            char[] t = a; a = b; b = t;
  1.1577 +        }
  1.1578 +    }
  1.1579 +
  1.1580 +    /**
  1.1581 +     * Sorts the specified range of the array by Dual-Pivot Quicksort.
  1.1582 +     *
  1.1583 +     * @param a the array to be sorted
  1.1584 +     * @param left the index of the first element, inclusive, to be sorted
  1.1585 +     * @param right the index of the last element, inclusive, to be sorted
  1.1586 +     * @param leftmost indicates if this part is the leftmost in the range
  1.1587 +     */
  1.1588 +    private static void sort(char[] a, int left, int right, boolean leftmost) {
  1.1589 +        int length = right - left + 1;
  1.1590 +
  1.1591 +        // Use insertion sort on tiny arrays
  1.1592 +        if (length < INSERTION_SORT_THRESHOLD) {
  1.1593 +            if (leftmost) {
  1.1594 +                /*
  1.1595 +                 * Traditional (without sentinel) insertion sort,
  1.1596 +                 * optimized for server VM, is used in case of
  1.1597 +                 * the leftmost part.
  1.1598 +                 */
  1.1599 +                for (int i = left, j = i; i < right; j = ++i) {
  1.1600 +                    char ai = a[i + 1];
  1.1601 +                    while (ai < a[j]) {
  1.1602 +                        a[j + 1] = a[j];
  1.1603 +                        if (j-- == left) {
  1.1604 +                            break;
  1.1605 +                        }
  1.1606 +                    }
  1.1607 +                    a[j + 1] = ai;
  1.1608 +                }
  1.1609 +            } else {
  1.1610 +                /*
  1.1611 +                 * Skip the longest ascending sequence.
  1.1612 +                 */
  1.1613 +                do {
  1.1614 +                    if (left >= right) {
  1.1615 +                        return;
  1.1616 +                    }
  1.1617 +                } while (a[++left] >= a[left - 1]);
  1.1618 +
  1.1619 +                /*
  1.1620 +                 * Every element from adjoining part plays the role
  1.1621 +                 * of sentinel, therefore this allows us to avoid the
  1.1622 +                 * left range check on each iteration. Moreover, we use
  1.1623 +                 * the more optimized algorithm, so called pair insertion
  1.1624 +                 * sort, which is faster (in the context of Quicksort)
  1.1625 +                 * than traditional implementation of insertion sort.
  1.1626 +                 */
  1.1627 +                for (int k = left; ++left <= right; k = ++left) {
  1.1628 +                    char a1 = a[k], a2 = a[left];
  1.1629 +
  1.1630 +                    if (a1 < a2) {
  1.1631 +                        a2 = a1; a1 = a[left];
  1.1632 +                    }
  1.1633 +                    while (a1 < a[--k]) {
  1.1634 +                        a[k + 2] = a[k];
  1.1635 +                    }
  1.1636 +                    a[++k + 1] = a1;
  1.1637 +
  1.1638 +                    while (a2 < a[--k]) {
  1.1639 +                        a[k + 1] = a[k];
  1.1640 +                    }
  1.1641 +                    a[k + 1] = a2;
  1.1642 +                }
  1.1643 +                char last = a[right];
  1.1644 +
  1.1645 +                while (last < a[--right]) {
  1.1646 +                    a[right + 1] = a[right];
  1.1647 +                }
  1.1648 +                a[right + 1] = last;
  1.1649 +            }
  1.1650 +            return;
  1.1651 +        }
  1.1652 +
  1.1653 +        // Inexpensive approximation of length / 7
  1.1654 +        int seventh = (length >> 3) + (length >> 6) + 1;
  1.1655 +
  1.1656 +        /*
  1.1657 +         * Sort five evenly spaced elements around (and including) the
  1.1658 +         * center element in the range. These elements will be used for
  1.1659 +         * pivot selection as described below. The choice for spacing
  1.1660 +         * these elements was empirically determined to work well on
  1.1661 +         * a wide variety of inputs.
  1.1662 +         */
  1.1663 +        int e3 = (left + right) >>> 1; // The midpoint
  1.1664 +        int e2 = e3 - seventh;
  1.1665 +        int e1 = e2 - seventh;
  1.1666 +        int e4 = e3 + seventh;
  1.1667 +        int e5 = e4 + seventh;
  1.1668 +
  1.1669 +        // Sort these elements using insertion sort
  1.1670 +        if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
  1.1671 +
  1.1672 +        if (a[e3] < a[e2]) { char t = a[e3]; a[e3] = a[e2]; a[e2] = t;
  1.1673 +            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.1674 +        }
  1.1675 +        if (a[e4] < a[e3]) { char t = a[e4]; a[e4] = a[e3]; a[e3] = t;
  1.1676 +            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
  1.1677 +                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.1678 +            }
  1.1679 +        }
  1.1680 +        if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t;
  1.1681 +            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
  1.1682 +                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
  1.1683 +                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.1684 +                }
  1.1685 +            }
  1.1686 +        }
  1.1687 +
  1.1688 +        // Pointers
  1.1689 +        int less  = left;  // The index of the first element of center part
  1.1690 +        int great = right; // The index before the first element of right part
  1.1691 +
  1.1692 +        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
  1.1693 +            /*
  1.1694 +             * Use the second and fourth of the five sorted elements as pivots.
  1.1695 +             * These values are inexpensive approximations of the first and
  1.1696 +             * second terciles of the array. Note that pivot1 <= pivot2.
  1.1697 +             */
  1.1698 +            char pivot1 = a[e2];
  1.1699 +            char pivot2 = a[e4];
  1.1700 +
  1.1701 +            /*
  1.1702 +             * The first and the last elements to be sorted are moved to the
  1.1703 +             * locations formerly occupied by the pivots. When partitioning
  1.1704 +             * is complete, the pivots are swapped back into their final
  1.1705 +             * positions, and excluded from subsequent sorting.
  1.1706 +             */
  1.1707 +            a[e2] = a[left];
  1.1708 +            a[e4] = a[right];
  1.1709 +
  1.1710 +            /*
  1.1711 +             * Skip elements, which are less or greater than pivot values.
  1.1712 +             */
  1.1713 +            while (a[++less] < pivot1);
  1.1714 +            while (a[--great] > pivot2);
  1.1715 +
  1.1716 +            /*
  1.1717 +             * Partitioning:
  1.1718 +             *
  1.1719 +             *   left part           center part                   right part
  1.1720 +             * +--------------------------------------------------------------+
  1.1721 +             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
  1.1722 +             * +--------------------------------------------------------------+
  1.1723 +             *               ^                          ^       ^
  1.1724 +             *               |                          |       |
  1.1725 +             *              less                        k     great
  1.1726 +             *
  1.1727 +             * Invariants:
  1.1728 +             *
  1.1729 +             *              all in (left, less)   < pivot1
  1.1730 +             *    pivot1 <= all in [less, k)     <= pivot2
  1.1731 +             *              all in (great, right) > pivot2
  1.1732 +             *
  1.1733 +             * Pointer k is the first index of ?-part.
  1.1734 +             */
  1.1735 +            outer:
  1.1736 +            for (int k = less - 1; ++k <= great; ) {
  1.1737 +                char ak = a[k];
  1.1738 +                if (ak < pivot1) { // Move a[k] to left part
  1.1739 +                    a[k] = a[less];
  1.1740 +                    /*
  1.1741 +                     * Here and below we use "a[i] = b; i++;" instead
  1.1742 +                     * of "a[i++] = b;" due to performance issue.
  1.1743 +                     */
  1.1744 +                    a[less] = ak;
  1.1745 +                    ++less;
  1.1746 +                } else if (ak > pivot2) { // Move a[k] to right part
  1.1747 +                    while (a[great] > pivot2) {
  1.1748 +                        if (great-- == k) {
  1.1749 +                            break outer;
  1.1750 +                        }
  1.1751 +                    }
  1.1752 +                    if (a[great] < pivot1) { // a[great] <= pivot2
  1.1753 +                        a[k] = a[less];
  1.1754 +                        a[less] = a[great];
  1.1755 +                        ++less;
  1.1756 +                    } else { // pivot1 <= a[great] <= pivot2
  1.1757 +                        a[k] = a[great];
  1.1758 +                    }
  1.1759 +                    /*
  1.1760 +                     * Here and below we use "a[i] = b; i--;" instead
  1.1761 +                     * of "a[i--] = b;" due to performance issue.
  1.1762 +                     */
  1.1763 +                    a[great] = ak;
  1.1764 +                    --great;
  1.1765 +                }
  1.1766 +            }
  1.1767 +
  1.1768 +            // Swap pivots into their final positions
  1.1769 +            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
  1.1770 +            a[right] = a[great + 1]; a[great + 1] = pivot2;
  1.1771 +
  1.1772 +            // Sort left and right parts recursively, excluding known pivots
  1.1773 +            sort(a, left, less - 2, leftmost);
  1.1774 +            sort(a, great + 2, right, false);
  1.1775 +
  1.1776 +            /*
  1.1777 +             * If center part is too large (comprises > 4/7 of the array),
  1.1778 +             * swap internal pivot values to ends.
  1.1779 +             */
  1.1780 +            if (less < e1 && e5 < great) {
  1.1781 +                /*
  1.1782 +                 * Skip elements, which are equal to pivot values.
  1.1783 +                 */
  1.1784 +                while (a[less] == pivot1) {
  1.1785 +                    ++less;
  1.1786 +                }
  1.1787 +
  1.1788 +                while (a[great] == pivot2) {
  1.1789 +                    --great;
  1.1790 +                }
  1.1791 +
  1.1792 +                /*
  1.1793 +                 * Partitioning:
  1.1794 +                 *
  1.1795 +                 *   left part         center part                  right part
  1.1796 +                 * +----------------------------------------------------------+
  1.1797 +                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
  1.1798 +                 * +----------------------------------------------------------+
  1.1799 +                 *              ^                        ^       ^
  1.1800 +                 *              |                        |       |
  1.1801 +                 *             less                      k     great
  1.1802 +                 *
  1.1803 +                 * Invariants:
  1.1804 +                 *
  1.1805 +                 *              all in (*,  less) == pivot1
  1.1806 +                 *     pivot1 < all in [less,  k)  < pivot2
  1.1807 +                 *              all in (great, *) == pivot2
  1.1808 +                 *
  1.1809 +                 * Pointer k is the first index of ?-part.
  1.1810 +                 */
  1.1811 +                outer:
  1.1812 +                for (int k = less - 1; ++k <= great; ) {
  1.1813 +                    char ak = a[k];
  1.1814 +                    if (ak == pivot1) { // Move a[k] to left part
  1.1815 +                        a[k] = a[less];
  1.1816 +                        a[less] = ak;
  1.1817 +                        ++less;
  1.1818 +                    } else if (ak == pivot2) { // Move a[k] to right part
  1.1819 +                        while (a[great] == pivot2) {
  1.1820 +                            if (great-- == k) {
  1.1821 +                                break outer;
  1.1822 +                            }
  1.1823 +                        }
  1.1824 +                        if (a[great] == pivot1) { // a[great] < pivot2
  1.1825 +                            a[k] = a[less];
  1.1826 +                            /*
  1.1827 +                             * Even though a[great] equals to pivot1, the
  1.1828 +                             * assignment a[less] = pivot1 may be incorrect,
  1.1829 +                             * if a[great] and pivot1 are floating-point zeros
  1.1830 +                             * of different signs. Therefore in float and
  1.1831 +                             * double sorting methods we have to use more
  1.1832 +                             * accurate assignment a[less] = a[great].
  1.1833 +                             */
  1.1834 +                            a[less] = pivot1;
  1.1835 +                            ++less;
  1.1836 +                        } else { // pivot1 < a[great] < pivot2
  1.1837 +                            a[k] = a[great];
  1.1838 +                        }
  1.1839 +                        a[great] = ak;
  1.1840 +                        --great;
  1.1841 +                    }
  1.1842 +                }
  1.1843 +            }
  1.1844 +
  1.1845 +            // Sort center part recursively
  1.1846 +            sort(a, less, great, false);
  1.1847 +
  1.1848 +        } else { // Partitioning with one pivot
  1.1849 +            /*
  1.1850 +             * Use the third of the five sorted elements as pivot.
  1.1851 +             * This value is inexpensive approximation of the median.
  1.1852 +             */
  1.1853 +            char pivot = a[e3];
  1.1854 +
  1.1855 +            /*
  1.1856 +             * Partitioning degenerates to the traditional 3-way
  1.1857 +             * (or "Dutch National Flag") schema:
  1.1858 +             *
  1.1859 +             *   left part    center part              right part
  1.1860 +             * +-------------------------------------------------+
  1.1861 +             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
  1.1862 +             * +-------------------------------------------------+
  1.1863 +             *              ^              ^        ^
  1.1864 +             *              |              |        |
  1.1865 +             *             less            k      great
  1.1866 +             *
  1.1867 +             * Invariants:
  1.1868 +             *
  1.1869 +             *   all in (left, less)   < pivot
  1.1870 +             *   all in [less, k)     == pivot
  1.1871 +             *   all in (great, right) > pivot
  1.1872 +             *
  1.1873 +             * Pointer k is the first index of ?-part.
  1.1874 +             */
  1.1875 +            for (int k = less; k <= great; ++k) {
  1.1876 +                if (a[k] == pivot) {
  1.1877 +                    continue;
  1.1878 +                }
  1.1879 +                char ak = a[k];
  1.1880 +                if (ak < pivot) { // Move a[k] to left part
  1.1881 +                    a[k] = a[less];
  1.1882 +                    a[less] = ak;
  1.1883 +                    ++less;
  1.1884 +                } else { // a[k] > pivot - Move a[k] to right part
  1.1885 +                    while (a[great] > pivot) {
  1.1886 +                        --great;
  1.1887 +                    }
  1.1888 +                    if (a[great] < pivot) { // a[great] <= pivot
  1.1889 +                        a[k] = a[less];
  1.1890 +                        a[less] = a[great];
  1.1891 +                        ++less;
  1.1892 +                    } else { // a[great] == pivot
  1.1893 +                        /*
  1.1894 +                         * Even though a[great] equals to pivot, the
  1.1895 +                         * assignment a[k] = pivot may be incorrect,
  1.1896 +                         * if a[great] and pivot are floating-point
  1.1897 +                         * zeros of different signs. Therefore in float
  1.1898 +                         * and double sorting methods we have to use
  1.1899 +                         * more accurate assignment a[k] = a[great].
  1.1900 +                         */
  1.1901 +                        a[k] = pivot;
  1.1902 +                    }
  1.1903 +                    a[great] = ak;
  1.1904 +                    --great;
  1.1905 +                }
  1.1906 +            }
  1.1907 +
  1.1908 +            /*
  1.1909 +             * Sort left and right parts recursively.
  1.1910 +             * All elements from center part are equal
  1.1911 +             * and, therefore, already sorted.
  1.1912 +             */
  1.1913 +            sort(a, left, less - 1, leftmost);
  1.1914 +            sort(a, great + 1, right, false);
  1.1915 +        }
  1.1916 +    }
  1.1917 +
  1.1918 +    /** The number of distinct byte values. */
  1.1919 +    private static final int NUM_BYTE_VALUES = 1 << 8;
  1.1920 +
  1.1921 +    /**
  1.1922 +     * Sorts the specified array.
  1.1923 +     *
  1.1924 +     * @param a the array to be sorted
  1.1925 +     */
  1.1926 +    public static void sort(byte[] a) {
  1.1927 +        sort(a, 0, a.length - 1);
  1.1928 +    }
  1.1929 +
  1.1930 +    /**
  1.1931 +     * Sorts the specified range of the array.
  1.1932 +     *
  1.1933 +     * @param a the array to be sorted
  1.1934 +     * @param left the index of the first element, inclusive, to be sorted
  1.1935 +     * @param right the index of the last element, inclusive, to be sorted
  1.1936 +     */
  1.1937 +    public static void sort(byte[] a, int left, int right) {
  1.1938 +        // Use counting sort on large arrays
  1.1939 +        if (right - left > COUNTING_SORT_THRESHOLD_FOR_BYTE) {
  1.1940 +            int[] count = new int[NUM_BYTE_VALUES];
  1.1941 +
  1.1942 +            for (int i = left - 1; ++i <= right;
  1.1943 +                count[a[i] - Byte.MIN_VALUE]++
  1.1944 +            );
  1.1945 +            for (int i = NUM_BYTE_VALUES, k = right + 1; k > left; ) {
  1.1946 +                while (count[--i] == 0);
  1.1947 +                byte value = (byte) (i + Byte.MIN_VALUE);
  1.1948 +                int s = count[i];
  1.1949 +
  1.1950 +                do {
  1.1951 +                    a[--k] = value;
  1.1952 +                } while (--s > 0);
  1.1953 +            }
  1.1954 +        } else { // Use insertion sort on small arrays
  1.1955 +            for (int i = left, j = i; i < right; j = ++i) {
  1.1956 +                byte ai = a[i + 1];
  1.1957 +                while (ai < a[j]) {
  1.1958 +                    a[j + 1] = a[j];
  1.1959 +                    if (j-- == left) {
  1.1960 +                        break;
  1.1961 +                    }
  1.1962 +                }
  1.1963 +                a[j + 1] = ai;
  1.1964 +            }
  1.1965 +        }
  1.1966 +    }
  1.1967 +
  1.1968 +    /**
  1.1969 +     * Sorts the specified array.
  1.1970 +     *
  1.1971 +     * @param a the array to be sorted
  1.1972 +     */
  1.1973 +    public static void sort(float[] a) {
  1.1974 +        sort(a, 0, a.length - 1);
  1.1975 +    }
  1.1976 +
  1.1977 +    /**
  1.1978 +     * Sorts the specified range of the array.
  1.1979 +     *
  1.1980 +     * @param a the array to be sorted
  1.1981 +     * @param left the index of the first element, inclusive, to be sorted
  1.1982 +     * @param right the index of the last element, inclusive, to be sorted
  1.1983 +     */
  1.1984 +    public static void sort(float[] a, int left, int right) {
  1.1985 +        /*
  1.1986 +         * Phase 1: Move NaNs to the end of the array.
  1.1987 +         */
  1.1988 +        while (left <= right && Float.isNaN(a[right])) {
  1.1989 +            --right;
  1.1990 +        }
  1.1991 +        for (int k = right; --k >= left; ) {
  1.1992 +            float ak = a[k];
  1.1993 +            if (ak != ak) { // a[k] is NaN
  1.1994 +                a[k] = a[right];
  1.1995 +                a[right] = ak;
  1.1996 +                --right;
  1.1997 +            }
  1.1998 +        }
  1.1999 +
  1.2000 +        /*
  1.2001 +         * Phase 2: Sort everything except NaNs (which are already in place).
  1.2002 +         */
  1.2003 +        doSort(a, left, right);
  1.2004 +
  1.2005 +        /*
  1.2006 +         * Phase 3: Place negative zeros before positive zeros.
  1.2007 +         */
  1.2008 +        int hi = right;
  1.2009 +
  1.2010 +        /*
  1.2011 +         * Find the first zero, or first positive, or last negative element.
  1.2012 +         */
  1.2013 +        while (left < hi) {
  1.2014 +            int middle = (left + hi) >>> 1;
  1.2015 +            float middleValue = a[middle];
  1.2016 +
  1.2017 +            if (middleValue < 0.0f) {
  1.2018 +                left = middle + 1;
  1.2019 +            } else {
  1.2020 +                hi = middle;
  1.2021 +            }
  1.2022 +        }
  1.2023 +
  1.2024 +        /*
  1.2025 +         * Skip the last negative value (if any) or all leading negative zeros.
  1.2026 +         */
  1.2027 +        while (left <= right && Float.floatToRawIntBits(a[left]) < 0) {
  1.2028 +            ++left;
  1.2029 +        }
  1.2030 +
  1.2031 +        /*
  1.2032 +         * Move negative zeros to the beginning of the sub-range.
  1.2033 +         *
  1.2034 +         * Partitioning:
  1.2035 +         *
  1.2036 +         * +----------------------------------------------------+
  1.2037 +         * |   < 0.0   |   -0.0   |   0.0   |   ?  ( >= 0.0 )   |
  1.2038 +         * +----------------------------------------------------+
  1.2039 +         *              ^          ^         ^
  1.2040 +         *              |          |         |
  1.2041 +         *             left        p         k
  1.2042 +         *
  1.2043 +         * Invariants:
  1.2044 +         *
  1.2045 +         *   all in (*,  left)  <  0.0
  1.2046 +         *   all in [left,  p) == -0.0
  1.2047 +         *   all in [p,     k) ==  0.0
  1.2048 +         *   all in [k, right] >=  0.0
  1.2049 +         *
  1.2050 +         * Pointer k is the first index of ?-part.
  1.2051 +         */
  1.2052 +        for (int k = left, p = left - 1; ++k <= right; ) {
  1.2053 +            float ak = a[k];
  1.2054 +            if (ak != 0.0f) {
  1.2055 +                break;
  1.2056 +            }
  1.2057 +            if (Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f
  1.2058 +                a[k] = 0.0f;
  1.2059 +                a[++p] = -0.0f;
  1.2060 +            }
  1.2061 +        }
  1.2062 +    }
  1.2063 +
  1.2064 +    /**
  1.2065 +     * Sorts the specified range of the array.
  1.2066 +     *
  1.2067 +     * @param a the array to be sorted
  1.2068 +     * @param left the index of the first element, inclusive, to be sorted
  1.2069 +     * @param right the index of the last element, inclusive, to be sorted
  1.2070 +     */
  1.2071 +    private static void doSort(float[] a, int left, int right) {
  1.2072 +        // Use Quicksort on small arrays
  1.2073 +        if (right - left < QUICKSORT_THRESHOLD) {
  1.2074 +            sort(a, left, right, true);
  1.2075 +            return;
  1.2076 +        }
  1.2077 +
  1.2078 +        /*
  1.2079 +         * Index run[i] is the start of i-th run
  1.2080 +         * (ascending or descending sequence).
  1.2081 +         */
  1.2082 +        int[] run = new int[MAX_RUN_COUNT + 1];
  1.2083 +        int count = 0; run[0] = left;
  1.2084 +
  1.2085 +        // Check if the array is nearly sorted
  1.2086 +        for (int k = left; k < right; run[count] = k) {
  1.2087 +            if (a[k] < a[k + 1]) { // ascending
  1.2088 +                while (++k <= right && a[k - 1] <= a[k]);
  1.2089 +            } else if (a[k] > a[k + 1]) { // descending
  1.2090 +                while (++k <= right && a[k - 1] >= a[k]);
  1.2091 +                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
  1.2092 +                    float t = a[lo]; a[lo] = a[hi]; a[hi] = t;
  1.2093 +                }
  1.2094 +            } else { // equal
  1.2095 +                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
  1.2096 +                    if (--m == 0) {
  1.2097 +                        sort(a, left, right, true);
  1.2098 +                        return;
  1.2099 +                    }
  1.2100 +                }
  1.2101 +            }
  1.2102 +
  1.2103 +            /*
  1.2104 +             * The array is not highly structured,
  1.2105 +             * use Quicksort instead of merge sort.
  1.2106 +             */
  1.2107 +            if (++count == MAX_RUN_COUNT) {
  1.2108 +                sort(a, left, right, true);
  1.2109 +                return;
  1.2110 +            }
  1.2111 +        }
  1.2112 +
  1.2113 +        // Check special cases
  1.2114 +        if (run[count] == right++) { // The last run contains one element
  1.2115 +            run[++count] = right;
  1.2116 +        } else if (count == 1) { // The array is already sorted
  1.2117 +            return;
  1.2118 +        }
  1.2119 +
  1.2120 +        /*
  1.2121 +         * Create temporary array, which is used for merging.
  1.2122 +         * Implementation note: variable "right" is increased by 1.
  1.2123 +         */
  1.2124 +        float[] b; byte odd = 0;
  1.2125 +        for (int n = 1; (n <<= 1) < count; odd ^= 1);
  1.2126 +
  1.2127 +        if (odd == 0) {
  1.2128 +            b = a; a = new float[b.length];
  1.2129 +            for (int i = left - 1; ++i < right; a[i] = b[i]);
  1.2130 +        } else {
  1.2131 +            b = new float[a.length];
  1.2132 +        }
  1.2133 +
  1.2134 +        // Merging
  1.2135 +        for (int last; count > 1; count = last) {
  1.2136 +            for (int k = (last = 0) + 2; k <= count; k += 2) {
  1.2137 +                int hi = run[k], mi = run[k - 1];
  1.2138 +                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
  1.2139 +                    if (q >= hi || p < mi && a[p] <= a[q]) {
  1.2140 +                        b[i] = a[p++];
  1.2141 +                    } else {
  1.2142 +                        b[i] = a[q++];
  1.2143 +                    }
  1.2144 +                }
  1.2145 +                run[++last] = hi;
  1.2146 +            }
  1.2147 +            if ((count & 1) != 0) {
  1.2148 +                for (int i = right, lo = run[count - 1]; --i >= lo;
  1.2149 +                    b[i] = a[i]
  1.2150 +                );
  1.2151 +                run[++last] = right;
  1.2152 +            }
  1.2153 +            float[] t = a; a = b; b = t;
  1.2154 +        }
  1.2155 +    }
  1.2156 +
  1.2157 +    /**
  1.2158 +     * Sorts the specified range of the array by Dual-Pivot Quicksort.
  1.2159 +     *
  1.2160 +     * @param a the array to be sorted
  1.2161 +     * @param left the index of the first element, inclusive, to be sorted
  1.2162 +     * @param right the index of the last element, inclusive, to be sorted
  1.2163 +     * @param leftmost indicates if this part is the leftmost in the range
  1.2164 +     */
  1.2165 +    private static void sort(float[] a, int left, int right, boolean leftmost) {
  1.2166 +        int length = right - left + 1;
  1.2167 +
  1.2168 +        // Use insertion sort on tiny arrays
  1.2169 +        if (length < INSERTION_SORT_THRESHOLD) {
  1.2170 +            if (leftmost) {
  1.2171 +                /*
  1.2172 +                 * Traditional (without sentinel) insertion sort,
  1.2173 +                 * optimized for server VM, is used in case of
  1.2174 +                 * the leftmost part.
  1.2175 +                 */
  1.2176 +                for (int i = left, j = i; i < right; j = ++i) {
  1.2177 +                    float ai = a[i + 1];
  1.2178 +                    while (ai < a[j]) {
  1.2179 +                        a[j + 1] = a[j];
  1.2180 +                        if (j-- == left) {
  1.2181 +                            break;
  1.2182 +                        }
  1.2183 +                    }
  1.2184 +                    a[j + 1] = ai;
  1.2185 +                }
  1.2186 +            } else {
  1.2187 +                /*
  1.2188 +                 * Skip the longest ascending sequence.
  1.2189 +                 */
  1.2190 +                do {
  1.2191 +                    if (left >= right) {
  1.2192 +                        return;
  1.2193 +                    }
  1.2194 +                } while (a[++left] >= a[left - 1]);
  1.2195 +
  1.2196 +                /*
  1.2197 +                 * Every element from adjoining part plays the role
  1.2198 +                 * of sentinel, therefore this allows us to avoid the
  1.2199 +                 * left range check on each iteration. Moreover, we use
  1.2200 +                 * the more optimized algorithm, so called pair insertion
  1.2201 +                 * sort, which is faster (in the context of Quicksort)
  1.2202 +                 * than traditional implementation of insertion sort.
  1.2203 +                 */
  1.2204 +                for (int k = left; ++left <= right; k = ++left) {
  1.2205 +                    float a1 = a[k], a2 = a[left];
  1.2206 +
  1.2207 +                    if (a1 < a2) {
  1.2208 +                        a2 = a1; a1 = a[left];
  1.2209 +                    }
  1.2210 +                    while (a1 < a[--k]) {
  1.2211 +                        a[k + 2] = a[k];
  1.2212 +                    }
  1.2213 +                    a[++k + 1] = a1;
  1.2214 +
  1.2215 +                    while (a2 < a[--k]) {
  1.2216 +                        a[k + 1] = a[k];
  1.2217 +                    }
  1.2218 +                    a[k + 1] = a2;
  1.2219 +                }
  1.2220 +                float last = a[right];
  1.2221 +
  1.2222 +                while (last < a[--right]) {
  1.2223 +                    a[right + 1] = a[right];
  1.2224 +                }
  1.2225 +                a[right + 1] = last;
  1.2226 +            }
  1.2227 +            return;
  1.2228 +        }
  1.2229 +
  1.2230 +        // Inexpensive approximation of length / 7
  1.2231 +        int seventh = (length >> 3) + (length >> 6) + 1;
  1.2232 +
  1.2233 +        /*
  1.2234 +         * Sort five evenly spaced elements around (and including) the
  1.2235 +         * center element in the range. These elements will be used for
  1.2236 +         * pivot selection as described below. The choice for spacing
  1.2237 +         * these elements was empirically determined to work well on
  1.2238 +         * a wide variety of inputs.
  1.2239 +         */
  1.2240 +        int e3 = (left + right) >>> 1; // The midpoint
  1.2241 +        int e2 = e3 - seventh;
  1.2242 +        int e1 = e2 - seventh;
  1.2243 +        int e4 = e3 + seventh;
  1.2244 +        int e5 = e4 + seventh;
  1.2245 +
  1.2246 +        // Sort these elements using insertion sort
  1.2247 +        if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
  1.2248 +
  1.2249 +        if (a[e3] < a[e2]) { float t = a[e3]; a[e3] = a[e2]; a[e2] = t;
  1.2250 +            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.2251 +        }
  1.2252 +        if (a[e4] < a[e3]) { float t = a[e4]; a[e4] = a[e3]; a[e3] = t;
  1.2253 +            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
  1.2254 +                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.2255 +            }
  1.2256 +        }
  1.2257 +        if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t;
  1.2258 +            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
  1.2259 +                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
  1.2260 +                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.2261 +                }
  1.2262 +            }
  1.2263 +        }
  1.2264 +
  1.2265 +        // Pointers
  1.2266 +        int less  = left;  // The index of the first element of center part
  1.2267 +        int great = right; // The index before the first element of right part
  1.2268 +
  1.2269 +        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
  1.2270 +            /*
  1.2271 +             * Use the second and fourth of the five sorted elements as pivots.
  1.2272 +             * These values are inexpensive approximations of the first and
  1.2273 +             * second terciles of the array. Note that pivot1 <= pivot2.
  1.2274 +             */
  1.2275 +            float pivot1 = a[e2];
  1.2276 +            float pivot2 = a[e4];
  1.2277 +
  1.2278 +            /*
  1.2279 +             * The first and the last elements to be sorted are moved to the
  1.2280 +             * locations formerly occupied by the pivots. When partitioning
  1.2281 +             * is complete, the pivots are swapped back into their final
  1.2282 +             * positions, and excluded from subsequent sorting.
  1.2283 +             */
  1.2284 +            a[e2] = a[left];
  1.2285 +            a[e4] = a[right];
  1.2286 +
  1.2287 +            /*
  1.2288 +             * Skip elements, which are less or greater than pivot values.
  1.2289 +             */
  1.2290 +            while (a[++less] < pivot1);
  1.2291 +            while (a[--great] > pivot2);
  1.2292 +
  1.2293 +            /*
  1.2294 +             * Partitioning:
  1.2295 +             *
  1.2296 +             *   left part           center part                   right part
  1.2297 +             * +--------------------------------------------------------------+
  1.2298 +             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
  1.2299 +             * +--------------------------------------------------------------+
  1.2300 +             *               ^                          ^       ^
  1.2301 +             *               |                          |       |
  1.2302 +             *              less                        k     great
  1.2303 +             *
  1.2304 +             * Invariants:
  1.2305 +             *
  1.2306 +             *              all in (left, less)   < pivot1
  1.2307 +             *    pivot1 <= all in [less, k)     <= pivot2
  1.2308 +             *              all in (great, right) > pivot2
  1.2309 +             *
  1.2310 +             * Pointer k is the first index of ?-part.
  1.2311 +             */
  1.2312 +            outer:
  1.2313 +            for (int k = less - 1; ++k <= great; ) {
  1.2314 +                float ak = a[k];
  1.2315 +                if (ak < pivot1) { // Move a[k] to left part
  1.2316 +                    a[k] = a[less];
  1.2317 +                    /*
  1.2318 +                     * Here and below we use "a[i] = b; i++;" instead
  1.2319 +                     * of "a[i++] = b;" due to performance issue.
  1.2320 +                     */
  1.2321 +                    a[less] = ak;
  1.2322 +                    ++less;
  1.2323 +                } else if (ak > pivot2) { // Move a[k] to right part
  1.2324 +                    while (a[great] > pivot2) {
  1.2325 +                        if (great-- == k) {
  1.2326 +                            break outer;
  1.2327 +                        }
  1.2328 +                    }
  1.2329 +                    if (a[great] < pivot1) { // a[great] <= pivot2
  1.2330 +                        a[k] = a[less];
  1.2331 +                        a[less] = a[great];
  1.2332 +                        ++less;
  1.2333 +                    } else { // pivot1 <= a[great] <= pivot2
  1.2334 +                        a[k] = a[great];
  1.2335 +                    }
  1.2336 +                    /*
  1.2337 +                     * Here and below we use "a[i] = b; i--;" instead
  1.2338 +                     * of "a[i--] = b;" due to performance issue.
  1.2339 +                     */
  1.2340 +                    a[great] = ak;
  1.2341 +                    --great;
  1.2342 +                }
  1.2343 +            }
  1.2344 +
  1.2345 +            // Swap pivots into their final positions
  1.2346 +            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
  1.2347 +            a[right] = a[great + 1]; a[great + 1] = pivot2;
  1.2348 +
  1.2349 +            // Sort left and right parts recursively, excluding known pivots
  1.2350 +            sort(a, left, less - 2, leftmost);
  1.2351 +            sort(a, great + 2, right, false);
  1.2352 +
  1.2353 +            /*
  1.2354 +             * If center part is too large (comprises > 4/7 of the array),
  1.2355 +             * swap internal pivot values to ends.
  1.2356 +             */
  1.2357 +            if (less < e1 && e5 < great) {
  1.2358 +                /*
  1.2359 +                 * Skip elements, which are equal to pivot values.
  1.2360 +                 */
  1.2361 +                while (a[less] == pivot1) {
  1.2362 +                    ++less;
  1.2363 +                }
  1.2364 +
  1.2365 +                while (a[great] == pivot2) {
  1.2366 +                    --great;
  1.2367 +                }
  1.2368 +
  1.2369 +                /*
  1.2370 +                 * Partitioning:
  1.2371 +                 *
  1.2372 +                 *   left part         center part                  right part
  1.2373 +                 * +----------------------------------------------------------+
  1.2374 +                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
  1.2375 +                 * +----------------------------------------------------------+
  1.2376 +                 *              ^                        ^       ^
  1.2377 +                 *              |                        |       |
  1.2378 +                 *             less                      k     great
  1.2379 +                 *
  1.2380 +                 * Invariants:
  1.2381 +                 *
  1.2382 +                 *              all in (*,  less) == pivot1
  1.2383 +                 *     pivot1 < all in [less,  k)  < pivot2
  1.2384 +                 *              all in (great, *) == pivot2
  1.2385 +                 *
  1.2386 +                 * Pointer k is the first index of ?-part.
  1.2387 +                 */
  1.2388 +                outer:
  1.2389 +                for (int k = less - 1; ++k <= great; ) {
  1.2390 +                    float ak = a[k];
  1.2391 +                    if (ak == pivot1) { // Move a[k] to left part
  1.2392 +                        a[k] = a[less];
  1.2393 +                        a[less] = ak;
  1.2394 +                        ++less;
  1.2395 +                    } else if (ak == pivot2) { // Move a[k] to right part
  1.2396 +                        while (a[great] == pivot2) {
  1.2397 +                            if (great-- == k) {
  1.2398 +                                break outer;
  1.2399 +                            }
  1.2400 +                        }
  1.2401 +                        if (a[great] == pivot1) { // a[great] < pivot2
  1.2402 +                            a[k] = a[less];
  1.2403 +                            /*
  1.2404 +                             * Even though a[great] equals to pivot1, the
  1.2405 +                             * assignment a[less] = pivot1 may be incorrect,
  1.2406 +                             * if a[great] and pivot1 are floating-point zeros
  1.2407 +                             * of different signs. Therefore in float and
  1.2408 +                             * double sorting methods we have to use more
  1.2409 +                             * accurate assignment a[less] = a[great].
  1.2410 +                             */
  1.2411 +                            a[less] = a[great];
  1.2412 +                            ++less;
  1.2413 +                        } else { // pivot1 < a[great] < pivot2
  1.2414 +                            a[k] = a[great];
  1.2415 +                        }
  1.2416 +                        a[great] = ak;
  1.2417 +                        --great;
  1.2418 +                    }
  1.2419 +                }
  1.2420 +            }
  1.2421 +
  1.2422 +            // Sort center part recursively
  1.2423 +            sort(a, less, great, false);
  1.2424 +
  1.2425 +        } else { // Partitioning with one pivot
  1.2426 +            /*
  1.2427 +             * Use the third of the five sorted elements as pivot.
  1.2428 +             * This value is inexpensive approximation of the median.
  1.2429 +             */
  1.2430 +            float pivot = a[e3];
  1.2431 +
  1.2432 +            /*
  1.2433 +             * Partitioning degenerates to the traditional 3-way
  1.2434 +             * (or "Dutch National Flag") schema:
  1.2435 +             *
  1.2436 +             *   left part    center part              right part
  1.2437 +             * +-------------------------------------------------+
  1.2438 +             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
  1.2439 +             * +-------------------------------------------------+
  1.2440 +             *              ^              ^        ^
  1.2441 +             *              |              |        |
  1.2442 +             *             less            k      great
  1.2443 +             *
  1.2444 +             * Invariants:
  1.2445 +             *
  1.2446 +             *   all in (left, less)   < pivot
  1.2447 +             *   all in [less, k)     == pivot
  1.2448 +             *   all in (great, right) > pivot
  1.2449 +             *
  1.2450 +             * Pointer k is the first index of ?-part.
  1.2451 +             */
  1.2452 +            for (int k = less; k <= great; ++k) {
  1.2453 +                if (a[k] == pivot) {
  1.2454 +                    continue;
  1.2455 +                }
  1.2456 +                float ak = a[k];
  1.2457 +                if (ak < pivot) { // Move a[k] to left part
  1.2458 +                    a[k] = a[less];
  1.2459 +                    a[less] = ak;
  1.2460 +                    ++less;
  1.2461 +                } else { // a[k] > pivot - Move a[k] to right part
  1.2462 +                    while (a[great] > pivot) {
  1.2463 +                        --great;
  1.2464 +                    }
  1.2465 +                    if (a[great] < pivot) { // a[great] <= pivot
  1.2466 +                        a[k] = a[less];
  1.2467 +                        a[less] = a[great];
  1.2468 +                        ++less;
  1.2469 +                    } else { // a[great] == pivot
  1.2470 +                        /*
  1.2471 +                         * Even though a[great] equals to pivot, the
  1.2472 +                         * assignment a[k] = pivot may be incorrect,
  1.2473 +                         * if a[great] and pivot are floating-point
  1.2474 +                         * zeros of different signs. Therefore in float
  1.2475 +                         * and double sorting methods we have to use
  1.2476 +                         * more accurate assignment a[k] = a[great].
  1.2477 +                         */
  1.2478 +                        a[k] = a[great];
  1.2479 +                    }
  1.2480 +                    a[great] = ak;
  1.2481 +                    --great;
  1.2482 +                }
  1.2483 +            }
  1.2484 +
  1.2485 +            /*
  1.2486 +             * Sort left and right parts recursively.
  1.2487 +             * All elements from center part are equal
  1.2488 +             * and, therefore, already sorted.
  1.2489 +             */
  1.2490 +            sort(a, left, less - 1, leftmost);
  1.2491 +            sort(a, great + 1, right, false);
  1.2492 +        }
  1.2493 +    }
  1.2494 +
  1.2495 +    /**
  1.2496 +     * Sorts the specified array.
  1.2497 +     *
  1.2498 +     * @param a the array to be sorted
  1.2499 +     */
  1.2500 +    public static void sort(double[] a) {
  1.2501 +        sort(a, 0, a.length - 1);
  1.2502 +    }
  1.2503 +
  1.2504 +    /**
  1.2505 +     * Sorts the specified range of the array.
  1.2506 +     *
  1.2507 +     * @param a the array to be sorted
  1.2508 +     * @param left the index of the first element, inclusive, to be sorted
  1.2509 +     * @param right the index of the last element, inclusive, to be sorted
  1.2510 +     */
  1.2511 +    public static void sort(double[] a, int left, int right) {
  1.2512 +        /*
  1.2513 +         * Phase 1: Move NaNs to the end of the array.
  1.2514 +         */
  1.2515 +        while (left <= right && Double.isNaN(a[right])) {
  1.2516 +            --right;
  1.2517 +        }
  1.2518 +        for (int k = right; --k >= left; ) {
  1.2519 +            double ak = a[k];
  1.2520 +            if (ak != ak) { // a[k] is NaN
  1.2521 +                a[k] = a[right];
  1.2522 +                a[right] = ak;
  1.2523 +                --right;
  1.2524 +            }
  1.2525 +        }
  1.2526 +
  1.2527 +        /*
  1.2528 +         * Phase 2: Sort everything except NaNs (which are already in place).
  1.2529 +         */
  1.2530 +        doSort(a, left, right);
  1.2531 +
  1.2532 +        /*
  1.2533 +         * Phase 3: Place negative zeros before positive zeros.
  1.2534 +         */
  1.2535 +        int hi = right;
  1.2536 +
  1.2537 +        /*
  1.2538 +         * Find the first zero, or first positive, or last negative element.
  1.2539 +         */
  1.2540 +        while (left < hi) {
  1.2541 +            int middle = (left + hi) >>> 1;
  1.2542 +            double middleValue = a[middle];
  1.2543 +
  1.2544 +            if (middleValue < 0.0d) {
  1.2545 +                left = middle + 1;
  1.2546 +            } else {
  1.2547 +                hi = middle;
  1.2548 +            }
  1.2549 +        }
  1.2550 +
  1.2551 +        /*
  1.2552 +         * Skip the last negative value (if any) or all leading negative zeros.
  1.2553 +         */
  1.2554 +        while (left <= right && Double.doubleToRawLongBits(a[left]) < 0) {
  1.2555 +            ++left;
  1.2556 +        }
  1.2557 +
  1.2558 +        /*
  1.2559 +         * Move negative zeros to the beginning of the sub-range.
  1.2560 +         *
  1.2561 +         * Partitioning:
  1.2562 +         *
  1.2563 +         * +----------------------------------------------------+
  1.2564 +         * |   < 0.0   |   -0.0   |   0.0   |   ?  ( >= 0.0 )   |
  1.2565 +         * +----------------------------------------------------+
  1.2566 +         *              ^          ^         ^
  1.2567 +         *              |          |         |
  1.2568 +         *             left        p         k
  1.2569 +         *
  1.2570 +         * Invariants:
  1.2571 +         *
  1.2572 +         *   all in (*,  left)  <  0.0
  1.2573 +         *   all in [left,  p) == -0.0
  1.2574 +         *   all in [p,     k) ==  0.0
  1.2575 +         *   all in [k, right] >=  0.0
  1.2576 +         *
  1.2577 +         * Pointer k is the first index of ?-part.
  1.2578 +         */
  1.2579 +        for (int k = left, p = left - 1; ++k <= right; ) {
  1.2580 +            double ak = a[k];
  1.2581 +            if (ak != 0.0d) {
  1.2582 +                break;
  1.2583 +            }
  1.2584 +            if (Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d
  1.2585 +                a[k] = 0.0d;
  1.2586 +                a[++p] = -0.0d;
  1.2587 +            }
  1.2588 +        }
  1.2589 +    }
  1.2590 +
  1.2591 +    /**
  1.2592 +     * Sorts the specified range of the array.
  1.2593 +     *
  1.2594 +     * @param a the array to be sorted
  1.2595 +     * @param left the index of the first element, inclusive, to be sorted
  1.2596 +     * @param right the index of the last element, inclusive, to be sorted
  1.2597 +     */
  1.2598 +    private static void doSort(double[] a, int left, int right) {
  1.2599 +        // Use Quicksort on small arrays
  1.2600 +        if (right - left < QUICKSORT_THRESHOLD) {
  1.2601 +            sort(a, left, right, true);
  1.2602 +            return;
  1.2603 +        }
  1.2604 +
  1.2605 +        /*
  1.2606 +         * Index run[i] is the start of i-th run
  1.2607 +         * (ascending or descending sequence).
  1.2608 +         */
  1.2609 +        int[] run = new int[MAX_RUN_COUNT + 1];
  1.2610 +        int count = 0; run[0] = left;
  1.2611 +
  1.2612 +        // Check if the array is nearly sorted
  1.2613 +        for (int k = left; k < right; run[count] = k) {
  1.2614 +            if (a[k] < a[k + 1]) { // ascending
  1.2615 +                while (++k <= right && a[k - 1] <= a[k]);
  1.2616 +            } else if (a[k] > a[k + 1]) { // descending
  1.2617 +                while (++k <= right && a[k - 1] >= a[k]);
  1.2618 +                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
  1.2619 +                    double t = a[lo]; a[lo] = a[hi]; a[hi] = t;
  1.2620 +                }
  1.2621 +            } else { // equal
  1.2622 +                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
  1.2623 +                    if (--m == 0) {
  1.2624 +                        sort(a, left, right, true);
  1.2625 +                        return;
  1.2626 +                    }
  1.2627 +                }
  1.2628 +            }
  1.2629 +
  1.2630 +            /*
  1.2631 +             * The array is not highly structured,
  1.2632 +             * use Quicksort instead of merge sort.
  1.2633 +             */
  1.2634 +            if (++count == MAX_RUN_COUNT) {
  1.2635 +                sort(a, left, right, true);
  1.2636 +                return;
  1.2637 +            }
  1.2638 +        }
  1.2639 +
  1.2640 +        // Check special cases
  1.2641 +        if (run[count] == right++) { // The last run contains one element
  1.2642 +            run[++count] = right;
  1.2643 +        } else if (count == 1) { // The array is already sorted
  1.2644 +            return;
  1.2645 +        }
  1.2646 +
  1.2647 +        /*
  1.2648 +         * Create temporary array, which is used for merging.
  1.2649 +         * Implementation note: variable "right" is increased by 1.
  1.2650 +         */
  1.2651 +        double[] b; byte odd = 0;
  1.2652 +        for (int n = 1; (n <<= 1) < count; odd ^= 1);
  1.2653 +
  1.2654 +        if (odd == 0) {
  1.2655 +            b = a; a = new double[b.length];
  1.2656 +            for (int i = left - 1; ++i < right; a[i] = b[i]);
  1.2657 +        } else {
  1.2658 +            b = new double[a.length];
  1.2659 +        }
  1.2660 +
  1.2661 +        // Merging
  1.2662 +        for (int last; count > 1; count = last) {
  1.2663 +            for (int k = (last = 0) + 2; k <= count; k += 2) {
  1.2664 +                int hi = run[k], mi = run[k - 1];
  1.2665 +                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
  1.2666 +                    if (q >= hi || p < mi && a[p] <= a[q]) {
  1.2667 +                        b[i] = a[p++];
  1.2668 +                    } else {
  1.2669 +                        b[i] = a[q++];
  1.2670 +                    }
  1.2671 +                }
  1.2672 +                run[++last] = hi;
  1.2673 +            }
  1.2674 +            if ((count & 1) != 0) {
  1.2675 +                for (int i = right, lo = run[count - 1]; --i >= lo;
  1.2676 +                    b[i] = a[i]
  1.2677 +                );
  1.2678 +                run[++last] = right;
  1.2679 +            }
  1.2680 +            double[] t = a; a = b; b = t;
  1.2681 +        }
  1.2682 +    }
  1.2683 +
  1.2684 +    /**
  1.2685 +     * Sorts the specified range of the array by Dual-Pivot Quicksort.
  1.2686 +     *
  1.2687 +     * @param a the array to be sorted
  1.2688 +     * @param left the index of the first element, inclusive, to be sorted
  1.2689 +     * @param right the index of the last element, inclusive, to be sorted
  1.2690 +     * @param leftmost indicates if this part is the leftmost in the range
  1.2691 +     */
  1.2692 +    private static void sort(double[] a, int left, int right, boolean leftmost) {
  1.2693 +        int length = right - left + 1;
  1.2694 +
  1.2695 +        // Use insertion sort on tiny arrays
  1.2696 +        if (length < INSERTION_SORT_THRESHOLD) {
  1.2697 +            if (leftmost) {
  1.2698 +                /*
  1.2699 +                 * Traditional (without sentinel) insertion sort,
  1.2700 +                 * optimized for server VM, is used in case of
  1.2701 +                 * the leftmost part.
  1.2702 +                 */
  1.2703 +                for (int i = left, j = i; i < right; j = ++i) {
  1.2704 +                    double ai = a[i + 1];
  1.2705 +                    while (ai < a[j]) {
  1.2706 +                        a[j + 1] = a[j];
  1.2707 +                        if (j-- == left) {
  1.2708 +                            break;
  1.2709 +                        }
  1.2710 +                    }
  1.2711 +                    a[j + 1] = ai;
  1.2712 +                }
  1.2713 +            } else {
  1.2714 +                /*
  1.2715 +                 * Skip the longest ascending sequence.
  1.2716 +                 */
  1.2717 +                do {
  1.2718 +                    if (left >= right) {
  1.2719 +                        return;
  1.2720 +                    }
  1.2721 +                } while (a[++left] >= a[left - 1]);
  1.2722 +
  1.2723 +                /*
  1.2724 +                 * Every element from adjoining part plays the role
  1.2725 +                 * of sentinel, therefore this allows us to avoid the
  1.2726 +                 * left range check on each iteration. Moreover, we use
  1.2727 +                 * the more optimized algorithm, so called pair insertion
  1.2728 +                 * sort, which is faster (in the context of Quicksort)
  1.2729 +                 * than traditional implementation of insertion sort.
  1.2730 +                 */
  1.2731 +                for (int k = left; ++left <= right; k = ++left) {
  1.2732 +                    double a1 = a[k], a2 = a[left];
  1.2733 +
  1.2734 +                    if (a1 < a2) {
  1.2735 +                        a2 = a1; a1 = a[left];
  1.2736 +                    }
  1.2737 +                    while (a1 < a[--k]) {
  1.2738 +                        a[k + 2] = a[k];
  1.2739 +                    }
  1.2740 +                    a[++k + 1] = a1;
  1.2741 +
  1.2742 +                    while (a2 < a[--k]) {
  1.2743 +                        a[k + 1] = a[k];
  1.2744 +                    }
  1.2745 +                    a[k + 1] = a2;
  1.2746 +                }
  1.2747 +                double last = a[right];
  1.2748 +
  1.2749 +                while (last < a[--right]) {
  1.2750 +                    a[right + 1] = a[right];
  1.2751 +                }
  1.2752 +                a[right + 1] = last;
  1.2753 +            }
  1.2754 +            return;
  1.2755 +        }
  1.2756 +
  1.2757 +        // Inexpensive approximation of length / 7
  1.2758 +        int seventh = (length >> 3) + (length >> 6) + 1;
  1.2759 +
  1.2760 +        /*
  1.2761 +         * Sort five evenly spaced elements around (and including) the
  1.2762 +         * center element in the range. These elements will be used for
  1.2763 +         * pivot selection as described below. The choice for spacing
  1.2764 +         * these elements was empirically determined to work well on
  1.2765 +         * a wide variety of inputs.
  1.2766 +         */
  1.2767 +        int e3 = (left + right) >>> 1; // The midpoint
  1.2768 +        int e2 = e3 - seventh;
  1.2769 +        int e1 = e2 - seventh;
  1.2770 +        int e4 = e3 + seventh;
  1.2771 +        int e5 = e4 + seventh;
  1.2772 +
  1.2773 +        // Sort these elements using insertion sort
  1.2774 +        if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
  1.2775 +
  1.2776 +        if (a[e3] < a[e2]) { double t = a[e3]; a[e3] = a[e2]; a[e2] = t;
  1.2777 +            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.2778 +        }
  1.2779 +        if (a[e4] < a[e3]) { double t = a[e4]; a[e4] = a[e3]; a[e3] = t;
  1.2780 +            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
  1.2781 +                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.2782 +            }
  1.2783 +        }
  1.2784 +        if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t;
  1.2785 +            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
  1.2786 +                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
  1.2787 +                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
  1.2788 +                }
  1.2789 +            }
  1.2790 +        }
  1.2791 +
  1.2792 +        // Pointers
  1.2793 +        int less  = left;  // The index of the first element of center part
  1.2794 +        int great = right; // The index before the first element of right part
  1.2795 +
  1.2796 +        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
  1.2797 +            /*
  1.2798 +             * Use the second and fourth of the five sorted elements as pivots.
  1.2799 +             * These values are inexpensive approximations of the first and
  1.2800 +             * second terciles of the array. Note that pivot1 <= pivot2.
  1.2801 +             */
  1.2802 +            double pivot1 = a[e2];
  1.2803 +            double pivot2 = a[e4];
  1.2804 +
  1.2805 +            /*
  1.2806 +             * The first and the last elements to be sorted are moved to the
  1.2807 +             * locations formerly occupied by the pivots. When partitioning
  1.2808 +             * is complete, the pivots are swapped back into their final
  1.2809 +             * positions, and excluded from subsequent sorting.
  1.2810 +             */
  1.2811 +            a[e2] = a[left];
  1.2812 +            a[e4] = a[right];
  1.2813 +
  1.2814 +            /*
  1.2815 +             * Skip elements, which are less or greater than pivot values.
  1.2816 +             */
  1.2817 +            while (a[++less] < pivot1);
  1.2818 +            while (a[--great] > pivot2);
  1.2819 +
  1.2820 +            /*
  1.2821 +             * Partitioning:
  1.2822 +             *
  1.2823 +             *   left part           center part                   right part
  1.2824 +             * +--------------------------------------------------------------+
  1.2825 +             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
  1.2826 +             * +--------------------------------------------------------------+
  1.2827 +             *               ^                          ^       ^
  1.2828 +             *               |                          |       |
  1.2829 +             *              less                        k     great
  1.2830 +             *
  1.2831 +             * Invariants:
  1.2832 +             *
  1.2833 +             *              all in (left, less)   < pivot1
  1.2834 +             *    pivot1 <= all in [less, k)     <= pivot2
  1.2835 +             *              all in (great, right) > pivot2
  1.2836 +             *
  1.2837 +             * Pointer k is the first index of ?-part.
  1.2838 +             */
  1.2839 +            outer:
  1.2840 +            for (int k = less - 1; ++k <= great; ) {
  1.2841 +                double ak = a[k];
  1.2842 +                if (ak < pivot1) { // Move a[k] to left part
  1.2843 +                    a[k] = a[less];
  1.2844 +                    /*
  1.2845 +                     * Here and below we use "a[i] = b; i++;" instead
  1.2846 +                     * of "a[i++] = b;" due to performance issue.
  1.2847 +                     */
  1.2848 +                    a[less] = ak;
  1.2849 +                    ++less;
  1.2850 +                } else if (ak > pivot2) { // Move a[k] to right part
  1.2851 +                    while (a[great] > pivot2) {
  1.2852 +                        if (great-- == k) {
  1.2853 +                            break outer;
  1.2854 +                        }
  1.2855 +                    }
  1.2856 +                    if (a[great] < pivot1) { // a[great] <= pivot2
  1.2857 +                        a[k] = a[less];
  1.2858 +                        a[less] = a[great];
  1.2859 +                        ++less;
  1.2860 +                    } else { // pivot1 <= a[great] <= pivot2
  1.2861 +                        a[k] = a[great];
  1.2862 +                    }
  1.2863 +                    /*
  1.2864 +                     * Here and below we use "a[i] = b; i--;" instead
  1.2865 +                     * of "a[i--] = b;" due to performance issue.
  1.2866 +                     */
  1.2867 +                    a[great] = ak;
  1.2868 +                    --great;
  1.2869 +                }
  1.2870 +            }
  1.2871 +
  1.2872 +            // Swap pivots into their final positions
  1.2873 +            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
  1.2874 +            a[right] = a[great + 1]; a[great + 1] = pivot2;
  1.2875 +
  1.2876 +            // Sort left and right parts recursively, excluding known pivots
  1.2877 +            sort(a, left, less - 2, leftmost);
  1.2878 +            sort(a, great + 2, right, false);
  1.2879 +
  1.2880 +            /*
  1.2881 +             * If center part is too large (comprises > 4/7 of the array),
  1.2882 +             * swap internal pivot values to ends.
  1.2883 +             */
  1.2884 +            if (less < e1 && e5 < great) {
  1.2885 +                /*
  1.2886 +                 * Skip elements, which are equal to pivot values.
  1.2887 +                 */
  1.2888 +                while (a[less] == pivot1) {
  1.2889 +                    ++less;
  1.2890 +                }
  1.2891 +
  1.2892 +                while (a[great] == pivot2) {
  1.2893 +                    --great;
  1.2894 +                }
  1.2895 +
  1.2896 +                /*
  1.2897 +                 * Partitioning:
  1.2898 +                 *
  1.2899 +                 *   left part         center part                  right part
  1.2900 +                 * +----------------------------------------------------------+
  1.2901 +                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
  1.2902 +                 * +----------------------------------------------------------+
  1.2903 +                 *              ^                        ^       ^
  1.2904 +                 *              |                        |       |
  1.2905 +                 *             less                      k     great
  1.2906 +                 *
  1.2907 +                 * Invariants:
  1.2908 +                 *
  1.2909 +                 *              all in (*,  less) == pivot1
  1.2910 +                 *     pivot1 < all in [less,  k)  < pivot2
  1.2911 +                 *              all in (great, *) == pivot2
  1.2912 +                 *
  1.2913 +                 * Pointer k is the first index of ?-part.
  1.2914 +                 */
  1.2915 +                outer:
  1.2916 +                for (int k = less - 1; ++k <= great; ) {
  1.2917 +                    double ak = a[k];
  1.2918 +                    if (ak == pivot1) { // Move a[k] to left part
  1.2919 +                        a[k] = a[less];
  1.2920 +                        a[less] = ak;
  1.2921 +                        ++less;
  1.2922 +                    } else if (ak == pivot2) { // Move a[k] to right part
  1.2923 +                        while (a[great] == pivot2) {
  1.2924 +                            if (great-- == k) {
  1.2925 +                                break outer;
  1.2926 +                            }
  1.2927 +                        }
  1.2928 +                        if (a[great] == pivot1) { // a[great] < pivot2
  1.2929 +                            a[k] = a[less];
  1.2930 +                            /*
  1.2931 +                             * Even though a[great] equals to pivot1, the
  1.2932 +                             * assignment a[less] = pivot1 may be incorrect,
  1.2933 +                             * if a[great] and pivot1 are floating-point zeros
  1.2934 +                             * of different signs. Therefore in float and
  1.2935 +                             * double sorting methods we have to use more
  1.2936 +                             * accurate assignment a[less] = a[great].
  1.2937 +                             */
  1.2938 +                            a[less] = a[great];
  1.2939 +                            ++less;
  1.2940 +                        } else { // pivot1 < a[great] < pivot2
  1.2941 +                            a[k] = a[great];
  1.2942 +                        }
  1.2943 +                        a[great] = ak;
  1.2944 +                        --great;
  1.2945 +                    }
  1.2946 +                }
  1.2947 +            }
  1.2948 +
  1.2949 +            // Sort center part recursively
  1.2950 +            sort(a, less, great, false);
  1.2951 +
  1.2952 +        } else { // Partitioning with one pivot
  1.2953 +            /*
  1.2954 +             * Use the third of the five sorted elements as pivot.
  1.2955 +             * This value is inexpensive approximation of the median.
  1.2956 +             */
  1.2957 +            double pivot = a[e3];
  1.2958 +
  1.2959 +            /*
  1.2960 +             * Partitioning degenerates to the traditional 3-way
  1.2961 +             * (or "Dutch National Flag") schema:
  1.2962 +             *
  1.2963 +             *   left part    center part              right part
  1.2964 +             * +-------------------------------------------------+
  1.2965 +             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
  1.2966 +             * +-------------------------------------------------+
  1.2967 +             *              ^              ^        ^
  1.2968 +             *              |              |        |
  1.2969 +             *             less            k      great
  1.2970 +             *
  1.2971 +             * Invariants:
  1.2972 +             *
  1.2973 +             *   all in (left, less)   < pivot
  1.2974 +             *   all in [less, k)     == pivot
  1.2975 +             *   all in (great, right) > pivot
  1.2976 +             *
  1.2977 +             * Pointer k is the first index of ?-part.
  1.2978 +             */
  1.2979 +            for (int k = less; k <= great; ++k) {
  1.2980 +                if (a[k] == pivot) {
  1.2981 +                    continue;
  1.2982 +                }
  1.2983 +                double ak = a[k];
  1.2984 +                if (ak < pivot) { // Move a[k] to left part
  1.2985 +                    a[k] = a[less];
  1.2986 +                    a[less] = ak;
  1.2987 +                    ++less;
  1.2988 +                } else { // a[k] > pivot - Move a[k] to right part
  1.2989 +                    while (a[great] > pivot) {
  1.2990 +                        --great;
  1.2991 +                    }
  1.2992 +                    if (a[great] < pivot) { // a[great] <= pivot
  1.2993 +                        a[k] = a[less];
  1.2994 +                        a[less] = a[great];
  1.2995 +                        ++less;
  1.2996 +                    } else { // a[great] == pivot
  1.2997 +                        /*
  1.2998 +                         * Even though a[great] equals to pivot, the
  1.2999 +                         * assignment a[k] = pivot may be incorrect,
  1.3000 +                         * if a[great] and pivot are floating-point
  1.3001 +                         * zeros of different signs. Therefore in float
  1.3002 +                         * and double sorting methods we have to use
  1.3003 +                         * more accurate assignment a[k] = a[great].
  1.3004 +                         */
  1.3005 +                        a[k] = a[great];
  1.3006 +                    }
  1.3007 +                    a[great] = ak;
  1.3008 +                    --great;
  1.3009 +                }
  1.3010 +            }
  1.3011 +
  1.3012 +            /*
  1.3013 +             * Sort left and right parts recursively.
  1.3014 +             * All elements from center part are equal
  1.3015 +             * and, therefore, already sorted.
  1.3016 +             */
  1.3017 +            sort(a, left, less - 1, leftmost);
  1.3018 +            sort(a, great + 1, right, false);
  1.3019 +        }
  1.3020 +    }
  1.3021 +}