rt/emul/compact/src/main/java/java/util/Hashtable.java
changeset 772 d382dacfd73f
parent 599 d0f57d3ea898
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/compact/src/main/java/java/util/Hashtable.java	Tue Feb 26 16:54:16 2013 +0100
     1.3 @@ -0,0 +1,1005 @@
     1.4 +/*
     1.5 + * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.util;
    1.30 +import java.io.*;
    1.31 +
    1.32 +/**
    1.33 + * This class implements a hash table, which maps keys to values. Any
    1.34 + * non-<code>null</code> object can be used as a key or as a value. <p>
    1.35 + *
    1.36 + * To successfully store and retrieve objects from a hashtable, the
    1.37 + * objects used as keys must implement the <code>hashCode</code>
    1.38 + * method and the <code>equals</code> method. <p>
    1.39 + *
    1.40 + * An instance of <code>Hashtable</code> has two parameters that affect its
    1.41 + * performance: <i>initial capacity</i> and <i>load factor</i>.  The
    1.42 + * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the
    1.43 + * <i>initial capacity</i> is simply the capacity at the time the hash table
    1.44 + * is created.  Note that the hash table is <i>open</i>: in the case of a "hash
    1.45 + * collision", a single bucket stores multiple entries, which must be searched
    1.46 + * sequentially.  The <i>load factor</i> is a measure of how full the hash
    1.47 + * table is allowed to get before its capacity is automatically increased.
    1.48 + * The initial capacity and load factor parameters are merely hints to
    1.49 + * the implementation.  The exact details as to when and whether the rehash
    1.50 + * method is invoked are implementation-dependent.<p>
    1.51 + *
    1.52 + * Generally, the default load factor (.75) offers a good tradeoff between
    1.53 + * time and space costs.  Higher values decrease the space overhead but
    1.54 + * increase the time cost to look up an entry (which is reflected in most
    1.55 + * <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p>
    1.56 + *
    1.57 + * The initial capacity controls a tradeoff between wasted space and the
    1.58 + * need for <code>rehash</code> operations, which are time-consuming.
    1.59 + * No <code>rehash</code> operations will <i>ever</i> occur if the initial
    1.60 + * capacity is greater than the maximum number of entries the
    1.61 + * <tt>Hashtable</tt> will contain divided by its load factor.  However,
    1.62 + * setting the initial capacity too high can waste space.<p>
    1.63 + *
    1.64 + * If many entries are to be made into a <code>Hashtable</code>,
    1.65 + * creating it with a sufficiently large capacity may allow the
    1.66 + * entries to be inserted more efficiently than letting it perform
    1.67 + * automatic rehashing as needed to grow the table. <p>
    1.68 + *
    1.69 + * This example creates a hashtable of numbers. It uses the names of
    1.70 + * the numbers as keys:
    1.71 + * <pre>   {@code
    1.72 + *   Hashtable<String, Integer> numbers
    1.73 + *     = new Hashtable<String, Integer>();
    1.74 + *   numbers.put("one", 1);
    1.75 + *   numbers.put("two", 2);
    1.76 + *   numbers.put("three", 3);}</pre>
    1.77 + *
    1.78 + * <p>To retrieve a number, use the following code:
    1.79 + * <pre>   {@code
    1.80 + *   Integer n = numbers.get("two");
    1.81 + *   if (n != null) {
    1.82 + *     System.out.println("two = " + n);
    1.83 + *   }}</pre>
    1.84 + *
    1.85 + * <p>The iterators returned by the <tt>iterator</tt> method of the collections
    1.86 + * returned by all of this class's "collection view methods" are
    1.87 + * <em>fail-fast</em>: if the Hashtable is structurally modified at any time
    1.88 + * after the iterator is created, in any way except through the iterator's own
    1.89 + * <tt>remove</tt> method, the iterator will throw a {@link
    1.90 + * ConcurrentModificationException}.  Thus, in the face of concurrent
    1.91 + * modification, the iterator fails quickly and cleanly, rather than risking
    1.92 + * arbitrary, non-deterministic behavior at an undetermined time in the future.
    1.93 + * The Enumerations returned by Hashtable's keys and elements methods are
    1.94 + * <em>not</em> fail-fast.
    1.95 + *
    1.96 + * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
    1.97 + * as it is, generally speaking, impossible to make any hard guarantees in the
    1.98 + * presence of unsynchronized concurrent modification.  Fail-fast iterators
    1.99 + * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
   1.100 + * Therefore, it would be wrong to write a program that depended on this
   1.101 + * exception for its correctness: <i>the fail-fast behavior of iterators
   1.102 + * should be used only to detect bugs.</i>
   1.103 + *
   1.104 + * <p>As of the Java 2 platform v1.2, this class was retrofitted to
   1.105 + * implement the {@link Map} interface, making it a member of the
   1.106 + * <a href="{@docRoot}/../technotes/guides/collections/index.html">
   1.107 + *
   1.108 + * Java Collections Framework</a>.  Unlike the new collection
   1.109 + * implementations, {@code Hashtable} is synchronized.  If a
   1.110 + * thread-safe implementation is not needed, it is recommended to use
   1.111 + * {@link HashMap} in place of {@code Hashtable}.  If a thread-safe
   1.112 + * highly-concurrent implementation is desired, then it is recommended
   1.113 + * to use {@link java.util.concurrent.ConcurrentHashMap} in place of
   1.114 + * {@code Hashtable}.
   1.115 + *
   1.116 + * @author  Arthur van Hoff
   1.117 + * @author  Josh Bloch
   1.118 + * @author  Neal Gafter
   1.119 + * @see     Object#equals(java.lang.Object)
   1.120 + * @see     Object#hashCode()
   1.121 + * @see     Hashtable#rehash()
   1.122 + * @see     Collection
   1.123 + * @see     Map
   1.124 + * @see     HashMap
   1.125 + * @see     TreeMap
   1.126 + * @since JDK1.0
   1.127 + */
   1.128 +public class Hashtable<K,V>
   1.129 +    extends Dictionary<K,V>
   1.130 +    implements Map<K,V>, Cloneable, java.io.Serializable {
   1.131 +
   1.132 +    /**
   1.133 +     * The hash table data.
   1.134 +     */
   1.135 +    private transient Entry[] table;
   1.136 +
   1.137 +    /**
   1.138 +     * The total number of entries in the hash table.
   1.139 +     */
   1.140 +    private transient int count;
   1.141 +
   1.142 +    /**
   1.143 +     * The table is rehashed when its size exceeds this threshold.  (The
   1.144 +     * value of this field is (int)(capacity * loadFactor).)
   1.145 +     *
   1.146 +     * @serial
   1.147 +     */
   1.148 +    private int threshold;
   1.149 +
   1.150 +    /**
   1.151 +     * The load factor for the hashtable.
   1.152 +     *
   1.153 +     * @serial
   1.154 +     */
   1.155 +    private float loadFactor;
   1.156 +
   1.157 +    /**
   1.158 +     * The number of times this Hashtable has been structurally modified
   1.159 +     * Structural modifications are those that change the number of entries in
   1.160 +     * the Hashtable or otherwise modify its internal structure (e.g.,
   1.161 +     * rehash).  This field is used to make iterators on Collection-views of
   1.162 +     * the Hashtable fail-fast.  (See ConcurrentModificationException).
   1.163 +     */
   1.164 +    private transient int modCount = 0;
   1.165 +
   1.166 +    /** use serialVersionUID from JDK 1.0.2 for interoperability */
   1.167 +    private static final long serialVersionUID = 1421746759512286392L;
   1.168 +
   1.169 +    /**
   1.170 +     * Constructs a new, empty hashtable with the specified initial
   1.171 +     * capacity and the specified load factor.
   1.172 +     *
   1.173 +     * @param      initialCapacity   the initial capacity of the hashtable.
   1.174 +     * @param      loadFactor        the load factor of the hashtable.
   1.175 +     * @exception  IllegalArgumentException  if the initial capacity is less
   1.176 +     *             than zero, or if the load factor is nonpositive.
   1.177 +     */
   1.178 +    public Hashtable(int initialCapacity, float loadFactor) {
   1.179 +        if (initialCapacity < 0)
   1.180 +            throw new IllegalArgumentException("Illegal Capacity: "+
   1.181 +                                               initialCapacity);
   1.182 +        if (loadFactor <= 0 || Float.isNaN(loadFactor))
   1.183 +            throw new IllegalArgumentException("Illegal Load: "+loadFactor);
   1.184 +
   1.185 +        if (initialCapacity==0)
   1.186 +            initialCapacity = 1;
   1.187 +        this.loadFactor = loadFactor;
   1.188 +        table = new Entry[initialCapacity];
   1.189 +        threshold = (int)(initialCapacity * loadFactor);
   1.190 +    }
   1.191 +
   1.192 +    /**
   1.193 +     * Constructs a new, empty hashtable with the specified initial capacity
   1.194 +     * and default load factor (0.75).
   1.195 +     *
   1.196 +     * @param     initialCapacity   the initial capacity of the hashtable.
   1.197 +     * @exception IllegalArgumentException if the initial capacity is less
   1.198 +     *              than zero.
   1.199 +     */
   1.200 +    public Hashtable(int initialCapacity) {
   1.201 +        this(initialCapacity, 0.75f);
   1.202 +    }
   1.203 +
   1.204 +    /**
   1.205 +     * Constructs a new, empty hashtable with a default initial capacity (11)
   1.206 +     * and load factor (0.75).
   1.207 +     */
   1.208 +    public Hashtable() {
   1.209 +        this(11, 0.75f);
   1.210 +    }
   1.211 +
   1.212 +    /**
   1.213 +     * Constructs a new hashtable with the same mappings as the given
   1.214 +     * Map.  The hashtable is created with an initial capacity sufficient to
   1.215 +     * hold the mappings in the given Map and a default load factor (0.75).
   1.216 +     *
   1.217 +     * @param t the map whose mappings are to be placed in this map.
   1.218 +     * @throws NullPointerException if the specified map is null.
   1.219 +     * @since   1.2
   1.220 +     */
   1.221 +    public Hashtable(Map<? extends K, ? extends V> t) {
   1.222 +        this(Math.max(2*t.size(), 11), 0.75f);
   1.223 +        putAll(t);
   1.224 +    }
   1.225 +
   1.226 +    /**
   1.227 +     * Returns the number of keys in this hashtable.
   1.228 +     *
   1.229 +     * @return  the number of keys in this hashtable.
   1.230 +     */
   1.231 +    public synchronized int size() {
   1.232 +        return count;
   1.233 +    }
   1.234 +
   1.235 +    /**
   1.236 +     * Tests if this hashtable maps no keys to values.
   1.237 +     *
   1.238 +     * @return  <code>true</code> if this hashtable maps no keys to values;
   1.239 +     *          <code>false</code> otherwise.
   1.240 +     */
   1.241 +    public synchronized boolean isEmpty() {
   1.242 +        return count == 0;
   1.243 +    }
   1.244 +
   1.245 +    /**
   1.246 +     * Returns an enumeration of the keys in this hashtable.
   1.247 +     *
   1.248 +     * @return  an enumeration of the keys in this hashtable.
   1.249 +     * @see     Enumeration
   1.250 +     * @see     #elements()
   1.251 +     * @see     #keySet()
   1.252 +     * @see     Map
   1.253 +     */
   1.254 +    public synchronized Enumeration<K> keys() {
   1.255 +        return this.<K>getEnumeration(KEYS);
   1.256 +    }
   1.257 +
   1.258 +    /**
   1.259 +     * Returns an enumeration of the values in this hashtable.
   1.260 +     * Use the Enumeration methods on the returned object to fetch the elements
   1.261 +     * sequentially.
   1.262 +     *
   1.263 +     * @return  an enumeration of the values in this hashtable.
   1.264 +     * @see     java.util.Enumeration
   1.265 +     * @see     #keys()
   1.266 +     * @see     #values()
   1.267 +     * @see     Map
   1.268 +     */
   1.269 +    public synchronized Enumeration<V> elements() {
   1.270 +        return this.<V>getEnumeration(VALUES);
   1.271 +    }
   1.272 +
   1.273 +    /**
   1.274 +     * Tests if some key maps into the specified value in this hashtable.
   1.275 +     * This operation is more expensive than the {@link #containsKey
   1.276 +     * containsKey} method.
   1.277 +     *
   1.278 +     * <p>Note that this method is identical in functionality to
   1.279 +     * {@link #containsValue containsValue}, (which is part of the
   1.280 +     * {@link Map} interface in the collections framework).
   1.281 +     *
   1.282 +     * @param      value   a value to search for
   1.283 +     * @return     <code>true</code> if and only if some key maps to the
   1.284 +     *             <code>value</code> argument in this hashtable as
   1.285 +     *             determined by the <tt>equals</tt> method;
   1.286 +     *             <code>false</code> otherwise.
   1.287 +     * @exception  NullPointerException  if the value is <code>null</code>
   1.288 +     */
   1.289 +    public synchronized boolean contains(Object value) {
   1.290 +        if (value == null) {
   1.291 +            throw new NullPointerException();
   1.292 +        }
   1.293 +
   1.294 +        Entry tab[] = table;
   1.295 +        for (int i = tab.length ; i-- > 0 ;) {
   1.296 +            for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
   1.297 +                if (e.value.equals(value)) {
   1.298 +                    return true;
   1.299 +                }
   1.300 +            }
   1.301 +        }
   1.302 +        return false;
   1.303 +    }
   1.304 +
   1.305 +    /**
   1.306 +     * Returns true if this hashtable maps one or more keys to this value.
   1.307 +     *
   1.308 +     * <p>Note that this method is identical in functionality to {@link
   1.309 +     * #contains contains} (which predates the {@link Map} interface).
   1.310 +     *
   1.311 +     * @param value value whose presence in this hashtable is to be tested
   1.312 +     * @return <tt>true</tt> if this map maps one or more keys to the
   1.313 +     *         specified value
   1.314 +     * @throws NullPointerException  if the value is <code>null</code>
   1.315 +     * @since 1.2
   1.316 +     */
   1.317 +    public boolean containsValue(Object value) {
   1.318 +        return contains(value);
   1.319 +    }
   1.320 +
   1.321 +    /**
   1.322 +     * Tests if the specified object is a key in this hashtable.
   1.323 +     *
   1.324 +     * @param   key   possible key
   1.325 +     * @return  <code>true</code> if and only if the specified object
   1.326 +     *          is a key in this hashtable, as determined by the
   1.327 +     *          <tt>equals</tt> method; <code>false</code> otherwise.
   1.328 +     * @throws  NullPointerException  if the key is <code>null</code>
   1.329 +     * @see     #contains(Object)
   1.330 +     */
   1.331 +    public synchronized boolean containsKey(Object key) {
   1.332 +        Entry tab[] = table;
   1.333 +        int hash = key.hashCode();
   1.334 +        int index = (hash & 0x7FFFFFFF) % tab.length;
   1.335 +        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
   1.336 +            if ((e.hash == hash) && e.key.equals(key)) {
   1.337 +                return true;
   1.338 +            }
   1.339 +        }
   1.340 +        return false;
   1.341 +    }
   1.342 +
   1.343 +    /**
   1.344 +     * Returns the value to which the specified key is mapped,
   1.345 +     * or {@code null} if this map contains no mapping for the key.
   1.346 +     *
   1.347 +     * <p>More formally, if this map contains a mapping from a key
   1.348 +     * {@code k} to a value {@code v} such that {@code (key.equals(k))},
   1.349 +     * then this method returns {@code v}; otherwise it returns
   1.350 +     * {@code null}.  (There can be at most one such mapping.)
   1.351 +     *
   1.352 +     * @param key the key whose associated value is to be returned
   1.353 +     * @return the value to which the specified key is mapped, or
   1.354 +     *         {@code null} if this map contains no mapping for the key
   1.355 +     * @throws NullPointerException if the specified key is null
   1.356 +     * @see     #put(Object, Object)
   1.357 +     */
   1.358 +    public synchronized V get(Object key) {
   1.359 +        Entry tab[] = table;
   1.360 +        int hash = key.hashCode();
   1.361 +        int index = (hash & 0x7FFFFFFF) % tab.length;
   1.362 +        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
   1.363 +            if ((e.hash == hash) && e.key.equals(key)) {
   1.364 +                return e.value;
   1.365 +            }
   1.366 +        }
   1.367 +        return null;
   1.368 +    }
   1.369 +
   1.370 +    /**
   1.371 +     * The maximum size of array to allocate.
   1.372 +     * Some VMs reserve some header words in an array.
   1.373 +     * Attempts to allocate larger arrays may result in
   1.374 +     * OutOfMemoryError: Requested array size exceeds VM limit
   1.375 +     */
   1.376 +    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
   1.377 +
   1.378 +    /**
   1.379 +     * Increases the capacity of and internally reorganizes this
   1.380 +     * hashtable, in order to accommodate and access its entries more
   1.381 +     * efficiently.  This method is called automatically when the
   1.382 +     * number of keys in the hashtable exceeds this hashtable's capacity
   1.383 +     * and load factor.
   1.384 +     */
   1.385 +    protected void rehash() {
   1.386 +        int oldCapacity = table.length;
   1.387 +        Entry[] oldMap = table;
   1.388 +
   1.389 +        // overflow-conscious code
   1.390 +        int newCapacity = (oldCapacity << 1) + 1;
   1.391 +        if (newCapacity - MAX_ARRAY_SIZE > 0) {
   1.392 +            if (oldCapacity == MAX_ARRAY_SIZE)
   1.393 +                // Keep running with MAX_ARRAY_SIZE buckets
   1.394 +                return;
   1.395 +            newCapacity = MAX_ARRAY_SIZE;
   1.396 +        }
   1.397 +        Entry[] newMap = new Entry[newCapacity];
   1.398 +
   1.399 +        modCount++;
   1.400 +        threshold = (int)(newCapacity * loadFactor);
   1.401 +        table = newMap;
   1.402 +
   1.403 +        for (int i = oldCapacity ; i-- > 0 ;) {
   1.404 +            for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
   1.405 +                Entry<K,V> e = old;
   1.406 +                old = old.next;
   1.407 +
   1.408 +                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
   1.409 +                e.next = newMap[index];
   1.410 +                newMap[index] = e;
   1.411 +            }
   1.412 +        }
   1.413 +    }
   1.414 +
   1.415 +    /**
   1.416 +     * Maps the specified <code>key</code> to the specified
   1.417 +     * <code>value</code> in this hashtable. Neither the key nor the
   1.418 +     * value can be <code>null</code>. <p>
   1.419 +     *
   1.420 +     * The value can be retrieved by calling the <code>get</code> method
   1.421 +     * with a key that is equal to the original key.
   1.422 +     *
   1.423 +     * @param      key     the hashtable key
   1.424 +     * @param      value   the value
   1.425 +     * @return     the previous value of the specified key in this hashtable,
   1.426 +     *             or <code>null</code> if it did not have one
   1.427 +     * @exception  NullPointerException  if the key or value is
   1.428 +     *               <code>null</code>
   1.429 +     * @see     Object#equals(Object)
   1.430 +     * @see     #get(Object)
   1.431 +     */
   1.432 +    public synchronized V put(K key, V value) {
   1.433 +        // Make sure the value is not null
   1.434 +        if (value == null) {
   1.435 +            throw new NullPointerException();
   1.436 +        }
   1.437 +
   1.438 +        // Makes sure the key is not already in the hashtable.
   1.439 +        Entry tab[] = table;
   1.440 +        int hash = key.hashCode();
   1.441 +        int index = (hash & 0x7FFFFFFF) % tab.length;
   1.442 +        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
   1.443 +            if ((e.hash == hash) && e.key.equals(key)) {
   1.444 +                V old = e.value;
   1.445 +                e.value = value;
   1.446 +                return old;
   1.447 +            }
   1.448 +        }
   1.449 +
   1.450 +        modCount++;
   1.451 +        if (count >= threshold) {
   1.452 +            // Rehash the table if the threshold is exceeded
   1.453 +            rehash();
   1.454 +
   1.455 +            tab = table;
   1.456 +            index = (hash & 0x7FFFFFFF) % tab.length;
   1.457 +        }
   1.458 +
   1.459 +        // Creates the new entry.
   1.460 +        Entry<K,V> e = tab[index];
   1.461 +        tab[index] = new Entry<>(hash, key, value, e);
   1.462 +        count++;
   1.463 +        return null;
   1.464 +    }
   1.465 +
   1.466 +    /**
   1.467 +     * Removes the key (and its corresponding value) from this
   1.468 +     * hashtable. This method does nothing if the key is not in the hashtable.
   1.469 +     *
   1.470 +     * @param   key   the key that needs to be removed
   1.471 +     * @return  the value to which the key had been mapped in this hashtable,
   1.472 +     *          or <code>null</code> if the key did not have a mapping
   1.473 +     * @throws  NullPointerException  if the key is <code>null</code>
   1.474 +     */
   1.475 +    public synchronized V remove(Object key) {
   1.476 +        Entry tab[] = table;
   1.477 +        int hash = key.hashCode();
   1.478 +        int index = (hash & 0x7FFFFFFF) % tab.length;
   1.479 +        for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
   1.480 +            if ((e.hash == hash) && e.key.equals(key)) {
   1.481 +                modCount++;
   1.482 +                if (prev != null) {
   1.483 +                    prev.next = e.next;
   1.484 +                } else {
   1.485 +                    tab[index] = e.next;
   1.486 +                }
   1.487 +                count--;
   1.488 +                V oldValue = e.value;
   1.489 +                e.value = null;
   1.490 +                return oldValue;
   1.491 +            }
   1.492 +        }
   1.493 +        return null;
   1.494 +    }
   1.495 +
   1.496 +    /**
   1.497 +     * Copies all of the mappings from the specified map to this hashtable.
   1.498 +     * These mappings will replace any mappings that this hashtable had for any
   1.499 +     * of the keys currently in the specified map.
   1.500 +     *
   1.501 +     * @param t mappings to be stored in this map
   1.502 +     * @throws NullPointerException if the specified map is null
   1.503 +     * @since 1.2
   1.504 +     */
   1.505 +    public synchronized void putAll(Map<? extends K, ? extends V> t) {
   1.506 +        for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
   1.507 +            put(e.getKey(), e.getValue());
   1.508 +    }
   1.509 +
   1.510 +    /**
   1.511 +     * Clears this hashtable so that it contains no keys.
   1.512 +     */
   1.513 +    public synchronized void clear() {
   1.514 +        Entry tab[] = table;
   1.515 +        modCount++;
   1.516 +        for (int index = tab.length; --index >= 0; )
   1.517 +            tab[index] = null;
   1.518 +        count = 0;
   1.519 +    }
   1.520 +
   1.521 +    /**
   1.522 +     * Creates a shallow copy of this hashtable. All the structure of the
   1.523 +     * hashtable itself is copied, but the keys and values are not cloned.
   1.524 +     * This is a relatively expensive operation.
   1.525 +     *
   1.526 +     * @return  a clone of the hashtable
   1.527 +     */
   1.528 +    public synchronized Object clone() {
   1.529 +        try {
   1.530 +            Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
   1.531 +            t.table = new Entry[table.length];
   1.532 +            for (int i = table.length ; i-- > 0 ; ) {
   1.533 +                t.table[i] = (table[i] != null)
   1.534 +                    ? (Entry<K,V>) table[i].clone() : null;
   1.535 +            }
   1.536 +            t.keySet = null;
   1.537 +            t.entrySet = null;
   1.538 +            t.values = null;
   1.539 +            t.modCount = 0;
   1.540 +            return t;
   1.541 +        } catch (CloneNotSupportedException e) {
   1.542 +            // this shouldn't happen, since we are Cloneable
   1.543 +            throw new InternalError();
   1.544 +        }
   1.545 +    }
   1.546 +
   1.547 +    /**
   1.548 +     * Returns a string representation of this <tt>Hashtable</tt> object
   1.549 +     * in the form of a set of entries, enclosed in braces and separated
   1.550 +     * by the ASCII characters "<tt>,&nbsp;</tt>" (comma and space). Each
   1.551 +     * entry is rendered as the key, an equals sign <tt>=</tt>, and the
   1.552 +     * associated element, where the <tt>toString</tt> method is used to
   1.553 +     * convert the key and element to strings.
   1.554 +     *
   1.555 +     * @return  a string representation of this hashtable
   1.556 +     */
   1.557 +    public synchronized String toString() {
   1.558 +        int max = size() - 1;
   1.559 +        if (max == -1)
   1.560 +            return "{}";
   1.561 +
   1.562 +        StringBuilder sb = new StringBuilder();
   1.563 +        Iterator<Map.Entry<K,V>> it = entrySet().iterator();
   1.564 +
   1.565 +        sb.append('{');
   1.566 +        for (int i = 0; ; i++) {
   1.567 +            Map.Entry<K,V> e = it.next();
   1.568 +            K key = e.getKey();
   1.569 +            V value = e.getValue();
   1.570 +            sb.append(key   == this ? "(this Map)" : key.toString());
   1.571 +            sb.append('=');
   1.572 +            sb.append(value == this ? "(this Map)" : value.toString());
   1.573 +
   1.574 +            if (i == max)
   1.575 +                return sb.append('}').toString();
   1.576 +            sb.append(", ");
   1.577 +        }
   1.578 +    }
   1.579 +
   1.580 +
   1.581 +    private <T> Enumeration<T> getEnumeration(int type) {
   1.582 +        if (count == 0) {
   1.583 +            return Collections.emptyEnumeration();
   1.584 +        } else {
   1.585 +            return new Enumerator<>(type, false);
   1.586 +        }
   1.587 +    }
   1.588 +
   1.589 +    private <T> Iterator<T> getIterator(int type) {
   1.590 +        if (count == 0) {
   1.591 +            return Collections.emptyIterator();
   1.592 +        } else {
   1.593 +            return new Enumerator<>(type, true);
   1.594 +        }
   1.595 +    }
   1.596 +
   1.597 +    // Views
   1.598 +
   1.599 +    /**
   1.600 +     * Each of these fields are initialized to contain an instance of the
   1.601 +     * appropriate view the first time this view is requested.  The views are
   1.602 +     * stateless, so there's no reason to create more than one of each.
   1.603 +     */
   1.604 +    private transient volatile Set<K> keySet = null;
   1.605 +    private transient volatile Set<Map.Entry<K,V>> entrySet = null;
   1.606 +    private transient volatile Collection<V> values = null;
   1.607 +
   1.608 +    /**
   1.609 +     * Returns a {@link Set} view of the keys contained in this map.
   1.610 +     * The set is backed by the map, so changes to the map are
   1.611 +     * reflected in the set, and vice-versa.  If the map is modified
   1.612 +     * while an iteration over the set is in progress (except through
   1.613 +     * the iterator's own <tt>remove</tt> operation), the results of
   1.614 +     * the iteration are undefined.  The set supports element removal,
   1.615 +     * which removes the corresponding mapping from the map, via the
   1.616 +     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
   1.617 +     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
   1.618 +     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
   1.619 +     * operations.
   1.620 +     *
   1.621 +     * @since 1.2
   1.622 +     */
   1.623 +    public Set<K> keySet() {
   1.624 +        if (keySet == null)
   1.625 +            keySet = Collections.synchronizedSet(new KeySet(), this);
   1.626 +        return keySet;
   1.627 +    }
   1.628 +
   1.629 +    private class KeySet extends AbstractSet<K> {
   1.630 +        public Iterator<K> iterator() {
   1.631 +            return getIterator(KEYS);
   1.632 +        }
   1.633 +        public int size() {
   1.634 +            return count;
   1.635 +        }
   1.636 +        public boolean contains(Object o) {
   1.637 +            return containsKey(o);
   1.638 +        }
   1.639 +        public boolean remove(Object o) {
   1.640 +            return Hashtable.this.remove(o) != null;
   1.641 +        }
   1.642 +        public void clear() {
   1.643 +            Hashtable.this.clear();
   1.644 +        }
   1.645 +    }
   1.646 +
   1.647 +    /**
   1.648 +     * Returns a {@link Set} view of the mappings contained in this map.
   1.649 +     * The set is backed by the map, so changes to the map are
   1.650 +     * reflected in the set, and vice-versa.  If the map is modified
   1.651 +     * while an iteration over the set is in progress (except through
   1.652 +     * the iterator's own <tt>remove</tt> operation, or through the
   1.653 +     * <tt>setValue</tt> operation on a map entry returned by the
   1.654 +     * iterator) the results of the iteration are undefined.  The set
   1.655 +     * supports element removal, which removes the corresponding
   1.656 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
   1.657 +     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
   1.658 +     * <tt>clear</tt> operations.  It does not support the
   1.659 +     * <tt>add</tt> or <tt>addAll</tt> operations.
   1.660 +     *
   1.661 +     * @since 1.2
   1.662 +     */
   1.663 +    public Set<Map.Entry<K,V>> entrySet() {
   1.664 +        if (entrySet==null)
   1.665 +            entrySet = Collections.synchronizedSet(new EntrySet(), this);
   1.666 +        return entrySet;
   1.667 +    }
   1.668 +
   1.669 +    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
   1.670 +        public Iterator<Map.Entry<K,V>> iterator() {
   1.671 +            return getIterator(ENTRIES);
   1.672 +        }
   1.673 +
   1.674 +        public boolean add(Map.Entry<K,V> o) {
   1.675 +            return super.add(o);
   1.676 +        }
   1.677 +
   1.678 +        public boolean contains(Object o) {
   1.679 +            if (!(o instanceof Map.Entry))
   1.680 +                return false;
   1.681 +            Map.Entry entry = (Map.Entry)o;
   1.682 +            Object key = entry.getKey();
   1.683 +            Entry[] tab = table;
   1.684 +            int hash = key.hashCode();
   1.685 +            int index = (hash & 0x7FFFFFFF) % tab.length;
   1.686 +
   1.687 +            for (Entry e = tab[index]; e != null; e = e.next)
   1.688 +                if (e.hash==hash && e.equals(entry))
   1.689 +                    return true;
   1.690 +            return false;
   1.691 +        }
   1.692 +
   1.693 +        public boolean remove(Object o) {
   1.694 +            if (!(o instanceof Map.Entry))
   1.695 +                return false;
   1.696 +            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
   1.697 +            K key = entry.getKey();
   1.698 +            Entry[] tab = table;
   1.699 +            int hash = key.hashCode();
   1.700 +            int index = (hash & 0x7FFFFFFF) % tab.length;
   1.701 +
   1.702 +            for (Entry<K,V> e = tab[index], prev = null; e != null;
   1.703 +                 prev = e, e = e.next) {
   1.704 +                if (e.hash==hash && e.equals(entry)) {
   1.705 +                    modCount++;
   1.706 +                    if (prev != null)
   1.707 +                        prev.next = e.next;
   1.708 +                    else
   1.709 +                        tab[index] = e.next;
   1.710 +
   1.711 +                    count--;
   1.712 +                    e.value = null;
   1.713 +                    return true;
   1.714 +                }
   1.715 +            }
   1.716 +            return false;
   1.717 +        }
   1.718 +
   1.719 +        public int size() {
   1.720 +            return count;
   1.721 +        }
   1.722 +
   1.723 +        public void clear() {
   1.724 +            Hashtable.this.clear();
   1.725 +        }
   1.726 +    }
   1.727 +
   1.728 +    /**
   1.729 +     * Returns a {@link Collection} view of the values contained in this map.
   1.730 +     * The collection is backed by the map, so changes to the map are
   1.731 +     * reflected in the collection, and vice-versa.  If the map is
   1.732 +     * modified while an iteration over the collection is in progress
   1.733 +     * (except through the iterator's own <tt>remove</tt> operation),
   1.734 +     * the results of the iteration are undefined.  The collection
   1.735 +     * supports element removal, which removes the corresponding
   1.736 +     * mapping from the map, via the <tt>Iterator.remove</tt>,
   1.737 +     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
   1.738 +     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
   1.739 +     * support the <tt>add</tt> or <tt>addAll</tt> operations.
   1.740 +     *
   1.741 +     * @since 1.2
   1.742 +     */
   1.743 +    public Collection<V> values() {
   1.744 +        if (values==null)
   1.745 +            values = Collections.synchronizedCollection(new ValueCollection(),
   1.746 +                                                        this);
   1.747 +        return values;
   1.748 +    }
   1.749 +
   1.750 +    private class ValueCollection extends AbstractCollection<V> {
   1.751 +        public Iterator<V> iterator() {
   1.752 +            return getIterator(VALUES);
   1.753 +        }
   1.754 +        public int size() {
   1.755 +            return count;
   1.756 +        }
   1.757 +        public boolean contains(Object o) {
   1.758 +            return containsValue(o);
   1.759 +        }
   1.760 +        public void clear() {
   1.761 +            Hashtable.this.clear();
   1.762 +        }
   1.763 +    }
   1.764 +
   1.765 +    // Comparison and hashing
   1.766 +
   1.767 +    /**
   1.768 +     * Compares the specified Object with this Map for equality,
   1.769 +     * as per the definition in the Map interface.
   1.770 +     *
   1.771 +     * @param  o object to be compared for equality with this hashtable
   1.772 +     * @return true if the specified Object is equal to this Map
   1.773 +     * @see Map#equals(Object)
   1.774 +     * @since 1.2
   1.775 +     */
   1.776 +    public synchronized boolean equals(Object o) {
   1.777 +        if (o == this)
   1.778 +            return true;
   1.779 +
   1.780 +        if (!(o instanceof Map))
   1.781 +            return false;
   1.782 +        Map<K,V> t = (Map<K,V>) o;
   1.783 +        if (t.size() != size())
   1.784 +            return false;
   1.785 +
   1.786 +        try {
   1.787 +            Iterator<Map.Entry<K,V>> i = entrySet().iterator();
   1.788 +            while (i.hasNext()) {
   1.789 +                Map.Entry<K,V> e = i.next();
   1.790 +                K key = e.getKey();
   1.791 +                V value = e.getValue();
   1.792 +                if (value == null) {
   1.793 +                    if (!(t.get(key)==null && t.containsKey(key)))
   1.794 +                        return false;
   1.795 +                } else {
   1.796 +                    if (!value.equals(t.get(key)))
   1.797 +                        return false;
   1.798 +                }
   1.799 +            }
   1.800 +        } catch (ClassCastException unused)   {
   1.801 +            return false;
   1.802 +        } catch (NullPointerException unused) {
   1.803 +            return false;
   1.804 +        }
   1.805 +
   1.806 +        return true;
   1.807 +    }
   1.808 +
   1.809 +    /**
   1.810 +     * Returns the hash code value for this Map as per the definition in the
   1.811 +     * Map interface.
   1.812 +     *
   1.813 +     * @see Map#hashCode()
   1.814 +     * @since 1.2
   1.815 +     */
   1.816 +    public synchronized int hashCode() {
   1.817 +        /*
   1.818 +         * This code detects the recursion caused by computing the hash code
   1.819 +         * of a self-referential hash table and prevents the stack overflow
   1.820 +         * that would otherwise result.  This allows certain 1.1-era
   1.821 +         * applets with self-referential hash tables to work.  This code
   1.822 +         * abuses the loadFactor field to do double-duty as a hashCode
   1.823 +         * in progress flag, so as not to worsen the space performance.
   1.824 +         * A negative load factor indicates that hash code computation is
   1.825 +         * in progress.
   1.826 +         */
   1.827 +        int h = 0;
   1.828 +        if (count == 0 || loadFactor < 0)
   1.829 +            return h;  // Returns zero
   1.830 +
   1.831 +        loadFactor = -loadFactor;  // Mark hashCode computation in progress
   1.832 +        Entry[] tab = table;
   1.833 +        for (int i = 0; i < tab.length; i++)
   1.834 +            for (Entry e = tab[i]; e != null; e = e.next)
   1.835 +                h += e.key.hashCode() ^ e.value.hashCode();
   1.836 +        loadFactor = -loadFactor;  // Mark hashCode computation complete
   1.837 +
   1.838 +        return h;
   1.839 +    }
   1.840 +
   1.841 +    /**
   1.842 +     * Hashtable collision list.
   1.843 +     */
   1.844 +    private static class Entry<K,V> implements Map.Entry<K,V> {
   1.845 +        int hash;
   1.846 +        K key;
   1.847 +        V value;
   1.848 +        Entry<K,V> next;
   1.849 +
   1.850 +        protected Entry(int hash, K key, V value, Entry<K,V> next) {
   1.851 +            this.hash = hash;
   1.852 +            this.key = key;
   1.853 +            this.value = value;
   1.854 +            this.next = next;
   1.855 +        }
   1.856 +
   1.857 +        protected Object clone() {
   1.858 +            return new Entry<>(hash, key, value,
   1.859 +                                  (next==null ? null : (Entry<K,V>) next.clone()));
   1.860 +        }
   1.861 +
   1.862 +        // Map.Entry Ops
   1.863 +
   1.864 +        public K getKey() {
   1.865 +            return key;
   1.866 +        }
   1.867 +
   1.868 +        public V getValue() {
   1.869 +            return value;
   1.870 +        }
   1.871 +
   1.872 +        public V setValue(V value) {
   1.873 +            if (value == null)
   1.874 +                throw new NullPointerException();
   1.875 +
   1.876 +            V oldValue = this.value;
   1.877 +            this.value = value;
   1.878 +            return oldValue;
   1.879 +        }
   1.880 +
   1.881 +        public boolean equals(Object o) {
   1.882 +            if (!(o instanceof Map.Entry))
   1.883 +                return false;
   1.884 +            Map.Entry e = (Map.Entry)o;
   1.885 +
   1.886 +            return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
   1.887 +               (value==null ? e.getValue()==null : value.equals(e.getValue()));
   1.888 +        }
   1.889 +
   1.890 +        public int hashCode() {
   1.891 +            return hash ^ (value==null ? 0 : value.hashCode());
   1.892 +        }
   1.893 +
   1.894 +        public String toString() {
   1.895 +            return key.toString()+"="+value.toString();
   1.896 +        }
   1.897 +    }
   1.898 +
   1.899 +    // Types of Enumerations/Iterations
   1.900 +    private static final int KEYS = 0;
   1.901 +    private static final int VALUES = 1;
   1.902 +    private static final int ENTRIES = 2;
   1.903 +
   1.904 +    /**
   1.905 +     * A hashtable enumerator class.  This class implements both the
   1.906 +     * Enumeration and Iterator interfaces, but individual instances
   1.907 +     * can be created with the Iterator methods disabled.  This is necessary
   1.908 +     * to avoid unintentionally increasing the capabilities granted a user
   1.909 +     * by passing an Enumeration.
   1.910 +     */
   1.911 +    private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
   1.912 +        Entry[] table = Hashtable.this.table;
   1.913 +        int index = table.length;
   1.914 +        Entry<K,V> entry = null;
   1.915 +        Entry<K,V> lastReturned = null;
   1.916 +        int type;
   1.917 +
   1.918 +        /**
   1.919 +         * Indicates whether this Enumerator is serving as an Iterator
   1.920 +         * or an Enumeration.  (true -> Iterator).
   1.921 +         */
   1.922 +        boolean iterator;
   1.923 +
   1.924 +        /**
   1.925 +         * The modCount value that the iterator believes that the backing
   1.926 +         * Hashtable should have.  If this expectation is violated, the iterator
   1.927 +         * has detected concurrent modification.
   1.928 +         */
   1.929 +        protected int expectedModCount = modCount;
   1.930 +
   1.931 +        Enumerator(int type, boolean iterator) {
   1.932 +            this.type = type;
   1.933 +            this.iterator = iterator;
   1.934 +        }
   1.935 +
   1.936 +        public boolean hasMoreElements() {
   1.937 +            Entry<K,V> e = entry;
   1.938 +            int i = index;
   1.939 +            Entry[] t = table;
   1.940 +            /* Use locals for faster loop iteration */
   1.941 +            while (e == null && i > 0) {
   1.942 +                e = t[--i];
   1.943 +            }
   1.944 +            entry = e;
   1.945 +            index = i;
   1.946 +            return e != null;
   1.947 +        }
   1.948 +
   1.949 +        public T nextElement() {
   1.950 +            Entry<K,V> et = entry;
   1.951 +            int i = index;
   1.952 +            Entry[] t = table;
   1.953 +            /* Use locals for faster loop iteration */
   1.954 +            while (et == null && i > 0) {
   1.955 +                et = t[--i];
   1.956 +            }
   1.957 +            entry = et;
   1.958 +            index = i;
   1.959 +            if (et != null) {
   1.960 +                Entry<K,V> e = lastReturned = entry;
   1.961 +                entry = e.next;
   1.962 +                return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
   1.963 +            }
   1.964 +            throw new NoSuchElementException("Hashtable Enumerator");
   1.965 +        }
   1.966 +
   1.967 +        // Iterator methods
   1.968 +        public boolean hasNext() {
   1.969 +            return hasMoreElements();
   1.970 +        }
   1.971 +
   1.972 +        public T next() {
   1.973 +            if (modCount != expectedModCount)
   1.974 +                throw new ConcurrentModificationException();
   1.975 +            return nextElement();
   1.976 +        }
   1.977 +
   1.978 +        public void remove() {
   1.979 +            if (!iterator)
   1.980 +                throw new UnsupportedOperationException();
   1.981 +            if (lastReturned == null)
   1.982 +                throw new IllegalStateException("Hashtable Enumerator");
   1.983 +            if (modCount != expectedModCount)
   1.984 +                throw new ConcurrentModificationException();
   1.985 +
   1.986 +            synchronized(Hashtable.this) {
   1.987 +                Entry[] tab = Hashtable.this.table;
   1.988 +                int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
   1.989 +
   1.990 +                for (Entry<K,V> e = tab[index], prev = null; e != null;
   1.991 +                     prev = e, e = e.next) {
   1.992 +                    if (e == lastReturned) {
   1.993 +                        modCount++;
   1.994 +                        expectedModCount++;
   1.995 +                        if (prev == null)
   1.996 +                            tab[index] = e.next;
   1.997 +                        else
   1.998 +                            prev.next = e.next;
   1.999 +                        count--;
  1.1000 +                        lastReturned = null;
  1.1001 +                        return;
  1.1002 +                    }
  1.1003 +                }
  1.1004 +                throw new ConcurrentModificationException();
  1.1005 +            }
  1.1006 +        }
  1.1007 +    }
  1.1008 +}