rt/emul/mini/src/main/java/java/lang/Double.java
changeset 772 d382dacfd73f
parent 752 cc3871bdd83c
child 778 6f8683517f1f
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/mini/src/main/java/java/lang/Double.java	Tue Feb 26 16:54:16 2013 +0100
     1.3 @@ -0,0 +1,994 @@
     1.4 +/*
     1.5 + * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.lang;
    1.30 +
    1.31 +import org.apidesign.bck2brwsr.core.JavaScriptBody;
    1.32 +
    1.33 +/**
    1.34 + * The {@code Double} class wraps a value of the primitive type
    1.35 + * {@code double} in an object. An object of type
    1.36 + * {@code Double} contains a single field whose type is
    1.37 + * {@code double}.
    1.38 + *
    1.39 + * <p>In addition, this class provides several methods for converting a
    1.40 + * {@code double} to a {@code String} and a
    1.41 + * {@code String} to a {@code double}, as well as other
    1.42 + * constants and methods useful when dealing with a
    1.43 + * {@code double}.
    1.44 + *
    1.45 + * @author  Lee Boynton
    1.46 + * @author  Arthur van Hoff
    1.47 + * @author  Joseph D. Darcy
    1.48 + * @since JDK1.0
    1.49 + */
    1.50 +public final class Double extends Number implements Comparable<Double> {
    1.51 +    /**
    1.52 +     * A constant holding the positive infinity of type
    1.53 +     * {@code double}. It is equal to the value returned by
    1.54 +     * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
    1.55 +     */
    1.56 +    public static final double POSITIVE_INFINITY = 1.0 / 0.0;
    1.57 +
    1.58 +    /**
    1.59 +     * A constant holding the negative infinity of type
    1.60 +     * {@code double}. It is equal to the value returned by
    1.61 +     * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
    1.62 +     */
    1.63 +    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
    1.64 +
    1.65 +    /**
    1.66 +     * A constant holding a Not-a-Number (NaN) value of type
    1.67 +     * {@code double}. It is equivalent to the value returned by
    1.68 +     * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
    1.69 +     */
    1.70 +    public static final double NaN = 0.0d / 0.0;
    1.71 +
    1.72 +    /**
    1.73 +     * A constant holding the largest positive finite value of type
    1.74 +     * {@code double},
    1.75 +     * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
    1.76 +     * the hexadecimal floating-point literal
    1.77 +     * {@code 0x1.fffffffffffffP+1023} and also equal to
    1.78 +     * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
    1.79 +     */
    1.80 +    public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
    1.81 +
    1.82 +    /**
    1.83 +     * A constant holding the smallest positive normal value of type
    1.84 +     * {@code double}, 2<sup>-1022</sup>.  It is equal to the
    1.85 +     * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
    1.86 +     * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
    1.87 +     *
    1.88 +     * @since 1.6
    1.89 +     */
    1.90 +    public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
    1.91 +
    1.92 +    /**
    1.93 +     * A constant holding the smallest positive nonzero value of type
    1.94 +     * {@code double}, 2<sup>-1074</sup>. It is equal to the
    1.95 +     * hexadecimal floating-point literal
    1.96 +     * {@code 0x0.0000000000001P-1022} and also equal to
    1.97 +     * {@code Double.longBitsToDouble(0x1L)}.
    1.98 +     */
    1.99 +    public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
   1.100 +
   1.101 +    /**
   1.102 +     * Maximum exponent a finite {@code double} variable may have.
   1.103 +     * It is equal to the value returned by
   1.104 +     * {@code Math.getExponent(Double.MAX_VALUE)}.
   1.105 +     *
   1.106 +     * @since 1.6
   1.107 +     */
   1.108 +    public static final int MAX_EXPONENT = 1023;
   1.109 +
   1.110 +    /**
   1.111 +     * Minimum exponent a normalized {@code double} variable may
   1.112 +     * have.  It is equal to the value returned by
   1.113 +     * {@code Math.getExponent(Double.MIN_NORMAL)}.
   1.114 +     *
   1.115 +     * @since 1.6
   1.116 +     */
   1.117 +    public static final int MIN_EXPONENT = -1022;
   1.118 +
   1.119 +    /**
   1.120 +     * The number of bits used to represent a {@code double} value.
   1.121 +     *
   1.122 +     * @since 1.5
   1.123 +     */
   1.124 +    public static final int SIZE = 64;
   1.125 +
   1.126 +    /**
   1.127 +     * The {@code Class} instance representing the primitive type
   1.128 +     * {@code double}.
   1.129 +     *
   1.130 +     * @since JDK1.1
   1.131 +     */
   1.132 +    public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
   1.133 +
   1.134 +    /**
   1.135 +     * Returns a string representation of the {@code double}
   1.136 +     * argument. All characters mentioned below are ASCII characters.
   1.137 +     * <ul>
   1.138 +     * <li>If the argument is NaN, the result is the string
   1.139 +     *     "{@code NaN}".
   1.140 +     * <li>Otherwise, the result is a string that represents the sign and
   1.141 +     * magnitude (absolute value) of the argument. If the sign is negative,
   1.142 +     * the first character of the result is '{@code -}'
   1.143 +     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
   1.144 +     * appears in the result. As for the magnitude <i>m</i>:
   1.145 +     * <ul>
   1.146 +     * <li>If <i>m</i> is infinity, it is represented by the characters
   1.147 +     * {@code "Infinity"}; thus, positive infinity produces the result
   1.148 +     * {@code "Infinity"} and negative infinity produces the result
   1.149 +     * {@code "-Infinity"}.
   1.150 +     *
   1.151 +     * <li>If <i>m</i> is zero, it is represented by the characters
   1.152 +     * {@code "0.0"}; thus, negative zero produces the result
   1.153 +     * {@code "-0.0"} and positive zero produces the result
   1.154 +     * {@code "0.0"}.
   1.155 +     *
   1.156 +     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
   1.157 +     * than 10<sup>7</sup>, then it is represented as the integer part of
   1.158 +     * <i>m</i>, in decimal form with no leading zeroes, followed by
   1.159 +     * '{@code .}' (<code>'&#92;u002E'</code>), followed by one or
   1.160 +     * more decimal digits representing the fractional part of <i>m</i>.
   1.161 +     *
   1.162 +     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
   1.163 +     * equal to 10<sup>7</sup>, then it is represented in so-called
   1.164 +     * "computerized scientific notation." Let <i>n</i> be the unique
   1.165 +     * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
   1.166 +     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
   1.167 +     * mathematically exact quotient of <i>m</i> and
   1.168 +     * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
   1.169 +     * magnitude is then represented as the integer part of <i>a</i>,
   1.170 +     * as a single decimal digit, followed by '{@code .}'
   1.171 +     * (<code>'&#92;u002E'</code>), followed by decimal digits
   1.172 +     * representing the fractional part of <i>a</i>, followed by the
   1.173 +     * letter '{@code E}' (<code>'&#92;u0045'</code>), followed
   1.174 +     * by a representation of <i>n</i> as a decimal integer, as
   1.175 +     * produced by the method {@link Integer#toString(int)}.
   1.176 +     * </ul>
   1.177 +     * </ul>
   1.178 +     * How many digits must be printed for the fractional part of
   1.179 +     * <i>m</i> or <i>a</i>? There must be at least one digit to represent
   1.180 +     * the fractional part, and beyond that as many, but only as many, more
   1.181 +     * digits as are needed to uniquely distinguish the argument value from
   1.182 +     * adjacent values of type {@code double}. That is, suppose that
   1.183 +     * <i>x</i> is the exact mathematical value represented by the decimal
   1.184 +     * representation produced by this method for a finite nonzero argument
   1.185 +     * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
   1.186 +     * to <i>x</i>; or if two {@code double} values are equally close
   1.187 +     * to <i>x</i>, then <i>d</i> must be one of them and the least
   1.188 +     * significant bit of the significand of <i>d</i> must be {@code 0}.
   1.189 +     *
   1.190 +     * <p>To create localized string representations of a floating-point
   1.191 +     * value, use subclasses of {@link java.text.NumberFormat}.
   1.192 +     *
   1.193 +     * @param   d   the {@code double} to be converted.
   1.194 +     * @return a string representation of the argument.
   1.195 +     */
   1.196 +    @JavaScriptBody(args="d", body="var r = d.toString();"
   1.197 +        + "if (isFinite(d) && (r.indexOf('.') === -1)) r = r + '.0';"
   1.198 +        + "return r;")
   1.199 +    public static String toString(double d) {
   1.200 +        throw new UnsupportedOperationException();
   1.201 +    }
   1.202 +
   1.203 +    /**
   1.204 +     * Returns a hexadecimal string representation of the
   1.205 +     * {@code double} argument. All characters mentioned below
   1.206 +     * are ASCII characters.
   1.207 +     *
   1.208 +     * <ul>
   1.209 +     * <li>If the argument is NaN, the result is the string
   1.210 +     *     "{@code NaN}".
   1.211 +     * <li>Otherwise, the result is a string that represents the sign
   1.212 +     * and magnitude of the argument. If the sign is negative, the
   1.213 +     * first character of the result is '{@code -}'
   1.214 +     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign
   1.215 +     * character appears in the result. As for the magnitude <i>m</i>:
   1.216 +     *
   1.217 +     * <ul>
   1.218 +     * <li>If <i>m</i> is infinity, it is represented by the string
   1.219 +     * {@code "Infinity"}; thus, positive infinity produces the
   1.220 +     * result {@code "Infinity"} and negative infinity produces
   1.221 +     * the result {@code "-Infinity"}.
   1.222 +     *
   1.223 +     * <li>If <i>m</i> is zero, it is represented by the string
   1.224 +     * {@code "0x0.0p0"}; thus, negative zero produces the result
   1.225 +     * {@code "-0x0.0p0"} and positive zero produces the result
   1.226 +     * {@code "0x0.0p0"}.
   1.227 +     *
   1.228 +     * <li>If <i>m</i> is a {@code double} value with a
   1.229 +     * normalized representation, substrings are used to represent the
   1.230 +     * significand and exponent fields.  The significand is
   1.231 +     * represented by the characters {@code "0x1."}
   1.232 +     * followed by a lowercase hexadecimal representation of the rest
   1.233 +     * of the significand as a fraction.  Trailing zeros in the
   1.234 +     * hexadecimal representation are removed unless all the digits
   1.235 +     * are zero, in which case a single zero is used. Next, the
   1.236 +     * exponent is represented by {@code "p"} followed
   1.237 +     * by a decimal string of the unbiased exponent as if produced by
   1.238 +     * a call to {@link Integer#toString(int) Integer.toString} on the
   1.239 +     * exponent value.
   1.240 +     *
   1.241 +     * <li>If <i>m</i> is a {@code double} value with a subnormal
   1.242 +     * representation, the significand is represented by the
   1.243 +     * characters {@code "0x0."} followed by a
   1.244 +     * hexadecimal representation of the rest of the significand as a
   1.245 +     * fraction.  Trailing zeros in the hexadecimal representation are
   1.246 +     * removed. Next, the exponent is represented by
   1.247 +     * {@code "p-1022"}.  Note that there must be at
   1.248 +     * least one nonzero digit in a subnormal significand.
   1.249 +     *
   1.250 +     * </ul>
   1.251 +     *
   1.252 +     * </ul>
   1.253 +     *
   1.254 +     * <table border>
   1.255 +     * <caption><h3>Examples</h3></caption>
   1.256 +     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
   1.257 +     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
   1.258 +     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
   1.259 +     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
   1.260 +     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
   1.261 +     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
   1.262 +     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
   1.263 +     * <tr><td>{@code Double.MAX_VALUE}</td>
   1.264 +     *     <td>{@code 0x1.fffffffffffffp1023}</td>
   1.265 +     * <tr><td>{@code Minimum Normal Value}</td>
   1.266 +     *     <td>{@code 0x1.0p-1022}</td>
   1.267 +     * <tr><td>{@code Maximum Subnormal Value}</td>
   1.268 +     *     <td>{@code 0x0.fffffffffffffp-1022}</td>
   1.269 +     * <tr><td>{@code Double.MIN_VALUE}</td>
   1.270 +     *     <td>{@code 0x0.0000000000001p-1022}</td>
   1.271 +     * </table>
   1.272 +     * @param   d   the {@code double} to be converted.
   1.273 +     * @return a hex string representation of the argument.
   1.274 +     * @since 1.5
   1.275 +     * @author Joseph D. Darcy
   1.276 +     */
   1.277 +    public static String toHexString(double d) {
   1.278 +        throw new UnsupportedOperationException();
   1.279 +//        /*
   1.280 +//         * Modeled after the "a" conversion specifier in C99, section
   1.281 +//         * 7.19.6.1; however, the output of this method is more
   1.282 +//         * tightly specified.
   1.283 +//         */
   1.284 +//        if (!FpUtils.isFinite(d) )
   1.285 +//            // For infinity and NaN, use the decimal output.
   1.286 +//            return Double.toString(d);
   1.287 +//        else {
   1.288 +//            // Initialized to maximum size of output.
   1.289 +//            StringBuffer answer = new StringBuffer(24);
   1.290 +//
   1.291 +//            if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative,
   1.292 +//                answer.append("-");                  // so append sign info
   1.293 +//
   1.294 +//            answer.append("0x");
   1.295 +//
   1.296 +//            d = Math.abs(d);
   1.297 +//
   1.298 +//            if(d == 0.0) {
   1.299 +//                answer.append("0.0p0");
   1.300 +//            }
   1.301 +//            else {
   1.302 +//                boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
   1.303 +//
   1.304 +//                // Isolate significand bits and OR in a high-order bit
   1.305 +//                // so that the string representation has a known
   1.306 +//                // length.
   1.307 +//                long signifBits = (Double.doubleToLongBits(d)
   1.308 +//                                   & DoubleConsts.SIGNIF_BIT_MASK) |
   1.309 +//                    0x1000000000000000L;
   1.310 +//
   1.311 +//                // Subnormal values have a 0 implicit bit; normal
   1.312 +//                // values have a 1 implicit bit.
   1.313 +//                answer.append(subnormal ? "0." : "1.");
   1.314 +//
   1.315 +//                // Isolate the low-order 13 digits of the hex
   1.316 +//                // representation.  If all the digits are zero,
   1.317 +//                // replace with a single 0; otherwise, remove all
   1.318 +//                // trailing zeros.
   1.319 +//                String signif = Long.toHexString(signifBits).substring(3,16);
   1.320 +//                answer.append(signif.equals("0000000000000") ? // 13 zeros
   1.321 +//                              "0":
   1.322 +//                              signif.replaceFirst("0{1,12}$", ""));
   1.323 +//
   1.324 +//                // If the value is subnormal, use the E_min exponent
   1.325 +//                // value for double; otherwise, extract and report d's
   1.326 +//                // exponent (the representation of a subnormal uses
   1.327 +//                // E_min -1).
   1.328 +//                answer.append("p" + (subnormal ?
   1.329 +//                               DoubleConsts.MIN_EXPONENT:
   1.330 +//                               FpUtils.getExponent(d) ));
   1.331 +//            }
   1.332 +//            return answer.toString();
   1.333 +//        }
   1.334 +    }
   1.335 +
   1.336 +    /**
   1.337 +     * Returns a {@code Double} object holding the
   1.338 +     * {@code double} value represented by the argument string
   1.339 +     * {@code s}.
   1.340 +     *
   1.341 +     * <p>If {@code s} is {@code null}, then a
   1.342 +     * {@code NullPointerException} is thrown.
   1.343 +     *
   1.344 +     * <p>Leading and trailing whitespace characters in {@code s}
   1.345 +     * are ignored.  Whitespace is removed as if by the {@link
   1.346 +     * String#trim} method; that is, both ASCII space and control
   1.347 +     * characters are removed. The rest of {@code s} should
   1.348 +     * constitute a <i>FloatValue</i> as described by the lexical
   1.349 +     * syntax rules:
   1.350 +     *
   1.351 +     * <blockquote>
   1.352 +     * <dl>
   1.353 +     * <dt><i>FloatValue:</i>
   1.354 +     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
   1.355 +     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
   1.356 +     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
   1.357 +     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
   1.358 +     * <dd><i>SignedInteger</i>
   1.359 +     * </dl>
   1.360 +     *
   1.361 +     * <p>
   1.362 +     *
   1.363 +     * <dl>
   1.364 +     * <dt><i>HexFloatingPointLiteral</i>:
   1.365 +     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
   1.366 +     * </dl>
   1.367 +     *
   1.368 +     * <p>
   1.369 +     *
   1.370 +     * <dl>
   1.371 +     * <dt><i>HexSignificand:</i>
   1.372 +     * <dd><i>HexNumeral</i>
   1.373 +     * <dd><i>HexNumeral</i> {@code .}
   1.374 +     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
   1.375 +     *     </i>{@code .}<i> HexDigits</i>
   1.376 +     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
   1.377 +     *     </i>{@code .} <i>HexDigits</i>
   1.378 +     * </dl>
   1.379 +     *
   1.380 +     * <p>
   1.381 +     *
   1.382 +     * <dl>
   1.383 +     * <dt><i>BinaryExponent:</i>
   1.384 +     * <dd><i>BinaryExponentIndicator SignedInteger</i>
   1.385 +     * </dl>
   1.386 +     *
   1.387 +     * <p>
   1.388 +     *
   1.389 +     * <dl>
   1.390 +     * <dt><i>BinaryExponentIndicator:</i>
   1.391 +     * <dd>{@code p}
   1.392 +     * <dd>{@code P}
   1.393 +     * </dl>
   1.394 +     *
   1.395 +     * </blockquote>
   1.396 +     *
   1.397 +     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
   1.398 +     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
   1.399 +     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
   1.400 +     * sections of
   1.401 +     * <cite>The Java&trade; Language Specification</cite>,
   1.402 +     * except that underscores are not accepted between digits.
   1.403 +     * If {@code s} does not have the form of
   1.404 +     * a <i>FloatValue</i>, then a {@code NumberFormatException}
   1.405 +     * is thrown. Otherwise, {@code s} is regarded as
   1.406 +     * representing an exact decimal value in the usual
   1.407 +     * "computerized scientific notation" or as an exact
   1.408 +     * hexadecimal value; this exact numerical value is then
   1.409 +     * conceptually converted to an "infinitely precise"
   1.410 +     * binary value that is then rounded to type {@code double}
   1.411 +     * by the usual round-to-nearest rule of IEEE 754 floating-point
   1.412 +     * arithmetic, which includes preserving the sign of a zero
   1.413 +     * value.
   1.414 +     *
   1.415 +     * Note that the round-to-nearest rule also implies overflow and
   1.416 +     * underflow behaviour; if the exact value of {@code s} is large
   1.417 +     * enough in magnitude (greater than or equal to ({@link
   1.418 +     * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
   1.419 +     * rounding to {@code double} will result in an infinity and if the
   1.420 +     * exact value of {@code s} is small enough in magnitude (less
   1.421 +     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
   1.422 +     * result in a zero.
   1.423 +     *
   1.424 +     * Finally, after rounding a {@code Double} object representing
   1.425 +     * this {@code double} value is returned.
   1.426 +     *
   1.427 +     * <p> To interpret localized string representations of a
   1.428 +     * floating-point value, use subclasses of {@link
   1.429 +     * java.text.NumberFormat}.
   1.430 +     *
   1.431 +     * <p>Note that trailing format specifiers, specifiers that
   1.432 +     * determine the type of a floating-point literal
   1.433 +     * ({@code 1.0f} is a {@code float} value;
   1.434 +     * {@code 1.0d} is a {@code double} value), do
   1.435 +     * <em>not</em> influence the results of this method.  In other
   1.436 +     * words, the numerical value of the input string is converted
   1.437 +     * directly to the target floating-point type.  The two-step
   1.438 +     * sequence of conversions, string to {@code float} followed
   1.439 +     * by {@code float} to {@code double}, is <em>not</em>
   1.440 +     * equivalent to converting a string directly to
   1.441 +     * {@code double}. For example, the {@code float}
   1.442 +     * literal {@code 0.1f} is equal to the {@code double}
   1.443 +     * value {@code 0.10000000149011612}; the {@code float}
   1.444 +     * literal {@code 0.1f} represents a different numerical
   1.445 +     * value than the {@code double} literal
   1.446 +     * {@code 0.1}. (The numerical value 0.1 cannot be exactly
   1.447 +     * represented in a binary floating-point number.)
   1.448 +     *
   1.449 +     * <p>To avoid calling this method on an invalid string and having
   1.450 +     * a {@code NumberFormatException} be thrown, the regular
   1.451 +     * expression below can be used to screen the input string:
   1.452 +     *
   1.453 +     * <code>
   1.454 +     * <pre>
   1.455 +     *  final String Digits     = "(\\p{Digit}+)";
   1.456 +     *  final String HexDigits  = "(\\p{XDigit}+)";
   1.457 +     *  // an exponent is 'e' or 'E' followed by an optionally
   1.458 +     *  // signed decimal integer.
   1.459 +     *  final String Exp        = "[eE][+-]?"+Digits;
   1.460 +     *  final String fpRegex    =
   1.461 +     *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
   1.462 +     *       "[+-]?(" + // Optional sign character
   1.463 +     *       "NaN|" +           // "NaN" string
   1.464 +     *       "Infinity|" +      // "Infinity" string
   1.465 +     *
   1.466 +     *       // A decimal floating-point string representing a finite positive
   1.467 +     *       // number without a leading sign has at most five basic pieces:
   1.468 +     *       // Digits . Digits ExponentPart FloatTypeSuffix
   1.469 +     *       //
   1.470 +     *       // Since this method allows integer-only strings as input
   1.471 +     *       // in addition to strings of floating-point literals, the
   1.472 +     *       // two sub-patterns below are simplifications of the grammar
   1.473 +     *       // productions from section 3.10.2 of
   1.474 +     *       // <cite>The Java&trade; Language Specification</cite>.
   1.475 +     *
   1.476 +     *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
   1.477 +     *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
   1.478 +     *
   1.479 +     *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
   1.480 +     *       "(\\.("+Digits+")("+Exp+")?)|"+
   1.481 +     *
   1.482 +     *       // Hexadecimal strings
   1.483 +     *       "((" +
   1.484 +     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
   1.485 +     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
   1.486 +     *
   1.487 +     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
   1.488 +     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
   1.489 +     *
   1.490 +     *        ")[pP][+-]?" + Digits + "))" +
   1.491 +     *       "[fFdD]?))" +
   1.492 +     *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
   1.493 +     *
   1.494 +     *  if (Pattern.matches(fpRegex, myString))
   1.495 +     *      Double.valueOf(myString); // Will not throw NumberFormatException
   1.496 +     *  else {
   1.497 +     *      // Perform suitable alternative action
   1.498 +     *  }
   1.499 +     * </pre>
   1.500 +     * </code>
   1.501 +     *
   1.502 +     * @param      s   the string to be parsed.
   1.503 +     * @return     a {@code Double} object holding the value
   1.504 +     *             represented by the {@code String} argument.
   1.505 +     * @throws     NumberFormatException  if the string does not contain a
   1.506 +     *             parsable number.
   1.507 +     */
   1.508 +    @JavaScriptBody(args="s", body="return parseFloat(s);")
   1.509 +    public static Double valueOf(String s) throws NumberFormatException {
   1.510 +        throw new UnsupportedOperationException();
   1.511 +//        return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
   1.512 +    }
   1.513 +
   1.514 +    /**
   1.515 +     * Returns a {@code Double} instance representing the specified
   1.516 +     * {@code double} value.
   1.517 +     * If a new {@code Double} instance is not required, this method
   1.518 +     * should generally be used in preference to the constructor
   1.519 +     * {@link #Double(double)}, as this method is likely to yield
   1.520 +     * significantly better space and time performance by caching
   1.521 +     * frequently requested values.
   1.522 +     *
   1.523 +     * @param  d a double value.
   1.524 +     * @return a {@code Double} instance representing {@code d}.
   1.525 +     * @since  1.5
   1.526 +     */
   1.527 +    public static Double valueOf(double d) {
   1.528 +        return new Double(d);
   1.529 +    }
   1.530 +
   1.531 +    /**
   1.532 +     * Returns a new {@code double} initialized to the value
   1.533 +     * represented by the specified {@code String}, as performed
   1.534 +     * by the {@code valueOf} method of class
   1.535 +     * {@code Double}.
   1.536 +     *
   1.537 +     * @param  s   the string to be parsed.
   1.538 +     * @return the {@code double} value represented by the string
   1.539 +     *         argument.
   1.540 +     * @throws NullPointerException  if the string is null
   1.541 +     * @throws NumberFormatException if the string does not contain
   1.542 +     *         a parsable {@code double}.
   1.543 +     * @see    java.lang.Double#valueOf(String)
   1.544 +     * @since 1.2
   1.545 +     */
   1.546 +    @JavaScriptBody(args="s", body="return parseFloat(s);")
   1.547 +    public static double parseDouble(String s) throws NumberFormatException {
   1.548 +        throw new UnsupportedOperationException();
   1.549 +//        return FloatingDecimal.readJavaFormatString(s).doubleValue();
   1.550 +    }
   1.551 +
   1.552 +    /**
   1.553 +     * Returns {@code true} if the specified number is a
   1.554 +     * Not-a-Number (NaN) value, {@code false} otherwise.
   1.555 +     *
   1.556 +     * @param   v   the value to be tested.
   1.557 +     * @return  {@code true} if the value of the argument is NaN;
   1.558 +     *          {@code false} otherwise.
   1.559 +     */
   1.560 +    static public boolean isNaN(double v) {
   1.561 +        return (v != v);
   1.562 +    }
   1.563 +
   1.564 +    /**
   1.565 +     * Returns {@code true} if the specified number is infinitely
   1.566 +     * large in magnitude, {@code false} otherwise.
   1.567 +     *
   1.568 +     * @param   v   the value to be tested.
   1.569 +     * @return  {@code true} if the value of the argument is positive
   1.570 +     *          infinity or negative infinity; {@code false} otherwise.
   1.571 +     */
   1.572 +    static public boolean isInfinite(double v) {
   1.573 +        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
   1.574 +    }
   1.575 +
   1.576 +    /**
   1.577 +     * The value of the Double.
   1.578 +     *
   1.579 +     * @serial
   1.580 +     */
   1.581 +    private final double value;
   1.582 +
   1.583 +    /**
   1.584 +     * Constructs a newly allocated {@code Double} object that
   1.585 +     * represents the primitive {@code double} argument.
   1.586 +     *
   1.587 +     * @param   value   the value to be represented by the {@code Double}.
   1.588 +     */
   1.589 +    public Double(double value) {
   1.590 +        this.value = value;
   1.591 +    }
   1.592 +
   1.593 +    /**
   1.594 +     * Constructs a newly allocated {@code Double} object that
   1.595 +     * represents the floating-point value of type {@code double}
   1.596 +     * represented by the string. The string is converted to a
   1.597 +     * {@code double} value as if by the {@code valueOf} method.
   1.598 +     *
   1.599 +     * @param  s  a string to be converted to a {@code Double}.
   1.600 +     * @throws    NumberFormatException  if the string does not contain a
   1.601 +     *            parsable number.
   1.602 +     * @see       java.lang.Double#valueOf(java.lang.String)
   1.603 +     */
   1.604 +    public Double(String s) throws NumberFormatException {
   1.605 +        // REMIND: this is inefficient
   1.606 +        this(valueOf(s).doubleValue());
   1.607 +    }
   1.608 +
   1.609 +    /**
   1.610 +     * Returns {@code true} if this {@code Double} value is
   1.611 +     * a Not-a-Number (NaN), {@code false} otherwise.
   1.612 +     *
   1.613 +     * @return  {@code true} if the value represented by this object is
   1.614 +     *          NaN; {@code false} otherwise.
   1.615 +     */
   1.616 +    public boolean isNaN() {
   1.617 +        return isNaN(value);
   1.618 +    }
   1.619 +
   1.620 +    /**
   1.621 +     * Returns {@code true} if this {@code Double} value is
   1.622 +     * infinitely large in magnitude, {@code false} otherwise.
   1.623 +     *
   1.624 +     * @return  {@code true} if the value represented by this object is
   1.625 +     *          positive infinity or negative infinity;
   1.626 +     *          {@code false} otherwise.
   1.627 +     */
   1.628 +    public boolean isInfinite() {
   1.629 +        return isInfinite(value);
   1.630 +    }
   1.631 +
   1.632 +    /**
   1.633 +     * Returns a string representation of this {@code Double} object.
   1.634 +     * The primitive {@code double} value represented by this
   1.635 +     * object is converted to a string exactly as if by the method
   1.636 +     * {@code toString} of one argument.
   1.637 +     *
   1.638 +     * @return  a {@code String} representation of this object.
   1.639 +     * @see java.lang.Double#toString(double)
   1.640 +     */
   1.641 +    public String toString() {
   1.642 +        return toString(value);
   1.643 +    }
   1.644 +
   1.645 +    /**
   1.646 +     * Returns the value of this {@code Double} as a {@code byte} (by
   1.647 +     * casting to a {@code byte}).
   1.648 +     *
   1.649 +     * @return  the {@code double} value represented by this object
   1.650 +     *          converted to type {@code byte}
   1.651 +     * @since JDK1.1
   1.652 +     */
   1.653 +    public byte byteValue() {
   1.654 +        return (byte)value;
   1.655 +    }
   1.656 +
   1.657 +    /**
   1.658 +     * Returns the value of this {@code Double} as a
   1.659 +     * {@code short} (by casting to a {@code short}).
   1.660 +     *
   1.661 +     * @return  the {@code double} value represented by this object
   1.662 +     *          converted to type {@code short}
   1.663 +     * @since JDK1.1
   1.664 +     */
   1.665 +    public short shortValue() {
   1.666 +        return (short)value;
   1.667 +    }
   1.668 +
   1.669 +    /**
   1.670 +     * Returns the value of this {@code Double} as an
   1.671 +     * {@code int} (by casting to type {@code int}).
   1.672 +     *
   1.673 +     * @return  the {@code double} value represented by this object
   1.674 +     *          converted to type {@code int}
   1.675 +     */
   1.676 +    public int intValue() {
   1.677 +        return (int)value;
   1.678 +    }
   1.679 +
   1.680 +    /**
   1.681 +     * Returns the value of this {@code Double} as a
   1.682 +     * {@code long} (by casting to type {@code long}).
   1.683 +     *
   1.684 +     * @return  the {@code double} value represented by this object
   1.685 +     *          converted to type {@code long}
   1.686 +     */
   1.687 +    public long longValue() {
   1.688 +        return (long)value;
   1.689 +    }
   1.690 +
   1.691 +    /**
   1.692 +     * Returns the {@code float} value of this
   1.693 +     * {@code Double} object.
   1.694 +     *
   1.695 +     * @return  the {@code double} value represented by this object
   1.696 +     *          converted to type {@code float}
   1.697 +     * @since JDK1.0
   1.698 +     */
   1.699 +    public float floatValue() {
   1.700 +        return (float)value;
   1.701 +    }
   1.702 +
   1.703 +    /**
   1.704 +     * Returns the {@code double} value of this
   1.705 +     * {@code Double} object.
   1.706 +     *
   1.707 +     * @return the {@code double} value represented by this object
   1.708 +     */
   1.709 +    public double doubleValue() {
   1.710 +        return (double)value;
   1.711 +    }
   1.712 +
   1.713 +    /**
   1.714 +     * Returns a hash code for this {@code Double} object. The
   1.715 +     * result is the exclusive OR of the two halves of the
   1.716 +     * {@code long} integer bit representation, exactly as
   1.717 +     * produced by the method {@link #doubleToLongBits(double)}, of
   1.718 +     * the primitive {@code double} value represented by this
   1.719 +     * {@code Double} object. That is, the hash code is the value
   1.720 +     * of the expression:
   1.721 +     *
   1.722 +     * <blockquote>
   1.723 +     *  {@code (int)(v^(v>>>32))}
   1.724 +     * </blockquote>
   1.725 +     *
   1.726 +     * where {@code v} is defined by:
   1.727 +     *
   1.728 +     * <blockquote>
   1.729 +     *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
   1.730 +     * </blockquote>
   1.731 +     *
   1.732 +     * @return  a {@code hash code} value for this object.
   1.733 +     */
   1.734 +    public int hashCode() {
   1.735 +        long bits = doubleToLongBits(value);
   1.736 +        return (int)(bits ^ (bits >>> 32));
   1.737 +    }
   1.738 +
   1.739 +    /**
   1.740 +     * Compares this object against the specified object.  The result
   1.741 +     * is {@code true} if and only if the argument is not
   1.742 +     * {@code null} and is a {@code Double} object that
   1.743 +     * represents a {@code double} that has the same value as the
   1.744 +     * {@code double} represented by this object. For this
   1.745 +     * purpose, two {@code double} values are considered to be
   1.746 +     * the same if and only if the method {@link
   1.747 +     * #doubleToLongBits(double)} returns the identical
   1.748 +     * {@code long} value when applied to each.
   1.749 +     *
   1.750 +     * <p>Note that in most cases, for two instances of class
   1.751 +     * {@code Double}, {@code d1} and {@code d2}, the
   1.752 +     * value of {@code d1.equals(d2)} is {@code true} if and
   1.753 +     * only if
   1.754 +     *
   1.755 +     * <blockquote>
   1.756 +     *  {@code d1.doubleValue() == d2.doubleValue()}
   1.757 +     * </blockquote>
   1.758 +     *
   1.759 +     * <p>also has the value {@code true}. However, there are two
   1.760 +     * exceptions:
   1.761 +     * <ul>
   1.762 +     * <li>If {@code d1} and {@code d2} both represent
   1.763 +     *     {@code Double.NaN}, then the {@code equals} method
   1.764 +     *     returns {@code true}, even though
   1.765 +     *     {@code Double.NaN==Double.NaN} has the value
   1.766 +     *     {@code false}.
   1.767 +     * <li>If {@code d1} represents {@code +0.0} while
   1.768 +     *     {@code d2} represents {@code -0.0}, or vice versa,
   1.769 +     *     the {@code equal} test has the value {@code false},
   1.770 +     *     even though {@code +0.0==-0.0} has the value {@code true}.
   1.771 +     * </ul>
   1.772 +     * This definition allows hash tables to operate properly.
   1.773 +     * @param   obj   the object to compare with.
   1.774 +     * @return  {@code true} if the objects are the same;
   1.775 +     *          {@code false} otherwise.
   1.776 +     * @see java.lang.Double#doubleToLongBits(double)
   1.777 +     */
   1.778 +    public boolean equals(Object obj) {
   1.779 +        return (obj instanceof Double)
   1.780 +               && (((Double)obj).value) == value;
   1.781 +    }
   1.782 +
   1.783 +    /**
   1.784 +     * Returns a representation of the specified floating-point value
   1.785 +     * according to the IEEE 754 floating-point "double
   1.786 +     * format" bit layout.
   1.787 +     *
   1.788 +     * <p>Bit 63 (the bit that is selected by the mask
   1.789 +     * {@code 0x8000000000000000L}) represents the sign of the
   1.790 +     * floating-point number. Bits
   1.791 +     * 62-52 (the bits that are selected by the mask
   1.792 +     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
   1.793 +     * (the bits that are selected by the mask
   1.794 +     * {@code 0x000fffffffffffffL}) represent the significand
   1.795 +     * (sometimes called the mantissa) of the floating-point number.
   1.796 +     *
   1.797 +     * <p>If the argument is positive infinity, the result is
   1.798 +     * {@code 0x7ff0000000000000L}.
   1.799 +     *
   1.800 +     * <p>If the argument is negative infinity, the result is
   1.801 +     * {@code 0xfff0000000000000L}.
   1.802 +     *
   1.803 +     * <p>If the argument is NaN, the result is
   1.804 +     * {@code 0x7ff8000000000000L}.
   1.805 +     *
   1.806 +     * <p>In all cases, the result is a {@code long} integer that, when
   1.807 +     * given to the {@link #longBitsToDouble(long)} method, will produce a
   1.808 +     * floating-point value the same as the argument to
   1.809 +     * {@code doubleToLongBits} (except all NaN values are
   1.810 +     * collapsed to a single "canonical" NaN value).
   1.811 +     *
   1.812 +     * @param   value   a {@code double} precision floating-point number.
   1.813 +     * @return the bits that represent the floating-point number.
   1.814 +     */
   1.815 +    public static long doubleToLongBits(double value) {
   1.816 +        throw new UnsupportedOperationException();
   1.817 +//        long result = doubleToRawLongBits(value);
   1.818 +//        // Check for NaN based on values of bit fields, maximum
   1.819 +//        // exponent and nonzero significand.
   1.820 +//        if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
   1.821 +//              DoubleConsts.EXP_BIT_MASK) &&
   1.822 +//             (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
   1.823 +//            result = 0x7ff8000000000000L;
   1.824 +//        return result;
   1.825 +    }
   1.826 +
   1.827 +    /**
   1.828 +     * Returns a representation of the specified floating-point value
   1.829 +     * according to the IEEE 754 floating-point "double
   1.830 +     * format" bit layout, preserving Not-a-Number (NaN) values.
   1.831 +     *
   1.832 +     * <p>Bit 63 (the bit that is selected by the mask
   1.833 +     * {@code 0x8000000000000000L}) represents the sign of the
   1.834 +     * floating-point number. Bits
   1.835 +     * 62-52 (the bits that are selected by the mask
   1.836 +     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
   1.837 +     * (the bits that are selected by the mask
   1.838 +     * {@code 0x000fffffffffffffL}) represent the significand
   1.839 +     * (sometimes called the mantissa) of the floating-point number.
   1.840 +     *
   1.841 +     * <p>If the argument is positive infinity, the result is
   1.842 +     * {@code 0x7ff0000000000000L}.
   1.843 +     *
   1.844 +     * <p>If the argument is negative infinity, the result is
   1.845 +     * {@code 0xfff0000000000000L}.
   1.846 +     *
   1.847 +     * <p>If the argument is NaN, the result is the {@code long}
   1.848 +     * integer representing the actual NaN value.  Unlike the
   1.849 +     * {@code doubleToLongBits} method,
   1.850 +     * {@code doubleToRawLongBits} does not collapse all the bit
   1.851 +     * patterns encoding a NaN to a single "canonical" NaN
   1.852 +     * value.
   1.853 +     *
   1.854 +     * <p>In all cases, the result is a {@code long} integer that,
   1.855 +     * when given to the {@link #longBitsToDouble(long)} method, will
   1.856 +     * produce a floating-point value the same as the argument to
   1.857 +     * {@code doubleToRawLongBits}.
   1.858 +     *
   1.859 +     * @param   value   a {@code double} precision floating-point number.
   1.860 +     * @return the bits that represent the floating-point number.
   1.861 +     * @since 1.3
   1.862 +     */
   1.863 +    public static native long doubleToRawLongBits(double value);
   1.864 +
   1.865 +    /**
   1.866 +     * Returns the {@code double} value corresponding to a given
   1.867 +     * bit representation.
   1.868 +     * The argument is considered to be a representation of a
   1.869 +     * floating-point value according to the IEEE 754 floating-point
   1.870 +     * "double format" bit layout.
   1.871 +     *
   1.872 +     * <p>If the argument is {@code 0x7ff0000000000000L}, the result
   1.873 +     * is positive infinity.
   1.874 +     *
   1.875 +     * <p>If the argument is {@code 0xfff0000000000000L}, the result
   1.876 +     * is negative infinity.
   1.877 +     *
   1.878 +     * <p>If the argument is any value in the range
   1.879 +     * {@code 0x7ff0000000000001L} through
   1.880 +     * {@code 0x7fffffffffffffffL} or in the range
   1.881 +     * {@code 0xfff0000000000001L} through
   1.882 +     * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
   1.883 +     * 754 floating-point operation provided by Java can distinguish
   1.884 +     * between two NaN values of the same type with different bit
   1.885 +     * patterns.  Distinct values of NaN are only distinguishable by
   1.886 +     * use of the {@code Double.doubleToRawLongBits} method.
   1.887 +     *
   1.888 +     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
   1.889 +     * values that can be computed from the argument:
   1.890 +     *
   1.891 +     * <blockquote><pre>
   1.892 +     * int s = ((bits &gt;&gt; 63) == 0) ? 1 : -1;
   1.893 +     * int e = (int)((bits &gt;&gt; 52) & 0x7ffL);
   1.894 +     * long m = (e == 0) ?
   1.895 +     *                 (bits & 0xfffffffffffffL) &lt;&lt; 1 :
   1.896 +     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
   1.897 +     * </pre></blockquote>
   1.898 +     *
   1.899 +     * Then the floating-point result equals the value of the mathematical
   1.900 +     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
   1.901 +     *
   1.902 +     * <p>Note that this method may not be able to return a
   1.903 +     * {@code double} NaN with exactly same bit pattern as the
   1.904 +     * {@code long} argument.  IEEE 754 distinguishes between two
   1.905 +     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
   1.906 +     * differences between the two kinds of NaN are generally not
   1.907 +     * visible in Java.  Arithmetic operations on signaling NaNs turn
   1.908 +     * them into quiet NaNs with a different, but often similar, bit
   1.909 +     * pattern.  However, on some processors merely copying a
   1.910 +     * signaling NaN also performs that conversion.  In particular,
   1.911 +     * copying a signaling NaN to return it to the calling method
   1.912 +     * may perform this conversion.  So {@code longBitsToDouble}
   1.913 +     * may not be able to return a {@code double} with a
   1.914 +     * signaling NaN bit pattern.  Consequently, for some
   1.915 +     * {@code long} values,
   1.916 +     * {@code doubleToRawLongBits(longBitsToDouble(start))} may
   1.917 +     * <i>not</i> equal {@code start}.  Moreover, which
   1.918 +     * particular bit patterns represent signaling NaNs is platform
   1.919 +     * dependent; although all NaN bit patterns, quiet or signaling,
   1.920 +     * must be in the NaN range identified above.
   1.921 +     *
   1.922 +     * @param   bits   any {@code long} integer.
   1.923 +     * @return  the {@code double} floating-point value with the same
   1.924 +     *          bit pattern.
   1.925 +     */
   1.926 +    public static native double longBitsToDouble(long bits);
   1.927 +
   1.928 +    /**
   1.929 +     * Compares two {@code Double} objects numerically.  There
   1.930 +     * are two ways in which comparisons performed by this method
   1.931 +     * differ from those performed by the Java language numerical
   1.932 +     * comparison operators ({@code <, <=, ==, >=, >})
   1.933 +     * when applied to primitive {@code double} values:
   1.934 +     * <ul><li>
   1.935 +     *          {@code Double.NaN} is considered by this method
   1.936 +     *          to be equal to itself and greater than all other
   1.937 +     *          {@code double} values (including
   1.938 +     *          {@code Double.POSITIVE_INFINITY}).
   1.939 +     * <li>
   1.940 +     *          {@code 0.0d} is considered by this method to be greater
   1.941 +     *          than {@code -0.0d}.
   1.942 +     * </ul>
   1.943 +     * This ensures that the <i>natural ordering</i> of
   1.944 +     * {@code Double} objects imposed by this method is <i>consistent
   1.945 +     * with equals</i>.
   1.946 +     *
   1.947 +     * @param   anotherDouble   the {@code Double} to be compared.
   1.948 +     * @return  the value {@code 0} if {@code anotherDouble} is
   1.949 +     *          numerically equal to this {@code Double}; a value
   1.950 +     *          less than {@code 0} if this {@code Double}
   1.951 +     *          is numerically less than {@code anotherDouble};
   1.952 +     *          and a value greater than {@code 0} if this
   1.953 +     *          {@code Double} is numerically greater than
   1.954 +     *          {@code anotherDouble}.
   1.955 +     *
   1.956 +     * @since   1.2
   1.957 +     */
   1.958 +    public int compareTo(Double anotherDouble) {
   1.959 +        return Double.compare(value, anotherDouble.value);
   1.960 +    }
   1.961 +
   1.962 +    /**
   1.963 +     * Compares the two specified {@code double} values. The sign
   1.964 +     * of the integer value returned is the same as that of the
   1.965 +     * integer that would be returned by the call:
   1.966 +     * <pre>
   1.967 +     *    new Double(d1).compareTo(new Double(d2))
   1.968 +     * </pre>
   1.969 +     *
   1.970 +     * @param   d1        the first {@code double} to compare
   1.971 +     * @param   d2        the second {@code double} to compare
   1.972 +     * @return  the value {@code 0} if {@code d1} is
   1.973 +     *          numerically equal to {@code d2}; a value less than
   1.974 +     *          {@code 0} if {@code d1} is numerically less than
   1.975 +     *          {@code d2}; and a value greater than {@code 0}
   1.976 +     *          if {@code d1} is numerically greater than
   1.977 +     *          {@code d2}.
   1.978 +     * @since 1.4
   1.979 +     */
   1.980 +    public static int compare(double d1, double d2) {
   1.981 +        if (d1 < d2)
   1.982 +            return -1;           // Neither val is NaN, thisVal is smaller
   1.983 +        if (d1 > d2)
   1.984 +            return 1;            // Neither val is NaN, thisVal is larger
   1.985 +
   1.986 +        // Cannot use doubleToRawLongBits because of possibility of NaNs.
   1.987 +        long thisBits    = Double.doubleToLongBits(d1);
   1.988 +        long anotherBits = Double.doubleToLongBits(d2);
   1.989 +
   1.990 +        return (thisBits == anotherBits ?  0 : // Values are equal
   1.991 +                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
   1.992 +                 1));                          // (0.0, -0.0) or (NaN, !NaN)
   1.993 +    }
   1.994 +
   1.995 +    /** use serialVersionUID from JDK 1.0.2 for interoperability */
   1.996 +    private static final long serialVersionUID = -9172774392245257468L;
   1.997 +}