rt/emul/mini/src/main/java/java/lang/Math.java
changeset 772 d382dacfd73f
parent 771 4252bfc396fc
child 1773 9830c8b761ce
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/rt/emul/mini/src/main/java/java/lang/Math.java	Tue Feb 26 16:54:16 2013 +0100
     1.3 @@ -0,0 +1,1311 @@
     1.4 +/*
     1.5 + * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +
    1.29 +package java.lang;
    1.30 +
    1.31 +import org.apidesign.bck2brwsr.core.JavaScriptBody;
    1.32 +
    1.33 +
    1.34 +/**
    1.35 + * The class {@code Math} contains methods for performing basic
    1.36 + * numeric operations such as the elementary exponential, logarithm,
    1.37 + * square root, and trigonometric functions.
    1.38 + *
    1.39 + * <p>Unlike some of the numeric methods of class
    1.40 + * {@code StrictMath}, all implementations of the equivalent
    1.41 + * functions of class {@code Math} are not defined to return the
    1.42 + * bit-for-bit same results.  This relaxation permits
    1.43 + * better-performing implementations where strict reproducibility is
    1.44 + * not required.
    1.45 + *
    1.46 + * <p>By default many of the {@code Math} methods simply call
    1.47 + * the equivalent method in {@code StrictMath} for their
    1.48 + * implementation.  Code generators are encouraged to use
    1.49 + * platform-specific native libraries or microprocessor instructions,
    1.50 + * where available, to provide higher-performance implementations of
    1.51 + * {@code Math} methods.  Such higher-performance
    1.52 + * implementations still must conform to the specification for
    1.53 + * {@code Math}.
    1.54 + *
    1.55 + * <p>The quality of implementation specifications concern two
    1.56 + * properties, accuracy of the returned result and monotonicity of the
    1.57 + * method.  Accuracy of the floating-point {@code Math} methods
    1.58 + * is measured in terms of <i>ulps</i>, units in the last place.  For
    1.59 + * a given floating-point format, an ulp of a specific real number
    1.60 + * value is the distance between the two floating-point values
    1.61 + * bracketing that numerical value.  When discussing the accuracy of a
    1.62 + * method as a whole rather than at a specific argument, the number of
    1.63 + * ulps cited is for the worst-case error at any argument.  If a
    1.64 + * method always has an error less than 0.5 ulps, the method always
    1.65 + * returns the floating-point number nearest the exact result; such a
    1.66 + * method is <i>correctly rounded</i>.  A correctly rounded method is
    1.67 + * generally the best a floating-point approximation can be; however,
    1.68 + * it is impractical for many floating-point methods to be correctly
    1.69 + * rounded.  Instead, for the {@code Math} class, a larger error
    1.70 + * bound of 1 or 2 ulps is allowed for certain methods.  Informally,
    1.71 + * with a 1 ulp error bound, when the exact result is a representable
    1.72 + * number, the exact result should be returned as the computed result;
    1.73 + * otherwise, either of the two floating-point values which bracket
    1.74 + * the exact result may be returned.  For exact results large in
    1.75 + * magnitude, one of the endpoints of the bracket may be infinite.
    1.76 + * Besides accuracy at individual arguments, maintaining proper
    1.77 + * relations between the method at different arguments is also
    1.78 + * important.  Therefore, most methods with more than 0.5 ulp errors
    1.79 + * are required to be <i>semi-monotonic</i>: whenever the mathematical
    1.80 + * function is non-decreasing, so is the floating-point approximation,
    1.81 + * likewise, whenever the mathematical function is non-increasing, so
    1.82 + * is the floating-point approximation.  Not all approximations that
    1.83 + * have 1 ulp accuracy will automatically meet the monotonicity
    1.84 + * requirements.
    1.85 + *
    1.86 + * @author  unascribed
    1.87 + * @author  Joseph D. Darcy
    1.88 + * @since   JDK1.0
    1.89 + */
    1.90 +
    1.91 +public final class Math {
    1.92 +
    1.93 +    /**
    1.94 +     * Don't let anyone instantiate this class.
    1.95 +     */
    1.96 +    private Math() {}
    1.97 +
    1.98 +    /**
    1.99 +     * The {@code double} value that is closer than any other to
   1.100 +     * <i>e</i>, the base of the natural logarithms.
   1.101 +     */
   1.102 +    public static final double E = 2.7182818284590452354;
   1.103 +
   1.104 +    /**
   1.105 +     * The {@code double} value that is closer than any other to
   1.106 +     * <i>pi</i>, the ratio of the circumference of a circle to its
   1.107 +     * diameter.
   1.108 +     */
   1.109 +    public static final double PI = 3.14159265358979323846;
   1.110 +
   1.111 +    /**
   1.112 +     * Returns the trigonometric sine of an angle.  Special cases:
   1.113 +     * <ul><li>If the argument is NaN or an infinity, then the
   1.114 +     * result is NaN.
   1.115 +     * <li>If the argument is zero, then the result is a zero with the
   1.116 +     * same sign as the argument.</ul>
   1.117 +     *
   1.118 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.119 +     * Results must be semi-monotonic.
   1.120 +     *
   1.121 +     * @param   a   an angle, in radians.
   1.122 +     * @return  the sine of the argument.
   1.123 +     */
   1.124 +    @JavaScriptBody(args="a", body="return Math.sin(a);")
   1.125 +    public static double sin(double a) {
   1.126 +        throw new UnsupportedOperationException();
   1.127 +    }
   1.128 +
   1.129 +    /**
   1.130 +     * Returns the trigonometric cosine of an angle. Special cases:
   1.131 +     * <ul><li>If the argument is NaN or an infinity, then the
   1.132 +     * result is NaN.</ul>
   1.133 +     *
   1.134 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.135 +     * Results must be semi-monotonic.
   1.136 +     *
   1.137 +     * @param   a   an angle, in radians.
   1.138 +     * @return  the cosine of the argument.
   1.139 +     */
   1.140 +    @JavaScriptBody(args="a", body="return Math.cos(a);")
   1.141 +    public static double cos(double a) {
   1.142 +        throw new UnsupportedOperationException();
   1.143 +    }
   1.144 +
   1.145 +    /**
   1.146 +     * Returns the trigonometric tangent of an angle.  Special cases:
   1.147 +     * <ul><li>If the argument is NaN or an infinity, then the result
   1.148 +     * is NaN.
   1.149 +     * <li>If the argument is zero, then the result is a zero with the
   1.150 +     * same sign as the argument.</ul>
   1.151 +     *
   1.152 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.153 +     * Results must be semi-monotonic.
   1.154 +     *
   1.155 +     * @param   a   an angle, in radians.
   1.156 +     * @return  the tangent of the argument.
   1.157 +     */
   1.158 +    @JavaScriptBody(args="a", body="return Math.tan(a);")
   1.159 +    public static double tan(double a) {
   1.160 +        throw new UnsupportedOperationException();
   1.161 +    }
   1.162 +
   1.163 +    /**
   1.164 +     * Returns the arc sine of a value; the returned angle is in the
   1.165 +     * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
   1.166 +     * <ul><li>If the argument is NaN or its absolute value is greater
   1.167 +     * than 1, then the result is NaN.
   1.168 +     * <li>If the argument is zero, then the result is a zero with the
   1.169 +     * same sign as the argument.</ul>
   1.170 +     *
   1.171 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.172 +     * Results must be semi-monotonic.
   1.173 +     *
   1.174 +     * @param   a   the value whose arc sine is to be returned.
   1.175 +     * @return  the arc sine of the argument.
   1.176 +     */
   1.177 +    @JavaScriptBody(args="a", body="return Math.asin(a);")
   1.178 +    public static double asin(double a) {
   1.179 +        throw new UnsupportedOperationException();
   1.180 +    }
   1.181 +
   1.182 +    /**
   1.183 +     * Returns the arc cosine of a value; the returned angle is in the
   1.184 +     * range 0.0 through <i>pi</i>.  Special case:
   1.185 +     * <ul><li>If the argument is NaN or its absolute value is greater
   1.186 +     * than 1, then the result is NaN.</ul>
   1.187 +     *
   1.188 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.189 +     * Results must be semi-monotonic.
   1.190 +     *
   1.191 +     * @param   a   the value whose arc cosine is to be returned.
   1.192 +     * @return  the arc cosine of the argument.
   1.193 +     */
   1.194 +    @JavaScriptBody(args="a", body="return Math.acos(a);")
   1.195 +    public static double acos(double a) {
   1.196 +        throw new UnsupportedOperationException();
   1.197 +    }
   1.198 +
   1.199 +    /**
   1.200 +     * Returns the arc tangent of a value; the returned angle is in the
   1.201 +     * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
   1.202 +     * <ul><li>If the argument is NaN, then the result is NaN.
   1.203 +     * <li>If the argument is zero, then the result is a zero with the
   1.204 +     * same sign as the argument.</ul>
   1.205 +     *
   1.206 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.207 +     * Results must be semi-monotonic.
   1.208 +     *
   1.209 +     * @param   a   the value whose arc tangent is to be returned.
   1.210 +     * @return  the arc tangent of the argument.
   1.211 +     */
   1.212 +    @JavaScriptBody(args="a", body="return Math.atan(a);")
   1.213 +    public static double atan(double a) {
   1.214 +        throw new UnsupportedOperationException();
   1.215 +    }
   1.216 +
   1.217 +    /**
   1.218 +     * Converts an angle measured in degrees to an approximately
   1.219 +     * equivalent angle measured in radians.  The conversion from
   1.220 +     * degrees to radians is generally inexact.
   1.221 +     *
   1.222 +     * @param   angdeg   an angle, in degrees
   1.223 +     * @return  the measurement of the angle {@code angdeg}
   1.224 +     *          in radians.
   1.225 +     * @since   1.2
   1.226 +     */
   1.227 +    public static double toRadians(double angdeg) {
   1.228 +        return angdeg / 180.0 * PI;
   1.229 +    }
   1.230 +
   1.231 +    /**
   1.232 +     * Converts an angle measured in radians to an approximately
   1.233 +     * equivalent angle measured in degrees.  The conversion from
   1.234 +     * radians to degrees is generally inexact; users should
   1.235 +     * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
   1.236 +     * equal {@code 0.0}.
   1.237 +     *
   1.238 +     * @param   angrad   an angle, in radians
   1.239 +     * @return  the measurement of the angle {@code angrad}
   1.240 +     *          in degrees.
   1.241 +     * @since   1.2
   1.242 +     */
   1.243 +    public static double toDegrees(double angrad) {
   1.244 +        return angrad * 180.0 / PI;
   1.245 +    }
   1.246 +
   1.247 +    /**
   1.248 +     * Returns Euler's number <i>e</i> raised to the power of a
   1.249 +     * {@code double} value.  Special cases:
   1.250 +     * <ul><li>If the argument is NaN, the result is NaN.
   1.251 +     * <li>If the argument is positive infinity, then the result is
   1.252 +     * positive infinity.
   1.253 +     * <li>If the argument is negative infinity, then the result is
   1.254 +     * positive zero.</ul>
   1.255 +     *
   1.256 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.257 +     * Results must be semi-monotonic.
   1.258 +     *
   1.259 +     * @param   a   the exponent to raise <i>e</i> to.
   1.260 +     * @return  the value <i>e</i><sup>{@code a}</sup>,
   1.261 +     *          where <i>e</i> is the base of the natural logarithms.
   1.262 +     */
   1.263 +    @JavaScriptBody(args="a", body="return Math.exp(a);")
   1.264 +    public static double exp(double a) {
   1.265 +        throw new UnsupportedOperationException();
   1.266 +    }
   1.267 +
   1.268 +    /**
   1.269 +     * Returns the natural logarithm (base <i>e</i>) of a {@code double}
   1.270 +     * value.  Special cases:
   1.271 +     * <ul><li>If the argument is NaN or less than zero, then the result
   1.272 +     * is NaN.
   1.273 +     * <li>If the argument is positive infinity, then the result is
   1.274 +     * positive infinity.
   1.275 +     * <li>If the argument is positive zero or negative zero, then the
   1.276 +     * result is negative infinity.</ul>
   1.277 +     *
   1.278 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.279 +     * Results must be semi-monotonic.
   1.280 +     *
   1.281 +     * @param   a   a value
   1.282 +     * @return  the value ln&nbsp;{@code a}, the natural logarithm of
   1.283 +     *          {@code a}.
   1.284 +     */
   1.285 +    @JavaScriptBody(args="a", body="return Math.log(a);")
   1.286 +    public static double log(double a) {
   1.287 +        throw new UnsupportedOperationException();
   1.288 +    }
   1.289 +
   1.290 +    /**
   1.291 +     * Returns the base 10 logarithm of a {@code double} value.
   1.292 +     * Special cases:
   1.293 +     *
   1.294 +     * <ul><li>If the argument is NaN or less than zero, then the result
   1.295 +     * is NaN.
   1.296 +     * <li>If the argument is positive infinity, then the result is
   1.297 +     * positive infinity.
   1.298 +     * <li>If the argument is positive zero or negative zero, then the
   1.299 +     * result is negative infinity.
   1.300 +     * <li> If the argument is equal to 10<sup><i>n</i></sup> for
   1.301 +     * integer <i>n</i>, then the result is <i>n</i>.
   1.302 +     * </ul>
   1.303 +     *
   1.304 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.305 +     * Results must be semi-monotonic.
   1.306 +     *
   1.307 +     * @param   a   a value
   1.308 +     * @return  the base 10 logarithm of  {@code a}.
   1.309 +     * @since 1.5
   1.310 +     */
   1.311 +    @JavaScriptBody(args="a", body="return Math.log(a) / Math.LN10;")
   1.312 +    public static double log10(double a) {
   1.313 +        throw new UnsupportedOperationException();
   1.314 +    }
   1.315 +
   1.316 +    /**
   1.317 +     * Returns the correctly rounded positive square root of a
   1.318 +     * {@code double} value.
   1.319 +     * Special cases:
   1.320 +     * <ul><li>If the argument is NaN or less than zero, then the result
   1.321 +     * is NaN.
   1.322 +     * <li>If the argument is positive infinity, then the result is positive
   1.323 +     * infinity.
   1.324 +     * <li>If the argument is positive zero or negative zero, then the
   1.325 +     * result is the same as the argument.</ul>
   1.326 +     * Otherwise, the result is the {@code double} value closest to
   1.327 +     * the true mathematical square root of the argument value.
   1.328 +     *
   1.329 +     * @param   a   a value.
   1.330 +     * @return  the positive square root of {@code a}.
   1.331 +     *          If the argument is NaN or less than zero, the result is NaN.
   1.332 +     */
   1.333 +    @JavaScriptBody(args="a", body="return Math.sqrt(a);")
   1.334 +    public static double sqrt(double a) {
   1.335 +        throw new UnsupportedOperationException();
   1.336 +    }
   1.337 +
   1.338 +    /**
   1.339 +     * Returns the smallest (closest to negative infinity)
   1.340 +     * {@code double} value that is greater than or equal to the
   1.341 +     * argument and is equal to a mathematical integer. Special cases:
   1.342 +     * <ul><li>If the argument value is already equal to a
   1.343 +     * mathematical integer, then the result is the same as the
   1.344 +     * argument.  <li>If the argument is NaN or an infinity or
   1.345 +     * positive zero or negative zero, then the result is the same as
   1.346 +     * the argument.  <li>If the argument value is less than zero but
   1.347 +     * greater than -1.0, then the result is negative zero.</ul> Note
   1.348 +     * that the value of {@code Math.ceil(x)} is exactly the
   1.349 +     * value of {@code -Math.floor(-x)}.
   1.350 +     *
   1.351 +     *
   1.352 +     * @param   a   a value.
   1.353 +     * @return  the smallest (closest to negative infinity)
   1.354 +     *          floating-point value that is greater than or equal to
   1.355 +     *          the argument and is equal to a mathematical integer.
   1.356 +     */
   1.357 +    @JavaScriptBody(args="a", body="return Math.ceil(a);")
   1.358 +    public static double ceil(double a) {
   1.359 +        throw new UnsupportedOperationException();
   1.360 +    }
   1.361 +
   1.362 +    /**
   1.363 +     * Returns the largest (closest to positive infinity)
   1.364 +     * {@code double} value that is less than or equal to the
   1.365 +     * argument and is equal to a mathematical integer. Special cases:
   1.366 +     * <ul><li>If the argument value is already equal to a
   1.367 +     * mathematical integer, then the result is the same as the
   1.368 +     * argument.  <li>If the argument is NaN or an infinity or
   1.369 +     * positive zero or negative zero, then the result is the same as
   1.370 +     * the argument.</ul>
   1.371 +     *
   1.372 +     * @param   a   a value.
   1.373 +     * @return  the largest (closest to positive infinity)
   1.374 +     *          floating-point value that less than or equal to the argument
   1.375 +     *          and is equal to a mathematical integer.
   1.376 +     */
   1.377 +    @JavaScriptBody(args="a", body="return Math.floor(a);")
   1.378 +    public static double floor(double a) {
   1.379 +        throw new UnsupportedOperationException();
   1.380 +    }
   1.381 +    /**
   1.382 +     * Computes the remainder operation on two arguments as prescribed
   1.383 +     * by the IEEE 754 standard.
   1.384 +     * The remainder value is mathematically equal to
   1.385 +     * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
   1.386 +     * where <i>n</i> is the mathematical integer closest to the exact
   1.387 +     * mathematical value of the quotient {@code f1/f2}, and if two
   1.388 +     * mathematical integers are equally close to {@code f1/f2},
   1.389 +     * then <i>n</i> is the integer that is even. If the remainder is
   1.390 +     * zero, its sign is the same as the sign of the first argument.
   1.391 +     * Special cases:
   1.392 +     * <ul><li>If either argument is NaN, or the first argument is infinite,
   1.393 +     * or the second argument is positive zero or negative zero, then the
   1.394 +     * result is NaN.
   1.395 +     * <li>If the first argument is finite and the second argument is
   1.396 +     * infinite, then the result is the same as the first argument.</ul>
   1.397 +     *
   1.398 +     * @param   f1   the dividend.
   1.399 +     * @param   f2   the divisor.
   1.400 +     * @return  the remainder when {@code f1} is divided by
   1.401 +     *          {@code f2}.
   1.402 +     */
   1.403 +    public static double IEEEremainder(double f1, double f2) {
   1.404 +        return f1 - (f2 * Math.round(f1 / f2));
   1.405 +    }
   1.406 +
   1.407 +    /**
   1.408 +     * Returns the {@code double} value that is closest in value
   1.409 +     * to the argument and is equal to a mathematical integer. If two
   1.410 +     * {@code double} values that are mathematical integers are
   1.411 +     * equally close, the result is the integer value that is
   1.412 +     * even. Special cases:
   1.413 +     * <ul><li>If the argument value is already equal to a mathematical
   1.414 +     * integer, then the result is the same as the argument.
   1.415 +     * <li>If the argument is NaN or an infinity or positive zero or negative
   1.416 +     * zero, then the result is the same as the argument.</ul>
   1.417 +     *
   1.418 +     * @param   a   a {@code double} value.
   1.419 +     * @return  the closest floating-point value to {@code a} that is
   1.420 +     *          equal to a mathematical integer.
   1.421 +     */
   1.422 +    public static double rint(double a) {
   1.423 +        double ceil = ceil(a);
   1.424 +        double floor = floor(a);
   1.425 +        
   1.426 +        double dc = ceil - a;
   1.427 +        double df = a - floor;
   1.428 +        
   1.429 +        if (dc < df) {
   1.430 +            return ceil;
   1.431 +        } else if (dc > df) {
   1.432 +            return floor;
   1.433 +        }
   1.434 +        
   1.435 +        int tenC = (int) (ceil % 10.0);
   1.436 +        
   1.437 +        if (tenC % 2 == 0) {
   1.438 +            return ceil;
   1.439 +        } else {
   1.440 +            return floor;
   1.441 +        }
   1.442 +    }
   1.443 +
   1.444 +    /**
   1.445 +     * Returns the angle <i>theta</i> from the conversion of rectangular
   1.446 +     * coordinates ({@code x},&nbsp;{@code y}) to polar
   1.447 +     * coordinates (r,&nbsp;<i>theta</i>).
   1.448 +     * This method computes the phase <i>theta</i> by computing an arc tangent
   1.449 +     * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
   1.450 +     * cases:
   1.451 +     * <ul><li>If either argument is NaN, then the result is NaN.
   1.452 +     * <li>If the first argument is positive zero and the second argument
   1.453 +     * is positive, or the first argument is positive and finite and the
   1.454 +     * second argument is positive infinity, then the result is positive
   1.455 +     * zero.
   1.456 +     * <li>If the first argument is negative zero and the second argument
   1.457 +     * is positive, or the first argument is negative and finite and the
   1.458 +     * second argument is positive infinity, then the result is negative zero.
   1.459 +     * <li>If the first argument is positive zero and the second argument
   1.460 +     * is negative, or the first argument is positive and finite and the
   1.461 +     * second argument is negative infinity, then the result is the
   1.462 +     * {@code double} value closest to <i>pi</i>.
   1.463 +     * <li>If the first argument is negative zero and the second argument
   1.464 +     * is negative, or the first argument is negative and finite and the
   1.465 +     * second argument is negative infinity, then the result is the
   1.466 +     * {@code double} value closest to -<i>pi</i>.
   1.467 +     * <li>If the first argument is positive and the second argument is
   1.468 +     * positive zero or negative zero, or the first argument is positive
   1.469 +     * infinity and the second argument is finite, then the result is the
   1.470 +     * {@code double} value closest to <i>pi</i>/2.
   1.471 +     * <li>If the first argument is negative and the second argument is
   1.472 +     * positive zero or negative zero, or the first argument is negative
   1.473 +     * infinity and the second argument is finite, then the result is the
   1.474 +     * {@code double} value closest to -<i>pi</i>/2.
   1.475 +     * <li>If both arguments are positive infinity, then the result is the
   1.476 +     * {@code double} value closest to <i>pi</i>/4.
   1.477 +     * <li>If the first argument is positive infinity and the second argument
   1.478 +     * is negative infinity, then the result is the {@code double}
   1.479 +     * value closest to 3*<i>pi</i>/4.
   1.480 +     * <li>If the first argument is negative infinity and the second argument
   1.481 +     * is positive infinity, then the result is the {@code double} value
   1.482 +     * closest to -<i>pi</i>/4.
   1.483 +     * <li>If both arguments are negative infinity, then the result is the
   1.484 +     * {@code double} value closest to -3*<i>pi</i>/4.</ul>
   1.485 +     *
   1.486 +     * <p>The computed result must be within 2 ulps of the exact result.
   1.487 +     * Results must be semi-monotonic.
   1.488 +     *
   1.489 +     * @param   y   the ordinate coordinate
   1.490 +     * @param   x   the abscissa coordinate
   1.491 +     * @return  the <i>theta</i> component of the point
   1.492 +     *          (<i>r</i>,&nbsp;<i>theta</i>)
   1.493 +     *          in polar coordinates that corresponds to the point
   1.494 +     *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
   1.495 +     */
   1.496 +    @JavaScriptBody(args={"y", "x"}, body="return Math.atan2(y, x);")
   1.497 +    public static double atan2(double y, double x) {
   1.498 +        throw new UnsupportedOperationException();
   1.499 +    }
   1.500 +
   1.501 +    /**
   1.502 +     * Returns the value of the first argument raised to the power of the
   1.503 +     * second argument. Special cases:
   1.504 +     *
   1.505 +     * <ul><li>If the second argument is positive or negative zero, then the
   1.506 +     * result is 1.0.
   1.507 +     * <li>If the second argument is 1.0, then the result is the same as the
   1.508 +     * first argument.
   1.509 +     * <li>If the second argument is NaN, then the result is NaN.
   1.510 +     * <li>If the first argument is NaN and the second argument is nonzero,
   1.511 +     * then the result is NaN.
   1.512 +     *
   1.513 +     * <li>If
   1.514 +     * <ul>
   1.515 +     * <li>the absolute value of the first argument is greater than 1
   1.516 +     * and the second argument is positive infinity, or
   1.517 +     * <li>the absolute value of the first argument is less than 1 and
   1.518 +     * the second argument is negative infinity,
   1.519 +     * </ul>
   1.520 +     * then the result is positive infinity.
   1.521 +     *
   1.522 +     * <li>If
   1.523 +     * <ul>
   1.524 +     * <li>the absolute value of the first argument is greater than 1 and
   1.525 +     * the second argument is negative infinity, or
   1.526 +     * <li>the absolute value of the
   1.527 +     * first argument is less than 1 and the second argument is positive
   1.528 +     * infinity,
   1.529 +     * </ul>
   1.530 +     * then the result is positive zero.
   1.531 +     *
   1.532 +     * <li>If the absolute value of the first argument equals 1 and the
   1.533 +     * second argument is infinite, then the result is NaN.
   1.534 +     *
   1.535 +     * <li>If
   1.536 +     * <ul>
   1.537 +     * <li>the first argument is positive zero and the second argument
   1.538 +     * is greater than zero, or
   1.539 +     * <li>the first argument is positive infinity and the second
   1.540 +     * argument is less than zero,
   1.541 +     * </ul>
   1.542 +     * then the result is positive zero.
   1.543 +     *
   1.544 +     * <li>If
   1.545 +     * <ul>
   1.546 +     * <li>the first argument is positive zero and the second argument
   1.547 +     * is less than zero, or
   1.548 +     * <li>the first argument is positive infinity and the second
   1.549 +     * argument is greater than zero,
   1.550 +     * </ul>
   1.551 +     * then the result is positive infinity.
   1.552 +     *
   1.553 +     * <li>If
   1.554 +     * <ul>
   1.555 +     * <li>the first argument is negative zero and the second argument
   1.556 +     * is greater than zero but not a finite odd integer, or
   1.557 +     * <li>the first argument is negative infinity and the second
   1.558 +     * argument is less than zero but not a finite odd integer,
   1.559 +     * </ul>
   1.560 +     * then the result is positive zero.
   1.561 +     *
   1.562 +     * <li>If
   1.563 +     * <ul>
   1.564 +     * <li>the first argument is negative zero and the second argument
   1.565 +     * is a positive finite odd integer, or
   1.566 +     * <li>the first argument is negative infinity and the second
   1.567 +     * argument is a negative finite odd integer,
   1.568 +     * </ul>
   1.569 +     * then the result is negative zero.
   1.570 +     *
   1.571 +     * <li>If
   1.572 +     * <ul>
   1.573 +     * <li>the first argument is negative zero and the second argument
   1.574 +     * is less than zero but not a finite odd integer, or
   1.575 +     * <li>the first argument is negative infinity and the second
   1.576 +     * argument is greater than zero but not a finite odd integer,
   1.577 +     * </ul>
   1.578 +     * then the result is positive infinity.
   1.579 +     *
   1.580 +     * <li>If
   1.581 +     * <ul>
   1.582 +     * <li>the first argument is negative zero and the second argument
   1.583 +     * is a negative finite odd integer, or
   1.584 +     * <li>the first argument is negative infinity and the second
   1.585 +     * argument is a positive finite odd integer,
   1.586 +     * </ul>
   1.587 +     * then the result is negative infinity.
   1.588 +     *
   1.589 +     * <li>If the first argument is finite and less than zero
   1.590 +     * <ul>
   1.591 +     * <li> if the second argument is a finite even integer, the
   1.592 +     * result is equal to the result of raising the absolute value of
   1.593 +     * the first argument to the power of the second argument
   1.594 +     *
   1.595 +     * <li>if the second argument is a finite odd integer, the result
   1.596 +     * is equal to the negative of the result of raising the absolute
   1.597 +     * value of the first argument to the power of the second
   1.598 +     * argument
   1.599 +     *
   1.600 +     * <li>if the second argument is finite and not an integer, then
   1.601 +     * the result is NaN.
   1.602 +     * </ul>
   1.603 +     *
   1.604 +     * <li>If both arguments are integers, then the result is exactly equal
   1.605 +     * to the mathematical result of raising the first argument to the power
   1.606 +     * of the second argument if that result can in fact be represented
   1.607 +     * exactly as a {@code double} value.</ul>
   1.608 +     *
   1.609 +     * <p>(In the foregoing descriptions, a floating-point value is
   1.610 +     * considered to be an integer if and only if it is finite and a
   1.611 +     * fixed point of the method {@link #ceil ceil} or,
   1.612 +     * equivalently, a fixed point of the method {@link #floor
   1.613 +     * floor}. A value is a fixed point of a one-argument
   1.614 +     * method if and only if the result of applying the method to the
   1.615 +     * value is equal to the value.)
   1.616 +     *
   1.617 +     * <p>The computed result must be within 1 ulp of the exact result.
   1.618 +     * Results must be semi-monotonic.
   1.619 +     *
   1.620 +     * @param   a   the base.
   1.621 +     * @param   b   the exponent.
   1.622 +     * @return  the value {@code a}<sup>{@code b}</sup>.
   1.623 +     */
   1.624 +    @JavaScriptBody(args={"a", "b"}, body="return Math.pow(a, b);")
   1.625 +    public static double pow(double a, double b) {
   1.626 +        throw new UnsupportedOperationException();
   1.627 +    }
   1.628 +
   1.629 +    /**
   1.630 +     * Returns the closest {@code int} to the argument, with ties
   1.631 +     * rounding up.
   1.632 +     *
   1.633 +     * <p>
   1.634 +     * Special cases:
   1.635 +     * <ul><li>If the argument is NaN, the result is 0.
   1.636 +     * <li>If the argument is negative infinity or any value less than or
   1.637 +     * equal to the value of {@code Integer.MIN_VALUE}, the result is
   1.638 +     * equal to the value of {@code Integer.MIN_VALUE}.
   1.639 +     * <li>If the argument is positive infinity or any value greater than or
   1.640 +     * equal to the value of {@code Integer.MAX_VALUE}, the result is
   1.641 +     * equal to the value of {@code Integer.MAX_VALUE}.</ul>
   1.642 +     *
   1.643 +     * @param   a   a floating-point value to be rounded to an integer.
   1.644 +     * @return  the value of the argument rounded to the nearest
   1.645 +     *          {@code int} value.
   1.646 +     * @see     java.lang.Integer#MAX_VALUE
   1.647 +     * @see     java.lang.Integer#MIN_VALUE
   1.648 +     */
   1.649 +    public static int round(float a) {
   1.650 +        return (int)roundDbl(a);
   1.651 +    }
   1.652 +
   1.653 +    /**
   1.654 +     * Returns the closest {@code long} to the argument, with ties
   1.655 +     * rounding up.
   1.656 +     *
   1.657 +     * <p>Special cases:
   1.658 +     * <ul><li>If the argument is NaN, the result is 0.
   1.659 +     * <li>If the argument is negative infinity or any value less than or
   1.660 +     * equal to the value of {@code Long.MIN_VALUE}, the result is
   1.661 +     * equal to the value of {@code Long.MIN_VALUE}.
   1.662 +     * <li>If the argument is positive infinity or any value greater than or
   1.663 +     * equal to the value of {@code Long.MAX_VALUE}, the result is
   1.664 +     * equal to the value of {@code Long.MAX_VALUE}.</ul>
   1.665 +     *
   1.666 +     * @param   a   a floating-point value to be rounded to a
   1.667 +     *          {@code long}.
   1.668 +     * @return  the value of the argument rounded to the nearest
   1.669 +     *          {@code long} value.
   1.670 +     * @see     java.lang.Long#MAX_VALUE
   1.671 +     * @see     java.lang.Long#MIN_VALUE
   1.672 +     */
   1.673 +    public static long round(double a) {
   1.674 +        return (long)roundDbl(a);
   1.675 +    }
   1.676 +    
   1.677 +    @JavaScriptBody(args="a", body="return Math.round(a);")
   1.678 +    private static native double roundDbl(double d);
   1.679 +
   1.680 +//    private static Random randomNumberGenerator;
   1.681 +//
   1.682 +//    private static synchronized Random initRNG() {
   1.683 +//        Random rnd = randomNumberGenerator;
   1.684 +//        return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
   1.685 +//    }
   1.686 +
   1.687 +    /**
   1.688 +     * Returns a {@code double} value with a positive sign, greater
   1.689 +     * than or equal to {@code 0.0} and less than {@code 1.0}.
   1.690 +     * Returned values are chosen pseudorandomly with (approximately)
   1.691 +     * uniform distribution from that range.
   1.692 +     *
   1.693 +     * <p>When this method is first called, it creates a single new
   1.694 +     * pseudorandom-number generator, exactly as if by the expression
   1.695 +     *
   1.696 +     * <blockquote>{@code new java.util.Random()}</blockquote>
   1.697 +     *
   1.698 +     * This new pseudorandom-number generator is used thereafter for
   1.699 +     * all calls to this method and is used nowhere else.
   1.700 +     *
   1.701 +     * <p>This method is properly synchronized to allow correct use by
   1.702 +     * more than one thread. However, if many threads need to generate
   1.703 +     * pseudorandom numbers at a great rate, it may reduce contention
   1.704 +     * for each thread to have its own pseudorandom-number generator.
   1.705 +     *
   1.706 +     * @return  a pseudorandom {@code double} greater than or equal
   1.707 +     * to {@code 0.0} and less than {@code 1.0}.
   1.708 +     * @see Random#nextDouble()
   1.709 +     */
   1.710 +    @JavaScriptBody(args={}, body="return Math.random();")
   1.711 +    public static double random() {
   1.712 +        throw new UnsupportedOperationException();
   1.713 +    }
   1.714 +
   1.715 +    /**
   1.716 +     * Returns the absolute value of an {@code int} value.
   1.717 +     * If the argument is not negative, the argument is returned.
   1.718 +     * If the argument is negative, the negation of the argument is returned.
   1.719 +     *
   1.720 +     * <p>Note that if the argument is equal to the value of
   1.721 +     * {@link Integer#MIN_VALUE}, the most negative representable
   1.722 +     * {@code int} value, the result is that same value, which is
   1.723 +     * negative.
   1.724 +     *
   1.725 +     * @param   a   the argument whose absolute value is to be determined
   1.726 +     * @return  the absolute value of the argument.
   1.727 +     */
   1.728 +    public static int abs(int a) {
   1.729 +        return (a < 0) ? -a : a;
   1.730 +    }
   1.731 +
   1.732 +    /**
   1.733 +     * Returns the absolute value of a {@code long} value.
   1.734 +     * If the argument is not negative, the argument is returned.
   1.735 +     * If the argument is negative, the negation of the argument is returned.
   1.736 +     *
   1.737 +     * <p>Note that if the argument is equal to the value of
   1.738 +     * {@link Long#MIN_VALUE}, the most negative representable
   1.739 +     * {@code long} value, the result is that same value, which
   1.740 +     * is negative.
   1.741 +     *
   1.742 +     * @param   a   the argument whose absolute value is to be determined
   1.743 +     * @return  the absolute value of the argument.
   1.744 +     */
   1.745 +    public static long abs(long a) {
   1.746 +        return (a < 0) ? -a : a;
   1.747 +    }
   1.748 +
   1.749 +    /**
   1.750 +     * Returns the absolute value of a {@code float} value.
   1.751 +     * If the argument is not negative, the argument is returned.
   1.752 +     * If the argument is negative, the negation of the argument is returned.
   1.753 +     * Special cases:
   1.754 +     * <ul><li>If the argument is positive zero or negative zero, the
   1.755 +     * result is positive zero.
   1.756 +     * <li>If the argument is infinite, the result is positive infinity.
   1.757 +     * <li>If the argument is NaN, the result is NaN.</ul>
   1.758 +     * In other words, the result is the same as the value of the expression:
   1.759 +     * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
   1.760 +     *
   1.761 +     * @param   a   the argument whose absolute value is to be determined
   1.762 +     * @return  the absolute value of the argument.
   1.763 +     */
   1.764 +    public static float abs(float a) {
   1.765 +        return (a <= 0.0F) ? 0.0F - a : a;
   1.766 +    }
   1.767 +
   1.768 +    /**
   1.769 +     * Returns the absolute value of a {@code double} value.
   1.770 +     * If the argument is not negative, the argument is returned.
   1.771 +     * If the argument is negative, the negation of the argument is returned.
   1.772 +     * Special cases:
   1.773 +     * <ul><li>If the argument is positive zero or negative zero, the result
   1.774 +     * is positive zero.
   1.775 +     * <li>If the argument is infinite, the result is positive infinity.
   1.776 +     * <li>If the argument is NaN, the result is NaN.</ul>
   1.777 +     * In other words, the result is the same as the value of the expression:
   1.778 +     * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
   1.779 +     *
   1.780 +     * @param   a   the argument whose absolute value is to be determined
   1.781 +     * @return  the absolute value of the argument.
   1.782 +     */
   1.783 +    public static double abs(double a) {
   1.784 +        return (a <= 0.0D) ? 0.0D - a : a;
   1.785 +    }
   1.786 +
   1.787 +    /**
   1.788 +     * Returns the greater of two {@code int} values. That is, the
   1.789 +     * result is the argument closer to the value of
   1.790 +     * {@link Integer#MAX_VALUE}. If the arguments have the same value,
   1.791 +     * the result is that same value.
   1.792 +     *
   1.793 +     * @param   a   an argument.
   1.794 +     * @param   b   another argument.
   1.795 +     * @return  the larger of {@code a} and {@code b}.
   1.796 +     */
   1.797 +    public static int max(int a, int b) {
   1.798 +        return (a >= b) ? a : b;
   1.799 +    }
   1.800 +
   1.801 +    /**
   1.802 +     * Returns the greater of two {@code long} values. That is, the
   1.803 +     * result is the argument closer to the value of
   1.804 +     * {@link Long#MAX_VALUE}. If the arguments have the same value,
   1.805 +     * the result is that same value.
   1.806 +     *
   1.807 +     * @param   a   an argument.
   1.808 +     * @param   b   another argument.
   1.809 +     * @return  the larger of {@code a} and {@code b}.
   1.810 +     */
   1.811 +    public static long max(long a, long b) {
   1.812 +        return (a >= b) ? a : b;
   1.813 +    }
   1.814 +
   1.815 +    /**
   1.816 +     * Returns the greater of two {@code float} values.  That is,
   1.817 +     * the result is the argument closer to positive infinity. If the
   1.818 +     * arguments have the same value, the result is that same
   1.819 +     * value. If either value is NaN, then the result is NaN.  Unlike
   1.820 +     * the numerical comparison operators, this method considers
   1.821 +     * negative zero to be strictly smaller than positive zero. If one
   1.822 +     * argument is positive zero and the other negative zero, the
   1.823 +     * result is positive zero.
   1.824 +     *
   1.825 +     * @param   a   an argument.
   1.826 +     * @param   b   another argument.
   1.827 +     * @return  the larger of {@code a} and {@code b}.
   1.828 +     */
   1.829 +    @JavaScriptBody(args={"a", "b"},
   1.830 +        body="return Math.max(a,b);"
   1.831 +    )
   1.832 +    public static float max(float a, float b) {
   1.833 +        throw new UnsupportedOperationException();
   1.834 +    }
   1.835 +
   1.836 +    /**
   1.837 +     * Returns the greater of two {@code double} values.  That
   1.838 +     * is, the result is the argument closer to positive infinity. If
   1.839 +     * the arguments have the same value, the result is that same
   1.840 +     * value. If either value is NaN, then the result is NaN.  Unlike
   1.841 +     * the numerical comparison operators, this method considers
   1.842 +     * negative zero to be strictly smaller than positive zero. If one
   1.843 +     * argument is positive zero and the other negative zero, the
   1.844 +     * result is positive zero.
   1.845 +     *
   1.846 +     * @param   a   an argument.
   1.847 +     * @param   b   another argument.
   1.848 +     * @return  the larger of {@code a} and {@code b}.
   1.849 +     */
   1.850 +    @JavaScriptBody(args={"a", "b"},
   1.851 +        body="return Math.max(a,b);"
   1.852 +    )
   1.853 +    public static double max(double a, double b) {
   1.854 +        throw new UnsupportedOperationException();
   1.855 +    }
   1.856 +
   1.857 +    /**
   1.858 +     * Returns the smaller of two {@code int} values. That is,
   1.859 +     * the result the argument closer to the value of
   1.860 +     * {@link Integer#MIN_VALUE}.  If the arguments have the same
   1.861 +     * value, the result is that same value.
   1.862 +     *
   1.863 +     * @param   a   an argument.
   1.864 +     * @param   b   another argument.
   1.865 +     * @return  the smaller of {@code a} and {@code b}.
   1.866 +     */
   1.867 +    public static int min(int a, int b) {
   1.868 +        return (a <= b) ? a : b;
   1.869 +    }
   1.870 +
   1.871 +    /**
   1.872 +     * Returns the smaller of two {@code long} values. That is,
   1.873 +     * the result is the argument closer to the value of
   1.874 +     * {@link Long#MIN_VALUE}. If the arguments have the same
   1.875 +     * value, the result is that same value.
   1.876 +     *
   1.877 +     * @param   a   an argument.
   1.878 +     * @param   b   another argument.
   1.879 +     * @return  the smaller of {@code a} and {@code b}.
   1.880 +     */
   1.881 +    public static long min(long a, long b) {
   1.882 +        return (a <= b) ? a : b;
   1.883 +    }
   1.884 +
   1.885 +    /**
   1.886 +     * Returns the smaller of two {@code float} values.  That is,
   1.887 +     * the result is the value closer to negative infinity. If the
   1.888 +     * arguments have the same value, the result is that same
   1.889 +     * value. If either value is NaN, then the result is NaN.  Unlike
   1.890 +     * the numerical comparison operators, this method considers
   1.891 +     * negative zero to be strictly smaller than positive zero.  If
   1.892 +     * one argument is positive zero and the other is negative zero,
   1.893 +     * the result is negative zero.
   1.894 +     *
   1.895 +     * @param   a   an argument.
   1.896 +     * @param   b   another argument.
   1.897 +     * @return  the smaller of {@code a} and {@code b}.
   1.898 +     */
   1.899 +    @JavaScriptBody(args={"a", "b"},
   1.900 +        body="return Math.min(a,b);"
   1.901 +    )
   1.902 +    public static float min(float a, float b) {
   1.903 +        throw new UnsupportedOperationException();
   1.904 +    }
   1.905 +
   1.906 +    /**
   1.907 +     * Returns the smaller of two {@code double} values.  That
   1.908 +     * is, the result is the value closer to negative infinity. If the
   1.909 +     * arguments have the same value, the result is that same
   1.910 +     * value. If either value is NaN, then the result is NaN.  Unlike
   1.911 +     * the numerical comparison operators, this method considers
   1.912 +     * negative zero to be strictly smaller than positive zero. If one
   1.913 +     * argument is positive zero and the other is negative zero, the
   1.914 +     * result is negative zero.
   1.915 +     *
   1.916 +     * @param   a   an argument.
   1.917 +     * @param   b   another argument.
   1.918 +     * @return  the smaller of {@code a} and {@code b}.
   1.919 +     */
   1.920 +    @JavaScriptBody(args={"a", "b"},
   1.921 +        body="return Math.min(a,b);"
   1.922 +    )
   1.923 +    public static double min(double a, double b) {
   1.924 +        throw new UnsupportedOperationException();
   1.925 +    }
   1.926 +
   1.927 +    /**
   1.928 +     * Returns the size of an ulp of the argument.  An ulp of a
   1.929 +     * {@code double} value is the positive distance between this
   1.930 +     * floating-point value and the {@code double} value next
   1.931 +     * larger in magnitude.  Note that for non-NaN <i>x</i>,
   1.932 +     * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
   1.933 +     *
   1.934 +     * <p>Special Cases:
   1.935 +     * <ul>
   1.936 +     * <li> If the argument is NaN, then the result is NaN.
   1.937 +     * <li> If the argument is positive or negative infinity, then the
   1.938 +     * result is positive infinity.
   1.939 +     * <li> If the argument is positive or negative zero, then the result is
   1.940 +     * {@code Double.MIN_VALUE}.
   1.941 +     * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
   1.942 +     * the result is equal to 2<sup>971</sup>.
   1.943 +     * </ul>
   1.944 +     *
   1.945 +     * @param d the floating-point value whose ulp is to be returned
   1.946 +     * @return the size of an ulp of the argument
   1.947 +     * @author Joseph D. Darcy
   1.948 +     * @since 1.5
   1.949 +     */
   1.950 +//    public static double ulp(double d) {
   1.951 +//        return sun.misc.FpUtils.ulp(d);
   1.952 +//    }
   1.953 +
   1.954 +    /**
   1.955 +     * Returns the size of an ulp of the argument.  An ulp of a
   1.956 +     * {@code float} value is the positive distance between this
   1.957 +     * floating-point value and the {@code float} value next
   1.958 +     * larger in magnitude.  Note that for non-NaN <i>x</i>,
   1.959 +     * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
   1.960 +     *
   1.961 +     * <p>Special Cases:
   1.962 +     * <ul>
   1.963 +     * <li> If the argument is NaN, then the result is NaN.
   1.964 +     * <li> If the argument is positive or negative infinity, then the
   1.965 +     * result is positive infinity.
   1.966 +     * <li> If the argument is positive or negative zero, then the result is
   1.967 +     * {@code Float.MIN_VALUE}.
   1.968 +     * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
   1.969 +     * the result is equal to 2<sup>104</sup>.
   1.970 +     * </ul>
   1.971 +     *
   1.972 +     * @param f the floating-point value whose ulp is to be returned
   1.973 +     * @return the size of an ulp of the argument
   1.974 +     * @author Joseph D. Darcy
   1.975 +     * @since 1.5
   1.976 +     */
   1.977 +//    public static float ulp(float f) {
   1.978 +//        return sun.misc.FpUtils.ulp(f);
   1.979 +//    }
   1.980 +
   1.981 +    /**
   1.982 +     * Returns the signum function of the argument; zero if the argument
   1.983 +     * is zero, 1.0 if the argument is greater than zero, -1.0 if the
   1.984 +     * argument is less than zero.
   1.985 +     *
   1.986 +     * <p>Special Cases:
   1.987 +     * <ul>
   1.988 +     * <li> If the argument is NaN, then the result is NaN.
   1.989 +     * <li> If the argument is positive zero or negative zero, then the
   1.990 +     *      result is the same as the argument.
   1.991 +     * </ul>
   1.992 +     *
   1.993 +     * @param d the floating-point value whose signum is to be returned
   1.994 +     * @return the signum function of the argument
   1.995 +     * @author Joseph D. Darcy
   1.996 +     * @since 1.5
   1.997 +     */
   1.998 +    public static double signum(double d) {
   1.999 +        if (d < 0.0) { return -1.0; }
  1.1000 +        if (d > 0.0) { return 1.0; }
  1.1001 +        return d;
  1.1002 +    }
  1.1003 +
  1.1004 +    /**
  1.1005 +     * Returns the signum function of the argument; zero if the argument
  1.1006 +     * is zero, 1.0f if the argument is greater than zero, -1.0f if the
  1.1007 +     * argument is less than zero.
  1.1008 +     *
  1.1009 +     * <p>Special Cases:
  1.1010 +     * <ul>
  1.1011 +     * <li> If the argument is NaN, then the result is NaN.
  1.1012 +     * <li> If the argument is positive zero or negative zero, then the
  1.1013 +     *      result is the same as the argument.
  1.1014 +     * </ul>
  1.1015 +     *
  1.1016 +     * @param f the floating-point value whose signum is to be returned
  1.1017 +     * @return the signum function of the argument
  1.1018 +     * @author Joseph D. Darcy
  1.1019 +     * @since 1.5
  1.1020 +     */
  1.1021 +    public static float signum(float f) {
  1.1022 +        if (f < 0.0f) { return -1.0f; }
  1.1023 +        if (f > 0.0f) { return 1.0f; }
  1.1024 +        return f;
  1.1025 +    }
  1.1026 +
  1.1027 +    /**
  1.1028 +     * Returns the first floating-point argument with the sign of the
  1.1029 +     * second floating-point argument.  Note that unlike the {@link
  1.1030 +     * StrictMath#copySign(double, double) StrictMath.copySign}
  1.1031 +     * method, this method does not require NaN {@code sign}
  1.1032 +     * arguments to be treated as positive values; implementations are
  1.1033 +     * permitted to treat some NaN arguments as positive and other NaN
  1.1034 +     * arguments as negative to allow greater performance.
  1.1035 +     *
  1.1036 +     * @param magnitude  the parameter providing the magnitude of the result
  1.1037 +     * @param sign   the parameter providing the sign of the result
  1.1038 +     * @return a value with the magnitude of {@code magnitude}
  1.1039 +     * and the sign of {@code sign}.
  1.1040 +     * @since 1.6
  1.1041 +     */
  1.1042 +//    public static double copySign(double magnitude, double sign) {
  1.1043 +//        return sun.misc.FpUtils.rawCopySign(magnitude, sign);
  1.1044 +//    }
  1.1045 +
  1.1046 +    /**
  1.1047 +     * Returns the first floating-point argument with the sign of the
  1.1048 +     * second floating-point argument.  Note that unlike the {@link
  1.1049 +     * StrictMath#copySign(float, float) StrictMath.copySign}
  1.1050 +     * method, this method does not require NaN {@code sign}
  1.1051 +     * arguments to be treated as positive values; implementations are
  1.1052 +     * permitted to treat some NaN arguments as positive and other NaN
  1.1053 +     * arguments as negative to allow greater performance.
  1.1054 +     *
  1.1055 +     * @param magnitude  the parameter providing the magnitude of the result
  1.1056 +     * @param sign   the parameter providing the sign of the result
  1.1057 +     * @return a value with the magnitude of {@code magnitude}
  1.1058 +     * and the sign of {@code sign}.
  1.1059 +     * @since 1.6
  1.1060 +     */
  1.1061 +//    public static float copySign(float magnitude, float sign) {
  1.1062 +//        return sun.misc.FpUtils.rawCopySign(magnitude, sign);
  1.1063 +//    }
  1.1064 +
  1.1065 +    /**
  1.1066 +     * Returns the unbiased exponent used in the representation of a
  1.1067 +     * {@code float}.  Special cases:
  1.1068 +     *
  1.1069 +     * <ul>
  1.1070 +     * <li>If the argument is NaN or infinite, then the result is
  1.1071 +     * {@link Float#MAX_EXPONENT} + 1.
  1.1072 +     * <li>If the argument is zero or subnormal, then the result is
  1.1073 +     * {@link Float#MIN_EXPONENT} -1.
  1.1074 +     * </ul>
  1.1075 +     * @param f a {@code float} value
  1.1076 +     * @return the unbiased exponent of the argument
  1.1077 +     * @since 1.6
  1.1078 +     */
  1.1079 +//    public static int getExponent(float f) {
  1.1080 +//        return sun.misc.FpUtils.getExponent(f);
  1.1081 +//    }
  1.1082 +
  1.1083 +    /**
  1.1084 +     * Returns the unbiased exponent used in the representation of a
  1.1085 +     * {@code double}.  Special cases:
  1.1086 +     *
  1.1087 +     * <ul>
  1.1088 +     * <li>If the argument is NaN or infinite, then the result is
  1.1089 +     * {@link Double#MAX_EXPONENT} + 1.
  1.1090 +     * <li>If the argument is zero or subnormal, then the result is
  1.1091 +     * {@link Double#MIN_EXPONENT} -1.
  1.1092 +     * </ul>
  1.1093 +     * @param d a {@code double} value
  1.1094 +     * @return the unbiased exponent of the argument
  1.1095 +     * @since 1.6
  1.1096 +     */
  1.1097 +//    public static int getExponent(double d) {
  1.1098 +//        return sun.misc.FpUtils.getExponent(d);
  1.1099 +//    }
  1.1100 +
  1.1101 +    /**
  1.1102 +     * Returns the floating-point number adjacent to the first
  1.1103 +     * argument in the direction of the second argument.  If both
  1.1104 +     * arguments compare as equal the second argument is returned.
  1.1105 +     *
  1.1106 +     * <p>
  1.1107 +     * Special cases:
  1.1108 +     * <ul>
  1.1109 +     * <li> If either argument is a NaN, then NaN is returned.
  1.1110 +     *
  1.1111 +     * <li> If both arguments are signed zeros, {@code direction}
  1.1112 +     * is returned unchanged (as implied by the requirement of
  1.1113 +     * returning the second argument if the arguments compare as
  1.1114 +     * equal).
  1.1115 +     *
  1.1116 +     * <li> If {@code start} is
  1.1117 +     * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
  1.1118 +     * has a value such that the result should have a smaller
  1.1119 +     * magnitude, then a zero with the same sign as {@code start}
  1.1120 +     * is returned.
  1.1121 +     *
  1.1122 +     * <li> If {@code start} is infinite and
  1.1123 +     * {@code direction} has a value such that the result should
  1.1124 +     * have a smaller magnitude, {@link Double#MAX_VALUE} with the
  1.1125 +     * same sign as {@code start} is returned.
  1.1126 +     *
  1.1127 +     * <li> If {@code start} is equal to &plusmn;
  1.1128 +     * {@link Double#MAX_VALUE} and {@code direction} has a
  1.1129 +     * value such that the result should have a larger magnitude, an
  1.1130 +     * infinity with same sign as {@code start} is returned.
  1.1131 +     * </ul>
  1.1132 +     *
  1.1133 +     * @param start  starting floating-point value
  1.1134 +     * @param direction value indicating which of
  1.1135 +     * {@code start}'s neighbors or {@code start} should
  1.1136 +     * be returned
  1.1137 +     * @return The floating-point number adjacent to {@code start} in the
  1.1138 +     * direction of {@code direction}.
  1.1139 +     * @since 1.6
  1.1140 +     */
  1.1141 +//    public static double nextAfter(double start, double direction) {
  1.1142 +//        return sun.misc.FpUtils.nextAfter(start, direction);
  1.1143 +//    }
  1.1144 +
  1.1145 +    /**
  1.1146 +     * Returns the floating-point number adjacent to the first
  1.1147 +     * argument in the direction of the second argument.  If both
  1.1148 +     * arguments compare as equal a value equivalent to the second argument
  1.1149 +     * is returned.
  1.1150 +     *
  1.1151 +     * <p>
  1.1152 +     * Special cases:
  1.1153 +     * <ul>
  1.1154 +     * <li> If either argument is a NaN, then NaN is returned.
  1.1155 +     *
  1.1156 +     * <li> If both arguments are signed zeros, a value equivalent
  1.1157 +     * to {@code direction} is returned.
  1.1158 +     *
  1.1159 +     * <li> If {@code start} is
  1.1160 +     * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
  1.1161 +     * has a value such that the result should have a smaller
  1.1162 +     * magnitude, then a zero with the same sign as {@code start}
  1.1163 +     * is returned.
  1.1164 +     *
  1.1165 +     * <li> If {@code start} is infinite and
  1.1166 +     * {@code direction} has a value such that the result should
  1.1167 +     * have a smaller magnitude, {@link Float#MAX_VALUE} with the
  1.1168 +     * same sign as {@code start} is returned.
  1.1169 +     *
  1.1170 +     * <li> If {@code start} is equal to &plusmn;
  1.1171 +     * {@link Float#MAX_VALUE} and {@code direction} has a
  1.1172 +     * value such that the result should have a larger magnitude, an
  1.1173 +     * infinity with same sign as {@code start} is returned.
  1.1174 +     * </ul>
  1.1175 +     *
  1.1176 +     * @param start  starting floating-point value
  1.1177 +     * @param direction value indicating which of
  1.1178 +     * {@code start}'s neighbors or {@code start} should
  1.1179 +     * be returned
  1.1180 +     * @return The floating-point number adjacent to {@code start} in the
  1.1181 +     * direction of {@code direction}.
  1.1182 +     * @since 1.6
  1.1183 +     */
  1.1184 +//    public static float nextAfter(float start, double direction) {
  1.1185 +//        return sun.misc.FpUtils.nextAfter(start, direction);
  1.1186 +//    }
  1.1187 +
  1.1188 +    /**
  1.1189 +     * Returns the floating-point value adjacent to {@code d} in
  1.1190 +     * the direction of positive infinity.  This method is
  1.1191 +     * semantically equivalent to {@code nextAfter(d,
  1.1192 +     * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
  1.1193 +     * implementation may run faster than its equivalent
  1.1194 +     * {@code nextAfter} call.
  1.1195 +     *
  1.1196 +     * <p>Special Cases:
  1.1197 +     * <ul>
  1.1198 +     * <li> If the argument is NaN, the result is NaN.
  1.1199 +     *
  1.1200 +     * <li> If the argument is positive infinity, the result is
  1.1201 +     * positive infinity.
  1.1202 +     *
  1.1203 +     * <li> If the argument is zero, the result is
  1.1204 +     * {@link Double#MIN_VALUE}
  1.1205 +     *
  1.1206 +     * </ul>
  1.1207 +     *
  1.1208 +     * @param d starting floating-point value
  1.1209 +     * @return The adjacent floating-point value closer to positive
  1.1210 +     * infinity.
  1.1211 +     * @since 1.6
  1.1212 +     */
  1.1213 +//    public static double nextUp(double d) {
  1.1214 +//        return sun.misc.FpUtils.nextUp(d);
  1.1215 +//    }
  1.1216 +
  1.1217 +    /**
  1.1218 +     * Returns the floating-point value adjacent to {@code f} in
  1.1219 +     * the direction of positive infinity.  This method is
  1.1220 +     * semantically equivalent to {@code nextAfter(f,
  1.1221 +     * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
  1.1222 +     * implementation may run faster than its equivalent
  1.1223 +     * {@code nextAfter} call.
  1.1224 +     *
  1.1225 +     * <p>Special Cases:
  1.1226 +     * <ul>
  1.1227 +     * <li> If the argument is NaN, the result is NaN.
  1.1228 +     *
  1.1229 +     * <li> If the argument is positive infinity, the result is
  1.1230 +     * positive infinity.
  1.1231 +     *
  1.1232 +     * <li> If the argument is zero, the result is
  1.1233 +     * {@link Float#MIN_VALUE}
  1.1234 +     *
  1.1235 +     * </ul>
  1.1236 +     *
  1.1237 +     * @param f starting floating-point value
  1.1238 +     * @return The adjacent floating-point value closer to positive
  1.1239 +     * infinity.
  1.1240 +     * @since 1.6
  1.1241 +     */
  1.1242 +//    public static float nextUp(float f) {
  1.1243 +//        return sun.misc.FpUtils.nextUp(f);
  1.1244 +//    }
  1.1245 +
  1.1246 +
  1.1247 +    /**
  1.1248 +     * Return {@code d} &times;
  1.1249 +     * 2<sup>{@code scaleFactor}</sup> rounded as if performed
  1.1250 +     * by a single correctly rounded floating-point multiply to a
  1.1251 +     * member of the double value set.  See the Java
  1.1252 +     * Language Specification for a discussion of floating-point
  1.1253 +     * value sets.  If the exponent of the result is between {@link
  1.1254 +     * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
  1.1255 +     * answer is calculated exactly.  If the exponent of the result
  1.1256 +     * would be larger than {@code Double.MAX_EXPONENT}, an
  1.1257 +     * infinity is returned.  Note that if the result is subnormal,
  1.1258 +     * precision may be lost; that is, when {@code scalb(x, n)}
  1.1259 +     * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
  1.1260 +     * <i>x</i>.  When the result is non-NaN, the result has the same
  1.1261 +     * sign as {@code d}.
  1.1262 +     *
  1.1263 +     * <p>Special cases:
  1.1264 +     * <ul>
  1.1265 +     * <li> If the first argument is NaN, NaN is returned.
  1.1266 +     * <li> If the first argument is infinite, then an infinity of the
  1.1267 +     * same sign is returned.
  1.1268 +     * <li> If the first argument is zero, then a zero of the same
  1.1269 +     * sign is returned.
  1.1270 +     * </ul>
  1.1271 +     *
  1.1272 +     * @param d number to be scaled by a power of two.
  1.1273 +     * @param scaleFactor power of 2 used to scale {@code d}
  1.1274 +     * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
  1.1275 +     * @since 1.6
  1.1276 +     */
  1.1277 +//    public static double scalb(double d, int scaleFactor) {
  1.1278 +//        return sun.misc.FpUtils.scalb(d, scaleFactor);
  1.1279 +//    }
  1.1280 +
  1.1281 +    /**
  1.1282 +     * Return {@code f} &times;
  1.1283 +     * 2<sup>{@code scaleFactor}</sup> rounded as if performed
  1.1284 +     * by a single correctly rounded floating-point multiply to a
  1.1285 +     * member of the float value set.  See the Java
  1.1286 +     * Language Specification for a discussion of floating-point
  1.1287 +     * value sets.  If the exponent of the result is between {@link
  1.1288 +     * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
  1.1289 +     * answer is calculated exactly.  If the exponent of the result
  1.1290 +     * would be larger than {@code Float.MAX_EXPONENT}, an
  1.1291 +     * infinity is returned.  Note that if the result is subnormal,
  1.1292 +     * precision may be lost; that is, when {@code scalb(x, n)}
  1.1293 +     * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
  1.1294 +     * <i>x</i>.  When the result is non-NaN, the result has the same
  1.1295 +     * sign as {@code f}.
  1.1296 +     *
  1.1297 +     * <p>Special cases:
  1.1298 +     * <ul>
  1.1299 +     * <li> If the first argument is NaN, NaN is returned.
  1.1300 +     * <li> If the first argument is infinite, then an infinity of the
  1.1301 +     * same sign is returned.
  1.1302 +     * <li> If the first argument is zero, then a zero of the same
  1.1303 +     * sign is returned.
  1.1304 +     * </ul>
  1.1305 +     *
  1.1306 +     * @param f number to be scaled by a power of two.
  1.1307 +     * @param scaleFactor power of 2 used to scale {@code f}
  1.1308 +     * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
  1.1309 +     * @since 1.6
  1.1310 +     */
  1.1311 +//    public static float scalb(float f, int scaleFactor) {
  1.1312 +//        return sun.misc.FpUtils.scalb(f, scaleFactor);
  1.1313 +//    }
  1.1314 +}