emul/mini/src/main/java/java/lang/Double.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Wed, 23 Jan 2013 20:39:23 +0100
branchemul
changeset 554 05224402145d
parent 497 emul/src/main/java/java/lang/Double.java@910c043eac22
child 752 cc3871bdd83c
permissions -rw-r--r--
First attempt to separate 'mini' profile from the rest of JDK APIs
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import org.apidesign.bck2brwsr.core.JavaScriptBody;
    29 
    30 /**
    31  * The {@code Double} class wraps a value of the primitive type
    32  * {@code double} in an object. An object of type
    33  * {@code Double} contains a single field whose type is
    34  * {@code double}.
    35  *
    36  * <p>In addition, this class provides several methods for converting a
    37  * {@code double} to a {@code String} and a
    38  * {@code String} to a {@code double}, as well as other
    39  * constants and methods useful when dealing with a
    40  * {@code double}.
    41  *
    42  * @author  Lee Boynton
    43  * @author  Arthur van Hoff
    44  * @author  Joseph D. Darcy
    45  * @since JDK1.0
    46  */
    47 public final class Double extends Number implements Comparable<Double> {
    48     /**
    49      * A constant holding the positive infinity of type
    50      * {@code double}. It is equal to the value returned by
    51      * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
    52      */
    53     public static final double POSITIVE_INFINITY = 1.0 / 0.0;
    54 
    55     /**
    56      * A constant holding the negative infinity of type
    57      * {@code double}. It is equal to the value returned by
    58      * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
    59      */
    60     public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
    61 
    62     /**
    63      * A constant holding a Not-a-Number (NaN) value of type
    64      * {@code double}. It is equivalent to the value returned by
    65      * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
    66      */
    67     public static final double NaN = 0.0d / 0.0;
    68 
    69     /**
    70      * A constant holding the largest positive finite value of type
    71      * {@code double},
    72      * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
    73      * the hexadecimal floating-point literal
    74      * {@code 0x1.fffffffffffffP+1023} and also equal to
    75      * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
    76      */
    77     public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
    78 
    79     /**
    80      * A constant holding the smallest positive normal value of type
    81      * {@code double}, 2<sup>-1022</sup>.  It is equal to the
    82      * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
    83      * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
    84      *
    85      * @since 1.6
    86      */
    87     public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
    88 
    89     /**
    90      * A constant holding the smallest positive nonzero value of type
    91      * {@code double}, 2<sup>-1074</sup>. It is equal to the
    92      * hexadecimal floating-point literal
    93      * {@code 0x0.0000000000001P-1022} and also equal to
    94      * {@code Double.longBitsToDouble(0x1L)}.
    95      */
    96     public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
    97 
    98     /**
    99      * Maximum exponent a finite {@code double} variable may have.
   100      * It is equal to the value returned by
   101      * {@code Math.getExponent(Double.MAX_VALUE)}.
   102      *
   103      * @since 1.6
   104      */
   105     public static final int MAX_EXPONENT = 1023;
   106 
   107     /**
   108      * Minimum exponent a normalized {@code double} variable may
   109      * have.  It is equal to the value returned by
   110      * {@code Math.getExponent(Double.MIN_NORMAL)}.
   111      *
   112      * @since 1.6
   113      */
   114     public static final int MIN_EXPONENT = -1022;
   115 
   116     /**
   117      * The number of bits used to represent a {@code double} value.
   118      *
   119      * @since 1.5
   120      */
   121     public static final int SIZE = 64;
   122 
   123     /**
   124      * The {@code Class} instance representing the primitive type
   125      * {@code double}.
   126      *
   127      * @since JDK1.1
   128      */
   129     public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
   130 
   131     /**
   132      * Returns a string representation of the {@code double}
   133      * argument. All characters mentioned below are ASCII characters.
   134      * <ul>
   135      * <li>If the argument is NaN, the result is the string
   136      *     "{@code NaN}".
   137      * <li>Otherwise, the result is a string that represents the sign and
   138      * magnitude (absolute value) of the argument. If the sign is negative,
   139      * the first character of the result is '{@code -}'
   140      * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
   141      * appears in the result. As for the magnitude <i>m</i>:
   142      * <ul>
   143      * <li>If <i>m</i> is infinity, it is represented by the characters
   144      * {@code "Infinity"}; thus, positive infinity produces the result
   145      * {@code "Infinity"} and negative infinity produces the result
   146      * {@code "-Infinity"}.
   147      *
   148      * <li>If <i>m</i> is zero, it is represented by the characters
   149      * {@code "0.0"}; thus, negative zero produces the result
   150      * {@code "-0.0"} and positive zero produces the result
   151      * {@code "0.0"}.
   152      *
   153      * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
   154      * than 10<sup>7</sup>, then it is represented as the integer part of
   155      * <i>m</i>, in decimal form with no leading zeroes, followed by
   156      * '{@code .}' (<code>'&#92;u002E'</code>), followed by one or
   157      * more decimal digits representing the fractional part of <i>m</i>.
   158      *
   159      * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
   160      * equal to 10<sup>7</sup>, then it is represented in so-called
   161      * "computerized scientific notation." Let <i>n</i> be the unique
   162      * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
   163      * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
   164      * mathematically exact quotient of <i>m</i> and
   165      * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
   166      * magnitude is then represented as the integer part of <i>a</i>,
   167      * as a single decimal digit, followed by '{@code .}'
   168      * (<code>'&#92;u002E'</code>), followed by decimal digits
   169      * representing the fractional part of <i>a</i>, followed by the
   170      * letter '{@code E}' (<code>'&#92;u0045'</code>), followed
   171      * by a representation of <i>n</i> as a decimal integer, as
   172      * produced by the method {@link Integer#toString(int)}.
   173      * </ul>
   174      * </ul>
   175      * How many digits must be printed for the fractional part of
   176      * <i>m</i> or <i>a</i>? There must be at least one digit to represent
   177      * the fractional part, and beyond that as many, but only as many, more
   178      * digits as are needed to uniquely distinguish the argument value from
   179      * adjacent values of type {@code double}. That is, suppose that
   180      * <i>x</i> is the exact mathematical value represented by the decimal
   181      * representation produced by this method for a finite nonzero argument
   182      * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
   183      * to <i>x</i>; or if two {@code double} values are equally close
   184      * to <i>x</i>, then <i>d</i> must be one of them and the least
   185      * significant bit of the significand of <i>d</i> must be {@code 0}.
   186      *
   187      * <p>To create localized string representations of a floating-point
   188      * value, use subclasses of {@link java.text.NumberFormat}.
   189      *
   190      * @param   d   the {@code double} to be converted.
   191      * @return a string representation of the argument.
   192      */
   193     @JavaScriptBody(args="d", body="var r = d.toString();"
   194         + "if (r.indexOf('.') === -1) r = r + '.0';"
   195         + "return r;")
   196     public static String toString(double d) {
   197         throw new UnsupportedOperationException();
   198     }
   199 
   200     /**
   201      * Returns a hexadecimal string representation of the
   202      * {@code double} argument. All characters mentioned below
   203      * are ASCII characters.
   204      *
   205      * <ul>
   206      * <li>If the argument is NaN, the result is the string
   207      *     "{@code NaN}".
   208      * <li>Otherwise, the result is a string that represents the sign
   209      * and magnitude of the argument. If the sign is negative, the
   210      * first character of the result is '{@code -}'
   211      * (<code>'&#92;u002D'</code>); if the sign is positive, no sign
   212      * character appears in the result. As for the magnitude <i>m</i>:
   213      *
   214      * <ul>
   215      * <li>If <i>m</i> is infinity, it is represented by the string
   216      * {@code "Infinity"}; thus, positive infinity produces the
   217      * result {@code "Infinity"} and negative infinity produces
   218      * the result {@code "-Infinity"}.
   219      *
   220      * <li>If <i>m</i> is zero, it is represented by the string
   221      * {@code "0x0.0p0"}; thus, negative zero produces the result
   222      * {@code "-0x0.0p0"} and positive zero produces the result
   223      * {@code "0x0.0p0"}.
   224      *
   225      * <li>If <i>m</i> is a {@code double} value with a
   226      * normalized representation, substrings are used to represent the
   227      * significand and exponent fields.  The significand is
   228      * represented by the characters {@code "0x1."}
   229      * followed by a lowercase hexadecimal representation of the rest
   230      * of the significand as a fraction.  Trailing zeros in the
   231      * hexadecimal representation are removed unless all the digits
   232      * are zero, in which case a single zero is used. Next, the
   233      * exponent is represented by {@code "p"} followed
   234      * by a decimal string of the unbiased exponent as if produced by
   235      * a call to {@link Integer#toString(int) Integer.toString} on the
   236      * exponent value.
   237      *
   238      * <li>If <i>m</i> is a {@code double} value with a subnormal
   239      * representation, the significand is represented by the
   240      * characters {@code "0x0."} followed by a
   241      * hexadecimal representation of the rest of the significand as a
   242      * fraction.  Trailing zeros in the hexadecimal representation are
   243      * removed. Next, the exponent is represented by
   244      * {@code "p-1022"}.  Note that there must be at
   245      * least one nonzero digit in a subnormal significand.
   246      *
   247      * </ul>
   248      *
   249      * </ul>
   250      *
   251      * <table border>
   252      * <caption><h3>Examples</h3></caption>
   253      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
   254      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
   255      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
   256      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
   257      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
   258      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
   259      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
   260      * <tr><td>{@code Double.MAX_VALUE}</td>
   261      *     <td>{@code 0x1.fffffffffffffp1023}</td>
   262      * <tr><td>{@code Minimum Normal Value}</td>
   263      *     <td>{@code 0x1.0p-1022}</td>
   264      * <tr><td>{@code Maximum Subnormal Value}</td>
   265      *     <td>{@code 0x0.fffffffffffffp-1022}</td>
   266      * <tr><td>{@code Double.MIN_VALUE}</td>
   267      *     <td>{@code 0x0.0000000000001p-1022}</td>
   268      * </table>
   269      * @param   d   the {@code double} to be converted.
   270      * @return a hex string representation of the argument.
   271      * @since 1.5
   272      * @author Joseph D. Darcy
   273      */
   274     public static String toHexString(double d) {
   275         throw new UnsupportedOperationException();
   276 //        /*
   277 //         * Modeled after the "a" conversion specifier in C99, section
   278 //         * 7.19.6.1; however, the output of this method is more
   279 //         * tightly specified.
   280 //         */
   281 //        if (!FpUtils.isFinite(d) )
   282 //            // For infinity and NaN, use the decimal output.
   283 //            return Double.toString(d);
   284 //        else {
   285 //            // Initialized to maximum size of output.
   286 //            StringBuffer answer = new StringBuffer(24);
   287 //
   288 //            if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative,
   289 //                answer.append("-");                  // so append sign info
   290 //
   291 //            answer.append("0x");
   292 //
   293 //            d = Math.abs(d);
   294 //
   295 //            if(d == 0.0) {
   296 //                answer.append("0.0p0");
   297 //            }
   298 //            else {
   299 //                boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
   300 //
   301 //                // Isolate significand bits and OR in a high-order bit
   302 //                // so that the string representation has a known
   303 //                // length.
   304 //                long signifBits = (Double.doubleToLongBits(d)
   305 //                                   & DoubleConsts.SIGNIF_BIT_MASK) |
   306 //                    0x1000000000000000L;
   307 //
   308 //                // Subnormal values have a 0 implicit bit; normal
   309 //                // values have a 1 implicit bit.
   310 //                answer.append(subnormal ? "0." : "1.");
   311 //
   312 //                // Isolate the low-order 13 digits of the hex
   313 //                // representation.  If all the digits are zero,
   314 //                // replace with a single 0; otherwise, remove all
   315 //                // trailing zeros.
   316 //                String signif = Long.toHexString(signifBits).substring(3,16);
   317 //                answer.append(signif.equals("0000000000000") ? // 13 zeros
   318 //                              "0":
   319 //                              signif.replaceFirst("0{1,12}$", ""));
   320 //
   321 //                // If the value is subnormal, use the E_min exponent
   322 //                // value for double; otherwise, extract and report d's
   323 //                // exponent (the representation of a subnormal uses
   324 //                // E_min -1).
   325 //                answer.append("p" + (subnormal ?
   326 //                               DoubleConsts.MIN_EXPONENT:
   327 //                               FpUtils.getExponent(d) ));
   328 //            }
   329 //            return answer.toString();
   330 //        }
   331     }
   332 
   333     /**
   334      * Returns a {@code Double} object holding the
   335      * {@code double} value represented by the argument string
   336      * {@code s}.
   337      *
   338      * <p>If {@code s} is {@code null}, then a
   339      * {@code NullPointerException} is thrown.
   340      *
   341      * <p>Leading and trailing whitespace characters in {@code s}
   342      * are ignored.  Whitespace is removed as if by the {@link
   343      * String#trim} method; that is, both ASCII space and control
   344      * characters are removed. The rest of {@code s} should
   345      * constitute a <i>FloatValue</i> as described by the lexical
   346      * syntax rules:
   347      *
   348      * <blockquote>
   349      * <dl>
   350      * <dt><i>FloatValue:</i>
   351      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
   352      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
   353      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
   354      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
   355      * <dd><i>SignedInteger</i>
   356      * </dl>
   357      *
   358      * <p>
   359      *
   360      * <dl>
   361      * <dt><i>HexFloatingPointLiteral</i>:
   362      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
   363      * </dl>
   364      *
   365      * <p>
   366      *
   367      * <dl>
   368      * <dt><i>HexSignificand:</i>
   369      * <dd><i>HexNumeral</i>
   370      * <dd><i>HexNumeral</i> {@code .}
   371      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
   372      *     </i>{@code .}<i> HexDigits</i>
   373      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
   374      *     </i>{@code .} <i>HexDigits</i>
   375      * </dl>
   376      *
   377      * <p>
   378      *
   379      * <dl>
   380      * <dt><i>BinaryExponent:</i>
   381      * <dd><i>BinaryExponentIndicator SignedInteger</i>
   382      * </dl>
   383      *
   384      * <p>
   385      *
   386      * <dl>
   387      * <dt><i>BinaryExponentIndicator:</i>
   388      * <dd>{@code p}
   389      * <dd>{@code P}
   390      * </dl>
   391      *
   392      * </blockquote>
   393      *
   394      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
   395      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
   396      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
   397      * sections of
   398      * <cite>The Java&trade; Language Specification</cite>,
   399      * except that underscores are not accepted between digits.
   400      * If {@code s} does not have the form of
   401      * a <i>FloatValue</i>, then a {@code NumberFormatException}
   402      * is thrown. Otherwise, {@code s} is regarded as
   403      * representing an exact decimal value in the usual
   404      * "computerized scientific notation" or as an exact
   405      * hexadecimal value; this exact numerical value is then
   406      * conceptually converted to an "infinitely precise"
   407      * binary value that is then rounded to type {@code double}
   408      * by the usual round-to-nearest rule of IEEE 754 floating-point
   409      * arithmetic, which includes preserving the sign of a zero
   410      * value.
   411      *
   412      * Note that the round-to-nearest rule also implies overflow and
   413      * underflow behaviour; if the exact value of {@code s} is large
   414      * enough in magnitude (greater than or equal to ({@link
   415      * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
   416      * rounding to {@code double} will result in an infinity and if the
   417      * exact value of {@code s} is small enough in magnitude (less
   418      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
   419      * result in a zero.
   420      *
   421      * Finally, after rounding a {@code Double} object representing
   422      * this {@code double} value is returned.
   423      *
   424      * <p> To interpret localized string representations of a
   425      * floating-point value, use subclasses of {@link
   426      * java.text.NumberFormat}.
   427      *
   428      * <p>Note that trailing format specifiers, specifiers that
   429      * determine the type of a floating-point literal
   430      * ({@code 1.0f} is a {@code float} value;
   431      * {@code 1.0d} is a {@code double} value), do
   432      * <em>not</em> influence the results of this method.  In other
   433      * words, the numerical value of the input string is converted
   434      * directly to the target floating-point type.  The two-step
   435      * sequence of conversions, string to {@code float} followed
   436      * by {@code float} to {@code double}, is <em>not</em>
   437      * equivalent to converting a string directly to
   438      * {@code double}. For example, the {@code float}
   439      * literal {@code 0.1f} is equal to the {@code double}
   440      * value {@code 0.10000000149011612}; the {@code float}
   441      * literal {@code 0.1f} represents a different numerical
   442      * value than the {@code double} literal
   443      * {@code 0.1}. (The numerical value 0.1 cannot be exactly
   444      * represented in a binary floating-point number.)
   445      *
   446      * <p>To avoid calling this method on an invalid string and having
   447      * a {@code NumberFormatException} be thrown, the regular
   448      * expression below can be used to screen the input string:
   449      *
   450      * <code>
   451      * <pre>
   452      *  final String Digits     = "(\\p{Digit}+)";
   453      *  final String HexDigits  = "(\\p{XDigit}+)";
   454      *  // an exponent is 'e' or 'E' followed by an optionally
   455      *  // signed decimal integer.
   456      *  final String Exp        = "[eE][+-]?"+Digits;
   457      *  final String fpRegex    =
   458      *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
   459      *       "[+-]?(" + // Optional sign character
   460      *       "NaN|" +           // "NaN" string
   461      *       "Infinity|" +      // "Infinity" string
   462      *
   463      *       // A decimal floating-point string representing a finite positive
   464      *       // number without a leading sign has at most five basic pieces:
   465      *       // Digits . Digits ExponentPart FloatTypeSuffix
   466      *       //
   467      *       // Since this method allows integer-only strings as input
   468      *       // in addition to strings of floating-point literals, the
   469      *       // two sub-patterns below are simplifications of the grammar
   470      *       // productions from section 3.10.2 of
   471      *       // <cite>The Java&trade; Language Specification</cite>.
   472      *
   473      *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
   474      *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
   475      *
   476      *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
   477      *       "(\\.("+Digits+")("+Exp+")?)|"+
   478      *
   479      *       // Hexadecimal strings
   480      *       "((" +
   481      *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
   482      *        "(0[xX]" + HexDigits + "(\\.)?)|" +
   483      *
   484      *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
   485      *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
   486      *
   487      *        ")[pP][+-]?" + Digits + "))" +
   488      *       "[fFdD]?))" +
   489      *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
   490      *
   491      *  if (Pattern.matches(fpRegex, myString))
   492      *      Double.valueOf(myString); // Will not throw NumberFormatException
   493      *  else {
   494      *      // Perform suitable alternative action
   495      *  }
   496      * </pre>
   497      * </code>
   498      *
   499      * @param      s   the string to be parsed.
   500      * @return     a {@code Double} object holding the value
   501      *             represented by the {@code String} argument.
   502      * @throws     NumberFormatException  if the string does not contain a
   503      *             parsable number.
   504      */
   505     @JavaScriptBody(args="s", body="return parseFloat(s);")
   506     public static Double valueOf(String s) throws NumberFormatException {
   507         throw new UnsupportedOperationException();
   508 //        return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
   509     }
   510 
   511     /**
   512      * Returns a {@code Double} instance representing the specified
   513      * {@code double} value.
   514      * If a new {@code Double} instance is not required, this method
   515      * should generally be used in preference to the constructor
   516      * {@link #Double(double)}, as this method is likely to yield
   517      * significantly better space and time performance by caching
   518      * frequently requested values.
   519      *
   520      * @param  d a double value.
   521      * @return a {@code Double} instance representing {@code d}.
   522      * @since  1.5
   523      */
   524     public static Double valueOf(double d) {
   525         return new Double(d);
   526     }
   527 
   528     /**
   529      * Returns a new {@code double} initialized to the value
   530      * represented by the specified {@code String}, as performed
   531      * by the {@code valueOf} method of class
   532      * {@code Double}.
   533      *
   534      * @param  s   the string to be parsed.
   535      * @return the {@code double} value represented by the string
   536      *         argument.
   537      * @throws NullPointerException  if the string is null
   538      * @throws NumberFormatException if the string does not contain
   539      *         a parsable {@code double}.
   540      * @see    java.lang.Double#valueOf(String)
   541      * @since 1.2
   542      */
   543     @JavaScriptBody(args="s", body="return parseFloat(s);")
   544     public static double parseDouble(String s) throws NumberFormatException {
   545         throw new UnsupportedOperationException();
   546 //        return FloatingDecimal.readJavaFormatString(s).doubleValue();
   547     }
   548 
   549     /**
   550      * Returns {@code true} if the specified number is a
   551      * Not-a-Number (NaN) value, {@code false} otherwise.
   552      *
   553      * @param   v   the value to be tested.
   554      * @return  {@code true} if the value of the argument is NaN;
   555      *          {@code false} otherwise.
   556      */
   557     static public boolean isNaN(double v) {
   558         return (v != v);
   559     }
   560 
   561     /**
   562      * Returns {@code true} if the specified number is infinitely
   563      * large in magnitude, {@code false} otherwise.
   564      *
   565      * @param   v   the value to be tested.
   566      * @return  {@code true} if the value of the argument is positive
   567      *          infinity or negative infinity; {@code false} otherwise.
   568      */
   569     static public boolean isInfinite(double v) {
   570         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
   571     }
   572 
   573     /**
   574      * The value of the Double.
   575      *
   576      * @serial
   577      */
   578     private final double value;
   579 
   580     /**
   581      * Constructs a newly allocated {@code Double} object that
   582      * represents the primitive {@code double} argument.
   583      *
   584      * @param   value   the value to be represented by the {@code Double}.
   585      */
   586     public Double(double value) {
   587         this.value = value;
   588     }
   589 
   590     /**
   591      * Constructs a newly allocated {@code Double} object that
   592      * represents the floating-point value of type {@code double}
   593      * represented by the string. The string is converted to a
   594      * {@code double} value as if by the {@code valueOf} method.
   595      *
   596      * @param  s  a string to be converted to a {@code Double}.
   597      * @throws    NumberFormatException  if the string does not contain a
   598      *            parsable number.
   599      * @see       java.lang.Double#valueOf(java.lang.String)
   600      */
   601     public Double(String s) throws NumberFormatException {
   602         // REMIND: this is inefficient
   603         this(valueOf(s).doubleValue());
   604     }
   605 
   606     /**
   607      * Returns {@code true} if this {@code Double} value is
   608      * a Not-a-Number (NaN), {@code false} otherwise.
   609      *
   610      * @return  {@code true} if the value represented by this object is
   611      *          NaN; {@code false} otherwise.
   612      */
   613     public boolean isNaN() {
   614         return isNaN(value);
   615     }
   616 
   617     /**
   618      * Returns {@code true} if this {@code Double} value is
   619      * infinitely large in magnitude, {@code false} otherwise.
   620      *
   621      * @return  {@code true} if the value represented by this object is
   622      *          positive infinity or negative infinity;
   623      *          {@code false} otherwise.
   624      */
   625     public boolean isInfinite() {
   626         return isInfinite(value);
   627     }
   628 
   629     /**
   630      * Returns a string representation of this {@code Double} object.
   631      * The primitive {@code double} value represented by this
   632      * object is converted to a string exactly as if by the method
   633      * {@code toString} of one argument.
   634      *
   635      * @return  a {@code String} representation of this object.
   636      * @see java.lang.Double#toString(double)
   637      */
   638     public String toString() {
   639         return toString(value);
   640     }
   641 
   642     /**
   643      * Returns the value of this {@code Double} as a {@code byte} (by
   644      * casting to a {@code byte}).
   645      *
   646      * @return  the {@code double} value represented by this object
   647      *          converted to type {@code byte}
   648      * @since JDK1.1
   649      */
   650     public byte byteValue() {
   651         return (byte)value;
   652     }
   653 
   654     /**
   655      * Returns the value of this {@code Double} as a
   656      * {@code short} (by casting to a {@code short}).
   657      *
   658      * @return  the {@code double} value represented by this object
   659      *          converted to type {@code short}
   660      * @since JDK1.1
   661      */
   662     public short shortValue() {
   663         return (short)value;
   664     }
   665 
   666     /**
   667      * Returns the value of this {@code Double} as an
   668      * {@code int} (by casting to type {@code int}).
   669      *
   670      * @return  the {@code double} value represented by this object
   671      *          converted to type {@code int}
   672      */
   673     public int intValue() {
   674         return (int)value;
   675     }
   676 
   677     /**
   678      * Returns the value of this {@code Double} as a
   679      * {@code long} (by casting to type {@code long}).
   680      *
   681      * @return  the {@code double} value represented by this object
   682      *          converted to type {@code long}
   683      */
   684     public long longValue() {
   685         return (long)value;
   686     }
   687 
   688     /**
   689      * Returns the {@code float} value of this
   690      * {@code Double} object.
   691      *
   692      * @return  the {@code double} value represented by this object
   693      *          converted to type {@code float}
   694      * @since JDK1.0
   695      */
   696     public float floatValue() {
   697         return (float)value;
   698     }
   699 
   700     /**
   701      * Returns the {@code double} value of this
   702      * {@code Double} object.
   703      *
   704      * @return the {@code double} value represented by this object
   705      */
   706     public double doubleValue() {
   707         return (double)value;
   708     }
   709 
   710     /**
   711      * Returns a hash code for this {@code Double} object. The
   712      * result is the exclusive OR of the two halves of the
   713      * {@code long} integer bit representation, exactly as
   714      * produced by the method {@link #doubleToLongBits(double)}, of
   715      * the primitive {@code double} value represented by this
   716      * {@code Double} object. That is, the hash code is the value
   717      * of the expression:
   718      *
   719      * <blockquote>
   720      *  {@code (int)(v^(v>>>32))}
   721      * </blockquote>
   722      *
   723      * where {@code v} is defined by:
   724      *
   725      * <blockquote>
   726      *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
   727      * </blockquote>
   728      *
   729      * @return  a {@code hash code} value for this object.
   730      */
   731     public int hashCode() {
   732         long bits = doubleToLongBits(value);
   733         return (int)(bits ^ (bits >>> 32));
   734     }
   735 
   736     /**
   737      * Compares this object against the specified object.  The result
   738      * is {@code true} if and only if the argument is not
   739      * {@code null} and is a {@code Double} object that
   740      * represents a {@code double} that has the same value as the
   741      * {@code double} represented by this object. For this
   742      * purpose, two {@code double} values are considered to be
   743      * the same if and only if the method {@link
   744      * #doubleToLongBits(double)} returns the identical
   745      * {@code long} value when applied to each.
   746      *
   747      * <p>Note that in most cases, for two instances of class
   748      * {@code Double}, {@code d1} and {@code d2}, the
   749      * value of {@code d1.equals(d2)} is {@code true} if and
   750      * only if
   751      *
   752      * <blockquote>
   753      *  {@code d1.doubleValue() == d2.doubleValue()}
   754      * </blockquote>
   755      *
   756      * <p>also has the value {@code true}. However, there are two
   757      * exceptions:
   758      * <ul>
   759      * <li>If {@code d1} and {@code d2} both represent
   760      *     {@code Double.NaN}, then the {@code equals} method
   761      *     returns {@code true}, even though
   762      *     {@code Double.NaN==Double.NaN} has the value
   763      *     {@code false}.
   764      * <li>If {@code d1} represents {@code +0.0} while
   765      *     {@code d2} represents {@code -0.0}, or vice versa,
   766      *     the {@code equal} test has the value {@code false},
   767      *     even though {@code +0.0==-0.0} has the value {@code true}.
   768      * </ul>
   769      * This definition allows hash tables to operate properly.
   770      * @param   obj   the object to compare with.
   771      * @return  {@code true} if the objects are the same;
   772      *          {@code false} otherwise.
   773      * @see java.lang.Double#doubleToLongBits(double)
   774      */
   775     public boolean equals(Object obj) {
   776         return (obj instanceof Double)
   777                && (((Double)obj).value) == value;
   778     }
   779 
   780     /**
   781      * Returns a representation of the specified floating-point value
   782      * according to the IEEE 754 floating-point "double
   783      * format" bit layout.
   784      *
   785      * <p>Bit 63 (the bit that is selected by the mask
   786      * {@code 0x8000000000000000L}) represents the sign of the
   787      * floating-point number. Bits
   788      * 62-52 (the bits that are selected by the mask
   789      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
   790      * (the bits that are selected by the mask
   791      * {@code 0x000fffffffffffffL}) represent the significand
   792      * (sometimes called the mantissa) of the floating-point number.
   793      *
   794      * <p>If the argument is positive infinity, the result is
   795      * {@code 0x7ff0000000000000L}.
   796      *
   797      * <p>If the argument is negative infinity, the result is
   798      * {@code 0xfff0000000000000L}.
   799      *
   800      * <p>If the argument is NaN, the result is
   801      * {@code 0x7ff8000000000000L}.
   802      *
   803      * <p>In all cases, the result is a {@code long} integer that, when
   804      * given to the {@link #longBitsToDouble(long)} method, will produce a
   805      * floating-point value the same as the argument to
   806      * {@code doubleToLongBits} (except all NaN values are
   807      * collapsed to a single "canonical" NaN value).
   808      *
   809      * @param   value   a {@code double} precision floating-point number.
   810      * @return the bits that represent the floating-point number.
   811      */
   812     public static long doubleToLongBits(double value) {
   813         throw new UnsupportedOperationException();
   814 //        long result = doubleToRawLongBits(value);
   815 //        // Check for NaN based on values of bit fields, maximum
   816 //        // exponent and nonzero significand.
   817 //        if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
   818 //              DoubleConsts.EXP_BIT_MASK) &&
   819 //             (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
   820 //            result = 0x7ff8000000000000L;
   821 //        return result;
   822     }
   823 
   824     /**
   825      * Returns a representation of the specified floating-point value
   826      * according to the IEEE 754 floating-point "double
   827      * format" bit layout, preserving Not-a-Number (NaN) values.
   828      *
   829      * <p>Bit 63 (the bit that is selected by the mask
   830      * {@code 0x8000000000000000L}) represents the sign of the
   831      * floating-point number. Bits
   832      * 62-52 (the bits that are selected by the mask
   833      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
   834      * (the bits that are selected by the mask
   835      * {@code 0x000fffffffffffffL}) represent the significand
   836      * (sometimes called the mantissa) of the floating-point number.
   837      *
   838      * <p>If the argument is positive infinity, the result is
   839      * {@code 0x7ff0000000000000L}.
   840      *
   841      * <p>If the argument is negative infinity, the result is
   842      * {@code 0xfff0000000000000L}.
   843      *
   844      * <p>If the argument is NaN, the result is the {@code long}
   845      * integer representing the actual NaN value.  Unlike the
   846      * {@code doubleToLongBits} method,
   847      * {@code doubleToRawLongBits} does not collapse all the bit
   848      * patterns encoding a NaN to a single "canonical" NaN
   849      * value.
   850      *
   851      * <p>In all cases, the result is a {@code long} integer that,
   852      * when given to the {@link #longBitsToDouble(long)} method, will
   853      * produce a floating-point value the same as the argument to
   854      * {@code doubleToRawLongBits}.
   855      *
   856      * @param   value   a {@code double} precision floating-point number.
   857      * @return the bits that represent the floating-point number.
   858      * @since 1.3
   859      */
   860     public static native long doubleToRawLongBits(double value);
   861 
   862     /**
   863      * Returns the {@code double} value corresponding to a given
   864      * bit representation.
   865      * The argument is considered to be a representation of a
   866      * floating-point value according to the IEEE 754 floating-point
   867      * "double format" bit layout.
   868      *
   869      * <p>If the argument is {@code 0x7ff0000000000000L}, the result
   870      * is positive infinity.
   871      *
   872      * <p>If the argument is {@code 0xfff0000000000000L}, the result
   873      * is negative infinity.
   874      *
   875      * <p>If the argument is any value in the range
   876      * {@code 0x7ff0000000000001L} through
   877      * {@code 0x7fffffffffffffffL} or in the range
   878      * {@code 0xfff0000000000001L} through
   879      * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
   880      * 754 floating-point operation provided by Java can distinguish
   881      * between two NaN values of the same type with different bit
   882      * patterns.  Distinct values of NaN are only distinguishable by
   883      * use of the {@code Double.doubleToRawLongBits} method.
   884      *
   885      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
   886      * values that can be computed from the argument:
   887      *
   888      * <blockquote><pre>
   889      * int s = ((bits &gt;&gt; 63) == 0) ? 1 : -1;
   890      * int e = (int)((bits &gt;&gt; 52) & 0x7ffL);
   891      * long m = (e == 0) ?
   892      *                 (bits & 0xfffffffffffffL) &lt;&lt; 1 :
   893      *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
   894      * </pre></blockquote>
   895      *
   896      * Then the floating-point result equals the value of the mathematical
   897      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
   898      *
   899      * <p>Note that this method may not be able to return a
   900      * {@code double} NaN with exactly same bit pattern as the
   901      * {@code long} argument.  IEEE 754 distinguishes between two
   902      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
   903      * differences between the two kinds of NaN are generally not
   904      * visible in Java.  Arithmetic operations on signaling NaNs turn
   905      * them into quiet NaNs with a different, but often similar, bit
   906      * pattern.  However, on some processors merely copying a
   907      * signaling NaN also performs that conversion.  In particular,
   908      * copying a signaling NaN to return it to the calling method
   909      * may perform this conversion.  So {@code longBitsToDouble}
   910      * may not be able to return a {@code double} with a
   911      * signaling NaN bit pattern.  Consequently, for some
   912      * {@code long} values,
   913      * {@code doubleToRawLongBits(longBitsToDouble(start))} may
   914      * <i>not</i> equal {@code start}.  Moreover, which
   915      * particular bit patterns represent signaling NaNs is platform
   916      * dependent; although all NaN bit patterns, quiet or signaling,
   917      * must be in the NaN range identified above.
   918      *
   919      * @param   bits   any {@code long} integer.
   920      * @return  the {@code double} floating-point value with the same
   921      *          bit pattern.
   922      */
   923     public static native double longBitsToDouble(long bits);
   924 
   925     /**
   926      * Compares two {@code Double} objects numerically.  There
   927      * are two ways in which comparisons performed by this method
   928      * differ from those performed by the Java language numerical
   929      * comparison operators ({@code <, <=, ==, >=, >})
   930      * when applied to primitive {@code double} values:
   931      * <ul><li>
   932      *          {@code Double.NaN} is considered by this method
   933      *          to be equal to itself and greater than all other
   934      *          {@code double} values (including
   935      *          {@code Double.POSITIVE_INFINITY}).
   936      * <li>
   937      *          {@code 0.0d} is considered by this method to be greater
   938      *          than {@code -0.0d}.
   939      * </ul>
   940      * This ensures that the <i>natural ordering</i> of
   941      * {@code Double} objects imposed by this method is <i>consistent
   942      * with equals</i>.
   943      *
   944      * @param   anotherDouble   the {@code Double} to be compared.
   945      * @return  the value {@code 0} if {@code anotherDouble} is
   946      *          numerically equal to this {@code Double}; a value
   947      *          less than {@code 0} if this {@code Double}
   948      *          is numerically less than {@code anotherDouble};
   949      *          and a value greater than {@code 0} if this
   950      *          {@code Double} is numerically greater than
   951      *          {@code anotherDouble}.
   952      *
   953      * @since   1.2
   954      */
   955     public int compareTo(Double anotherDouble) {
   956         return Double.compare(value, anotherDouble.value);
   957     }
   958 
   959     /**
   960      * Compares the two specified {@code double} values. The sign
   961      * of the integer value returned is the same as that of the
   962      * integer that would be returned by the call:
   963      * <pre>
   964      *    new Double(d1).compareTo(new Double(d2))
   965      * </pre>
   966      *
   967      * @param   d1        the first {@code double} to compare
   968      * @param   d2        the second {@code double} to compare
   969      * @return  the value {@code 0} if {@code d1} is
   970      *          numerically equal to {@code d2}; a value less than
   971      *          {@code 0} if {@code d1} is numerically less than
   972      *          {@code d2}; and a value greater than {@code 0}
   973      *          if {@code d1} is numerically greater than
   974      *          {@code d2}.
   975      * @since 1.4
   976      */
   977     public static int compare(double d1, double d2) {
   978         if (d1 < d2)
   979             return -1;           // Neither val is NaN, thisVal is smaller
   980         if (d1 > d2)
   981             return 1;            // Neither val is NaN, thisVal is larger
   982 
   983         // Cannot use doubleToRawLongBits because of possibility of NaNs.
   984         long thisBits    = Double.doubleToLongBits(d1);
   985         long anotherBits = Double.doubleToLongBits(d2);
   986 
   987         return (thisBits == anotherBits ?  0 : // Values are equal
   988                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
   989                  1));                          // (0.0, -0.0) or (NaN, !NaN)
   990     }
   991 
   992     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   993     private static final long serialVersionUID = -9172774392245257468L;
   994 }