emul/src/main/java/java/lang/String.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Fri, 28 Sep 2012 17:59:03 +0200
branchemul
changeset 49 0a115f1c6f3c
child 51 506ef276a0db
permissions -rw-r--r--
Bringing in core Java classes as of OpenJDK tag jdk7-b147
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import java.io.ObjectStreamClass;
    29 import java.io.ObjectStreamField;
    30 import java.io.UnsupportedEncodingException;
    31 import java.nio.charset.Charset;
    32 import java.util.ArrayList;
    33 import java.util.Arrays;
    34 import java.util.Comparator;
    35 import java.util.Formatter;
    36 import java.util.Locale;
    37 import java.util.regex.Matcher;
    38 import java.util.regex.Pattern;
    39 import java.util.regex.PatternSyntaxException;
    40 
    41 /**
    42  * The <code>String</code> class represents character strings. All
    43  * string literals in Java programs, such as <code>"abc"</code>, are
    44  * implemented as instances of this class.
    45  * <p>
    46  * Strings are constant; their values cannot be changed after they
    47  * are created. String buffers support mutable strings.
    48  * Because String objects are immutable they can be shared. For example:
    49  * <p><blockquote><pre>
    50  *     String str = "abc";
    51  * </pre></blockquote><p>
    52  * is equivalent to:
    53  * <p><blockquote><pre>
    54  *     char data[] = {'a', 'b', 'c'};
    55  *     String str = new String(data);
    56  * </pre></blockquote><p>
    57  * Here are some more examples of how strings can be used:
    58  * <p><blockquote><pre>
    59  *     System.out.println("abc");
    60  *     String cde = "cde";
    61  *     System.out.println("abc" + cde);
    62  *     String c = "abc".substring(2,3);
    63  *     String d = cde.substring(1, 2);
    64  * </pre></blockquote>
    65  * <p>
    66  * The class <code>String</code> includes methods for examining
    67  * individual characters of the sequence, for comparing strings, for
    68  * searching strings, for extracting substrings, and for creating a
    69  * copy of a string with all characters translated to uppercase or to
    70  * lowercase. Case mapping is based on the Unicode Standard version
    71  * specified by the {@link java.lang.Character Character} class.
    72  * <p>
    73  * The Java language provides special support for the string
    74  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
    75  * other objects to strings. String concatenation is implemented
    76  * through the <code>StringBuilder</code>(or <code>StringBuffer</code>)
    77  * class and its <code>append</code> method.
    78  * String conversions are implemented through the method
    79  * <code>toString</code>, defined by <code>Object</code> and
    80  * inherited by all classes in Java. For additional information on
    81  * string concatenation and conversion, see Gosling, Joy, and Steele,
    82  * <i>The Java Language Specification</i>.
    83  *
    84  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
    85  * or method in this class will cause a {@link NullPointerException} to be
    86  * thrown.
    87  *
    88  * <p>A <code>String</code> represents a string in the UTF-16 format
    89  * in which <em>supplementary characters</em> are represented by <em>surrogate
    90  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
    91  * Character Representations</a> in the <code>Character</code> class for
    92  * more information).
    93  * Index values refer to <code>char</code> code units, so a supplementary
    94  * character uses two positions in a <code>String</code>.
    95  * <p>The <code>String</code> class provides methods for dealing with
    96  * Unicode code points (i.e., characters), in addition to those for
    97  * dealing with Unicode code units (i.e., <code>char</code> values).
    98  *
    99  * @author  Lee Boynton
   100  * @author  Arthur van Hoff
   101  * @author  Martin Buchholz
   102  * @author  Ulf Zibis
   103  * @see     java.lang.Object#toString()
   104  * @see     java.lang.StringBuffer
   105  * @see     java.lang.StringBuilder
   106  * @see     java.nio.charset.Charset
   107  * @since   JDK1.0
   108  */
   109 
   110 public final class String
   111     implements java.io.Serializable, Comparable<String>, CharSequence
   112 {
   113     /** The value is used for character storage. */
   114     private final char value[];
   115 
   116     /** The offset is the first index of the storage that is used. */
   117     private final int offset;
   118 
   119     /** The count is the number of characters in the String. */
   120     private final int count;
   121 
   122     /** Cache the hash code for the string */
   123     private int hash; // Default to 0
   124 
   125     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   126     private static final long serialVersionUID = -6849794470754667710L;
   127 
   128     /**
   129      * Class String is special cased within the Serialization Stream Protocol.
   130      *
   131      * A String instance is written initially into an ObjectOutputStream in the
   132      * following format:
   133      * <pre>
   134      *      <code>TC_STRING</code> (utf String)
   135      * </pre>
   136      * The String is written by method <code>DataOutput.writeUTF</code>.
   137      * A new handle is generated to  refer to all future references to the
   138      * string instance within the stream.
   139      */
   140     private static final ObjectStreamField[] serialPersistentFields =
   141         new ObjectStreamField[0];
   142 
   143     /**
   144      * Initializes a newly created {@code String} object so that it represents
   145      * an empty character sequence.  Note that use of this constructor is
   146      * unnecessary since Strings are immutable.
   147      */
   148     public String() {
   149         this.offset = 0;
   150         this.count = 0;
   151         this.value = new char[0];
   152     }
   153 
   154     /**
   155      * Initializes a newly created {@code String} object so that it represents
   156      * the same sequence of characters as the argument; in other words, the
   157      * newly created string is a copy of the argument string. Unless an
   158      * explicit copy of {@code original} is needed, use of this constructor is
   159      * unnecessary since Strings are immutable.
   160      *
   161      * @param  original
   162      *         A {@code String}
   163      */
   164     public String(String original) {
   165         int size = original.count;
   166         char[] originalValue = original.value;
   167         char[] v;
   168         if (originalValue.length > size) {
   169             // The array representing the String is bigger than the new
   170             // String itself.  Perhaps this constructor is being called
   171             // in order to trim the baggage, so make a copy of the array.
   172             int off = original.offset;
   173             v = Arrays.copyOfRange(originalValue, off, off+size);
   174         } else {
   175             // The array representing the String is the same
   176             // size as the String, so no point in making a copy.
   177             v = originalValue;
   178         }
   179         this.offset = 0;
   180         this.count = size;
   181         this.value = v;
   182     }
   183 
   184     /**
   185      * Allocates a new {@code String} so that it represents the sequence of
   186      * characters currently contained in the character array argument. The
   187      * contents of the character array are copied; subsequent modification of
   188      * the character array does not affect the newly created string.
   189      *
   190      * @param  value
   191      *         The initial value of the string
   192      */
   193     public String(char value[]) {
   194         int size = value.length;
   195         this.offset = 0;
   196         this.count = size;
   197         this.value = Arrays.copyOf(value, size);
   198     }
   199 
   200     /**
   201      * Allocates a new {@code String} that contains characters from a subarray
   202      * of the character array argument. The {@code offset} argument is the
   203      * index of the first character of the subarray and the {@code count}
   204      * argument specifies the length of the subarray. The contents of the
   205      * subarray are copied; subsequent modification of the character array does
   206      * not affect the newly created string.
   207      *
   208      * @param  value
   209      *         Array that is the source of characters
   210      *
   211      * @param  offset
   212      *         The initial offset
   213      *
   214      * @param  count
   215      *         The length
   216      *
   217      * @throws  IndexOutOfBoundsException
   218      *          If the {@code offset} and {@code count} arguments index
   219      *          characters outside the bounds of the {@code value} array
   220      */
   221     public String(char value[], int offset, int count) {
   222         if (offset < 0) {
   223             throw new StringIndexOutOfBoundsException(offset);
   224         }
   225         if (count < 0) {
   226             throw new StringIndexOutOfBoundsException(count);
   227         }
   228         // Note: offset or count might be near -1>>>1.
   229         if (offset > value.length - count) {
   230             throw new StringIndexOutOfBoundsException(offset + count);
   231         }
   232         this.offset = 0;
   233         this.count = count;
   234         this.value = Arrays.copyOfRange(value, offset, offset+count);
   235     }
   236 
   237     /**
   238      * Allocates a new {@code String} that contains characters from a subarray
   239      * of the <a href="Character.html#unicode">Unicode code point</a> array
   240      * argument.  The {@code offset} argument is the index of the first code
   241      * point of the subarray and the {@code count} argument specifies the
   242      * length of the subarray.  The contents of the subarray are converted to
   243      * {@code char}s; subsequent modification of the {@code int} array does not
   244      * affect the newly created string.
   245      *
   246      * @param  codePoints
   247      *         Array that is the source of Unicode code points
   248      *
   249      * @param  offset
   250      *         The initial offset
   251      *
   252      * @param  count
   253      *         The length
   254      *
   255      * @throws  IllegalArgumentException
   256      *          If any invalid Unicode code point is found in {@code
   257      *          codePoints}
   258      *
   259      * @throws  IndexOutOfBoundsException
   260      *          If the {@code offset} and {@code count} arguments index
   261      *          characters outside the bounds of the {@code codePoints} array
   262      *
   263      * @since  1.5
   264      */
   265     public String(int[] codePoints, int offset, int count) {
   266         if (offset < 0) {
   267             throw new StringIndexOutOfBoundsException(offset);
   268         }
   269         if (count < 0) {
   270             throw new StringIndexOutOfBoundsException(count);
   271         }
   272         // Note: offset or count might be near -1>>>1.
   273         if (offset > codePoints.length - count) {
   274             throw new StringIndexOutOfBoundsException(offset + count);
   275         }
   276 
   277         final int end = offset + count;
   278 
   279         // Pass 1: Compute precise size of char[]
   280         int n = count;
   281         for (int i = offset; i < end; i++) {
   282             int c = codePoints[i];
   283             if (Character.isBmpCodePoint(c))
   284                 continue;
   285             else if (Character.isValidCodePoint(c))
   286                 n++;
   287             else throw new IllegalArgumentException(Integer.toString(c));
   288         }
   289 
   290         // Pass 2: Allocate and fill in char[]
   291         final char[] v = new char[n];
   292 
   293         for (int i = offset, j = 0; i < end; i++, j++) {
   294             int c = codePoints[i];
   295             if (Character.isBmpCodePoint(c))
   296                 v[j] = (char) c;
   297             else
   298                 Character.toSurrogates(c, v, j++);
   299         }
   300 
   301         this.value  = v;
   302         this.count  = n;
   303         this.offset = 0;
   304     }
   305 
   306     /**
   307      * Allocates a new {@code String} constructed from a subarray of an array
   308      * of 8-bit integer values.
   309      *
   310      * <p> The {@code offset} argument is the index of the first byte of the
   311      * subarray, and the {@code count} argument specifies the length of the
   312      * subarray.
   313      *
   314      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
   315      * specified in the method above.
   316      *
   317      * @deprecated This method does not properly convert bytes into characters.
   318      * As of JDK&nbsp;1.1, the preferred way to do this is via the
   319      * {@code String} constructors that take a {@link
   320      * java.nio.charset.Charset}, charset name, or that use the platform's
   321      * default charset.
   322      *
   323      * @param  ascii
   324      *         The bytes to be converted to characters
   325      *
   326      * @param  hibyte
   327      *         The top 8 bits of each 16-bit Unicode code unit
   328      *
   329      * @param  offset
   330      *         The initial offset
   331      * @param  count
   332      *         The length
   333      *
   334      * @throws  IndexOutOfBoundsException
   335      *          If the {@code offset} or {@code count} argument is invalid
   336      *
   337      * @see  #String(byte[], int)
   338      * @see  #String(byte[], int, int, java.lang.String)
   339      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   340      * @see  #String(byte[], int, int)
   341      * @see  #String(byte[], java.lang.String)
   342      * @see  #String(byte[], java.nio.charset.Charset)
   343      * @see  #String(byte[])
   344      */
   345     @Deprecated
   346     public String(byte ascii[], int hibyte, int offset, int count) {
   347         checkBounds(ascii, offset, count);
   348         char value[] = new char[count];
   349 
   350         if (hibyte == 0) {
   351             for (int i = count ; i-- > 0 ;) {
   352                 value[i] = (char) (ascii[i + offset] & 0xff);
   353             }
   354         } else {
   355             hibyte <<= 8;
   356             for (int i = count ; i-- > 0 ;) {
   357                 value[i] = (char) (hibyte | (ascii[i + offset] & 0xff));
   358             }
   359         }
   360         this.offset = 0;
   361         this.count = count;
   362         this.value = value;
   363     }
   364 
   365     /**
   366      * Allocates a new {@code String} containing characters constructed from
   367      * an array of 8-bit integer values. Each character <i>c</i>in the
   368      * resulting string is constructed from the corresponding component
   369      * <i>b</i> in the byte array such that:
   370      *
   371      * <blockquote><pre>
   372      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
   373      *                         | (<b><i>b</i></b> &amp; 0xff))
   374      * </pre></blockquote>
   375      *
   376      * @deprecated  This method does not properly convert bytes into
   377      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   378      * {@code String} constructors that take a {@link
   379      * java.nio.charset.Charset}, charset name, or that use the platform's
   380      * default charset.
   381      *
   382      * @param  ascii
   383      *         The bytes to be converted to characters
   384      *
   385      * @param  hibyte
   386      *         The top 8 bits of each 16-bit Unicode code unit
   387      *
   388      * @see  #String(byte[], int, int, java.lang.String)
   389      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   390      * @see  #String(byte[], int, int)
   391      * @see  #String(byte[], java.lang.String)
   392      * @see  #String(byte[], java.nio.charset.Charset)
   393      * @see  #String(byte[])
   394      */
   395     @Deprecated
   396     public String(byte ascii[], int hibyte) {
   397         this(ascii, hibyte, 0, ascii.length);
   398     }
   399 
   400     /* Common private utility method used to bounds check the byte array
   401      * and requested offset & length values used by the String(byte[],..)
   402      * constructors.
   403      */
   404     private static void checkBounds(byte[] bytes, int offset, int length) {
   405         if (length < 0)
   406             throw new StringIndexOutOfBoundsException(length);
   407         if (offset < 0)
   408             throw new StringIndexOutOfBoundsException(offset);
   409         if (offset > bytes.length - length)
   410             throw new StringIndexOutOfBoundsException(offset + length);
   411     }
   412 
   413     /**
   414      * Constructs a new {@code String} by decoding the specified subarray of
   415      * bytes using the specified charset.  The length of the new {@code String}
   416      * is a function of the charset, and hence may not be equal to the length
   417      * of the subarray.
   418      *
   419      * <p> The behavior of this constructor when the given bytes are not valid
   420      * in the given charset is unspecified.  The {@link
   421      * java.nio.charset.CharsetDecoder} class should be used when more control
   422      * over the decoding process is required.
   423      *
   424      * @param  bytes
   425      *         The bytes to be decoded into characters
   426      *
   427      * @param  offset
   428      *         The index of the first byte to decode
   429      *
   430      * @param  length
   431      *         The number of bytes to decode
   432 
   433      * @param  charsetName
   434      *         The name of a supported {@linkplain java.nio.charset.Charset
   435      *         charset}
   436      *
   437      * @throws  UnsupportedEncodingException
   438      *          If the named charset is not supported
   439      *
   440      * @throws  IndexOutOfBoundsException
   441      *          If the {@code offset} and {@code length} arguments index
   442      *          characters outside the bounds of the {@code bytes} array
   443      *
   444      * @since  JDK1.1
   445      */
   446     public String(byte bytes[], int offset, int length, String charsetName)
   447         throws UnsupportedEncodingException
   448     {
   449         if (charsetName == null)
   450             throw new NullPointerException("charsetName");
   451         checkBounds(bytes, offset, length);
   452         char[] v = StringCoding.decode(charsetName, bytes, offset, length);
   453         this.offset = 0;
   454         this.count = v.length;
   455         this.value = v;
   456     }
   457 
   458     /**
   459      * Constructs a new {@code String} by decoding the specified subarray of
   460      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   461      * The length of the new {@code String} is a function of the charset, and
   462      * hence may not be equal to the length of the subarray.
   463      *
   464      * <p> This method always replaces malformed-input and unmappable-character
   465      * sequences with this charset's default replacement string.  The {@link
   466      * java.nio.charset.CharsetDecoder} class should be used when more control
   467      * over the decoding process is required.
   468      *
   469      * @param  bytes
   470      *         The bytes to be decoded into characters
   471      *
   472      * @param  offset
   473      *         The index of the first byte to decode
   474      *
   475      * @param  length
   476      *         The number of bytes to decode
   477      *
   478      * @param  charset
   479      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   480      *         decode the {@code bytes}
   481      *
   482      * @throws  IndexOutOfBoundsException
   483      *          If the {@code offset} and {@code length} arguments index
   484      *          characters outside the bounds of the {@code bytes} array
   485      *
   486      * @since  1.6
   487      */
   488     public String(byte bytes[], int offset, int length, Charset charset) {
   489         if (charset == null)
   490             throw new NullPointerException("charset");
   491         checkBounds(bytes, offset, length);
   492         char[] v = StringCoding.decode(charset, bytes, offset, length);
   493         this.offset = 0;
   494         this.count = v.length;
   495         this.value = v;
   496     }
   497 
   498     /**
   499      * Constructs a new {@code String} by decoding the specified array of bytes
   500      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
   501      * length of the new {@code String} is a function of the charset, and hence
   502      * may not be equal to the length of the byte array.
   503      *
   504      * <p> The behavior of this constructor when the given bytes are not valid
   505      * in the given charset is unspecified.  The {@link
   506      * java.nio.charset.CharsetDecoder} class should be used when more control
   507      * over the decoding process is required.
   508      *
   509      * @param  bytes
   510      *         The bytes to be decoded into characters
   511      *
   512      * @param  charsetName
   513      *         The name of a supported {@linkplain java.nio.charset.Charset
   514      *         charset}
   515      *
   516      * @throws  UnsupportedEncodingException
   517      *          If the named charset is not supported
   518      *
   519      * @since  JDK1.1
   520      */
   521     public String(byte bytes[], String charsetName)
   522         throws UnsupportedEncodingException
   523     {
   524         this(bytes, 0, bytes.length, charsetName);
   525     }
   526 
   527     /**
   528      * Constructs a new {@code String} by decoding the specified array of
   529      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   530      * The length of the new {@code String} is a function of the charset, and
   531      * hence may not be equal to the length of the byte array.
   532      *
   533      * <p> This method always replaces malformed-input and unmappable-character
   534      * sequences with this charset's default replacement string.  The {@link
   535      * java.nio.charset.CharsetDecoder} class should be used when more control
   536      * over the decoding process is required.
   537      *
   538      * @param  bytes
   539      *         The bytes to be decoded into characters
   540      *
   541      * @param  charset
   542      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   543      *         decode the {@code bytes}
   544      *
   545      * @since  1.6
   546      */
   547     public String(byte bytes[], Charset charset) {
   548         this(bytes, 0, bytes.length, charset);
   549     }
   550 
   551     /**
   552      * Constructs a new {@code String} by decoding the specified subarray of
   553      * bytes using the platform's default charset.  The length of the new
   554      * {@code String} is a function of the charset, and hence may not be equal
   555      * to the length of the subarray.
   556      *
   557      * <p> The behavior of this constructor when the given bytes are not valid
   558      * in the default charset is unspecified.  The {@link
   559      * java.nio.charset.CharsetDecoder} class should be used when more control
   560      * over the decoding process is required.
   561      *
   562      * @param  bytes
   563      *         The bytes to be decoded into characters
   564      *
   565      * @param  offset
   566      *         The index of the first byte to decode
   567      *
   568      * @param  length
   569      *         The number of bytes to decode
   570      *
   571      * @throws  IndexOutOfBoundsException
   572      *          If the {@code offset} and the {@code length} arguments index
   573      *          characters outside the bounds of the {@code bytes} array
   574      *
   575      * @since  JDK1.1
   576      */
   577     public String(byte bytes[], int offset, int length) {
   578         checkBounds(bytes, offset, length);
   579         char[] v  = StringCoding.decode(bytes, offset, length);
   580         this.offset = 0;
   581         this.count = v.length;
   582         this.value = v;
   583     }
   584 
   585     /**
   586      * Constructs a new {@code String} by decoding the specified array of bytes
   587      * using the platform's default charset.  The length of the new {@code
   588      * String} is a function of the charset, and hence may not be equal to the
   589      * length of the byte array.
   590      *
   591      * <p> The behavior of this constructor when the given bytes are not valid
   592      * in the default charset is unspecified.  The {@link
   593      * java.nio.charset.CharsetDecoder} class should be used when more control
   594      * over the decoding process is required.
   595      *
   596      * @param  bytes
   597      *         The bytes to be decoded into characters
   598      *
   599      * @since  JDK1.1
   600      */
   601     public String(byte bytes[]) {
   602         this(bytes, 0, bytes.length);
   603     }
   604 
   605     /**
   606      * Allocates a new string that contains the sequence of characters
   607      * currently contained in the string buffer argument. The contents of the
   608      * string buffer are copied; subsequent modification of the string buffer
   609      * does not affect the newly created string.
   610      *
   611      * @param  buffer
   612      *         A {@code StringBuffer}
   613      */
   614     public String(StringBuffer buffer) {
   615         String result = buffer.toString();
   616         this.value = result.value;
   617         this.count = result.count;
   618         this.offset = result.offset;
   619     }
   620 
   621     /**
   622      * Allocates a new string that contains the sequence of characters
   623      * currently contained in the string builder argument. The contents of the
   624      * string builder are copied; subsequent modification of the string builder
   625      * does not affect the newly created string.
   626      *
   627      * <p> This constructor is provided to ease migration to {@code
   628      * StringBuilder}. Obtaining a string from a string builder via the {@code
   629      * toString} method is likely to run faster and is generally preferred.
   630      *
   631      * @param   builder
   632      *          A {@code StringBuilder}
   633      *
   634      * @since  1.5
   635      */
   636     public String(StringBuilder builder) {
   637         String result = builder.toString();
   638         this.value = result.value;
   639         this.count = result.count;
   640         this.offset = result.offset;
   641     }
   642 
   643 
   644     // Package private constructor which shares value array for speed.
   645     String(int offset, int count, char value[]) {
   646         this.value = value;
   647         this.offset = offset;
   648         this.count = count;
   649     }
   650 
   651     /**
   652      * Returns the length of this string.
   653      * The length is equal to the number of <a href="Character.html#unicode">Unicode
   654      * code units</a> in the string.
   655      *
   656      * @return  the length of the sequence of characters represented by this
   657      *          object.
   658      */
   659     public int length() {
   660         return count;
   661     }
   662 
   663     /**
   664      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
   665      *
   666      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
   667      * <tt>false</tt>
   668      *
   669      * @since 1.6
   670      */
   671     public boolean isEmpty() {
   672         return count == 0;
   673     }
   674 
   675     /**
   676      * Returns the <code>char</code> value at the
   677      * specified index. An index ranges from <code>0</code> to
   678      * <code>length() - 1</code>. The first <code>char</code> value of the sequence
   679      * is at index <code>0</code>, the next at index <code>1</code>,
   680      * and so on, as for array indexing.
   681      *
   682      * <p>If the <code>char</code> value specified by the index is a
   683      * <a href="Character.html#unicode">surrogate</a>, the surrogate
   684      * value is returned.
   685      *
   686      * @param      index   the index of the <code>char</code> value.
   687      * @return     the <code>char</code> value at the specified index of this string.
   688      *             The first <code>char</code> value is at index <code>0</code>.
   689      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   690      *             argument is negative or not less than the length of this
   691      *             string.
   692      */
   693     public char charAt(int index) {
   694         if ((index < 0) || (index >= count)) {
   695             throw new StringIndexOutOfBoundsException(index);
   696         }
   697         return value[index + offset];
   698     }
   699 
   700     /**
   701      * Returns the character (Unicode code point) at the specified
   702      * index. The index refers to <code>char</code> values
   703      * (Unicode code units) and ranges from <code>0</code> to
   704      * {@link #length()}<code> - 1</code>.
   705      *
   706      * <p> If the <code>char</code> value specified at the given index
   707      * is in the high-surrogate range, the following index is less
   708      * than the length of this <code>String</code>, and the
   709      * <code>char</code> value at the following index is in the
   710      * low-surrogate range, then the supplementary code point
   711      * corresponding to this surrogate pair is returned. Otherwise,
   712      * the <code>char</code> value at the given index is returned.
   713      *
   714      * @param      index the index to the <code>char</code> values
   715      * @return     the code point value of the character at the
   716      *             <code>index</code>
   717      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   718      *             argument is negative or not less than the length of this
   719      *             string.
   720      * @since      1.5
   721      */
   722     public int codePointAt(int index) {
   723         if ((index < 0) || (index >= count)) {
   724             throw new StringIndexOutOfBoundsException(index);
   725         }
   726         return Character.codePointAtImpl(value, offset + index, offset + count);
   727     }
   728 
   729     /**
   730      * Returns the character (Unicode code point) before the specified
   731      * index. The index refers to <code>char</code> values
   732      * (Unicode code units) and ranges from <code>1</code> to {@link
   733      * CharSequence#length() length}.
   734      *
   735      * <p> If the <code>char</code> value at <code>(index - 1)</code>
   736      * is in the low-surrogate range, <code>(index - 2)</code> is not
   737      * negative, and the <code>char</code> value at <code>(index -
   738      * 2)</code> is in the high-surrogate range, then the
   739      * supplementary code point value of the surrogate pair is
   740      * returned. If the <code>char</code> value at <code>index -
   741      * 1</code> is an unpaired low-surrogate or a high-surrogate, the
   742      * surrogate value is returned.
   743      *
   744      * @param     index the index following the code point that should be returned
   745      * @return    the Unicode code point value before the given index.
   746      * @exception IndexOutOfBoundsException if the <code>index</code>
   747      *            argument is less than 1 or greater than the length
   748      *            of this string.
   749      * @since     1.5
   750      */
   751     public int codePointBefore(int index) {
   752         int i = index - 1;
   753         if ((i < 0) || (i >= count)) {
   754             throw new StringIndexOutOfBoundsException(index);
   755         }
   756         return Character.codePointBeforeImpl(value, offset + index, offset);
   757     }
   758 
   759     /**
   760      * Returns the number of Unicode code points in the specified text
   761      * range of this <code>String</code>. The text range begins at the
   762      * specified <code>beginIndex</code> and extends to the
   763      * <code>char</code> at index <code>endIndex - 1</code>. Thus the
   764      * length (in <code>char</code>s) of the text range is
   765      * <code>endIndex-beginIndex</code>. Unpaired surrogates within
   766      * the text range count as one code point each.
   767      *
   768      * @param beginIndex the index to the first <code>char</code> of
   769      * the text range.
   770      * @param endIndex the index after the last <code>char</code> of
   771      * the text range.
   772      * @return the number of Unicode code points in the specified text
   773      * range
   774      * @exception IndexOutOfBoundsException if the
   775      * <code>beginIndex</code> is negative, or <code>endIndex</code>
   776      * is larger than the length of this <code>String</code>, or
   777      * <code>beginIndex</code> is larger than <code>endIndex</code>.
   778      * @since  1.5
   779      */
   780     public int codePointCount(int beginIndex, int endIndex) {
   781         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
   782             throw new IndexOutOfBoundsException();
   783         }
   784         return Character.codePointCountImpl(value, offset+beginIndex, endIndex-beginIndex);
   785     }
   786 
   787     /**
   788      * Returns the index within this <code>String</code> that is
   789      * offset from the given <code>index</code> by
   790      * <code>codePointOffset</code> code points. Unpaired surrogates
   791      * within the text range given by <code>index</code> and
   792      * <code>codePointOffset</code> count as one code point each.
   793      *
   794      * @param index the index to be offset
   795      * @param codePointOffset the offset in code points
   796      * @return the index within this <code>String</code>
   797      * @exception IndexOutOfBoundsException if <code>index</code>
   798      *   is negative or larger then the length of this
   799      *   <code>String</code>, or if <code>codePointOffset</code> is positive
   800      *   and the substring starting with <code>index</code> has fewer
   801      *   than <code>codePointOffset</code> code points,
   802      *   or if <code>codePointOffset</code> is negative and the substring
   803      *   before <code>index</code> has fewer than the absolute value
   804      *   of <code>codePointOffset</code> code points.
   805      * @since 1.5
   806      */
   807     public int offsetByCodePoints(int index, int codePointOffset) {
   808         if (index < 0 || index > count) {
   809             throw new IndexOutOfBoundsException();
   810         }
   811         return Character.offsetByCodePointsImpl(value, offset, count,
   812                                                 offset+index, codePointOffset) - offset;
   813     }
   814 
   815     /**
   816      * Copy characters from this string into dst starting at dstBegin.
   817      * This method doesn't perform any range checking.
   818      */
   819     void getChars(char dst[], int dstBegin) {
   820         System.arraycopy(value, offset, dst, dstBegin, count);
   821     }
   822 
   823     /**
   824      * Copies characters from this string into the destination character
   825      * array.
   826      * <p>
   827      * The first character to be copied is at index <code>srcBegin</code>;
   828      * the last character to be copied is at index <code>srcEnd-1</code>
   829      * (thus the total number of characters to be copied is
   830      * <code>srcEnd-srcBegin</code>). The characters are copied into the
   831      * subarray of <code>dst</code> starting at index <code>dstBegin</code>
   832      * and ending at index:
   833      * <p><blockquote><pre>
   834      *     dstbegin + (srcEnd-srcBegin) - 1
   835      * </pre></blockquote>
   836      *
   837      * @param      srcBegin   index of the first character in the string
   838      *                        to copy.
   839      * @param      srcEnd     index after the last character in the string
   840      *                        to copy.
   841      * @param      dst        the destination array.
   842      * @param      dstBegin   the start offset in the destination array.
   843      * @exception IndexOutOfBoundsException If any of the following
   844      *            is true:
   845      *            <ul><li><code>srcBegin</code> is negative.
   846      *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>
   847      *            <li><code>srcEnd</code> is greater than the length of this
   848      *                string
   849      *            <li><code>dstBegin</code> is negative
   850      *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than
   851      *                <code>dst.length</code></ul>
   852      */
   853     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
   854         if (srcBegin < 0) {
   855             throw new StringIndexOutOfBoundsException(srcBegin);
   856         }
   857         if (srcEnd > count) {
   858             throw new StringIndexOutOfBoundsException(srcEnd);
   859         }
   860         if (srcBegin > srcEnd) {
   861             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   862         }
   863         System.arraycopy(value, offset + srcBegin, dst, dstBegin,
   864              srcEnd - srcBegin);
   865     }
   866 
   867     /**
   868      * Copies characters from this string into the destination byte array. Each
   869      * byte receives the 8 low-order bits of the corresponding character. The
   870      * eight high-order bits of each character are not copied and do not
   871      * participate in the transfer in any way.
   872      *
   873      * <p> The first character to be copied is at index {@code srcBegin}; the
   874      * last character to be copied is at index {@code srcEnd-1}.  The total
   875      * number of characters to be copied is {@code srcEnd-srcBegin}. The
   876      * characters, converted to bytes, are copied into the subarray of {@code
   877      * dst} starting at index {@code dstBegin} and ending at index:
   878      *
   879      * <blockquote><pre>
   880      *     dstbegin + (srcEnd-srcBegin) - 1
   881      * </pre></blockquote>
   882      *
   883      * @deprecated  This method does not properly convert characters into
   884      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   885      * {@link #getBytes()} method, which uses the platform's default charset.
   886      *
   887      * @param  srcBegin
   888      *         Index of the first character in the string to copy
   889      *
   890      * @param  srcEnd
   891      *         Index after the last character in the string to copy
   892      *
   893      * @param  dst
   894      *         The destination array
   895      *
   896      * @param  dstBegin
   897      *         The start offset in the destination array
   898      *
   899      * @throws  IndexOutOfBoundsException
   900      *          If any of the following is true:
   901      *          <ul>
   902      *            <li> {@code srcBegin} is negative
   903      *            <li> {@code srcBegin} is greater than {@code srcEnd}
   904      *            <li> {@code srcEnd} is greater than the length of this String
   905      *            <li> {@code dstBegin} is negative
   906      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
   907      *                 dst.length}
   908      *          </ul>
   909      */
   910     @Deprecated
   911     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
   912         if (srcBegin < 0) {
   913             throw new StringIndexOutOfBoundsException(srcBegin);
   914         }
   915         if (srcEnd > count) {
   916             throw new StringIndexOutOfBoundsException(srcEnd);
   917         }
   918         if (srcBegin > srcEnd) {
   919             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   920         }
   921         int j = dstBegin;
   922         int n = offset + srcEnd;
   923         int i = offset + srcBegin;
   924         char[] val = value;   /* avoid getfield opcode */
   925 
   926         while (i < n) {
   927             dst[j++] = (byte)val[i++];
   928         }
   929     }
   930 
   931     /**
   932      * Encodes this {@code String} into a sequence of bytes using the named
   933      * charset, storing the result into a new byte array.
   934      *
   935      * <p> The behavior of this method when this string cannot be encoded in
   936      * the given charset is unspecified.  The {@link
   937      * java.nio.charset.CharsetEncoder} class should be used when more control
   938      * over the encoding process is required.
   939      *
   940      * @param  charsetName
   941      *         The name of a supported {@linkplain java.nio.charset.Charset
   942      *         charset}
   943      *
   944      * @return  The resultant byte array
   945      *
   946      * @throws  UnsupportedEncodingException
   947      *          If the named charset is not supported
   948      *
   949      * @since  JDK1.1
   950      */
   951     public byte[] getBytes(String charsetName)
   952         throws UnsupportedEncodingException
   953     {
   954         if (charsetName == null) throw new NullPointerException();
   955         return StringCoding.encode(charsetName, value, offset, count);
   956     }
   957 
   958     /**
   959      * Encodes this {@code String} into a sequence of bytes using the given
   960      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
   961      * new byte array.
   962      *
   963      * <p> This method always replaces malformed-input and unmappable-character
   964      * sequences with this charset's default replacement byte array.  The
   965      * {@link java.nio.charset.CharsetEncoder} class should be used when more
   966      * control over the encoding process is required.
   967      *
   968      * @param  charset
   969      *         The {@linkplain java.nio.charset.Charset} to be used to encode
   970      *         the {@code String}
   971      *
   972      * @return  The resultant byte array
   973      *
   974      * @since  1.6
   975      */
   976     public byte[] getBytes(Charset charset) {
   977         if (charset == null) throw new NullPointerException();
   978         return StringCoding.encode(charset, value, offset, count);
   979     }
   980 
   981     /**
   982      * Encodes this {@code String} into a sequence of bytes using the
   983      * platform's default charset, storing the result into a new byte array.
   984      *
   985      * <p> The behavior of this method when this string cannot be encoded in
   986      * the default charset is unspecified.  The {@link
   987      * java.nio.charset.CharsetEncoder} class should be used when more control
   988      * over the encoding process is required.
   989      *
   990      * @return  The resultant byte array
   991      *
   992      * @since      JDK1.1
   993      */
   994     public byte[] getBytes() {
   995         return StringCoding.encode(value, offset, count);
   996     }
   997 
   998     /**
   999      * Compares this string to the specified object.  The result is {@code
  1000      * true} if and only if the argument is not {@code null} and is a {@code
  1001      * String} object that represents the same sequence of characters as this
  1002      * object.
  1003      *
  1004      * @param  anObject
  1005      *         The object to compare this {@code String} against
  1006      *
  1007      * @return  {@code true} if the given object represents a {@code String}
  1008      *          equivalent to this string, {@code false} otherwise
  1009      *
  1010      * @see  #compareTo(String)
  1011      * @see  #equalsIgnoreCase(String)
  1012      */
  1013     public boolean equals(Object anObject) {
  1014         if (this == anObject) {
  1015             return true;
  1016         }
  1017         if (anObject instanceof String) {
  1018             String anotherString = (String)anObject;
  1019             int n = count;
  1020             if (n == anotherString.count) {
  1021                 char v1[] = value;
  1022                 char v2[] = anotherString.value;
  1023                 int i = offset;
  1024                 int j = anotherString.offset;
  1025                 while (n-- != 0) {
  1026                     if (v1[i++] != v2[j++])
  1027                         return false;
  1028                 }
  1029                 return true;
  1030             }
  1031         }
  1032         return false;
  1033     }
  1034 
  1035     /**
  1036      * Compares this string to the specified {@code StringBuffer}.  The result
  1037      * is {@code true} if and only if this {@code String} represents the same
  1038      * sequence of characters as the specified {@code StringBuffer}.
  1039      *
  1040      * @param  sb
  1041      *         The {@code StringBuffer} to compare this {@code String} against
  1042      *
  1043      * @return  {@code true} if this {@code String} represents the same
  1044      *          sequence of characters as the specified {@code StringBuffer},
  1045      *          {@code false} otherwise
  1046      *
  1047      * @since  1.4
  1048      */
  1049     public boolean contentEquals(StringBuffer sb) {
  1050         synchronized(sb) {
  1051             return contentEquals((CharSequence)sb);
  1052         }
  1053     }
  1054 
  1055     /**
  1056      * Compares this string to the specified {@code CharSequence}.  The result
  1057      * is {@code true} if and only if this {@code String} represents the same
  1058      * sequence of char values as the specified sequence.
  1059      *
  1060      * @param  cs
  1061      *         The sequence to compare this {@code String} against
  1062      *
  1063      * @return  {@code true} if this {@code String} represents the same
  1064      *          sequence of char values as the specified sequence, {@code
  1065      *          false} otherwise
  1066      *
  1067      * @since  1.5
  1068      */
  1069     public boolean contentEquals(CharSequence cs) {
  1070         if (count != cs.length())
  1071             return false;
  1072         // Argument is a StringBuffer, StringBuilder
  1073         if (cs instanceof AbstractStringBuilder) {
  1074             char v1[] = value;
  1075             char v2[] = ((AbstractStringBuilder)cs).getValue();
  1076             int i = offset;
  1077             int j = 0;
  1078             int n = count;
  1079             while (n-- != 0) {
  1080                 if (v1[i++] != v2[j++])
  1081                     return false;
  1082             }
  1083             return true;
  1084         }
  1085         // Argument is a String
  1086         if (cs.equals(this))
  1087             return true;
  1088         // Argument is a generic CharSequence
  1089         char v1[] = value;
  1090         int i = offset;
  1091         int j = 0;
  1092         int n = count;
  1093         while (n-- != 0) {
  1094             if (v1[i++] != cs.charAt(j++))
  1095                 return false;
  1096         }
  1097         return true;
  1098     }
  1099 
  1100     /**
  1101      * Compares this {@code String} to another {@code String}, ignoring case
  1102      * considerations.  Two strings are considered equal ignoring case if they
  1103      * are of the same length and corresponding characters in the two strings
  1104      * are equal ignoring case.
  1105      *
  1106      * <p> Two characters {@code c1} and {@code c2} are considered the same
  1107      * ignoring case if at least one of the following is true:
  1108      * <ul>
  1109      *   <li> The two characters are the same (as compared by the
  1110      *        {@code ==} operator)
  1111      *   <li> Applying the method {@link
  1112      *        java.lang.Character#toUpperCase(char)} to each character
  1113      *        produces the same result
  1114      *   <li> Applying the method {@link
  1115      *        java.lang.Character#toLowerCase(char)} to each character
  1116      *        produces the same result
  1117      * </ul>
  1118      *
  1119      * @param  anotherString
  1120      *         The {@code String} to compare this {@code String} against
  1121      *
  1122      * @return  {@code true} if the argument is not {@code null} and it
  1123      *          represents an equivalent {@code String} ignoring case; {@code
  1124      *          false} otherwise
  1125      *
  1126      * @see  #equals(Object)
  1127      */
  1128     public boolean equalsIgnoreCase(String anotherString) {
  1129         return (this == anotherString) ? true :
  1130                (anotherString != null) && (anotherString.count == count) &&
  1131                regionMatches(true, 0, anotherString, 0, count);
  1132     }
  1133 
  1134     /**
  1135      * Compares two strings lexicographically.
  1136      * The comparison is based on the Unicode value of each character in
  1137      * the strings. The character sequence represented by this
  1138      * <code>String</code> object is compared lexicographically to the
  1139      * character sequence represented by the argument string. The result is
  1140      * a negative integer if this <code>String</code> object
  1141      * lexicographically precedes the argument string. The result is a
  1142      * positive integer if this <code>String</code> object lexicographically
  1143      * follows the argument string. The result is zero if the strings
  1144      * are equal; <code>compareTo</code> returns <code>0</code> exactly when
  1145      * the {@link #equals(Object)} method would return <code>true</code>.
  1146      * <p>
  1147      * This is the definition of lexicographic ordering. If two strings are
  1148      * different, then either they have different characters at some index
  1149      * that is a valid index for both strings, or their lengths are different,
  1150      * or both. If they have different characters at one or more index
  1151      * positions, let <i>k</i> be the smallest such index; then the string
  1152      * whose character at position <i>k</i> has the smaller value, as
  1153      * determined by using the &lt; operator, lexicographically precedes the
  1154      * other string. In this case, <code>compareTo</code> returns the
  1155      * difference of the two character values at position <code>k</code> in
  1156      * the two string -- that is, the value:
  1157      * <blockquote><pre>
  1158      * this.charAt(k)-anotherString.charAt(k)
  1159      * </pre></blockquote>
  1160      * If there is no index position at which they differ, then the shorter
  1161      * string lexicographically precedes the longer string. In this case,
  1162      * <code>compareTo</code> returns the difference of the lengths of the
  1163      * strings -- that is, the value:
  1164      * <blockquote><pre>
  1165      * this.length()-anotherString.length()
  1166      * </pre></blockquote>
  1167      *
  1168      * @param   anotherString   the <code>String</code> to be compared.
  1169      * @return  the value <code>0</code> if the argument string is equal to
  1170      *          this string; a value less than <code>0</code> if this string
  1171      *          is lexicographically less than the string argument; and a
  1172      *          value greater than <code>0</code> if this string is
  1173      *          lexicographically greater than the string argument.
  1174      */
  1175     public int compareTo(String anotherString) {
  1176         int len1 = count;
  1177         int len2 = anotherString.count;
  1178         int n = Math.min(len1, len2);
  1179         char v1[] = value;
  1180         char v2[] = anotherString.value;
  1181         int i = offset;
  1182         int j = anotherString.offset;
  1183 
  1184         if (i == j) {
  1185             int k = i;
  1186             int lim = n + i;
  1187             while (k < lim) {
  1188                 char c1 = v1[k];
  1189                 char c2 = v2[k];
  1190                 if (c1 != c2) {
  1191                     return c1 - c2;
  1192                 }
  1193                 k++;
  1194             }
  1195         } else {
  1196             while (n-- != 0) {
  1197                 char c1 = v1[i++];
  1198                 char c2 = v2[j++];
  1199                 if (c1 != c2) {
  1200                     return c1 - c2;
  1201                 }
  1202             }
  1203         }
  1204         return len1 - len2;
  1205     }
  1206 
  1207     /**
  1208      * A Comparator that orders <code>String</code> objects as by
  1209      * <code>compareToIgnoreCase</code>. This comparator is serializable.
  1210      * <p>
  1211      * Note that this Comparator does <em>not</em> take locale into account,
  1212      * and will result in an unsatisfactory ordering for certain locales.
  1213      * The java.text package provides <em>Collators</em> to allow
  1214      * locale-sensitive ordering.
  1215      *
  1216      * @see     java.text.Collator#compare(String, String)
  1217      * @since   1.2
  1218      */
  1219     public static final Comparator<String> CASE_INSENSITIVE_ORDER
  1220                                          = new CaseInsensitiveComparator();
  1221     private static class CaseInsensitiveComparator
  1222                          implements Comparator<String>, java.io.Serializable {
  1223         // use serialVersionUID from JDK 1.2.2 for interoperability
  1224         private static final long serialVersionUID = 8575799808933029326L;
  1225 
  1226         public int compare(String s1, String s2) {
  1227             int n1 = s1.length();
  1228             int n2 = s2.length();
  1229             int min = Math.min(n1, n2);
  1230             for (int i = 0; i < min; i++) {
  1231                 char c1 = s1.charAt(i);
  1232                 char c2 = s2.charAt(i);
  1233                 if (c1 != c2) {
  1234                     c1 = Character.toUpperCase(c1);
  1235                     c2 = Character.toUpperCase(c2);
  1236                     if (c1 != c2) {
  1237                         c1 = Character.toLowerCase(c1);
  1238                         c2 = Character.toLowerCase(c2);
  1239                         if (c1 != c2) {
  1240                             // No overflow because of numeric promotion
  1241                             return c1 - c2;
  1242                         }
  1243                     }
  1244                 }
  1245             }
  1246             return n1 - n2;
  1247         }
  1248     }
  1249 
  1250     /**
  1251      * Compares two strings lexicographically, ignoring case
  1252      * differences. This method returns an integer whose sign is that of
  1253      * calling <code>compareTo</code> with normalized versions of the strings
  1254      * where case differences have been eliminated by calling
  1255      * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on
  1256      * each character.
  1257      * <p>
  1258      * Note that this method does <em>not</em> take locale into account,
  1259      * and will result in an unsatisfactory ordering for certain locales.
  1260      * The java.text package provides <em>collators</em> to allow
  1261      * locale-sensitive ordering.
  1262      *
  1263      * @param   str   the <code>String</code> to be compared.
  1264      * @return  a negative integer, zero, or a positive integer as the
  1265      *          specified String is greater than, equal to, or less
  1266      *          than this String, ignoring case considerations.
  1267      * @see     java.text.Collator#compare(String, String)
  1268      * @since   1.2
  1269      */
  1270     public int compareToIgnoreCase(String str) {
  1271         return CASE_INSENSITIVE_ORDER.compare(this, str);
  1272     }
  1273 
  1274     /**
  1275      * Tests if two string regions are equal.
  1276      * <p>
  1277      * A substring of this <tt>String</tt> object is compared to a substring
  1278      * of the argument other. The result is true if these substrings
  1279      * represent identical character sequences. The substring of this
  1280      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
  1281      * and has length <tt>len</tt>. The substring of other to be compared
  1282      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
  1283      * result is <tt>false</tt> if and only if at least one of the following
  1284      * is true:
  1285      * <ul><li><tt>toffset</tt> is negative.
  1286      * <li><tt>ooffset</tt> is negative.
  1287      * <li><tt>toffset+len</tt> is greater than the length of this
  1288      * <tt>String</tt> object.
  1289      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1290      * argument.
  1291      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
  1292      * such that:
  1293      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
  1294      * </ul>
  1295      *
  1296      * @param   toffset   the starting offset of the subregion in this string.
  1297      * @param   other     the string argument.
  1298      * @param   ooffset   the starting offset of the subregion in the string
  1299      *                    argument.
  1300      * @param   len       the number of characters to compare.
  1301      * @return  <code>true</code> if the specified subregion of this string
  1302      *          exactly matches the specified subregion of the string argument;
  1303      *          <code>false</code> otherwise.
  1304      */
  1305     public boolean regionMatches(int toffset, String other, int ooffset,
  1306                                  int len) {
  1307         char ta[] = value;
  1308         int to = offset + toffset;
  1309         char pa[] = other.value;
  1310         int po = other.offset + ooffset;
  1311         // Note: toffset, ooffset, or len might be near -1>>>1.
  1312         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len)
  1313             || (ooffset > (long)other.count - len)) {
  1314             return false;
  1315         }
  1316         while (len-- > 0) {
  1317             if (ta[to++] != pa[po++]) {
  1318                 return false;
  1319             }
  1320         }
  1321         return true;
  1322     }
  1323 
  1324     /**
  1325      * Tests if two string regions are equal.
  1326      * <p>
  1327      * A substring of this <tt>String</tt> object is compared to a substring
  1328      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
  1329      * substrings represent character sequences that are the same, ignoring
  1330      * case if and only if <tt>ignoreCase</tt> is true. The substring of
  1331      * this <tt>String</tt> object to be compared begins at index
  1332      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
  1333      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
  1334      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
  1335      * at least one of the following is true:
  1336      * <ul><li><tt>toffset</tt> is negative.
  1337      * <li><tt>ooffset</tt> is negative.
  1338      * <li><tt>toffset+len</tt> is greater than the length of this
  1339      * <tt>String</tt> object.
  1340      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1341      * argument.
  1342      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
  1343      * integer <i>k</i> less than <tt>len</tt> such that:
  1344      * <blockquote><pre>
  1345      * this.charAt(toffset+k) != other.charAt(ooffset+k)
  1346      * </pre></blockquote>
  1347      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
  1348      * integer <i>k</i> less than <tt>len</tt> such that:
  1349      * <blockquote><pre>
  1350      * Character.toLowerCase(this.charAt(toffset+k)) !=
  1351                Character.toLowerCase(other.charAt(ooffset+k))
  1352      * </pre></blockquote>
  1353      * and:
  1354      * <blockquote><pre>
  1355      * Character.toUpperCase(this.charAt(toffset+k)) !=
  1356      *         Character.toUpperCase(other.charAt(ooffset+k))
  1357      * </pre></blockquote>
  1358      * </ul>
  1359      *
  1360      * @param   ignoreCase   if <code>true</code>, ignore case when comparing
  1361      *                       characters.
  1362      * @param   toffset      the starting offset of the subregion in this
  1363      *                       string.
  1364      * @param   other        the string argument.
  1365      * @param   ooffset      the starting offset of the subregion in the string
  1366      *                       argument.
  1367      * @param   len          the number of characters to compare.
  1368      * @return  <code>true</code> if the specified subregion of this string
  1369      *          matches the specified subregion of the string argument;
  1370      *          <code>false</code> otherwise. Whether the matching is exact
  1371      *          or case insensitive depends on the <code>ignoreCase</code>
  1372      *          argument.
  1373      */
  1374     public boolean regionMatches(boolean ignoreCase, int toffset,
  1375                            String other, int ooffset, int len) {
  1376         char ta[] = value;
  1377         int to = offset + toffset;
  1378         char pa[] = other.value;
  1379         int po = other.offset + ooffset;
  1380         // Note: toffset, ooffset, or len might be near -1>>>1.
  1381         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) ||
  1382                 (ooffset > (long)other.count - len)) {
  1383             return false;
  1384         }
  1385         while (len-- > 0) {
  1386             char c1 = ta[to++];
  1387             char c2 = pa[po++];
  1388             if (c1 == c2) {
  1389                 continue;
  1390             }
  1391             if (ignoreCase) {
  1392                 // If characters don't match but case may be ignored,
  1393                 // try converting both characters to uppercase.
  1394                 // If the results match, then the comparison scan should
  1395                 // continue.
  1396                 char u1 = Character.toUpperCase(c1);
  1397                 char u2 = Character.toUpperCase(c2);
  1398                 if (u1 == u2) {
  1399                     continue;
  1400                 }
  1401                 // Unfortunately, conversion to uppercase does not work properly
  1402                 // for the Georgian alphabet, which has strange rules about case
  1403                 // conversion.  So we need to make one last check before
  1404                 // exiting.
  1405                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
  1406                     continue;
  1407                 }
  1408             }
  1409             return false;
  1410         }
  1411         return true;
  1412     }
  1413 
  1414     /**
  1415      * Tests if the substring of this string beginning at the
  1416      * specified index starts with the specified prefix.
  1417      *
  1418      * @param   prefix    the prefix.
  1419      * @param   toffset   where to begin looking in this string.
  1420      * @return  <code>true</code> if the character sequence represented by the
  1421      *          argument is a prefix of the substring of this object starting
  1422      *          at index <code>toffset</code>; <code>false</code> otherwise.
  1423      *          The result is <code>false</code> if <code>toffset</code> is
  1424      *          negative or greater than the length of this
  1425      *          <code>String</code> object; otherwise the result is the same
  1426      *          as the result of the expression
  1427      *          <pre>
  1428      *          this.substring(toffset).startsWith(prefix)
  1429      *          </pre>
  1430      */
  1431     public boolean startsWith(String prefix, int toffset) {
  1432         char ta[] = value;
  1433         int to = offset + toffset;
  1434         char pa[] = prefix.value;
  1435         int po = prefix.offset;
  1436         int pc = prefix.count;
  1437         // Note: toffset might be near -1>>>1.
  1438         if ((toffset < 0) || (toffset > count - pc)) {
  1439             return false;
  1440         }
  1441         while (--pc >= 0) {
  1442             if (ta[to++] != pa[po++]) {
  1443                 return false;
  1444             }
  1445         }
  1446         return true;
  1447     }
  1448 
  1449     /**
  1450      * Tests if this string starts with the specified prefix.
  1451      *
  1452      * @param   prefix   the prefix.
  1453      * @return  <code>true</code> if the character sequence represented by the
  1454      *          argument is a prefix of the character sequence represented by
  1455      *          this string; <code>false</code> otherwise.
  1456      *          Note also that <code>true</code> will be returned if the
  1457      *          argument is an empty string or is equal to this
  1458      *          <code>String</code> object as determined by the
  1459      *          {@link #equals(Object)} method.
  1460      * @since   1. 0
  1461      */
  1462     public boolean startsWith(String prefix) {
  1463         return startsWith(prefix, 0);
  1464     }
  1465 
  1466     /**
  1467      * Tests if this string ends with the specified suffix.
  1468      *
  1469      * @param   suffix   the suffix.
  1470      * @return  <code>true</code> if the character sequence represented by the
  1471      *          argument is a suffix of the character sequence represented by
  1472      *          this object; <code>false</code> otherwise. Note that the
  1473      *          result will be <code>true</code> if the argument is the
  1474      *          empty string or is equal to this <code>String</code> object
  1475      *          as determined by the {@link #equals(Object)} method.
  1476      */
  1477     public boolean endsWith(String suffix) {
  1478         return startsWith(suffix, count - suffix.count);
  1479     }
  1480 
  1481     /**
  1482      * Returns a hash code for this string. The hash code for a
  1483      * <code>String</code> object is computed as
  1484      * <blockquote><pre>
  1485      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
  1486      * </pre></blockquote>
  1487      * using <code>int</code> arithmetic, where <code>s[i]</code> is the
  1488      * <i>i</i>th character of the string, <code>n</code> is the length of
  1489      * the string, and <code>^</code> indicates exponentiation.
  1490      * (The hash value of the empty string is zero.)
  1491      *
  1492      * @return  a hash code value for this object.
  1493      */
  1494     public int hashCode() {
  1495         int h = hash;
  1496         if (h == 0 && count > 0) {
  1497             int off = offset;
  1498             char val[] = value;
  1499             int len = count;
  1500 
  1501             for (int i = 0; i < len; i++) {
  1502                 h = 31*h + val[off++];
  1503             }
  1504             hash = h;
  1505         }
  1506         return h;
  1507     }
  1508 
  1509     /**
  1510      * Returns the index within this string of the first occurrence of
  1511      * the specified character. If a character with value
  1512      * <code>ch</code> occurs in the character sequence represented by
  1513      * this <code>String</code> object, then the index (in Unicode
  1514      * code units) of the first such occurrence is returned. For
  1515      * values of <code>ch</code> in the range from 0 to 0xFFFF
  1516      * (inclusive), this is the smallest value <i>k</i> such that:
  1517      * <blockquote><pre>
  1518      * this.charAt(<i>k</i>) == ch
  1519      * </pre></blockquote>
  1520      * is true. For other values of <code>ch</code>, it is the
  1521      * smallest value <i>k</i> such that:
  1522      * <blockquote><pre>
  1523      * this.codePointAt(<i>k</i>) == ch
  1524      * </pre></blockquote>
  1525      * is true. In either case, if no such character occurs in this
  1526      * string, then <code>-1</code> is returned.
  1527      *
  1528      * @param   ch   a character (Unicode code point).
  1529      * @return  the index of the first occurrence of the character in the
  1530      *          character sequence represented by this object, or
  1531      *          <code>-1</code> if the character does not occur.
  1532      */
  1533     public int indexOf(int ch) {
  1534         return indexOf(ch, 0);
  1535     }
  1536 
  1537     /**
  1538      * Returns the index within this string of the first occurrence of the
  1539      * specified character, starting the search at the specified index.
  1540      * <p>
  1541      * If a character with value <code>ch</code> occurs in the
  1542      * character sequence represented by this <code>String</code>
  1543      * object at an index no smaller than <code>fromIndex</code>, then
  1544      * the index of the first such occurrence is returned. For values
  1545      * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),
  1546      * this is the smallest value <i>k</i> such that:
  1547      * <blockquote><pre>
  1548      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1549      * </pre></blockquote>
  1550      * is true. For other values of <code>ch</code>, it is the
  1551      * smallest value <i>k</i> such that:
  1552      * <blockquote><pre>
  1553      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1554      * </pre></blockquote>
  1555      * is true. In either case, if no such character occurs in this
  1556      * string at or after position <code>fromIndex</code>, then
  1557      * <code>-1</code> is returned.
  1558      *
  1559      * <p>
  1560      * There is no restriction on the value of <code>fromIndex</code>. If it
  1561      * is negative, it has the same effect as if it were zero: this entire
  1562      * string may be searched. If it is greater than the length of this
  1563      * string, it has the same effect as if it were equal to the length of
  1564      * this string: <code>-1</code> is returned.
  1565      *
  1566      * <p>All indices are specified in <code>char</code> values
  1567      * (Unicode code units).
  1568      *
  1569      * @param   ch          a character (Unicode code point).
  1570      * @param   fromIndex   the index to start the search from.
  1571      * @return  the index of the first occurrence of the character in the
  1572      *          character sequence represented by this object that is greater
  1573      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1574      *          if the character does not occur.
  1575      */
  1576     public int indexOf(int ch, int fromIndex) {
  1577         if (fromIndex < 0) {
  1578             fromIndex = 0;
  1579         } else if (fromIndex >= count) {
  1580             // Note: fromIndex might be near -1>>>1.
  1581             return -1;
  1582         }
  1583 
  1584         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1585             // handle most cases here (ch is a BMP code point or a
  1586             // negative value (invalid code point))
  1587             final char[] value = this.value;
  1588             final int offset = this.offset;
  1589             final int max = offset + count;
  1590             for (int i = offset + fromIndex; i < max ; i++) {
  1591                 if (value[i] == ch) {
  1592                     return i - offset;
  1593                 }
  1594             }
  1595             return -1;
  1596         } else {
  1597             return indexOfSupplementary(ch, fromIndex);
  1598         }
  1599     }
  1600 
  1601     /**
  1602      * Handles (rare) calls of indexOf with a supplementary character.
  1603      */
  1604     private int indexOfSupplementary(int ch, int fromIndex) {
  1605         if (Character.isValidCodePoint(ch)) {
  1606             final char[] value = this.value;
  1607             final int offset = this.offset;
  1608             final char hi = Character.highSurrogate(ch);
  1609             final char lo = Character.lowSurrogate(ch);
  1610             final int max = offset + count - 1;
  1611             for (int i = offset + fromIndex; i < max; i++) {
  1612                 if (value[i] == hi && value[i+1] == lo) {
  1613                     return i - offset;
  1614                 }
  1615             }
  1616         }
  1617         return -1;
  1618     }
  1619 
  1620     /**
  1621      * Returns the index within this string of the last occurrence of
  1622      * the specified character. For values of <code>ch</code> in the
  1623      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
  1624      * units) returned is the largest value <i>k</i> such that:
  1625      * <blockquote><pre>
  1626      * this.charAt(<i>k</i>) == ch
  1627      * </pre></blockquote>
  1628      * is true. For other values of <code>ch</code>, it is the
  1629      * largest value <i>k</i> such that:
  1630      * <blockquote><pre>
  1631      * this.codePointAt(<i>k</i>) == ch
  1632      * </pre></blockquote>
  1633      * is true.  In either case, if no such character occurs in this
  1634      * string, then <code>-1</code> is returned.  The
  1635      * <code>String</code> is searched backwards starting at the last
  1636      * character.
  1637      *
  1638      * @param   ch   a character (Unicode code point).
  1639      * @return  the index of the last occurrence of the character in the
  1640      *          character sequence represented by this object, or
  1641      *          <code>-1</code> if the character does not occur.
  1642      */
  1643     public int lastIndexOf(int ch) {
  1644         return lastIndexOf(ch, count - 1);
  1645     }
  1646 
  1647     /**
  1648      * Returns the index within this string of the last occurrence of
  1649      * the specified character, searching backward starting at the
  1650      * specified index. For values of <code>ch</code> in the range
  1651      * from 0 to 0xFFFF (inclusive), the index returned is the largest
  1652      * value <i>k</i> such that:
  1653      * <blockquote><pre>
  1654      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1655      * </pre></blockquote>
  1656      * is true. For other values of <code>ch</code>, it is the
  1657      * largest value <i>k</i> such that:
  1658      * <blockquote><pre>
  1659      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1660      * </pre></blockquote>
  1661      * is true. In either case, if no such character occurs in this
  1662      * string at or before position <code>fromIndex</code>, then
  1663      * <code>-1</code> is returned.
  1664      *
  1665      * <p>All indices are specified in <code>char</code> values
  1666      * (Unicode code units).
  1667      *
  1668      * @param   ch          a character (Unicode code point).
  1669      * @param   fromIndex   the index to start the search from. There is no
  1670      *          restriction on the value of <code>fromIndex</code>. If it is
  1671      *          greater than or equal to the length of this string, it has
  1672      *          the same effect as if it were equal to one less than the
  1673      *          length of this string: this entire string may be searched.
  1674      *          If it is negative, it has the same effect as if it were -1:
  1675      *          -1 is returned.
  1676      * @return  the index of the last occurrence of the character in the
  1677      *          character sequence represented by this object that is less
  1678      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1679      *          if the character does not occur before that point.
  1680      */
  1681     public int lastIndexOf(int ch, int fromIndex) {
  1682         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1683             // handle most cases here (ch is a BMP code point or a
  1684             // negative value (invalid code point))
  1685             final char[] value = this.value;
  1686             final int offset = this.offset;
  1687             int i = offset + Math.min(fromIndex, count - 1);
  1688             for (; i >= offset ; i--) {
  1689                 if (value[i] == ch) {
  1690                     return i - offset;
  1691                 }
  1692             }
  1693             return -1;
  1694         } else {
  1695             return lastIndexOfSupplementary(ch, fromIndex);
  1696         }
  1697     }
  1698 
  1699     /**
  1700      * Handles (rare) calls of lastIndexOf with a supplementary character.
  1701      */
  1702     private int lastIndexOfSupplementary(int ch, int fromIndex) {
  1703         if (Character.isValidCodePoint(ch)) {
  1704             final char[] value = this.value;
  1705             final int offset = this.offset;
  1706             char hi = Character.highSurrogate(ch);
  1707             char lo = Character.lowSurrogate(ch);
  1708             int i = offset + Math.min(fromIndex, count - 2);
  1709             for (; i >= offset; i--) {
  1710                 if (value[i] == hi && value[i+1] == lo) {
  1711                     return i - offset;
  1712                 }
  1713             }
  1714         }
  1715         return -1;
  1716     }
  1717 
  1718     /**
  1719      * Returns the index within this string of the first occurrence of the
  1720      * specified substring.
  1721      *
  1722      * <p>The returned index is the smallest value <i>k</i> for which:
  1723      * <blockquote><pre>
  1724      * this.startsWith(str, <i>k</i>)
  1725      * </pre></blockquote>
  1726      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1727      *
  1728      * @param   str   the substring to search for.
  1729      * @return  the index of the first occurrence of the specified substring,
  1730      *          or {@code -1} if there is no such occurrence.
  1731      */
  1732     public int indexOf(String str) {
  1733         return indexOf(str, 0);
  1734     }
  1735 
  1736     /**
  1737      * Returns the index within this string of the first occurrence of the
  1738      * specified substring, starting at the specified index.
  1739      *
  1740      * <p>The returned index is the smallest value <i>k</i> for which:
  1741      * <blockquote><pre>
  1742      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
  1743      * </pre></blockquote>
  1744      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1745      *
  1746      * @param   str         the substring to search for.
  1747      * @param   fromIndex   the index from which to start the search.
  1748      * @return  the index of the first occurrence of the specified substring,
  1749      *          starting at the specified index,
  1750      *          or {@code -1} if there is no such occurrence.
  1751      */
  1752     public int indexOf(String str, int fromIndex) {
  1753         return indexOf(value, offset, count,
  1754                        str.value, str.offset, str.count, fromIndex);
  1755     }
  1756 
  1757     /**
  1758      * Code shared by String and StringBuffer to do searches. The
  1759      * source is the character array being searched, and the target
  1760      * is the string being searched for.
  1761      *
  1762      * @param   source       the characters being searched.
  1763      * @param   sourceOffset offset of the source string.
  1764      * @param   sourceCount  count of the source string.
  1765      * @param   target       the characters being searched for.
  1766      * @param   targetOffset offset of the target string.
  1767      * @param   targetCount  count of the target string.
  1768      * @param   fromIndex    the index to begin searching from.
  1769      */
  1770     static int indexOf(char[] source, int sourceOffset, int sourceCount,
  1771                        char[] target, int targetOffset, int targetCount,
  1772                        int fromIndex) {
  1773         if (fromIndex >= sourceCount) {
  1774             return (targetCount == 0 ? sourceCount : -1);
  1775         }
  1776         if (fromIndex < 0) {
  1777             fromIndex = 0;
  1778         }
  1779         if (targetCount == 0) {
  1780             return fromIndex;
  1781         }
  1782 
  1783         char first  = target[targetOffset];
  1784         int max = sourceOffset + (sourceCount - targetCount);
  1785 
  1786         for (int i = sourceOffset + fromIndex; i <= max; i++) {
  1787             /* Look for first character. */
  1788             if (source[i] != first) {
  1789                 while (++i <= max && source[i] != first);
  1790             }
  1791 
  1792             /* Found first character, now look at the rest of v2 */
  1793             if (i <= max) {
  1794                 int j = i + 1;
  1795                 int end = j + targetCount - 1;
  1796                 for (int k = targetOffset + 1; j < end && source[j] ==
  1797                          target[k]; j++, k++);
  1798 
  1799                 if (j == end) {
  1800                     /* Found whole string. */
  1801                     return i - sourceOffset;
  1802                 }
  1803             }
  1804         }
  1805         return -1;
  1806     }
  1807 
  1808     /**
  1809      * Returns the index within this string of the last occurrence of the
  1810      * specified substring.  The last occurrence of the empty string ""
  1811      * is considered to occur at the index value {@code this.length()}.
  1812      *
  1813      * <p>The returned index is the largest value <i>k</i> for which:
  1814      * <blockquote><pre>
  1815      * this.startsWith(str, <i>k</i>)
  1816      * </pre></blockquote>
  1817      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1818      *
  1819      * @param   str   the substring to search for.
  1820      * @return  the index of the last occurrence of the specified substring,
  1821      *          or {@code -1} if there is no such occurrence.
  1822      */
  1823     public int lastIndexOf(String str) {
  1824         return lastIndexOf(str, count);
  1825     }
  1826 
  1827     /**
  1828      * Returns the index within this string of the last occurrence of the
  1829      * specified substring, searching backward starting at the specified index.
  1830      *
  1831      * <p>The returned index is the largest value <i>k</i> for which:
  1832      * <blockquote><pre>
  1833      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
  1834      * </pre></blockquote>
  1835      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1836      *
  1837      * @param   str         the substring to search for.
  1838      * @param   fromIndex   the index to start the search from.
  1839      * @return  the index of the last occurrence of the specified substring,
  1840      *          searching backward from the specified index,
  1841      *          or {@code -1} if there is no such occurrence.
  1842      */
  1843     public int lastIndexOf(String str, int fromIndex) {
  1844         return lastIndexOf(value, offset, count,
  1845                            str.value, str.offset, str.count, fromIndex);
  1846     }
  1847 
  1848     /**
  1849      * Code shared by String and StringBuffer to do searches. The
  1850      * source is the character array being searched, and the target
  1851      * is the string being searched for.
  1852      *
  1853      * @param   source       the characters being searched.
  1854      * @param   sourceOffset offset of the source string.
  1855      * @param   sourceCount  count of the source string.
  1856      * @param   target       the characters being searched for.
  1857      * @param   targetOffset offset of the target string.
  1858      * @param   targetCount  count of the target string.
  1859      * @param   fromIndex    the index to begin searching from.
  1860      */
  1861     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
  1862                            char[] target, int targetOffset, int targetCount,
  1863                            int fromIndex) {
  1864         /*
  1865          * Check arguments; return immediately where possible. For
  1866          * consistency, don't check for null str.
  1867          */
  1868         int rightIndex = sourceCount - targetCount;
  1869         if (fromIndex < 0) {
  1870             return -1;
  1871         }
  1872         if (fromIndex > rightIndex) {
  1873             fromIndex = rightIndex;
  1874         }
  1875         /* Empty string always matches. */
  1876         if (targetCount == 0) {
  1877             return fromIndex;
  1878         }
  1879 
  1880         int strLastIndex = targetOffset + targetCount - 1;
  1881         char strLastChar = target[strLastIndex];
  1882         int min = sourceOffset + targetCount - 1;
  1883         int i = min + fromIndex;
  1884 
  1885     startSearchForLastChar:
  1886         while (true) {
  1887             while (i >= min && source[i] != strLastChar) {
  1888                 i--;
  1889             }
  1890             if (i < min) {
  1891                 return -1;
  1892             }
  1893             int j = i - 1;
  1894             int start = j - (targetCount - 1);
  1895             int k = strLastIndex - 1;
  1896 
  1897             while (j > start) {
  1898                 if (source[j--] != target[k--]) {
  1899                     i--;
  1900                     continue startSearchForLastChar;
  1901                 }
  1902             }
  1903             return start - sourceOffset + 1;
  1904         }
  1905     }
  1906 
  1907     /**
  1908      * Returns a new string that is a substring of this string. The
  1909      * substring begins with the character at the specified index and
  1910      * extends to the end of this string. <p>
  1911      * Examples:
  1912      * <blockquote><pre>
  1913      * "unhappy".substring(2) returns "happy"
  1914      * "Harbison".substring(3) returns "bison"
  1915      * "emptiness".substring(9) returns "" (an empty string)
  1916      * </pre></blockquote>
  1917      *
  1918      * @param      beginIndex   the beginning index, inclusive.
  1919      * @return     the specified substring.
  1920      * @exception  IndexOutOfBoundsException  if
  1921      *             <code>beginIndex</code> is negative or larger than the
  1922      *             length of this <code>String</code> object.
  1923      */
  1924     public String substring(int beginIndex) {
  1925         return substring(beginIndex, count);
  1926     }
  1927 
  1928     /**
  1929      * Returns a new string that is a substring of this string. The
  1930      * substring begins at the specified <code>beginIndex</code> and
  1931      * extends to the character at index <code>endIndex - 1</code>.
  1932      * Thus the length of the substring is <code>endIndex-beginIndex</code>.
  1933      * <p>
  1934      * Examples:
  1935      * <blockquote><pre>
  1936      * "hamburger".substring(4, 8) returns "urge"
  1937      * "smiles".substring(1, 5) returns "mile"
  1938      * </pre></blockquote>
  1939      *
  1940      * @param      beginIndex   the beginning index, inclusive.
  1941      * @param      endIndex     the ending index, exclusive.
  1942      * @return     the specified substring.
  1943      * @exception  IndexOutOfBoundsException  if the
  1944      *             <code>beginIndex</code> is negative, or
  1945      *             <code>endIndex</code> is larger than the length of
  1946      *             this <code>String</code> object, or
  1947      *             <code>beginIndex</code> is larger than
  1948      *             <code>endIndex</code>.
  1949      */
  1950     public String substring(int beginIndex, int endIndex) {
  1951         if (beginIndex < 0) {
  1952             throw new StringIndexOutOfBoundsException(beginIndex);
  1953         }
  1954         if (endIndex > count) {
  1955             throw new StringIndexOutOfBoundsException(endIndex);
  1956         }
  1957         if (beginIndex > endIndex) {
  1958             throw new StringIndexOutOfBoundsException(endIndex - beginIndex);
  1959         }
  1960         return ((beginIndex == 0) && (endIndex == count)) ? this :
  1961             new String(offset + beginIndex, endIndex - beginIndex, value);
  1962     }
  1963 
  1964     /**
  1965      * Returns a new character sequence that is a subsequence of this sequence.
  1966      *
  1967      * <p> An invocation of this method of the form
  1968      *
  1969      * <blockquote><pre>
  1970      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
  1971      *
  1972      * behaves in exactly the same way as the invocation
  1973      *
  1974      * <blockquote><pre>
  1975      * str.substring(begin,&nbsp;end)</pre></blockquote>
  1976      *
  1977      * This method is defined so that the <tt>String</tt> class can implement
  1978      * the {@link CharSequence} interface. </p>
  1979      *
  1980      * @param      beginIndex   the begin index, inclusive.
  1981      * @param      endIndex     the end index, exclusive.
  1982      * @return     the specified subsequence.
  1983      *
  1984      * @throws  IndexOutOfBoundsException
  1985      *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,
  1986      *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,
  1987      *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>
  1988      *
  1989      * @since 1.4
  1990      * @spec JSR-51
  1991      */
  1992     public CharSequence subSequence(int beginIndex, int endIndex) {
  1993         return this.substring(beginIndex, endIndex);
  1994     }
  1995 
  1996     /**
  1997      * Concatenates the specified string to the end of this string.
  1998      * <p>
  1999      * If the length of the argument string is <code>0</code>, then this
  2000      * <code>String</code> object is returned. Otherwise, a new
  2001      * <code>String</code> object is created, representing a character
  2002      * sequence that is the concatenation of the character sequence
  2003      * represented by this <code>String</code> object and the character
  2004      * sequence represented by the argument string.<p>
  2005      * Examples:
  2006      * <blockquote><pre>
  2007      * "cares".concat("s") returns "caress"
  2008      * "to".concat("get").concat("her") returns "together"
  2009      * </pre></blockquote>
  2010      *
  2011      * @param   str   the <code>String</code> that is concatenated to the end
  2012      *                of this <code>String</code>.
  2013      * @return  a string that represents the concatenation of this object's
  2014      *          characters followed by the string argument's characters.
  2015      */
  2016     public String concat(String str) {
  2017         int otherLen = str.length();
  2018         if (otherLen == 0) {
  2019             return this;
  2020         }
  2021         char buf[] = new char[count + otherLen];
  2022         getChars(0, count, buf, 0);
  2023         str.getChars(0, otherLen, buf, count);
  2024         return new String(0, count + otherLen, buf);
  2025     }
  2026 
  2027     /**
  2028      * Returns a new string resulting from replacing all occurrences of
  2029      * <code>oldChar</code> in this string with <code>newChar</code>.
  2030      * <p>
  2031      * If the character <code>oldChar</code> does not occur in the
  2032      * character sequence represented by this <code>String</code> object,
  2033      * then a reference to this <code>String</code> object is returned.
  2034      * Otherwise, a new <code>String</code> object is created that
  2035      * represents a character sequence identical to the character sequence
  2036      * represented by this <code>String</code> object, except that every
  2037      * occurrence of <code>oldChar</code> is replaced by an occurrence
  2038      * of <code>newChar</code>.
  2039      * <p>
  2040      * Examples:
  2041      * <blockquote><pre>
  2042      * "mesquite in your cellar".replace('e', 'o')
  2043      *         returns "mosquito in your collar"
  2044      * "the war of baronets".replace('r', 'y')
  2045      *         returns "the way of bayonets"
  2046      * "sparring with a purple porpoise".replace('p', 't')
  2047      *         returns "starring with a turtle tortoise"
  2048      * "JonL".replace('q', 'x') returns "JonL" (no change)
  2049      * </pre></blockquote>
  2050      *
  2051      * @param   oldChar   the old character.
  2052      * @param   newChar   the new character.
  2053      * @return  a string derived from this string by replacing every
  2054      *          occurrence of <code>oldChar</code> with <code>newChar</code>.
  2055      */
  2056     public String replace(char oldChar, char newChar) {
  2057         if (oldChar != newChar) {
  2058             int len = count;
  2059             int i = -1;
  2060             char[] val = value; /* avoid getfield opcode */
  2061             int off = offset;   /* avoid getfield opcode */
  2062 
  2063             while (++i < len) {
  2064                 if (val[off + i] == oldChar) {
  2065                     break;
  2066                 }
  2067             }
  2068             if (i < len) {
  2069                 char buf[] = new char[len];
  2070                 for (int j = 0 ; j < i ; j++) {
  2071                     buf[j] = val[off+j];
  2072                 }
  2073                 while (i < len) {
  2074                     char c = val[off + i];
  2075                     buf[i] = (c == oldChar) ? newChar : c;
  2076                     i++;
  2077                 }
  2078                 return new String(0, len, buf);
  2079             }
  2080         }
  2081         return this;
  2082     }
  2083 
  2084     /**
  2085      * Tells whether or not this string matches the given <a
  2086      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2087      *
  2088      * <p> An invocation of this method of the form
  2089      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
  2090      * same result as the expression
  2091      *
  2092      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
  2093      * java.util.regex.Pattern#matches(String,CharSequence)
  2094      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
  2095      *
  2096      * @param   regex
  2097      *          the regular expression to which this string is to be matched
  2098      *
  2099      * @return  <tt>true</tt> if, and only if, this string matches the
  2100      *          given regular expression
  2101      *
  2102      * @throws  PatternSyntaxException
  2103      *          if the regular expression's syntax is invalid
  2104      *
  2105      * @see java.util.regex.Pattern
  2106      *
  2107      * @since 1.4
  2108      * @spec JSR-51
  2109      */
  2110     public boolean matches(String regex) {
  2111         return Pattern.matches(regex, this);
  2112     }
  2113 
  2114     /**
  2115      * Returns true if and only if this string contains the specified
  2116      * sequence of char values.
  2117      *
  2118      * @param s the sequence to search for
  2119      * @return true if this string contains <code>s</code>, false otherwise
  2120      * @throws NullPointerException if <code>s</code> is <code>null</code>
  2121      * @since 1.5
  2122      */
  2123     public boolean contains(CharSequence s) {
  2124         return indexOf(s.toString()) > -1;
  2125     }
  2126 
  2127     /**
  2128      * Replaces the first substring of this string that matches the given <a
  2129      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2130      * given replacement.
  2131      *
  2132      * <p> An invocation of this method of the form
  2133      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2134      * yields exactly the same result as the expression
  2135      *
  2136      * <blockquote><tt>
  2137      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2138      * compile}(</tt><i>regex</i><tt>).{@link
  2139      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2140      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
  2141      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
  2142      *
  2143      *<p>
  2144      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2145      * replacement string may cause the results to be different than if it were
  2146      * being treated as a literal replacement string; see
  2147      * {@link java.util.regex.Matcher#replaceFirst}.
  2148      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2149      * meaning of these characters, if desired.
  2150      *
  2151      * @param   regex
  2152      *          the regular expression to which this string is to be matched
  2153      * @param   replacement
  2154      *          the string to be substituted for the first match
  2155      *
  2156      * @return  The resulting <tt>String</tt>
  2157      *
  2158      * @throws  PatternSyntaxException
  2159      *          if the regular expression's syntax is invalid
  2160      *
  2161      * @see java.util.regex.Pattern
  2162      *
  2163      * @since 1.4
  2164      * @spec JSR-51
  2165      */
  2166     public String replaceFirst(String regex, String replacement) {
  2167         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
  2168     }
  2169 
  2170     /**
  2171      * Replaces each substring of this string that matches the given <a
  2172      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2173      * given replacement.
  2174      *
  2175      * <p> An invocation of this method of the form
  2176      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2177      * yields exactly the same result as the expression
  2178      *
  2179      * <blockquote><tt>
  2180      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2181      * compile}(</tt><i>regex</i><tt>).{@link
  2182      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2183      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
  2184      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
  2185      *
  2186      *<p>
  2187      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2188      * replacement string may cause the results to be different than if it were
  2189      * being treated as a literal replacement string; see
  2190      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
  2191      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2192      * meaning of these characters, if desired.
  2193      *
  2194      * @param   regex
  2195      *          the regular expression to which this string is to be matched
  2196      * @param   replacement
  2197      *          the string to be substituted for each match
  2198      *
  2199      * @return  The resulting <tt>String</tt>
  2200      *
  2201      * @throws  PatternSyntaxException
  2202      *          if the regular expression's syntax is invalid
  2203      *
  2204      * @see java.util.regex.Pattern
  2205      *
  2206      * @since 1.4
  2207      * @spec JSR-51
  2208      */
  2209     public String replaceAll(String regex, String replacement) {
  2210         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
  2211     }
  2212 
  2213     /**
  2214      * Replaces each substring of this string that matches the literal target
  2215      * sequence with the specified literal replacement sequence. The
  2216      * replacement proceeds from the beginning of the string to the end, for
  2217      * example, replacing "aa" with "b" in the string "aaa" will result in
  2218      * "ba" rather than "ab".
  2219      *
  2220      * @param  target The sequence of char values to be replaced
  2221      * @param  replacement The replacement sequence of char values
  2222      * @return  The resulting string
  2223      * @throws NullPointerException if <code>target</code> or
  2224      *         <code>replacement</code> is <code>null</code>.
  2225      * @since 1.5
  2226      */
  2227     public String replace(CharSequence target, CharSequence replacement) {
  2228         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
  2229             this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
  2230     }
  2231 
  2232     /**
  2233      * Splits this string around matches of the given
  2234      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
  2235      *
  2236      * <p> The array returned by this method contains each substring of this
  2237      * string that is terminated by another substring that matches the given
  2238      * expression or is terminated by the end of the string.  The substrings in
  2239      * the array are in the order in which they occur in this string.  If the
  2240      * expression does not match any part of the input then the resulting array
  2241      * has just one element, namely this string.
  2242      *
  2243      * <p> The <tt>limit</tt> parameter controls the number of times the
  2244      * pattern is applied and therefore affects the length of the resulting
  2245      * array.  If the limit <i>n</i> is greater than zero then the pattern
  2246      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
  2247      * length will be no greater than <i>n</i>, and the array's last entry
  2248      * will contain all input beyond the last matched delimiter.  If <i>n</i>
  2249      * is non-positive then the pattern will be applied as many times as
  2250      * possible and the array can have any length.  If <i>n</i> is zero then
  2251      * the pattern will be applied as many times as possible, the array can
  2252      * have any length, and trailing empty strings will be discarded.
  2253      *
  2254      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
  2255      * following results with these parameters:
  2256      *
  2257      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
  2258      * <tr>
  2259      *     <th>Regex</th>
  2260      *     <th>Limit</th>
  2261      *     <th>Result</th>
  2262      * </tr>
  2263      * <tr><td align=center>:</td>
  2264      *     <td align=center>2</td>
  2265      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
  2266      * <tr><td align=center>:</td>
  2267      *     <td align=center>5</td>
  2268      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2269      * <tr><td align=center>:</td>
  2270      *     <td align=center>-2</td>
  2271      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2272      * <tr><td align=center>o</td>
  2273      *     <td align=center>5</td>
  2274      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2275      * <tr><td align=center>o</td>
  2276      *     <td align=center>-2</td>
  2277      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2278      * <tr><td align=center>o</td>
  2279      *     <td align=center>0</td>
  2280      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2281      * </table></blockquote>
  2282      *
  2283      * <p> An invocation of this method of the form
  2284      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2285      * yields the same result as the expression
  2286      *
  2287      * <blockquote>
  2288      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2289      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
  2290      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
  2291      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2292      * </blockquote>
  2293      *
  2294      *
  2295      * @param  regex
  2296      *         the delimiting regular expression
  2297      *
  2298      * @param  limit
  2299      *         the result threshold, as described above
  2300      *
  2301      * @return  the array of strings computed by splitting this string
  2302      *          around matches of the given regular expression
  2303      *
  2304      * @throws  PatternSyntaxException
  2305      *          if the regular expression's syntax is invalid
  2306      *
  2307      * @see java.util.regex.Pattern
  2308      *
  2309      * @since 1.4
  2310      * @spec JSR-51
  2311      */
  2312     public String[] split(String regex, int limit) {
  2313         /* fastpath if the regex is a
  2314            (1)one-char String and this character is not one of the
  2315               RegEx's meta characters ".$|()[{^?*+\\", or
  2316            (2)two-char String and the first char is the backslash and
  2317               the second is not the ascii digit or ascii letter.
  2318         */
  2319         char ch = 0;
  2320         if (((regex.count == 1 &&
  2321              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
  2322              (regex.length() == 2 &&
  2323               regex.charAt(0) == '\\' &&
  2324               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
  2325               ((ch-'a')|('z'-ch)) < 0 &&
  2326               ((ch-'A')|('Z'-ch)) < 0)) &&
  2327             (ch < Character.MIN_HIGH_SURROGATE ||
  2328              ch > Character.MAX_LOW_SURROGATE))
  2329         {
  2330             int off = 0;
  2331             int next = 0;
  2332             boolean limited = limit > 0;
  2333             ArrayList<String> list = new ArrayList<>();
  2334             while ((next = indexOf(ch, off)) != -1) {
  2335                 if (!limited || list.size() < limit - 1) {
  2336                     list.add(substring(off, next));
  2337                     off = next + 1;
  2338                 } else {    // last one
  2339                     //assert (list.size() == limit - 1);
  2340                     list.add(substring(off, count));
  2341                     off = count;
  2342                     break;
  2343                 }
  2344             }
  2345             // If no match was found, return this
  2346             if (off == 0)
  2347                 return new String[] { this };
  2348 
  2349             // Add remaining segment
  2350             if (!limited || list.size() < limit)
  2351                 list.add(substring(off, count));
  2352 
  2353             // Construct result
  2354             int resultSize = list.size();
  2355             if (limit == 0)
  2356                 while (resultSize > 0 && list.get(resultSize-1).length() == 0)
  2357                     resultSize--;
  2358             String[] result = new String[resultSize];
  2359             return list.subList(0, resultSize).toArray(result);
  2360         }
  2361         return Pattern.compile(regex).split(this, limit);
  2362     }
  2363 
  2364     /**
  2365      * Splits this string around matches of the given <a
  2366      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2367      *
  2368      * <p> This method works as if by invoking the two-argument {@link
  2369      * #split(String, int) split} method with the given expression and a limit
  2370      * argument of zero.  Trailing empty strings are therefore not included in
  2371      * the resulting array.
  2372      *
  2373      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
  2374      * results with these expressions:
  2375      *
  2376      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
  2377      * <tr>
  2378      *  <th>Regex</th>
  2379      *  <th>Result</th>
  2380      * </tr>
  2381      * <tr><td align=center>:</td>
  2382      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2383      * <tr><td align=center>o</td>
  2384      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2385      * </table></blockquote>
  2386      *
  2387      *
  2388      * @param  regex
  2389      *         the delimiting regular expression
  2390      *
  2391      * @return  the array of strings computed by splitting this string
  2392      *          around matches of the given regular expression
  2393      *
  2394      * @throws  PatternSyntaxException
  2395      *          if the regular expression's syntax is invalid
  2396      *
  2397      * @see java.util.regex.Pattern
  2398      *
  2399      * @since 1.4
  2400      * @spec JSR-51
  2401      */
  2402     public String[] split(String regex) {
  2403         return split(regex, 0);
  2404     }
  2405 
  2406     /**
  2407      * Converts all of the characters in this <code>String</code> to lower
  2408      * case using the rules of the given <code>Locale</code>.  Case mapping is based
  2409      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2410      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2411      * <code>String</code> may be a different length than the original <code>String</code>.
  2412      * <p>
  2413      * Examples of lowercase  mappings are in the following table:
  2414      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
  2415      * <tr>
  2416      *   <th>Language Code of Locale</th>
  2417      *   <th>Upper Case</th>
  2418      *   <th>Lower Case</th>
  2419      *   <th>Description</th>
  2420      * </tr>
  2421      * <tr>
  2422      *   <td>tr (Turkish)</td>
  2423      *   <td>&#92;u0130</td>
  2424      *   <td>&#92;u0069</td>
  2425      *   <td>capital letter I with dot above -&gt; small letter i</td>
  2426      * </tr>
  2427      * <tr>
  2428      *   <td>tr (Turkish)</td>
  2429      *   <td>&#92;u0049</td>
  2430      *   <td>&#92;u0131</td>
  2431      *   <td>capital letter I -&gt; small letter dotless i </td>
  2432      * </tr>
  2433      * <tr>
  2434      *   <td>(all)</td>
  2435      *   <td>French Fries</td>
  2436      *   <td>french fries</td>
  2437      *   <td>lowercased all chars in String</td>
  2438      * </tr>
  2439      * <tr>
  2440      *   <td>(all)</td>
  2441      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
  2442      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
  2443      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
  2444      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
  2445      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
  2446      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
  2447      *   <td>lowercased all chars in String</td>
  2448      * </tr>
  2449      * </table>
  2450      *
  2451      * @param locale use the case transformation rules for this locale
  2452      * @return the <code>String</code>, converted to lowercase.
  2453      * @see     java.lang.String#toLowerCase()
  2454      * @see     java.lang.String#toUpperCase()
  2455      * @see     java.lang.String#toUpperCase(Locale)
  2456      * @since   1.1
  2457      */
  2458     public String toLowerCase(Locale locale) {
  2459         if (locale == null) {
  2460             throw new NullPointerException();
  2461         }
  2462 
  2463         int     firstUpper;
  2464 
  2465         /* Now check if there are any characters that need to be changed. */
  2466         scan: {
  2467             for (firstUpper = 0 ; firstUpper < count; ) {
  2468                 char c = value[offset+firstUpper];
  2469                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2470                     (c <= Character.MAX_HIGH_SURROGATE)) {
  2471                     int supplChar = codePointAt(firstUpper);
  2472                     if (supplChar != Character.toLowerCase(supplChar)) {
  2473                         break scan;
  2474                     }
  2475                     firstUpper += Character.charCount(supplChar);
  2476                 } else {
  2477                     if (c != Character.toLowerCase(c)) {
  2478                         break scan;
  2479                     }
  2480                     firstUpper++;
  2481                 }
  2482             }
  2483             return this;
  2484         }
  2485 
  2486         char[]  result = new char[count];
  2487         int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2488                                     * is the write location in result */
  2489 
  2490         /* Just copy the first few lowerCase characters. */
  2491         System.arraycopy(value, offset, result, 0, firstUpper);
  2492 
  2493         String lang = locale.getLanguage();
  2494         boolean localeDependent =
  2495             (lang == "tr" || lang == "az" || lang == "lt");
  2496         char[] lowerCharArray;
  2497         int lowerChar;
  2498         int srcChar;
  2499         int srcCount;
  2500         for (int i = firstUpper; i < count; i += srcCount) {
  2501             srcChar = (int)value[offset+i];
  2502             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2503                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2504                 srcChar = codePointAt(i);
  2505                 srcCount = Character.charCount(srcChar);
  2506             } else {
  2507                 srcCount = 1;
  2508             }
  2509             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
  2510                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
  2511             } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
  2512                 lowerChar = Character.ERROR;
  2513             } else {
  2514                 lowerChar = Character.toLowerCase(srcChar);
  2515             }
  2516             if ((lowerChar == Character.ERROR) ||
  2517                 (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2518                 if (lowerChar == Character.ERROR) {
  2519                      if (!localeDependent && srcChar == '\u0130') {
  2520                          lowerCharArray =
  2521                              ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
  2522                      } else {
  2523                         lowerCharArray =
  2524                             ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
  2525                      }
  2526                 } else if (srcCount == 2) {
  2527                     resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
  2528                     continue;
  2529                 } else {
  2530                     lowerCharArray = Character.toChars(lowerChar);
  2531                 }
  2532 
  2533                 /* Grow result if needed */
  2534                 int mapLen = lowerCharArray.length;
  2535                 if (mapLen > srcCount) {
  2536                     char[] result2 = new char[result.length + mapLen - srcCount];
  2537                     System.arraycopy(result, 0, result2, 0,
  2538                         i + resultOffset);
  2539                     result = result2;
  2540                 }
  2541                 for (int x=0; x<mapLen; ++x) {
  2542                     result[i+resultOffset+x] = lowerCharArray[x];
  2543                 }
  2544                 resultOffset += (mapLen - srcCount);
  2545             } else {
  2546                 result[i+resultOffset] = (char)lowerChar;
  2547             }
  2548         }
  2549         return new String(0, count+resultOffset, result);
  2550     }
  2551 
  2552     /**
  2553      * Converts all of the characters in this <code>String</code> to lower
  2554      * case using the rules of the default locale. This is equivalent to calling
  2555      * <code>toLowerCase(Locale.getDefault())</code>.
  2556      * <p>
  2557      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2558      * results if used for strings that are intended to be interpreted locale
  2559      * independently.
  2560      * Examples are programming language identifiers, protocol keys, and HTML
  2561      * tags.
  2562      * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale
  2563      * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the
  2564      * LATIN SMALL LETTER DOTLESS I character.
  2565      * To obtain correct results for locale insensitive strings, use
  2566      * <code>toLowerCase(Locale.ENGLISH)</code>.
  2567      * <p>
  2568      * @return  the <code>String</code>, converted to lowercase.
  2569      * @see     java.lang.String#toLowerCase(Locale)
  2570      */
  2571     public String toLowerCase() {
  2572         return toLowerCase(Locale.getDefault());
  2573     }
  2574 
  2575     /**
  2576      * Converts all of the characters in this <code>String</code> to upper
  2577      * case using the rules of the given <code>Locale</code>. Case mapping is based
  2578      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2579      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2580      * <code>String</code> may be a different length than the original <code>String</code>.
  2581      * <p>
  2582      * Examples of locale-sensitive and 1:M case mappings are in the following table.
  2583      * <p>
  2584      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
  2585      * <tr>
  2586      *   <th>Language Code of Locale</th>
  2587      *   <th>Lower Case</th>
  2588      *   <th>Upper Case</th>
  2589      *   <th>Description</th>
  2590      * </tr>
  2591      * <tr>
  2592      *   <td>tr (Turkish)</td>
  2593      *   <td>&#92;u0069</td>
  2594      *   <td>&#92;u0130</td>
  2595      *   <td>small letter i -&gt; capital letter I with dot above</td>
  2596      * </tr>
  2597      * <tr>
  2598      *   <td>tr (Turkish)</td>
  2599      *   <td>&#92;u0131</td>
  2600      *   <td>&#92;u0049</td>
  2601      *   <td>small letter dotless i -&gt; capital letter I</td>
  2602      * </tr>
  2603      * <tr>
  2604      *   <td>(all)</td>
  2605      *   <td>&#92;u00df</td>
  2606      *   <td>&#92;u0053 &#92;u0053</td>
  2607      *   <td>small letter sharp s -&gt; two letters: SS</td>
  2608      * </tr>
  2609      * <tr>
  2610      *   <td>(all)</td>
  2611      *   <td>Fahrvergn&uuml;gen</td>
  2612      *   <td>FAHRVERGN&Uuml;GEN</td>
  2613      *   <td></td>
  2614      * </tr>
  2615      * </table>
  2616      * @param locale use the case transformation rules for this locale
  2617      * @return the <code>String</code>, converted to uppercase.
  2618      * @see     java.lang.String#toUpperCase()
  2619      * @see     java.lang.String#toLowerCase()
  2620      * @see     java.lang.String#toLowerCase(Locale)
  2621      * @since   1.1
  2622      */
  2623     public String toUpperCase(Locale locale) {
  2624         if (locale == null) {
  2625             throw new NullPointerException();
  2626         }
  2627 
  2628         int     firstLower;
  2629 
  2630         /* Now check if there are any characters that need to be changed. */
  2631         scan: {
  2632             for (firstLower = 0 ; firstLower < count; ) {
  2633                 int c = (int)value[offset+firstLower];
  2634                 int srcCount;
  2635                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2636                     (c <= Character.MAX_HIGH_SURROGATE)) {
  2637                     c = codePointAt(firstLower);
  2638                     srcCount = Character.charCount(c);
  2639                 } else {
  2640                     srcCount = 1;
  2641                 }
  2642                 int upperCaseChar = Character.toUpperCaseEx(c);
  2643                 if ((upperCaseChar == Character.ERROR) ||
  2644                     (c != upperCaseChar)) {
  2645                     break scan;
  2646                 }
  2647                 firstLower += srcCount;
  2648             }
  2649             return this;
  2650         }
  2651 
  2652         char[]  result       = new char[count]; /* may grow */
  2653         int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2654                                     * is the write location in result */
  2655 
  2656         /* Just copy the first few upperCase characters. */
  2657         System.arraycopy(value, offset, result, 0, firstLower);
  2658 
  2659         String lang = locale.getLanguage();
  2660         boolean localeDependent =
  2661             (lang == "tr" || lang == "az" || lang == "lt");
  2662         char[] upperCharArray;
  2663         int upperChar;
  2664         int srcChar;
  2665         int srcCount;
  2666         for (int i = firstLower; i < count; i += srcCount) {
  2667             srcChar = (int)value[offset+i];
  2668             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2669                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2670                 srcChar = codePointAt(i);
  2671                 srcCount = Character.charCount(srcChar);
  2672             } else {
  2673                 srcCount = 1;
  2674             }
  2675             if (localeDependent) {
  2676                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
  2677             } else {
  2678                 upperChar = Character.toUpperCaseEx(srcChar);
  2679             }
  2680             if ((upperChar == Character.ERROR) ||
  2681                 (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2682                 if (upperChar == Character.ERROR) {
  2683                     if (localeDependent) {
  2684                         upperCharArray =
  2685                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
  2686                     } else {
  2687                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
  2688                     }
  2689                 } else if (srcCount == 2) {
  2690                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
  2691                     continue;
  2692                 } else {
  2693                     upperCharArray = Character.toChars(upperChar);
  2694                 }
  2695 
  2696                 /* Grow result if needed */
  2697                 int mapLen = upperCharArray.length;
  2698                 if (mapLen > srcCount) {
  2699                     char[] result2 = new char[result.length + mapLen - srcCount];
  2700                     System.arraycopy(result, 0, result2, 0,
  2701                         i + resultOffset);
  2702                     result = result2;
  2703                 }
  2704                 for (int x=0; x<mapLen; ++x) {
  2705                     result[i+resultOffset+x] = upperCharArray[x];
  2706                 }
  2707                 resultOffset += (mapLen - srcCount);
  2708             } else {
  2709                 result[i+resultOffset] = (char)upperChar;
  2710             }
  2711         }
  2712         return new String(0, count+resultOffset, result);
  2713     }
  2714 
  2715     /**
  2716      * Converts all of the characters in this <code>String</code> to upper
  2717      * case using the rules of the default locale. This method is equivalent to
  2718      * <code>toUpperCase(Locale.getDefault())</code>.
  2719      * <p>
  2720      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2721      * results if used for strings that are intended to be interpreted locale
  2722      * independently.
  2723      * Examples are programming language identifiers, protocol keys, and HTML
  2724      * tags.
  2725      * For instance, <code>"title".toUpperCase()</code> in a Turkish locale
  2726      * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the
  2727      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
  2728      * To obtain correct results for locale insensitive strings, use
  2729      * <code>toUpperCase(Locale.ENGLISH)</code>.
  2730      * <p>
  2731      * @return  the <code>String</code>, converted to uppercase.
  2732      * @see     java.lang.String#toUpperCase(Locale)
  2733      */
  2734     public String toUpperCase() {
  2735         return toUpperCase(Locale.getDefault());
  2736     }
  2737 
  2738     /**
  2739      * Returns a copy of the string, with leading and trailing whitespace
  2740      * omitted.
  2741      * <p>
  2742      * If this <code>String</code> object represents an empty character
  2743      * sequence, or the first and last characters of character sequence
  2744      * represented by this <code>String</code> object both have codes
  2745      * greater than <code>'&#92;u0020'</code> (the space character), then a
  2746      * reference to this <code>String</code> object is returned.
  2747      * <p>
  2748      * Otherwise, if there is no character with a code greater than
  2749      * <code>'&#92;u0020'</code> in the string, then a new
  2750      * <code>String</code> object representing an empty string is created
  2751      * and returned.
  2752      * <p>
  2753      * Otherwise, let <i>k</i> be the index of the first character in the
  2754      * string whose code is greater than <code>'&#92;u0020'</code>, and let
  2755      * <i>m</i> be the index of the last character in the string whose code
  2756      * is greater than <code>'&#92;u0020'</code>. A new <code>String</code>
  2757      * object is created, representing the substring of this string that
  2758      * begins with the character at index <i>k</i> and ends with the
  2759      * character at index <i>m</i>-that is, the result of
  2760      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
  2761      * <p>
  2762      * This method may be used to trim whitespace (as defined above) from
  2763      * the beginning and end of a string.
  2764      *
  2765      * @return  A copy of this string with leading and trailing white
  2766      *          space removed, or this string if it has no leading or
  2767      *          trailing white space.
  2768      */
  2769     public String trim() {
  2770         int len = count;
  2771         int st = 0;
  2772         int off = offset;      /* avoid getfield opcode */
  2773         char[] val = value;    /* avoid getfield opcode */
  2774 
  2775         while ((st < len) && (val[off + st] <= ' ')) {
  2776             st++;
  2777         }
  2778         while ((st < len) && (val[off + len - 1] <= ' ')) {
  2779             len--;
  2780         }
  2781         return ((st > 0) || (len < count)) ? substring(st, len) : this;
  2782     }
  2783 
  2784     /**
  2785      * This object (which is already a string!) is itself returned.
  2786      *
  2787      * @return  the string itself.
  2788      */
  2789     public String toString() {
  2790         return this;
  2791     }
  2792 
  2793     /**
  2794      * Converts this string to a new character array.
  2795      *
  2796      * @return  a newly allocated character array whose length is the length
  2797      *          of this string and whose contents are initialized to contain
  2798      *          the character sequence represented by this string.
  2799      */
  2800     public char[] toCharArray() {
  2801         char result[] = new char[count];
  2802         getChars(0, count, result, 0);
  2803         return result;
  2804     }
  2805 
  2806     /**
  2807      * Returns a formatted string using the specified format string and
  2808      * arguments.
  2809      *
  2810      * <p> The locale always used is the one returned by {@link
  2811      * java.util.Locale#getDefault() Locale.getDefault()}.
  2812      *
  2813      * @param  format
  2814      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2815      *
  2816      * @param  args
  2817      *         Arguments referenced by the format specifiers in the format
  2818      *         string.  If there are more arguments than format specifiers, the
  2819      *         extra arguments are ignored.  The number of arguments is
  2820      *         variable and may be zero.  The maximum number of arguments is
  2821      *         limited by the maximum dimension of a Java array as defined by
  2822      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2823      *         The behaviour on a
  2824      *         <tt>null</tt> argument depends on the <a
  2825      *         href="../util/Formatter.html#syntax">conversion</a>.
  2826      *
  2827      * @throws  IllegalFormatException
  2828      *          If a format string contains an illegal syntax, a format
  2829      *          specifier that is incompatible with the given arguments,
  2830      *          insufficient arguments given the format string, or other
  2831      *          illegal conditions.  For specification of all possible
  2832      *          formatting errors, see the <a
  2833      *          href="../util/Formatter.html#detail">Details</a> section of the
  2834      *          formatter class specification.
  2835      *
  2836      * @throws  NullPointerException
  2837      *          If the <tt>format</tt> is <tt>null</tt>
  2838      *
  2839      * @return  A formatted string
  2840      *
  2841      * @see  java.util.Formatter
  2842      * @since  1.5
  2843      */
  2844     public static String format(String format, Object ... args) {
  2845         return new Formatter().format(format, args).toString();
  2846     }
  2847 
  2848     /**
  2849      * Returns a formatted string using the specified locale, format string,
  2850      * and arguments.
  2851      *
  2852      * @param  l
  2853      *         The {@linkplain java.util.Locale locale} to apply during
  2854      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
  2855      *         is applied.
  2856      *
  2857      * @param  format
  2858      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2859      *
  2860      * @param  args
  2861      *         Arguments referenced by the format specifiers in the format
  2862      *         string.  If there are more arguments than format specifiers, the
  2863      *         extra arguments are ignored.  The number of arguments is
  2864      *         variable and may be zero.  The maximum number of arguments is
  2865      *         limited by the maximum dimension of a Java array as defined by
  2866      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2867      *         The behaviour on a
  2868      *         <tt>null</tt> argument depends on the <a
  2869      *         href="../util/Formatter.html#syntax">conversion</a>.
  2870      *
  2871      * @throws  IllegalFormatException
  2872      *          If a format string contains an illegal syntax, a format
  2873      *          specifier that is incompatible with the given arguments,
  2874      *          insufficient arguments given the format string, or other
  2875      *          illegal conditions.  For specification of all possible
  2876      *          formatting errors, see the <a
  2877      *          href="../util/Formatter.html#detail">Details</a> section of the
  2878      *          formatter class specification
  2879      *
  2880      * @throws  NullPointerException
  2881      *          If the <tt>format</tt> is <tt>null</tt>
  2882      *
  2883      * @return  A formatted string
  2884      *
  2885      * @see  java.util.Formatter
  2886      * @since  1.5
  2887      */
  2888     public static String format(Locale l, String format, Object ... args) {
  2889         return new Formatter(l).format(format, args).toString();
  2890     }
  2891 
  2892     /**
  2893      * Returns the string representation of the <code>Object</code> argument.
  2894      *
  2895      * @param   obj   an <code>Object</code>.
  2896      * @return  if the argument is <code>null</code>, then a string equal to
  2897      *          <code>"null"</code>; otherwise, the value of
  2898      *          <code>obj.toString()</code> is returned.
  2899      * @see     java.lang.Object#toString()
  2900      */
  2901     public static String valueOf(Object obj) {
  2902         return (obj == null) ? "null" : obj.toString();
  2903     }
  2904 
  2905     /**
  2906      * Returns the string representation of the <code>char</code> array
  2907      * argument. The contents of the character array are copied; subsequent
  2908      * modification of the character array does not affect the newly
  2909      * created string.
  2910      *
  2911      * @param   data   a <code>char</code> array.
  2912      * @return  a newly allocated string representing the same sequence of
  2913      *          characters contained in the character array argument.
  2914      */
  2915     public static String valueOf(char data[]) {
  2916         return new String(data);
  2917     }
  2918 
  2919     /**
  2920      * Returns the string representation of a specific subarray of the
  2921      * <code>char</code> array argument.
  2922      * <p>
  2923      * The <code>offset</code> argument is the index of the first
  2924      * character of the subarray. The <code>count</code> argument
  2925      * specifies the length of the subarray. The contents of the subarray
  2926      * are copied; subsequent modification of the character array does not
  2927      * affect the newly created string.
  2928      *
  2929      * @param   data     the character array.
  2930      * @param   offset   the initial offset into the value of the
  2931      *                  <code>String</code>.
  2932      * @param   count    the length of the value of the <code>String</code>.
  2933      * @return  a string representing the sequence of characters contained
  2934      *          in the subarray of the character array argument.
  2935      * @exception IndexOutOfBoundsException if <code>offset</code> is
  2936      *          negative, or <code>count</code> is negative, or
  2937      *          <code>offset+count</code> is larger than
  2938      *          <code>data.length</code>.
  2939      */
  2940     public static String valueOf(char data[], int offset, int count) {
  2941         return new String(data, offset, count);
  2942     }
  2943 
  2944     /**
  2945      * Returns a String that represents the character sequence in the
  2946      * array specified.
  2947      *
  2948      * @param   data     the character array.
  2949      * @param   offset   initial offset of the subarray.
  2950      * @param   count    length of the subarray.
  2951      * @return  a <code>String</code> that contains the characters of the
  2952      *          specified subarray of the character array.
  2953      */
  2954     public static String copyValueOf(char data[], int offset, int count) {
  2955         // All public String constructors now copy the data.
  2956         return new String(data, offset, count);
  2957     }
  2958 
  2959     /**
  2960      * Returns a String that represents the character sequence in the
  2961      * array specified.
  2962      *
  2963      * @param   data   the character array.
  2964      * @return  a <code>String</code> that contains the characters of the
  2965      *          character array.
  2966      */
  2967     public static String copyValueOf(char data[]) {
  2968         return copyValueOf(data, 0, data.length);
  2969     }
  2970 
  2971     /**
  2972      * Returns the string representation of the <code>boolean</code> argument.
  2973      *
  2974      * @param   b   a <code>boolean</code>.
  2975      * @return  if the argument is <code>true</code>, a string equal to
  2976      *          <code>"true"</code> is returned; otherwise, a string equal to
  2977      *          <code>"false"</code> is returned.
  2978      */
  2979     public static String valueOf(boolean b) {
  2980         return b ? "true" : "false";
  2981     }
  2982 
  2983     /**
  2984      * Returns the string representation of the <code>char</code>
  2985      * argument.
  2986      *
  2987      * @param   c   a <code>char</code>.
  2988      * @return  a string of length <code>1</code> containing
  2989      *          as its single character the argument <code>c</code>.
  2990      */
  2991     public static String valueOf(char c) {
  2992         char data[] = {c};
  2993         return new String(0, 1, data);
  2994     }
  2995 
  2996     /**
  2997      * Returns the string representation of the <code>int</code> argument.
  2998      * <p>
  2999      * The representation is exactly the one returned by the
  3000      * <code>Integer.toString</code> method of one argument.
  3001      *
  3002      * @param   i   an <code>int</code>.
  3003      * @return  a string representation of the <code>int</code> argument.
  3004      * @see     java.lang.Integer#toString(int, int)
  3005      */
  3006     public static String valueOf(int i) {
  3007         return Integer.toString(i);
  3008     }
  3009 
  3010     /**
  3011      * Returns the string representation of the <code>long</code> argument.
  3012      * <p>
  3013      * The representation is exactly the one returned by the
  3014      * <code>Long.toString</code> method of one argument.
  3015      *
  3016      * @param   l   a <code>long</code>.
  3017      * @return  a string representation of the <code>long</code> argument.
  3018      * @see     java.lang.Long#toString(long)
  3019      */
  3020     public static String valueOf(long l) {
  3021         return Long.toString(l);
  3022     }
  3023 
  3024     /**
  3025      * Returns the string representation of the <code>float</code> argument.
  3026      * <p>
  3027      * The representation is exactly the one returned by the
  3028      * <code>Float.toString</code> method of one argument.
  3029      *
  3030      * @param   f   a <code>float</code>.
  3031      * @return  a string representation of the <code>float</code> argument.
  3032      * @see     java.lang.Float#toString(float)
  3033      */
  3034     public static String valueOf(float f) {
  3035         return Float.toString(f);
  3036     }
  3037 
  3038     /**
  3039      * Returns the string representation of the <code>double</code> argument.
  3040      * <p>
  3041      * The representation is exactly the one returned by the
  3042      * <code>Double.toString</code> method of one argument.
  3043      *
  3044      * @param   d   a <code>double</code>.
  3045      * @return  a  string representation of the <code>double</code> argument.
  3046      * @see     java.lang.Double#toString(double)
  3047      */
  3048     public static String valueOf(double d) {
  3049         return Double.toString(d);
  3050     }
  3051 
  3052     /**
  3053      * Returns a canonical representation for the string object.
  3054      * <p>
  3055      * A pool of strings, initially empty, is maintained privately by the
  3056      * class <code>String</code>.
  3057      * <p>
  3058      * When the intern method is invoked, if the pool already contains a
  3059      * string equal to this <code>String</code> object as determined by
  3060      * the {@link #equals(Object)} method, then the string from the pool is
  3061      * returned. Otherwise, this <code>String</code> object is added to the
  3062      * pool and a reference to this <code>String</code> object is returned.
  3063      * <p>
  3064      * It follows that for any two strings <code>s</code> and <code>t</code>,
  3065      * <code>s.intern()&nbsp;==&nbsp;t.intern()</code> is <code>true</code>
  3066      * if and only if <code>s.equals(t)</code> is <code>true</code>.
  3067      * <p>
  3068      * All literal strings and string-valued constant expressions are
  3069      * interned. String literals are defined in section 3.10.5 of the
  3070      * <cite>The Java&trade; Language Specification</cite>.
  3071      *
  3072      * @return  a string that has the same contents as this string, but is
  3073      *          guaranteed to be from a pool of unique strings.
  3074      */
  3075     public native String intern();
  3076 
  3077 }