emul/src/main/java/java/lang/Integer.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Mon, 07 Jan 2013 18:30:06 +0100
branchjdk7-b147
changeset 414 0dab62955440
child 84 d65b3a2fbfaf
permissions -rw-r--r--
Adding Void to support invocation of methods without return type
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import java.util.Properties;
    29 
    30 /**
    31  * The {@code Integer} class wraps a value of the primitive type
    32  * {@code int} in an object. An object of type {@code Integer}
    33  * contains a single field whose type is {@code int}.
    34  *
    35  * <p>In addition, this class provides several methods for converting
    36  * an {@code int} to a {@code String} and a {@code String} to an
    37  * {@code int}, as well as other constants and methods useful when
    38  * dealing with an {@code int}.
    39  *
    40  * <p>Implementation note: The implementations of the "bit twiddling"
    41  * methods (such as {@link #highestOneBit(int) highestOneBit} and
    42  * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
    43  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
    44  * Delight</i>, (Addison Wesley, 2002).
    45  *
    46  * @author  Lee Boynton
    47  * @author  Arthur van Hoff
    48  * @author  Josh Bloch
    49  * @author  Joseph D. Darcy
    50  * @since JDK1.0
    51  */
    52 public final class Integer extends Number implements Comparable<Integer> {
    53     /**
    54      * A constant holding the minimum value an {@code int} can
    55      * have, -2<sup>31</sup>.
    56      */
    57     public static final int   MIN_VALUE = 0x80000000;
    58 
    59     /**
    60      * A constant holding the maximum value an {@code int} can
    61      * have, 2<sup>31</sup>-1.
    62      */
    63     public static final int   MAX_VALUE = 0x7fffffff;
    64 
    65     /**
    66      * The {@code Class} instance representing the primitive type
    67      * {@code int}.
    68      *
    69      * @since   JDK1.1
    70      */
    71     public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");
    72 
    73     /**
    74      * All possible chars for representing a number as a String
    75      */
    76     final static char[] digits = {
    77         '0' , '1' , '2' , '3' , '4' , '5' ,
    78         '6' , '7' , '8' , '9' , 'a' , 'b' ,
    79         'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
    80         'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
    81         'o' , 'p' , 'q' , 'r' , 's' , 't' ,
    82         'u' , 'v' , 'w' , 'x' , 'y' , 'z'
    83     };
    84 
    85     /**
    86      * Returns a string representation of the first argument in the
    87      * radix specified by the second argument.
    88      *
    89      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
    90      * or larger than {@code Character.MAX_RADIX}, then the radix
    91      * {@code 10} is used instead.
    92      *
    93      * <p>If the first argument is negative, the first element of the
    94      * result is the ASCII minus character {@code '-'}
    95      * (<code>'&#92;u002D'</code>). If the first argument is not
    96      * negative, no sign character appears in the result.
    97      *
    98      * <p>The remaining characters of the result represent the magnitude
    99      * of the first argument. If the magnitude is zero, it is
   100      * represented by a single zero character {@code '0'}
   101      * (<code>'&#92;u0030'</code>); otherwise, the first character of
   102      * the representation of the magnitude will not be the zero
   103      * character.  The following ASCII characters are used as digits:
   104      *
   105      * <blockquote>
   106      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
   107      * </blockquote>
   108      *
   109      * These are <code>'&#92;u0030'</code> through
   110      * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through
   111      * <code>'&#92;u007A'</code>. If {@code radix} is
   112      * <var>N</var>, then the first <var>N</var> of these characters
   113      * are used as radix-<var>N</var> digits in the order shown. Thus,
   114      * the digits for hexadecimal (radix 16) are
   115      * {@code 0123456789abcdef}. If uppercase letters are
   116      * desired, the {@link java.lang.String#toUpperCase()} method may
   117      * be called on the result:
   118      *
   119      * <blockquote>
   120      *  {@code Integer.toString(n, 16).toUpperCase()}
   121      * </blockquote>
   122      *
   123      * @param   i       an integer to be converted to a string.
   124      * @param   radix   the radix to use in the string representation.
   125      * @return  a string representation of the argument in the specified radix.
   126      * @see     java.lang.Character#MAX_RADIX
   127      * @see     java.lang.Character#MIN_RADIX
   128      */
   129     public static String toString(int i, int radix) {
   130 
   131         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
   132             radix = 10;
   133 
   134         /* Use the faster version */
   135         if (radix == 10) {
   136             return toString(i);
   137         }
   138 
   139         char buf[] = new char[33];
   140         boolean negative = (i < 0);
   141         int charPos = 32;
   142 
   143         if (!negative) {
   144             i = -i;
   145         }
   146 
   147         while (i <= -radix) {
   148             buf[charPos--] = digits[-(i % radix)];
   149             i = i / radix;
   150         }
   151         buf[charPos] = digits[-i];
   152 
   153         if (negative) {
   154             buf[--charPos] = '-';
   155         }
   156 
   157         return new String(buf, charPos, (33 - charPos));
   158     }
   159 
   160     /**
   161      * Returns a string representation of the integer argument as an
   162      * unsigned integer in base&nbsp;16.
   163      *
   164      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
   165      * if the argument is negative; otherwise, it is equal to the
   166      * argument.  This value is converted to a string of ASCII digits
   167      * in hexadecimal (base&nbsp;16) with no extra leading
   168      * {@code 0}s. If the unsigned magnitude is zero, it is
   169      * represented by a single zero character {@code '0'}
   170      * (<code>'&#92;u0030'</code>); otherwise, the first character of
   171      * the representation of the unsigned magnitude will not be the
   172      * zero character. The following characters are used as
   173      * hexadecimal digits:
   174      *
   175      * <blockquote>
   176      *  {@code 0123456789abcdef}
   177      * </blockquote>
   178      *
   179      * These are the characters <code>'&#92;u0030'</code> through
   180      * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through
   181      * <code>'&#92;u0066'</code>. If uppercase letters are
   182      * desired, the {@link java.lang.String#toUpperCase()} method may
   183      * be called on the result:
   184      *
   185      * <blockquote>
   186      *  {@code Integer.toHexString(n).toUpperCase()}
   187      * </blockquote>
   188      *
   189      * @param   i   an integer to be converted to a string.
   190      * @return  the string representation of the unsigned integer value
   191      *          represented by the argument in hexadecimal (base&nbsp;16).
   192      * @since   JDK1.0.2
   193      */
   194     public static String toHexString(int i) {
   195         return toUnsignedString(i, 4);
   196     }
   197 
   198     /**
   199      * Returns a string representation of the integer argument as an
   200      * unsigned integer in base&nbsp;8.
   201      *
   202      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
   203      * if the argument is negative; otherwise, it is equal to the
   204      * argument.  This value is converted to a string of ASCII digits
   205      * in octal (base&nbsp;8) with no extra leading {@code 0}s.
   206      *
   207      * <p>If the unsigned magnitude is zero, it is represented by a
   208      * single zero character {@code '0'}
   209      * (<code>'&#92;u0030'</code>); otherwise, the first character of
   210      * the representation of the unsigned magnitude will not be the
   211      * zero character. The following characters are used as octal
   212      * digits:
   213      *
   214      * <blockquote>
   215      * {@code 01234567}
   216      * </blockquote>
   217      *
   218      * These are the characters <code>'&#92;u0030'</code> through
   219      * <code>'&#92;u0037'</code>.
   220      *
   221      * @param   i   an integer to be converted to a string.
   222      * @return  the string representation of the unsigned integer value
   223      *          represented by the argument in octal (base&nbsp;8).
   224      * @since   JDK1.0.2
   225      */
   226     public static String toOctalString(int i) {
   227         return toUnsignedString(i, 3);
   228     }
   229 
   230     /**
   231      * Returns a string representation of the integer argument as an
   232      * unsigned integer in base&nbsp;2.
   233      *
   234      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
   235      * if the argument is negative; otherwise it is equal to the
   236      * argument.  This value is converted to a string of ASCII digits
   237      * in binary (base&nbsp;2) with no extra leading {@code 0}s.
   238      * If the unsigned magnitude is zero, it is represented by a
   239      * single zero character {@code '0'}
   240      * (<code>'&#92;u0030'</code>); otherwise, the first character of
   241      * the representation of the unsigned magnitude will not be the
   242      * zero character. The characters {@code '0'}
   243      * (<code>'&#92;u0030'</code>) and {@code '1'}
   244      * (<code>'&#92;u0031'</code>) are used as binary digits.
   245      *
   246      * @param   i   an integer to be converted to a string.
   247      * @return  the string representation of the unsigned integer value
   248      *          represented by the argument in binary (base&nbsp;2).
   249      * @since   JDK1.0.2
   250      */
   251     public static String toBinaryString(int i) {
   252         return toUnsignedString(i, 1);
   253     }
   254 
   255     /**
   256      * Convert the integer to an unsigned number.
   257      */
   258     private static String toUnsignedString(int i, int shift) {
   259         char[] buf = new char[32];
   260         int charPos = 32;
   261         int radix = 1 << shift;
   262         int mask = radix - 1;
   263         do {
   264             buf[--charPos] = digits[i & mask];
   265             i >>>= shift;
   266         } while (i != 0);
   267 
   268         return new String(buf, charPos, (32 - charPos));
   269     }
   270 
   271 
   272     final static char [] DigitTens = {
   273         '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
   274         '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
   275         '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
   276         '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
   277         '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
   278         '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
   279         '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
   280         '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
   281         '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
   282         '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
   283         } ;
   284 
   285     final static char [] DigitOnes = {
   286         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   287         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   288         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   289         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   290         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   291         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   292         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   293         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   294         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   295         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   296         } ;
   297 
   298         // I use the "invariant division by multiplication" trick to
   299         // accelerate Integer.toString.  In particular we want to
   300         // avoid division by 10.
   301         //
   302         // The "trick" has roughly the same performance characteristics
   303         // as the "classic" Integer.toString code on a non-JIT VM.
   304         // The trick avoids .rem and .div calls but has a longer code
   305         // path and is thus dominated by dispatch overhead.  In the
   306         // JIT case the dispatch overhead doesn't exist and the
   307         // "trick" is considerably faster than the classic code.
   308         //
   309         // TODO-FIXME: convert (x * 52429) into the equiv shift-add
   310         // sequence.
   311         //
   312         // RE:  Division by Invariant Integers using Multiplication
   313         //      T Gralund, P Montgomery
   314         //      ACM PLDI 1994
   315         //
   316 
   317     /**
   318      * Returns a {@code String} object representing the
   319      * specified integer. The argument is converted to signed decimal
   320      * representation and returned as a string, exactly as if the
   321      * argument and radix 10 were given as arguments to the {@link
   322      * #toString(int, int)} method.
   323      *
   324      * @param   i   an integer to be converted.
   325      * @return  a string representation of the argument in base&nbsp;10.
   326      */
   327     public static String toString(int i) {
   328         if (i == Integer.MIN_VALUE)
   329             return "-2147483648";
   330         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
   331         char[] buf = new char[size];
   332         getChars(i, size, buf);
   333         return new String(0, size, buf);
   334     }
   335 
   336     /**
   337      * Places characters representing the integer i into the
   338      * character array buf. The characters are placed into
   339      * the buffer backwards starting with the least significant
   340      * digit at the specified index (exclusive), and working
   341      * backwards from there.
   342      *
   343      * Will fail if i == Integer.MIN_VALUE
   344      */
   345     static void getChars(int i, int index, char[] buf) {
   346         int q, r;
   347         int charPos = index;
   348         char sign = 0;
   349 
   350         if (i < 0) {
   351             sign = '-';
   352             i = -i;
   353         }
   354 
   355         // Generate two digits per iteration
   356         while (i >= 65536) {
   357             q = i / 100;
   358         // really: r = i - (q * 100);
   359             r = i - ((q << 6) + (q << 5) + (q << 2));
   360             i = q;
   361             buf [--charPos] = DigitOnes[r];
   362             buf [--charPos] = DigitTens[r];
   363         }
   364 
   365         // Fall thru to fast mode for smaller numbers
   366         // assert(i <= 65536, i);
   367         for (;;) {
   368             q = (i * 52429) >>> (16+3);
   369             r = i - ((q << 3) + (q << 1));  // r = i-(q*10) ...
   370             buf [--charPos] = digits [r];
   371             i = q;
   372             if (i == 0) break;
   373         }
   374         if (sign != 0) {
   375             buf [--charPos] = sign;
   376         }
   377     }
   378 
   379     final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
   380                                       99999999, 999999999, Integer.MAX_VALUE };
   381 
   382     // Requires positive x
   383     static int stringSize(int x) {
   384         for (int i=0; ; i++)
   385             if (x <= sizeTable[i])
   386                 return i+1;
   387     }
   388 
   389     /**
   390      * Parses the string argument as a signed integer in the radix
   391      * specified by the second argument. The characters in the string
   392      * must all be digits of the specified radix (as determined by
   393      * whether {@link java.lang.Character#digit(char, int)} returns a
   394      * nonnegative value), except that the first character may be an
   395      * ASCII minus sign {@code '-'} (<code>'&#92;u002D'</code>) to
   396      * indicate a negative value or an ASCII plus sign {@code '+'}
   397      * (<code>'&#92;u002B'</code>) to indicate a positive value. The
   398      * resulting integer value is returned.
   399      *
   400      * <p>An exception of type {@code NumberFormatException} is
   401      * thrown if any of the following situations occurs:
   402      * <ul>
   403      * <li>The first argument is {@code null} or is a string of
   404      * length zero.
   405      *
   406      * <li>The radix is either smaller than
   407      * {@link java.lang.Character#MIN_RADIX} or
   408      * larger than {@link java.lang.Character#MAX_RADIX}.
   409      *
   410      * <li>Any character of the string is not a digit of the specified
   411      * radix, except that the first character may be a minus sign
   412      * {@code '-'} (<code>'&#92;u002D'</code>) or plus sign
   413      * {@code '+'} (<code>'&#92;u002B'</code>) provided that the
   414      * string is longer than length 1.
   415      *
   416      * <li>The value represented by the string is not a value of type
   417      * {@code int}.
   418      * </ul>
   419      *
   420      * <p>Examples:
   421      * <blockquote><pre>
   422      * parseInt("0", 10) returns 0
   423      * parseInt("473", 10) returns 473
   424      * parseInt("+42", 10) returns 42
   425      * parseInt("-0", 10) returns 0
   426      * parseInt("-FF", 16) returns -255
   427      * parseInt("1100110", 2) returns 102
   428      * parseInt("2147483647", 10) returns 2147483647
   429      * parseInt("-2147483648", 10) returns -2147483648
   430      * parseInt("2147483648", 10) throws a NumberFormatException
   431      * parseInt("99", 8) throws a NumberFormatException
   432      * parseInt("Kona", 10) throws a NumberFormatException
   433      * parseInt("Kona", 27) returns 411787
   434      * </pre></blockquote>
   435      *
   436      * @param      s   the {@code String} containing the integer
   437      *                  representation to be parsed
   438      * @param      radix   the radix to be used while parsing {@code s}.
   439      * @return     the integer represented by the string argument in the
   440      *             specified radix.
   441      * @exception  NumberFormatException if the {@code String}
   442      *             does not contain a parsable {@code int}.
   443      */
   444     public static int parseInt(String s, int radix)
   445                 throws NumberFormatException
   446     {
   447         /*
   448          * WARNING: This method may be invoked early during VM initialization
   449          * before IntegerCache is initialized. Care must be taken to not use
   450          * the valueOf method.
   451          */
   452 
   453         if (s == null) {
   454             throw new NumberFormatException("null");
   455         }
   456 
   457         if (radix < Character.MIN_RADIX) {
   458             throw new NumberFormatException("radix " + radix +
   459                                             " less than Character.MIN_RADIX");
   460         }
   461 
   462         if (radix > Character.MAX_RADIX) {
   463             throw new NumberFormatException("radix " + radix +
   464                                             " greater than Character.MAX_RADIX");
   465         }
   466 
   467         int result = 0;
   468         boolean negative = false;
   469         int i = 0, len = s.length();
   470         int limit = -Integer.MAX_VALUE;
   471         int multmin;
   472         int digit;
   473 
   474         if (len > 0) {
   475             char firstChar = s.charAt(0);
   476             if (firstChar < '0') { // Possible leading "+" or "-"
   477                 if (firstChar == '-') {
   478                     negative = true;
   479                     limit = Integer.MIN_VALUE;
   480                 } else if (firstChar != '+')
   481                     throw NumberFormatException.forInputString(s);
   482 
   483                 if (len == 1) // Cannot have lone "+" or "-"
   484                     throw NumberFormatException.forInputString(s);
   485                 i++;
   486             }
   487             multmin = limit / radix;
   488             while (i < len) {
   489                 // Accumulating negatively avoids surprises near MAX_VALUE
   490                 digit = Character.digit(s.charAt(i++),radix);
   491                 if (digit < 0) {
   492                     throw NumberFormatException.forInputString(s);
   493                 }
   494                 if (result < multmin) {
   495                     throw NumberFormatException.forInputString(s);
   496                 }
   497                 result *= radix;
   498                 if (result < limit + digit) {
   499                     throw NumberFormatException.forInputString(s);
   500                 }
   501                 result -= digit;
   502             }
   503         } else {
   504             throw NumberFormatException.forInputString(s);
   505         }
   506         return negative ? result : -result;
   507     }
   508 
   509     /**
   510      * Parses the string argument as a signed decimal integer. The
   511      * characters in the string must all be decimal digits, except
   512      * that the first character may be an ASCII minus sign {@code '-'}
   513      * (<code>'&#92;u002D'</code>) to indicate a negative value or an
   514      * ASCII plus sign {@code '+'} (<code>'&#92;u002B'</code>) to
   515      * indicate a positive value. The resulting integer value is
   516      * returned, exactly as if the argument and the radix 10 were
   517      * given as arguments to the {@link #parseInt(java.lang.String,
   518      * int)} method.
   519      *
   520      * @param s    a {@code String} containing the {@code int}
   521      *             representation to be parsed
   522      * @return     the integer value represented by the argument in decimal.
   523      * @exception  NumberFormatException  if the string does not contain a
   524      *               parsable integer.
   525      */
   526     public static int parseInt(String s) throws NumberFormatException {
   527         return parseInt(s,10);
   528     }
   529 
   530     /**
   531      * Returns an {@code Integer} object holding the value
   532      * extracted from the specified {@code String} when parsed
   533      * with the radix given by the second argument. The first argument
   534      * is interpreted as representing a signed integer in the radix
   535      * specified by the second argument, exactly as if the arguments
   536      * were given to the {@link #parseInt(java.lang.String, int)}
   537      * method. The result is an {@code Integer} object that
   538      * represents the integer value specified by the string.
   539      *
   540      * <p>In other words, this method returns an {@code Integer}
   541      * object equal to the value of:
   542      *
   543      * <blockquote>
   544      *  {@code new Integer(Integer.parseInt(s, radix))}
   545      * </blockquote>
   546      *
   547      * @param      s   the string to be parsed.
   548      * @param      radix the radix to be used in interpreting {@code s}
   549      * @return     an {@code Integer} object holding the value
   550      *             represented by the string argument in the specified
   551      *             radix.
   552      * @exception NumberFormatException if the {@code String}
   553      *            does not contain a parsable {@code int}.
   554      */
   555     public static Integer valueOf(String s, int radix) throws NumberFormatException {
   556         return Integer.valueOf(parseInt(s,radix));
   557     }
   558 
   559     /**
   560      * Returns an {@code Integer} object holding the
   561      * value of the specified {@code String}. The argument is
   562      * interpreted as representing a signed decimal integer, exactly
   563      * as if the argument were given to the {@link
   564      * #parseInt(java.lang.String)} method. The result is an
   565      * {@code Integer} object that represents the integer value
   566      * specified by the string.
   567      *
   568      * <p>In other words, this method returns an {@code Integer}
   569      * object equal to the value of:
   570      *
   571      * <blockquote>
   572      *  {@code new Integer(Integer.parseInt(s))}
   573      * </blockquote>
   574      *
   575      * @param      s   the string to be parsed.
   576      * @return     an {@code Integer} object holding the value
   577      *             represented by the string argument.
   578      * @exception  NumberFormatException  if the string cannot be parsed
   579      *             as an integer.
   580      */
   581     public static Integer valueOf(String s) throws NumberFormatException {
   582         return Integer.valueOf(parseInt(s, 10));
   583     }
   584 
   585     /**
   586      * Cache to support the object identity semantics of autoboxing for values between
   587      * -128 and 127 (inclusive) as required by JLS.
   588      *
   589      * The cache is initialized on first usage.  The size of the cache
   590      * may be controlled by the -XX:AutoBoxCacheMax=<size> option.
   591      * During VM initialization, java.lang.Integer.IntegerCache.high property
   592      * may be set and saved in the private system properties in the
   593      * sun.misc.VM class.
   594      */
   595 
   596     private static class IntegerCache {
   597         static final int low = -128;
   598         static final int high;
   599         static final Integer cache[];
   600 
   601         static {
   602             // high value may be configured by property
   603             int h = 127;
   604             String integerCacheHighPropValue =
   605                 sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
   606             if (integerCacheHighPropValue != null) {
   607                 int i = parseInt(integerCacheHighPropValue);
   608                 i = Math.max(i, 127);
   609                 // Maximum array size is Integer.MAX_VALUE
   610                 h = Math.min(i, Integer.MAX_VALUE - (-low));
   611             }
   612             high = h;
   613 
   614             cache = new Integer[(high - low) + 1];
   615             int j = low;
   616             for(int k = 0; k < cache.length; k++)
   617                 cache[k] = new Integer(j++);
   618         }
   619 
   620         private IntegerCache() {}
   621     }
   622 
   623     /**
   624      * Returns an {@code Integer} instance representing the specified
   625      * {@code int} value.  If a new {@code Integer} instance is not
   626      * required, this method should generally be used in preference to
   627      * the constructor {@link #Integer(int)}, as this method is likely
   628      * to yield significantly better space and time performance by
   629      * caching frequently requested values.
   630      *
   631      * This method will always cache values in the range -128 to 127,
   632      * inclusive, and may cache other values outside of this range.
   633      *
   634      * @param  i an {@code int} value.
   635      * @return an {@code Integer} instance representing {@code i}.
   636      * @since  1.5
   637      */
   638     public static Integer valueOf(int i) {
   639         assert IntegerCache.high >= 127;
   640         if (i >= IntegerCache.low && i <= IntegerCache.high)
   641             return IntegerCache.cache[i + (-IntegerCache.low)];
   642         return new Integer(i);
   643     }
   644 
   645     /**
   646      * The value of the {@code Integer}.
   647      *
   648      * @serial
   649      */
   650     private final int value;
   651 
   652     /**
   653      * Constructs a newly allocated {@code Integer} object that
   654      * represents the specified {@code int} value.
   655      *
   656      * @param   value   the value to be represented by the
   657      *                  {@code Integer} object.
   658      */
   659     public Integer(int value) {
   660         this.value = value;
   661     }
   662 
   663     /**
   664      * Constructs a newly allocated {@code Integer} object that
   665      * represents the {@code int} value indicated by the
   666      * {@code String} parameter. The string is converted to an
   667      * {@code int} value in exactly the manner used by the
   668      * {@code parseInt} method for radix 10.
   669      *
   670      * @param      s   the {@code String} to be converted to an
   671      *                 {@code Integer}.
   672      * @exception  NumberFormatException  if the {@code String} does not
   673      *               contain a parsable integer.
   674      * @see        java.lang.Integer#parseInt(java.lang.String, int)
   675      */
   676     public Integer(String s) throws NumberFormatException {
   677         this.value = parseInt(s, 10);
   678     }
   679 
   680     /**
   681      * Returns the value of this {@code Integer} as a
   682      * {@code byte}.
   683      */
   684     public byte byteValue() {
   685         return (byte)value;
   686     }
   687 
   688     /**
   689      * Returns the value of this {@code Integer} as a
   690      * {@code short}.
   691      */
   692     public short shortValue() {
   693         return (short)value;
   694     }
   695 
   696     /**
   697      * Returns the value of this {@code Integer} as an
   698      * {@code int}.
   699      */
   700     public int intValue() {
   701         return value;
   702     }
   703 
   704     /**
   705      * Returns the value of this {@code Integer} as a
   706      * {@code long}.
   707      */
   708     public long longValue() {
   709         return (long)value;
   710     }
   711 
   712     /**
   713      * Returns the value of this {@code Integer} as a
   714      * {@code float}.
   715      */
   716     public float floatValue() {
   717         return (float)value;
   718     }
   719 
   720     /**
   721      * Returns the value of this {@code Integer} as a
   722      * {@code double}.
   723      */
   724     public double doubleValue() {
   725         return (double)value;
   726     }
   727 
   728     /**
   729      * Returns a {@code String} object representing this
   730      * {@code Integer}'s value. The value is converted to signed
   731      * decimal representation and returned as a string, exactly as if
   732      * the integer value were given as an argument to the {@link
   733      * java.lang.Integer#toString(int)} method.
   734      *
   735      * @return  a string representation of the value of this object in
   736      *          base&nbsp;10.
   737      */
   738     public String toString() {
   739         return toString(value);
   740     }
   741 
   742     /**
   743      * Returns a hash code for this {@code Integer}.
   744      *
   745      * @return  a hash code value for this object, equal to the
   746      *          primitive {@code int} value represented by this
   747      *          {@code Integer} object.
   748      */
   749     public int hashCode() {
   750         return value;
   751     }
   752 
   753     /**
   754      * Compares this object to the specified object.  The result is
   755      * {@code true} if and only if the argument is not
   756      * {@code null} and is an {@code Integer} object that
   757      * contains the same {@code int} value as this object.
   758      *
   759      * @param   obj   the object to compare with.
   760      * @return  {@code true} if the objects are the same;
   761      *          {@code false} otherwise.
   762      */
   763     public boolean equals(Object obj) {
   764         if (obj instanceof Integer) {
   765             return value == ((Integer)obj).intValue();
   766         }
   767         return false;
   768     }
   769 
   770     /**
   771      * Determines the integer value of the system property with the
   772      * specified name.
   773      *
   774      * <p>The first argument is treated as the name of a system property.
   775      * System properties are accessible through the
   776      * {@link java.lang.System#getProperty(java.lang.String)} method. The
   777      * string value of this property is then interpreted as an integer
   778      * value and an {@code Integer} object representing this value is
   779      * returned. Details of possible numeric formats can be found with
   780      * the definition of {@code getProperty}.
   781      *
   782      * <p>If there is no property with the specified name, if the specified name
   783      * is empty or {@code null}, or if the property does not have
   784      * the correct numeric format, then {@code null} is returned.
   785      *
   786      * <p>In other words, this method returns an {@code Integer}
   787      * object equal to the value of:
   788      *
   789      * <blockquote>
   790      *  {@code getInteger(nm, null)}
   791      * </blockquote>
   792      *
   793      * @param   nm   property name.
   794      * @return  the {@code Integer} value of the property.
   795      * @see     java.lang.System#getProperty(java.lang.String)
   796      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
   797      */
   798     public static Integer getInteger(String nm) {
   799         return getInteger(nm, null);
   800     }
   801 
   802     /**
   803      * Determines the integer value of the system property with the
   804      * specified name.
   805      *
   806      * <p>The first argument is treated as the name of a system property.
   807      * System properties are accessible through the {@link
   808      * java.lang.System#getProperty(java.lang.String)} method. The
   809      * string value of this property is then interpreted as an integer
   810      * value and an {@code Integer} object representing this value is
   811      * returned. Details of possible numeric formats can be found with
   812      * the definition of {@code getProperty}.
   813      *
   814      * <p>The second argument is the default value. An {@code Integer} object
   815      * that represents the value of the second argument is returned if there
   816      * is no property of the specified name, if the property does not have
   817      * the correct numeric format, or if the specified name is empty or
   818      * {@code null}.
   819      *
   820      * <p>In other words, this method returns an {@code Integer} object
   821      * equal to the value of:
   822      *
   823      * <blockquote>
   824      *  {@code getInteger(nm, new Integer(val))}
   825      * </blockquote>
   826      *
   827      * but in practice it may be implemented in a manner such as:
   828      *
   829      * <blockquote><pre>
   830      * Integer result = getInteger(nm, null);
   831      * return (result == null) ? new Integer(val) : result;
   832      * </pre></blockquote>
   833      *
   834      * to avoid the unnecessary allocation of an {@code Integer}
   835      * object when the default value is not needed.
   836      *
   837      * @param   nm   property name.
   838      * @param   val   default value.
   839      * @return  the {@code Integer} value of the property.
   840      * @see     java.lang.System#getProperty(java.lang.String)
   841      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
   842      */
   843     public static Integer getInteger(String nm, int val) {
   844         Integer result = getInteger(nm, null);
   845         return (result == null) ? Integer.valueOf(val) : result;
   846     }
   847 
   848     /**
   849      * Returns the integer value of the system property with the
   850      * specified name.  The first argument is treated as the name of a
   851      * system property.  System properties are accessible through the
   852      * {@link java.lang.System#getProperty(java.lang.String)} method.
   853      * The string value of this property is then interpreted as an
   854      * integer value, as per the {@code Integer.decode} method,
   855      * and an {@code Integer} object representing this value is
   856      * returned.
   857      *
   858      * <ul><li>If the property value begins with the two ASCII characters
   859      *         {@code 0x} or the ASCII character {@code #}, not
   860      *      followed by a minus sign, then the rest of it is parsed as a
   861      *      hexadecimal integer exactly as by the method
   862      *      {@link #valueOf(java.lang.String, int)} with radix 16.
   863      * <li>If the property value begins with the ASCII character
   864      *     {@code 0} followed by another character, it is parsed as an
   865      *     octal integer exactly as by the method
   866      *     {@link #valueOf(java.lang.String, int)} with radix 8.
   867      * <li>Otherwise, the property value is parsed as a decimal integer
   868      * exactly as by the method {@link #valueOf(java.lang.String, int)}
   869      * with radix 10.
   870      * </ul>
   871      *
   872      * <p>The second argument is the default value. The default value is
   873      * returned if there is no property of the specified name, if the
   874      * property does not have the correct numeric format, or if the
   875      * specified name is empty or {@code null}.
   876      *
   877      * @param   nm   property name.
   878      * @param   val   default value.
   879      * @return  the {@code Integer} value of the property.
   880      * @see     java.lang.System#getProperty(java.lang.String)
   881      * @see java.lang.System#getProperty(java.lang.String, java.lang.String)
   882      * @see java.lang.Integer#decode
   883      */
   884     public static Integer getInteger(String nm, Integer val) {
   885         String v = null;
   886         try {
   887             v = System.getProperty(nm);
   888         } catch (IllegalArgumentException e) {
   889         } catch (NullPointerException e) {
   890         }
   891         if (v != null) {
   892             try {
   893                 return Integer.decode(v);
   894             } catch (NumberFormatException e) {
   895             }
   896         }
   897         return val;
   898     }
   899 
   900     /**
   901      * Decodes a {@code String} into an {@code Integer}.
   902      * Accepts decimal, hexadecimal, and octal numbers given
   903      * by the following grammar:
   904      *
   905      * <blockquote>
   906      * <dl>
   907      * <dt><i>DecodableString:</i>
   908      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
   909      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
   910      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
   911      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
   912      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
   913      * <p>
   914      * <dt><i>Sign:</i>
   915      * <dd>{@code -}
   916      * <dd>{@code +}
   917      * </dl>
   918      * </blockquote>
   919      *
   920      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
   921      * are as defined in section 3.10.1 of
   922      * <cite>The Java&trade; Language Specification</cite>,
   923      * except that underscores are not accepted between digits.
   924      *
   925      * <p>The sequence of characters following an optional
   926      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
   927      * "{@code #}", or leading zero) is parsed as by the {@code
   928      * Integer.parseInt} method with the indicated radix (10, 16, or
   929      * 8).  This sequence of characters must represent a positive
   930      * value or a {@link NumberFormatException} will be thrown.  The
   931      * result is negated if first character of the specified {@code
   932      * String} is the minus sign.  No whitespace characters are
   933      * permitted in the {@code String}.
   934      *
   935      * @param     nm the {@code String} to decode.
   936      * @return    an {@code Integer} object holding the {@code int}
   937      *             value represented by {@code nm}
   938      * @exception NumberFormatException  if the {@code String} does not
   939      *            contain a parsable integer.
   940      * @see java.lang.Integer#parseInt(java.lang.String, int)
   941      */
   942     public static Integer decode(String nm) throws NumberFormatException {
   943         int radix = 10;
   944         int index = 0;
   945         boolean negative = false;
   946         Integer result;
   947 
   948         if (nm.length() == 0)
   949             throw new NumberFormatException("Zero length string");
   950         char firstChar = nm.charAt(0);
   951         // Handle sign, if present
   952         if (firstChar == '-') {
   953             negative = true;
   954             index++;
   955         } else if (firstChar == '+')
   956             index++;
   957 
   958         // Handle radix specifier, if present
   959         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
   960             index += 2;
   961             radix = 16;
   962         }
   963         else if (nm.startsWith("#", index)) {
   964             index ++;
   965             radix = 16;
   966         }
   967         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
   968             index ++;
   969             radix = 8;
   970         }
   971 
   972         if (nm.startsWith("-", index) || nm.startsWith("+", index))
   973             throw new NumberFormatException("Sign character in wrong position");
   974 
   975         try {
   976             result = Integer.valueOf(nm.substring(index), radix);
   977             result = negative ? Integer.valueOf(-result.intValue()) : result;
   978         } catch (NumberFormatException e) {
   979             // If number is Integer.MIN_VALUE, we'll end up here. The next line
   980             // handles this case, and causes any genuine format error to be
   981             // rethrown.
   982             String constant = negative ? ("-" + nm.substring(index))
   983                                        : nm.substring(index);
   984             result = Integer.valueOf(constant, radix);
   985         }
   986         return result;
   987     }
   988 
   989     /**
   990      * Compares two {@code Integer} objects numerically.
   991      *
   992      * @param   anotherInteger   the {@code Integer} to be compared.
   993      * @return  the value {@code 0} if this {@code Integer} is
   994      *          equal to the argument {@code Integer}; a value less than
   995      *          {@code 0} if this {@code Integer} is numerically less
   996      *          than the argument {@code Integer}; and a value greater
   997      *          than {@code 0} if this {@code Integer} is numerically
   998      *           greater than the argument {@code Integer} (signed
   999      *           comparison).
  1000      * @since   1.2
  1001      */
  1002     public int compareTo(Integer anotherInteger) {
  1003         return compare(this.value, anotherInteger.value);
  1004     }
  1005 
  1006     /**
  1007      * Compares two {@code int} values numerically.
  1008      * The value returned is identical to what would be returned by:
  1009      * <pre>
  1010      *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
  1011      * </pre>
  1012      *
  1013      * @param  x the first {@code int} to compare
  1014      * @param  y the second {@code int} to compare
  1015      * @return the value {@code 0} if {@code x == y};
  1016      *         a value less than {@code 0} if {@code x < y}; and
  1017      *         a value greater than {@code 0} if {@code x > y}
  1018      * @since 1.7
  1019      */
  1020     public static int compare(int x, int y) {
  1021         return (x < y) ? -1 : ((x == y) ? 0 : 1);
  1022     }
  1023 
  1024 
  1025     // Bit twiddling
  1026 
  1027     /**
  1028      * The number of bits used to represent an {@code int} value in two's
  1029      * complement binary form.
  1030      *
  1031      * @since 1.5
  1032      */
  1033     public static final int SIZE = 32;
  1034 
  1035     /**
  1036      * Returns an {@code int} value with at most a single one-bit, in the
  1037      * position of the highest-order ("leftmost") one-bit in the specified
  1038      * {@code int} value.  Returns zero if the specified value has no
  1039      * one-bits in its two's complement binary representation, that is, if it
  1040      * is equal to zero.
  1041      *
  1042      * @return an {@code int} value with a single one-bit, in the position
  1043      *     of the highest-order one-bit in the specified value, or zero if
  1044      *     the specified value is itself equal to zero.
  1045      * @since 1.5
  1046      */
  1047     public static int highestOneBit(int i) {
  1048         // HD, Figure 3-1
  1049         i |= (i >>  1);
  1050         i |= (i >>  2);
  1051         i |= (i >>  4);
  1052         i |= (i >>  8);
  1053         i |= (i >> 16);
  1054         return i - (i >>> 1);
  1055     }
  1056 
  1057     /**
  1058      * Returns an {@code int} value with at most a single one-bit, in the
  1059      * position of the lowest-order ("rightmost") one-bit in the specified
  1060      * {@code int} value.  Returns zero if the specified value has no
  1061      * one-bits in its two's complement binary representation, that is, if it
  1062      * is equal to zero.
  1063      *
  1064      * @return an {@code int} value with a single one-bit, in the position
  1065      *     of the lowest-order one-bit in the specified value, or zero if
  1066      *     the specified value is itself equal to zero.
  1067      * @since 1.5
  1068      */
  1069     public static int lowestOneBit(int i) {
  1070         // HD, Section 2-1
  1071         return i & -i;
  1072     }
  1073 
  1074     /**
  1075      * Returns the number of zero bits preceding the highest-order
  1076      * ("leftmost") one-bit in the two's complement binary representation
  1077      * of the specified {@code int} value.  Returns 32 if the
  1078      * specified value has no one-bits in its two's complement representation,
  1079      * in other words if it is equal to zero.
  1080      *
  1081      * <p>Note that this method is closely related to the logarithm base 2.
  1082      * For all positive {@code int} values x:
  1083      * <ul>
  1084      * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
  1085      * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
  1086      * </ul>
  1087      *
  1088      * @return the number of zero bits preceding the highest-order
  1089      *     ("leftmost") one-bit in the two's complement binary representation
  1090      *     of the specified {@code int} value, or 32 if the value
  1091      *     is equal to zero.
  1092      * @since 1.5
  1093      */
  1094     public static int numberOfLeadingZeros(int i) {
  1095         // HD, Figure 5-6
  1096         if (i == 0)
  1097             return 32;
  1098         int n = 1;
  1099         if (i >>> 16 == 0) { n += 16; i <<= 16; }
  1100         if (i >>> 24 == 0) { n +=  8; i <<=  8; }
  1101         if (i >>> 28 == 0) { n +=  4; i <<=  4; }
  1102         if (i >>> 30 == 0) { n +=  2; i <<=  2; }
  1103         n -= i >>> 31;
  1104         return n;
  1105     }
  1106 
  1107     /**
  1108      * Returns the number of zero bits following the lowest-order ("rightmost")
  1109      * one-bit in the two's complement binary representation of the specified
  1110      * {@code int} value.  Returns 32 if the specified value has no
  1111      * one-bits in its two's complement representation, in other words if it is
  1112      * equal to zero.
  1113      *
  1114      * @return the number of zero bits following the lowest-order ("rightmost")
  1115      *     one-bit in the two's complement binary representation of the
  1116      *     specified {@code int} value, or 32 if the value is equal
  1117      *     to zero.
  1118      * @since 1.5
  1119      */
  1120     public static int numberOfTrailingZeros(int i) {
  1121         // HD, Figure 5-14
  1122         int y;
  1123         if (i == 0) return 32;
  1124         int n = 31;
  1125         y = i <<16; if (y != 0) { n = n -16; i = y; }
  1126         y = i << 8; if (y != 0) { n = n - 8; i = y; }
  1127         y = i << 4; if (y != 0) { n = n - 4; i = y; }
  1128         y = i << 2; if (y != 0) { n = n - 2; i = y; }
  1129         return n - ((i << 1) >>> 31);
  1130     }
  1131 
  1132     /**
  1133      * Returns the number of one-bits in the two's complement binary
  1134      * representation of the specified {@code int} value.  This function is
  1135      * sometimes referred to as the <i>population count</i>.
  1136      *
  1137      * @return the number of one-bits in the two's complement binary
  1138      *     representation of the specified {@code int} value.
  1139      * @since 1.5
  1140      */
  1141     public static int bitCount(int i) {
  1142         // HD, Figure 5-2
  1143         i = i - ((i >>> 1) & 0x55555555);
  1144         i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
  1145         i = (i + (i >>> 4)) & 0x0f0f0f0f;
  1146         i = i + (i >>> 8);
  1147         i = i + (i >>> 16);
  1148         return i & 0x3f;
  1149     }
  1150 
  1151     /**
  1152      * Returns the value obtained by rotating the two's complement binary
  1153      * representation of the specified {@code int} value left by the
  1154      * specified number of bits.  (Bits shifted out of the left hand, or
  1155      * high-order, side reenter on the right, or low-order.)
  1156      *
  1157      * <p>Note that left rotation with a negative distance is equivalent to
  1158      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
  1159      * distance)}.  Note also that rotation by any multiple of 32 is a
  1160      * no-op, so all but the last five bits of the rotation distance can be
  1161      * ignored, even if the distance is negative: {@code rotateLeft(val,
  1162      * distance) == rotateLeft(val, distance & 0x1F)}.
  1163      *
  1164      * @return the value obtained by rotating the two's complement binary
  1165      *     representation of the specified {@code int} value left by the
  1166      *     specified number of bits.
  1167      * @since 1.5
  1168      */
  1169     public static int rotateLeft(int i, int distance) {
  1170         return (i << distance) | (i >>> -distance);
  1171     }
  1172 
  1173     /**
  1174      * Returns the value obtained by rotating the two's complement binary
  1175      * representation of the specified {@code int} value right by the
  1176      * specified number of bits.  (Bits shifted out of the right hand, or
  1177      * low-order, side reenter on the left, or high-order.)
  1178      *
  1179      * <p>Note that right rotation with a negative distance is equivalent to
  1180      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
  1181      * distance)}.  Note also that rotation by any multiple of 32 is a
  1182      * no-op, so all but the last five bits of the rotation distance can be
  1183      * ignored, even if the distance is negative: {@code rotateRight(val,
  1184      * distance) == rotateRight(val, distance & 0x1F)}.
  1185      *
  1186      * @return the value obtained by rotating the two's complement binary
  1187      *     representation of the specified {@code int} value right by the
  1188      *     specified number of bits.
  1189      * @since 1.5
  1190      */
  1191     public static int rotateRight(int i, int distance) {
  1192         return (i >>> distance) | (i << -distance);
  1193     }
  1194 
  1195     /**
  1196      * Returns the value obtained by reversing the order of the bits in the
  1197      * two's complement binary representation of the specified {@code int}
  1198      * value.
  1199      *
  1200      * @return the value obtained by reversing order of the bits in the
  1201      *     specified {@code int} value.
  1202      * @since 1.5
  1203      */
  1204     public static int reverse(int i) {
  1205         // HD, Figure 7-1
  1206         i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
  1207         i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
  1208         i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
  1209         i = (i << 24) | ((i & 0xff00) << 8) |
  1210             ((i >>> 8) & 0xff00) | (i >>> 24);
  1211         return i;
  1212     }
  1213 
  1214     /**
  1215      * Returns the signum function of the specified {@code int} value.  (The
  1216      * return value is -1 if the specified value is negative; 0 if the
  1217      * specified value is zero; and 1 if the specified value is positive.)
  1218      *
  1219      * @return the signum function of the specified {@code int} value.
  1220      * @since 1.5
  1221      */
  1222     public static int signum(int i) {
  1223         // HD, Section 2-7
  1224         return (i >> 31) | (-i >>> 31);
  1225     }
  1226 
  1227     /**
  1228      * Returns the value obtained by reversing the order of the bytes in the
  1229      * two's complement representation of the specified {@code int} value.
  1230      *
  1231      * @return the value obtained by reversing the bytes in the specified
  1232      *     {@code int} value.
  1233      * @since 1.5
  1234      */
  1235     public static int reverseBytes(int i) {
  1236         return ((i >>> 24)           ) |
  1237                ((i >>   8) &   0xFF00) |
  1238                ((i <<   8) & 0xFF0000) |
  1239                ((i << 24));
  1240     }
  1241 
  1242     /** use serialVersionUID from JDK 1.0.2 for interoperability */
  1243     private static final long serialVersionUID = 1360826667806852920L;
  1244 }