rt/emul/compact/src/main/java/java/util/concurrent/ConcurrentLinkedDeque.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 19 Mar 2016 10:46:31 +0100
branchjdk7-b147
changeset 1890 212417b74b72
child 1895 bfaf3300b7ba
permissions -rw-r--r--
Bringing in all concurrent package from JDK7-b147
     1 /*
     2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     3  *
     4  * This code is free software; you can redistribute it and/or modify it
     5  * under the terms of the GNU General Public License version 2 only, as
     6  * published by the Free Software Foundation.  Oracle designates this
     7  * particular file as subject to the "Classpath" exception as provided
     8  * by Oracle in the LICENSE file that accompanied this code.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  */
    24 
    25 /*
    26  * This file is available under and governed by the GNU General Public
    27  * License version 2 only, as published by the Free Software Foundation.
    28  * However, the following notice accompanied the original version of this
    29  * file:
    30  *
    31  * Written by Doug Lea and Martin Buchholz with assistance from members of
    32  * JCP JSR-166 Expert Group and released to the public domain, as explained
    33  * at http://creativecommons.org/publicdomain/zero/1.0/
    34  */
    35 
    36 package java.util.concurrent;
    37 
    38 import java.util.AbstractCollection;
    39 import java.util.ArrayList;
    40 import java.util.Collection;
    41 import java.util.Deque;
    42 import java.util.Iterator;
    43 import java.util.NoSuchElementException;
    44 import java.util.Queue;
    45 
    46 /**
    47  * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
    48  * Concurrent insertion, removal, and access operations execute safely
    49  * across multiple threads.
    50  * A {@code ConcurrentLinkedDeque} is an appropriate choice when
    51  * many threads will share access to a common collection.
    52  * Like most other concurrent collection implementations, this class
    53  * does not permit the use of {@code null} elements.
    54  *
    55  * <p>Iterators are <i>weakly consistent</i>, returning elements
    56  * reflecting the state of the deque at some point at or since the
    57  * creation of the iterator.  They do <em>not</em> throw {@link
    58  * java.util.ConcurrentModificationException
    59  * ConcurrentModificationException}, and may proceed concurrently with
    60  * other operations.
    61  *
    62  * <p>Beware that, unlike in most collections, the {@code size} method
    63  * is <em>NOT</em> a constant-time operation. Because of the
    64  * asynchronous nature of these deques, determining the current number
    65  * of elements requires a traversal of the elements, and so may report
    66  * inaccurate results if this collection is modified during traversal.
    67  * Additionally, the bulk operations {@code addAll},
    68  * {@code removeAll}, {@code retainAll}, {@code containsAll},
    69  * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
    70  * to be performed atomically. For example, an iterator operating
    71  * concurrently with an {@code addAll} operation might view only some
    72  * of the added elements.
    73  *
    74  * <p>This class and its iterator implement all of the <em>optional</em>
    75  * methods of the {@link Deque} and {@link Iterator} interfaces.
    76  *
    77  * <p>Memory consistency effects: As with other concurrent collections,
    78  * actions in a thread prior to placing an object into a
    79  * {@code ConcurrentLinkedDeque}
    80  * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
    81  * actions subsequent to the access or removal of that element from
    82  * the {@code ConcurrentLinkedDeque} in another thread.
    83  *
    84  * <p>This class is a member of the
    85  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
    86  * Java Collections Framework</a>.
    87  *
    88  * @since 1.7
    89  * @author Doug Lea
    90  * @author Martin Buchholz
    91  * @param <E> the type of elements held in this collection
    92  */
    93 
    94 public class ConcurrentLinkedDeque<E>
    95     extends AbstractCollection<E>
    96     implements Deque<E>, java.io.Serializable {
    97 
    98     /*
    99      * This is an implementation of a concurrent lock-free deque
   100      * supporting interior removes but not interior insertions, as
   101      * required to support the entire Deque interface.
   102      *
   103      * We extend the techniques developed for ConcurrentLinkedQueue and
   104      * LinkedTransferQueue (see the internal docs for those classes).
   105      * Understanding the ConcurrentLinkedQueue implementation is a
   106      * prerequisite for understanding the implementation of this class.
   107      *
   108      * The data structure is a symmetrical doubly-linked "GC-robust"
   109      * linked list of nodes.  We minimize the number of volatile writes
   110      * using two techniques: advancing multiple hops with a single CAS
   111      * and mixing volatile and non-volatile writes of the same memory
   112      * locations.
   113      *
   114      * A node contains the expected E ("item") and links to predecessor
   115      * ("prev") and successor ("next") nodes:
   116      *
   117      * class Node<E> { volatile Node<E> prev, next; volatile E item; }
   118      *
   119      * A node p is considered "live" if it contains a non-null item
   120      * (p.item != null).  When an item is CASed to null, the item is
   121      * atomically logically deleted from the collection.
   122      *
   123      * At any time, there is precisely one "first" node with a null
   124      * prev reference that terminates any chain of prev references
   125      * starting at a live node.  Similarly there is precisely one
   126      * "last" node terminating any chain of next references starting at
   127      * a live node.  The "first" and "last" nodes may or may not be live.
   128      * The "first" and "last" nodes are always mutually reachable.
   129      *
   130      * A new element is added atomically by CASing the null prev or
   131      * next reference in the first or last node to a fresh node
   132      * containing the element.  The element's node atomically becomes
   133      * "live" at that point.
   134      *
   135      * A node is considered "active" if it is a live node, or the
   136      * first or last node.  Active nodes cannot be unlinked.
   137      *
   138      * A "self-link" is a next or prev reference that is the same node:
   139      *   p.prev == p  or  p.next == p
   140      * Self-links are used in the node unlinking process.  Active nodes
   141      * never have self-links.
   142      *
   143      * A node p is active if and only if:
   144      *
   145      * p.item != null ||
   146      * (p.prev == null && p.next != p) ||
   147      * (p.next == null && p.prev != p)
   148      *
   149      * The deque object has two node references, "head" and "tail".
   150      * The head and tail are only approximations to the first and last
   151      * nodes of the deque.  The first node can always be found by
   152      * following prev pointers from head; likewise for tail.  However,
   153      * it is permissible for head and tail to be referring to deleted
   154      * nodes that have been unlinked and so may not be reachable from
   155      * any live node.
   156      *
   157      * There are 3 stages of node deletion;
   158      * "logical deletion", "unlinking", and "gc-unlinking".
   159      *
   160      * 1. "logical deletion" by CASing item to null atomically removes
   161      * the element from the collection, and makes the containing node
   162      * eligible for unlinking.
   163      *
   164      * 2. "unlinking" makes a deleted node unreachable from active
   165      * nodes, and thus eventually reclaimable by GC.  Unlinked nodes
   166      * may remain reachable indefinitely from an iterator.
   167      *
   168      * Physical node unlinking is merely an optimization (albeit a
   169      * critical one), and so can be performed at our convenience.  At
   170      * any time, the set of live nodes maintained by prev and next
   171      * links are identical, that is, the live nodes found via next
   172      * links from the first node is equal to the elements found via
   173      * prev links from the last node.  However, this is not true for
   174      * nodes that have already been logically deleted - such nodes may
   175      * be reachable in one direction only.
   176      *
   177      * 3. "gc-unlinking" takes unlinking further by making active
   178      * nodes unreachable from deleted nodes, making it easier for the
   179      * GC to reclaim future deleted nodes.  This step makes the data
   180      * structure "gc-robust", as first described in detail by Boehm
   181      * (http://portal.acm.org/citation.cfm?doid=503272.503282).
   182      *
   183      * GC-unlinked nodes may remain reachable indefinitely from an
   184      * iterator, but unlike unlinked nodes, are never reachable from
   185      * head or tail.
   186      *
   187      * Making the data structure GC-robust will eliminate the risk of
   188      * unbounded memory retention with conservative GCs and is likely
   189      * to improve performance with generational GCs.
   190      *
   191      * When a node is dequeued at either end, e.g. via poll(), we would
   192      * like to break any references from the node to active nodes.  We
   193      * develop further the use of self-links that was very effective in
   194      * other concurrent collection classes.  The idea is to replace
   195      * prev and next pointers with special values that are interpreted
   196      * to mean off-the-list-at-one-end.  These are approximations, but
   197      * good enough to preserve the properties we want in our
   198      * traversals, e.g. we guarantee that a traversal will never visit
   199      * the same element twice, but we don't guarantee whether a
   200      * traversal that runs out of elements will be able to see more
   201      * elements later after enqueues at that end.  Doing gc-unlinking
   202      * safely is particularly tricky, since any node can be in use
   203      * indefinitely (for example by an iterator).  We must ensure that
   204      * the nodes pointed at by head/tail never get gc-unlinked, since
   205      * head/tail are needed to get "back on track" by other nodes that
   206      * are gc-unlinked.  gc-unlinking accounts for much of the
   207      * implementation complexity.
   208      *
   209      * Since neither unlinking nor gc-unlinking are necessary for
   210      * correctness, there are many implementation choices regarding
   211      * frequency (eagerness) of these operations.  Since volatile
   212      * reads are likely to be much cheaper than CASes, saving CASes by
   213      * unlinking multiple adjacent nodes at a time may be a win.
   214      * gc-unlinking can be performed rarely and still be effective,
   215      * since it is most important that long chains of deleted nodes
   216      * are occasionally broken.
   217      *
   218      * The actual representation we use is that p.next == p means to
   219      * goto the first node (which in turn is reached by following prev
   220      * pointers from head), and p.next == null && p.prev == p means
   221      * that the iteration is at an end and that p is a (static final)
   222      * dummy node, NEXT_TERMINATOR, and not the last active node.
   223      * Finishing the iteration when encountering such a TERMINATOR is
   224      * good enough for read-only traversals, so such traversals can use
   225      * p.next == null as the termination condition.  When we need to
   226      * find the last (active) node, for enqueueing a new node, we need
   227      * to check whether we have reached a TERMINATOR node; if so,
   228      * restart traversal from tail.
   229      *
   230      * The implementation is completely directionally symmetrical,
   231      * except that most public methods that iterate through the list
   232      * follow next pointers ("forward" direction).
   233      *
   234      * We believe (without full proof) that all single-element deque
   235      * operations (e.g., addFirst, peekLast, pollLast) are linearizable
   236      * (see Herlihy and Shavit's book).  However, some combinations of
   237      * operations are known not to be linearizable.  In particular,
   238      * when an addFirst(A) is racing with pollFirst() removing B, it is
   239      * possible for an observer iterating over the elements to observe
   240      * A B C and subsequently observe A C, even though no interior
   241      * removes are ever performed.  Nevertheless, iterators behave
   242      * reasonably, providing the "weakly consistent" guarantees.
   243      *
   244      * Empirically, microbenchmarks suggest that this class adds about
   245      * 40% overhead relative to ConcurrentLinkedQueue, which feels as
   246      * good as we can hope for.
   247      */
   248 
   249     private static final long serialVersionUID = 876323262645176354L;
   250 
   251     /**
   252      * A node from which the first node on list (that is, the unique node p
   253      * with p.prev == null && p.next != p) can be reached in O(1) time.
   254      * Invariants:
   255      * - the first node is always O(1) reachable from head via prev links
   256      * - all live nodes are reachable from the first node via succ()
   257      * - head != null
   258      * - (tmp = head).next != tmp || tmp != head
   259      * - head is never gc-unlinked (but may be unlinked)
   260      * Non-invariants:
   261      * - head.item may or may not be null
   262      * - head may not be reachable from the first or last node, or from tail
   263      */
   264     private transient volatile Node<E> head;
   265 
   266     /**
   267      * A node from which the last node on list (that is, the unique node p
   268      * with p.next == null && p.prev != p) can be reached in O(1) time.
   269      * Invariants:
   270      * - the last node is always O(1) reachable from tail via next links
   271      * - all live nodes are reachable from the last node via pred()
   272      * - tail != null
   273      * - tail is never gc-unlinked (but may be unlinked)
   274      * Non-invariants:
   275      * - tail.item may or may not be null
   276      * - tail may not be reachable from the first or last node, or from head
   277      */
   278     private transient volatile Node<E> tail;
   279 
   280     private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
   281 
   282     @SuppressWarnings("unchecked")
   283     Node<E> prevTerminator() {
   284         return (Node<E>) PREV_TERMINATOR;
   285     }
   286 
   287     @SuppressWarnings("unchecked")
   288     Node<E> nextTerminator() {
   289         return (Node<E>) NEXT_TERMINATOR;
   290     }
   291 
   292     static final class Node<E> {
   293         volatile Node<E> prev;
   294         volatile E item;
   295         volatile Node<E> next;
   296 
   297         Node() {  // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
   298         }
   299 
   300         /**
   301          * Constructs a new node.  Uses relaxed write because item can
   302          * only be seen after publication via casNext or casPrev.
   303          */
   304         Node(E item) {
   305             UNSAFE.putObject(this, itemOffset, item);
   306         }
   307 
   308         boolean casItem(E cmp, E val) {
   309             return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
   310         }
   311 
   312         void lazySetNext(Node<E> val) {
   313             UNSAFE.putOrderedObject(this, nextOffset, val);
   314         }
   315 
   316         boolean casNext(Node<E> cmp, Node<E> val) {
   317             return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
   318         }
   319 
   320         void lazySetPrev(Node<E> val) {
   321             UNSAFE.putOrderedObject(this, prevOffset, val);
   322         }
   323 
   324         boolean casPrev(Node<E> cmp, Node<E> val) {
   325             return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
   326         }
   327 
   328         // Unsafe mechanics
   329 
   330         private static final sun.misc.Unsafe UNSAFE;
   331         private static final long prevOffset;
   332         private static final long itemOffset;
   333         private static final long nextOffset;
   334 
   335         static {
   336             try {
   337                 UNSAFE = sun.misc.Unsafe.getUnsafe();
   338                 Class k = Node.class;
   339                 prevOffset = UNSAFE.objectFieldOffset
   340                     (k.getDeclaredField("prev"));
   341                 itemOffset = UNSAFE.objectFieldOffset
   342                     (k.getDeclaredField("item"));
   343                 nextOffset = UNSAFE.objectFieldOffset
   344                     (k.getDeclaredField("next"));
   345             } catch (Exception e) {
   346                 throw new Error(e);
   347             }
   348         }
   349     }
   350 
   351     /**
   352      * Links e as first element.
   353      */
   354     private void linkFirst(E e) {
   355         checkNotNull(e);
   356         final Node<E> newNode = new Node<E>(e);
   357 
   358         restartFromHead:
   359         for (;;)
   360             for (Node<E> h = head, p = h, q;;) {
   361                 if ((q = p.prev) != null &&
   362                     (q = (p = q).prev) != null)
   363                     // Check for head updates every other hop.
   364                     // If p == q, we are sure to follow head instead.
   365                     p = (h != (h = head)) ? h : q;
   366                 else if (p.next == p) // PREV_TERMINATOR
   367                     continue restartFromHead;
   368                 else {
   369                     // p is first node
   370                     newNode.lazySetNext(p); // CAS piggyback
   371                     if (p.casPrev(null, newNode)) {
   372                         // Successful CAS is the linearization point
   373                         // for e to become an element of this deque,
   374                         // and for newNode to become "live".
   375                         if (p != h) // hop two nodes at a time
   376                             casHead(h, newNode);  // Failure is OK.
   377                         return;
   378                     }
   379                     // Lost CAS race to another thread; re-read prev
   380                 }
   381             }
   382     }
   383 
   384     /**
   385      * Links e as last element.
   386      */
   387     private void linkLast(E e) {
   388         checkNotNull(e);
   389         final Node<E> newNode = new Node<E>(e);
   390 
   391         restartFromTail:
   392         for (;;)
   393             for (Node<E> t = tail, p = t, q;;) {
   394                 if ((q = p.next) != null &&
   395                     (q = (p = q).next) != null)
   396                     // Check for tail updates every other hop.
   397                     // If p == q, we are sure to follow tail instead.
   398                     p = (t != (t = tail)) ? t : q;
   399                 else if (p.prev == p) // NEXT_TERMINATOR
   400                     continue restartFromTail;
   401                 else {
   402                     // p is last node
   403                     newNode.lazySetPrev(p); // CAS piggyback
   404                     if (p.casNext(null, newNode)) {
   405                         // Successful CAS is the linearization point
   406                         // for e to become an element of this deque,
   407                         // and for newNode to become "live".
   408                         if (p != t) // hop two nodes at a time
   409                             casTail(t, newNode);  // Failure is OK.
   410                         return;
   411                     }
   412                     // Lost CAS race to another thread; re-read next
   413                 }
   414             }
   415     }
   416 
   417     private static final int HOPS = 2;
   418 
   419     /**
   420      * Unlinks non-null node x.
   421      */
   422     void unlink(Node<E> x) {
   423         // assert x != null;
   424         // assert x.item == null;
   425         // assert x != PREV_TERMINATOR;
   426         // assert x != NEXT_TERMINATOR;
   427 
   428         final Node<E> prev = x.prev;
   429         final Node<E> next = x.next;
   430         if (prev == null) {
   431             unlinkFirst(x, next);
   432         } else if (next == null) {
   433             unlinkLast(x, prev);
   434         } else {
   435             // Unlink interior node.
   436             //
   437             // This is the common case, since a series of polls at the
   438             // same end will be "interior" removes, except perhaps for
   439             // the first one, since end nodes cannot be unlinked.
   440             //
   441             // At any time, all active nodes are mutually reachable by
   442             // following a sequence of either next or prev pointers.
   443             //
   444             // Our strategy is to find the unique active predecessor
   445             // and successor of x.  Try to fix up their links so that
   446             // they point to each other, leaving x unreachable from
   447             // active nodes.  If successful, and if x has no live
   448             // predecessor/successor, we additionally try to gc-unlink,
   449             // leaving active nodes unreachable from x, by rechecking
   450             // that the status of predecessor and successor are
   451             // unchanged and ensuring that x is not reachable from
   452             // tail/head, before setting x's prev/next links to their
   453             // logical approximate replacements, self/TERMINATOR.
   454             Node<E> activePred, activeSucc;
   455             boolean isFirst, isLast;
   456             int hops = 1;
   457 
   458             // Find active predecessor
   459             for (Node<E> p = prev; ; ++hops) {
   460                 if (p.item != null) {
   461                     activePred = p;
   462                     isFirst = false;
   463                     break;
   464                 }
   465                 Node<E> q = p.prev;
   466                 if (q == null) {
   467                     if (p.next == p)
   468                         return;
   469                     activePred = p;
   470                     isFirst = true;
   471                     break;
   472                 }
   473                 else if (p == q)
   474                     return;
   475                 else
   476                     p = q;
   477             }
   478 
   479             // Find active successor
   480             for (Node<E> p = next; ; ++hops) {
   481                 if (p.item != null) {
   482                     activeSucc = p;
   483                     isLast = false;
   484                     break;
   485                 }
   486                 Node<E> q = p.next;
   487                 if (q == null) {
   488                     if (p.prev == p)
   489                         return;
   490                     activeSucc = p;
   491                     isLast = true;
   492                     break;
   493                 }
   494                 else if (p == q)
   495                     return;
   496                 else
   497                     p = q;
   498             }
   499 
   500             // TODO: better HOP heuristics
   501             if (hops < HOPS
   502                 // always squeeze out interior deleted nodes
   503                 && (isFirst | isLast))
   504                 return;
   505 
   506             // Squeeze out deleted nodes between activePred and
   507             // activeSucc, including x.
   508             skipDeletedSuccessors(activePred);
   509             skipDeletedPredecessors(activeSucc);
   510 
   511             // Try to gc-unlink, if possible
   512             if ((isFirst | isLast) &&
   513 
   514                 // Recheck expected state of predecessor and successor
   515                 (activePred.next == activeSucc) &&
   516                 (activeSucc.prev == activePred) &&
   517                 (isFirst ? activePred.prev == null : activePred.item != null) &&
   518                 (isLast  ? activeSucc.next == null : activeSucc.item != null)) {
   519 
   520                 updateHead(); // Ensure x is not reachable from head
   521                 updateTail(); // Ensure x is not reachable from tail
   522 
   523                 // Finally, actually gc-unlink
   524                 x.lazySetPrev(isFirst ? prevTerminator() : x);
   525                 x.lazySetNext(isLast  ? nextTerminator() : x);
   526             }
   527         }
   528     }
   529 
   530     /**
   531      * Unlinks non-null first node.
   532      */
   533     private void unlinkFirst(Node<E> first, Node<E> next) {
   534         // assert first != null;
   535         // assert next != null;
   536         // assert first.item == null;
   537         for (Node<E> o = null, p = next, q;;) {
   538             if (p.item != null || (q = p.next) == null) {
   539                 if (o != null && p.prev != p && first.casNext(next, p)) {
   540                     skipDeletedPredecessors(p);
   541                     if (first.prev == null &&
   542                         (p.next == null || p.item != null) &&
   543                         p.prev == first) {
   544 
   545                         updateHead(); // Ensure o is not reachable from head
   546                         updateTail(); // Ensure o is not reachable from tail
   547 
   548                         // Finally, actually gc-unlink
   549                         o.lazySetNext(o);
   550                         o.lazySetPrev(prevTerminator());
   551                     }
   552                 }
   553                 return;
   554             }
   555             else if (p == q)
   556                 return;
   557             else {
   558                 o = p;
   559                 p = q;
   560             }
   561         }
   562     }
   563 
   564     /**
   565      * Unlinks non-null last node.
   566      */
   567     private void unlinkLast(Node<E> last, Node<E> prev) {
   568         // assert last != null;
   569         // assert prev != null;
   570         // assert last.item == null;
   571         for (Node<E> o = null, p = prev, q;;) {
   572             if (p.item != null || (q = p.prev) == null) {
   573                 if (o != null && p.next != p && last.casPrev(prev, p)) {
   574                     skipDeletedSuccessors(p);
   575                     if (last.next == null &&
   576                         (p.prev == null || p.item != null) &&
   577                         p.next == last) {
   578 
   579                         updateHead(); // Ensure o is not reachable from head
   580                         updateTail(); // Ensure o is not reachable from tail
   581 
   582                         // Finally, actually gc-unlink
   583                         o.lazySetPrev(o);
   584                         o.lazySetNext(nextTerminator());
   585                     }
   586                 }
   587                 return;
   588             }
   589             else if (p == q)
   590                 return;
   591             else {
   592                 o = p;
   593                 p = q;
   594             }
   595         }
   596     }
   597 
   598     /**
   599      * Guarantees that any node which was unlinked before a call to
   600      * this method will be unreachable from head after it returns.
   601      * Does not guarantee to eliminate slack, only that head will
   602      * point to a node that was active while this method was running.
   603      */
   604     private final void updateHead() {
   605         // Either head already points to an active node, or we keep
   606         // trying to cas it to the first node until it does.
   607         Node<E> h, p, q;
   608         restartFromHead:
   609         while ((h = head).item == null && (p = h.prev) != null) {
   610             for (;;) {
   611                 if ((q = p.prev) == null ||
   612                     (q = (p = q).prev) == null) {
   613                     // It is possible that p is PREV_TERMINATOR,
   614                     // but if so, the CAS is guaranteed to fail.
   615                     if (casHead(h, p))
   616                         return;
   617                     else
   618                         continue restartFromHead;
   619                 }
   620                 else if (h != head)
   621                     continue restartFromHead;
   622                 else
   623                     p = q;
   624             }
   625         }
   626     }
   627 
   628     /**
   629      * Guarantees that any node which was unlinked before a call to
   630      * this method will be unreachable from tail after it returns.
   631      * Does not guarantee to eliminate slack, only that tail will
   632      * point to a node that was active while this method was running.
   633      */
   634     private final void updateTail() {
   635         // Either tail already points to an active node, or we keep
   636         // trying to cas it to the last node until it does.
   637         Node<E> t, p, q;
   638         restartFromTail:
   639         while ((t = tail).item == null && (p = t.next) != null) {
   640             for (;;) {
   641                 if ((q = p.next) == null ||
   642                     (q = (p = q).next) == null) {
   643                     // It is possible that p is NEXT_TERMINATOR,
   644                     // but if so, the CAS is guaranteed to fail.
   645                     if (casTail(t, p))
   646                         return;
   647                     else
   648                         continue restartFromTail;
   649                 }
   650                 else if (t != tail)
   651                     continue restartFromTail;
   652                 else
   653                     p = q;
   654             }
   655         }
   656     }
   657 
   658     private void skipDeletedPredecessors(Node<E> x) {
   659         whileActive:
   660         do {
   661             Node<E> prev = x.prev;
   662             // assert prev != null;
   663             // assert x != NEXT_TERMINATOR;
   664             // assert x != PREV_TERMINATOR;
   665             Node<E> p = prev;
   666             findActive:
   667             for (;;) {
   668                 if (p.item != null)
   669                     break findActive;
   670                 Node<E> q = p.prev;
   671                 if (q == null) {
   672                     if (p.next == p)
   673                         continue whileActive;
   674                     break findActive;
   675                 }
   676                 else if (p == q)
   677                     continue whileActive;
   678                 else
   679                     p = q;
   680             }
   681 
   682             // found active CAS target
   683             if (prev == p || x.casPrev(prev, p))
   684                 return;
   685 
   686         } while (x.item != null || x.next == null);
   687     }
   688 
   689     private void skipDeletedSuccessors(Node<E> x) {
   690         whileActive:
   691         do {
   692             Node<E> next = x.next;
   693             // assert next != null;
   694             // assert x != NEXT_TERMINATOR;
   695             // assert x != PREV_TERMINATOR;
   696             Node<E> p = next;
   697             findActive:
   698             for (;;) {
   699                 if (p.item != null)
   700                     break findActive;
   701                 Node<E> q = p.next;
   702                 if (q == null) {
   703                     if (p.prev == p)
   704                         continue whileActive;
   705                     break findActive;
   706                 }
   707                 else if (p == q)
   708                     continue whileActive;
   709                 else
   710                     p = q;
   711             }
   712 
   713             // found active CAS target
   714             if (next == p || x.casNext(next, p))
   715                 return;
   716 
   717         } while (x.item != null || x.prev == null);
   718     }
   719 
   720     /**
   721      * Returns the successor of p, or the first node if p.next has been
   722      * linked to self, which will only be true if traversing with a
   723      * stale pointer that is now off the list.
   724      */
   725     final Node<E> succ(Node<E> p) {
   726         // TODO: should we skip deleted nodes here?
   727         Node<E> q = p.next;
   728         return (p == q) ? first() : q;
   729     }
   730 
   731     /**
   732      * Returns the predecessor of p, or the last node if p.prev has been
   733      * linked to self, which will only be true if traversing with a
   734      * stale pointer that is now off the list.
   735      */
   736     final Node<E> pred(Node<E> p) {
   737         Node<E> q = p.prev;
   738         return (p == q) ? last() : q;
   739     }
   740 
   741     /**
   742      * Returns the first node, the unique node p for which:
   743      *     p.prev == null && p.next != p
   744      * The returned node may or may not be logically deleted.
   745      * Guarantees that head is set to the returned node.
   746      */
   747     Node<E> first() {
   748         restartFromHead:
   749         for (;;)
   750             for (Node<E> h = head, p = h, q;;) {
   751                 if ((q = p.prev) != null &&
   752                     (q = (p = q).prev) != null)
   753                     // Check for head updates every other hop.
   754                     // If p == q, we are sure to follow head instead.
   755                     p = (h != (h = head)) ? h : q;
   756                 else if (p == h
   757                          // It is possible that p is PREV_TERMINATOR,
   758                          // but if so, the CAS is guaranteed to fail.
   759                          || casHead(h, p))
   760                     return p;
   761                 else
   762                     continue restartFromHead;
   763             }
   764     }
   765 
   766     /**
   767      * Returns the last node, the unique node p for which:
   768      *     p.next == null && p.prev != p
   769      * The returned node may or may not be logically deleted.
   770      * Guarantees that tail is set to the returned node.
   771      */
   772     Node<E> last() {
   773         restartFromTail:
   774         for (;;)
   775             for (Node<E> t = tail, p = t, q;;) {
   776                 if ((q = p.next) != null &&
   777                     (q = (p = q).next) != null)
   778                     // Check for tail updates every other hop.
   779                     // If p == q, we are sure to follow tail instead.
   780                     p = (t != (t = tail)) ? t : q;
   781                 else if (p == t
   782                          // It is possible that p is NEXT_TERMINATOR,
   783                          // but if so, the CAS is guaranteed to fail.
   784                          || casTail(t, p))
   785                     return p;
   786                 else
   787                     continue restartFromTail;
   788             }
   789     }
   790 
   791     // Minor convenience utilities
   792 
   793     /**
   794      * Throws NullPointerException if argument is null.
   795      *
   796      * @param v the element
   797      */
   798     private static void checkNotNull(Object v) {
   799         if (v == null)
   800             throw new NullPointerException();
   801     }
   802 
   803     /**
   804      * Returns element unless it is null, in which case throws
   805      * NoSuchElementException.
   806      *
   807      * @param v the element
   808      * @return the element
   809      */
   810     private E screenNullResult(E v) {
   811         if (v == null)
   812             throw new NoSuchElementException();
   813         return v;
   814     }
   815 
   816     /**
   817      * Creates an array list and fills it with elements of this list.
   818      * Used by toArray.
   819      *
   820      * @return the arrayList
   821      */
   822     private ArrayList<E> toArrayList() {
   823         ArrayList<E> list = new ArrayList<E>();
   824         for (Node<E> p = first(); p != null; p = succ(p)) {
   825             E item = p.item;
   826             if (item != null)
   827                 list.add(item);
   828         }
   829         return list;
   830     }
   831 
   832     /**
   833      * Constructs an empty deque.
   834      */
   835     public ConcurrentLinkedDeque() {
   836         head = tail = new Node<E>(null);
   837     }
   838 
   839     /**
   840      * Constructs a deque initially containing the elements of
   841      * the given collection, added in traversal order of the
   842      * collection's iterator.
   843      *
   844      * @param c the collection of elements to initially contain
   845      * @throws NullPointerException if the specified collection or any
   846      *         of its elements are null
   847      */
   848     public ConcurrentLinkedDeque(Collection<? extends E> c) {
   849         // Copy c into a private chain of Nodes
   850         Node<E> h = null, t = null;
   851         for (E e : c) {
   852             checkNotNull(e);
   853             Node<E> newNode = new Node<E>(e);
   854             if (h == null)
   855                 h = t = newNode;
   856             else {
   857                 t.lazySetNext(newNode);
   858                 newNode.lazySetPrev(t);
   859                 t = newNode;
   860             }
   861         }
   862         initHeadTail(h, t);
   863     }
   864 
   865     /**
   866      * Initializes head and tail, ensuring invariants hold.
   867      */
   868     private void initHeadTail(Node<E> h, Node<E> t) {
   869         if (h == t) {
   870             if (h == null)
   871                 h = t = new Node<E>(null);
   872             else {
   873                 // Avoid edge case of a single Node with non-null item.
   874                 Node<E> newNode = new Node<E>(null);
   875                 t.lazySetNext(newNode);
   876                 newNode.lazySetPrev(t);
   877                 t = newNode;
   878             }
   879         }
   880         head = h;
   881         tail = t;
   882     }
   883 
   884     /**
   885      * Inserts the specified element at the front of this deque.
   886      * As the deque is unbounded, this method will never throw
   887      * {@link IllegalStateException}.
   888      *
   889      * @throws NullPointerException if the specified element is null
   890      */
   891     public void addFirst(E e) {
   892         linkFirst(e);
   893     }
   894 
   895     /**
   896      * Inserts the specified element at the end of this deque.
   897      * As the deque is unbounded, this method will never throw
   898      * {@link IllegalStateException}.
   899      *
   900      * <p>This method is equivalent to {@link #add}.
   901      *
   902      * @throws NullPointerException if the specified element is null
   903      */
   904     public void addLast(E e) {
   905         linkLast(e);
   906     }
   907 
   908     /**
   909      * Inserts the specified element at the front of this deque.
   910      * As the deque is unbounded, this method will never return {@code false}.
   911      *
   912      * @return {@code true} (as specified by {@link Deque#offerFirst})
   913      * @throws NullPointerException if the specified element is null
   914      */
   915     public boolean offerFirst(E e) {
   916         linkFirst(e);
   917         return true;
   918     }
   919 
   920     /**
   921      * Inserts the specified element at the end of this deque.
   922      * As the deque is unbounded, this method will never return {@code false}.
   923      *
   924      * <p>This method is equivalent to {@link #add}.
   925      *
   926      * @return {@code true} (as specified by {@link Deque#offerLast})
   927      * @throws NullPointerException if the specified element is null
   928      */
   929     public boolean offerLast(E e) {
   930         linkLast(e);
   931         return true;
   932     }
   933 
   934     public E peekFirst() {
   935         for (Node<E> p = first(); p != null; p = succ(p)) {
   936             E item = p.item;
   937             if (item != null)
   938                 return item;
   939         }
   940         return null;
   941     }
   942 
   943     public E peekLast() {
   944         for (Node<E> p = last(); p != null; p = pred(p)) {
   945             E item = p.item;
   946             if (item != null)
   947                 return item;
   948         }
   949         return null;
   950     }
   951 
   952     /**
   953      * @throws NoSuchElementException {@inheritDoc}
   954      */
   955     public E getFirst() {
   956         return screenNullResult(peekFirst());
   957     }
   958 
   959     /**
   960      * @throws NoSuchElementException {@inheritDoc}
   961      */
   962     public E getLast() {
   963         return screenNullResult(peekLast());
   964     }
   965 
   966     public E pollFirst() {
   967         for (Node<E> p = first(); p != null; p = succ(p)) {
   968             E item = p.item;
   969             if (item != null && p.casItem(item, null)) {
   970                 unlink(p);
   971                 return item;
   972             }
   973         }
   974         return null;
   975     }
   976 
   977     public E pollLast() {
   978         for (Node<E> p = last(); p != null; p = pred(p)) {
   979             E item = p.item;
   980             if (item != null && p.casItem(item, null)) {
   981                 unlink(p);
   982                 return item;
   983             }
   984         }
   985         return null;
   986     }
   987 
   988     /**
   989      * @throws NoSuchElementException {@inheritDoc}
   990      */
   991     public E removeFirst() {
   992         return screenNullResult(pollFirst());
   993     }
   994 
   995     /**
   996      * @throws NoSuchElementException {@inheritDoc}
   997      */
   998     public E removeLast() {
   999         return screenNullResult(pollLast());
  1000     }
  1001 
  1002     // *** Queue and stack methods ***
  1003 
  1004     /**
  1005      * Inserts the specified element at the tail of this deque.
  1006      * As the deque is unbounded, this method will never return {@code false}.
  1007      *
  1008      * @return {@code true} (as specified by {@link Queue#offer})
  1009      * @throws NullPointerException if the specified element is null
  1010      */
  1011     public boolean offer(E e) {
  1012         return offerLast(e);
  1013     }
  1014 
  1015     /**
  1016      * Inserts the specified element at the tail of this deque.
  1017      * As the deque is unbounded, this method will never throw
  1018      * {@link IllegalStateException} or return {@code false}.
  1019      *
  1020      * @return {@code true} (as specified by {@link Collection#add})
  1021      * @throws NullPointerException if the specified element is null
  1022      */
  1023     public boolean add(E e) {
  1024         return offerLast(e);
  1025     }
  1026 
  1027     public E poll()           { return pollFirst(); }
  1028     public E remove()         { return removeFirst(); }
  1029     public E peek()           { return peekFirst(); }
  1030     public E element()        { return getFirst(); }
  1031     public void push(E e)     { addFirst(e); }
  1032     public E pop()            { return removeFirst(); }
  1033 
  1034     /**
  1035      * Removes the first element {@code e} such that
  1036      * {@code o.equals(e)}, if such an element exists in this deque.
  1037      * If the deque does not contain the element, it is unchanged.
  1038      *
  1039      * @param o element to be removed from this deque, if present
  1040      * @return {@code true} if the deque contained the specified element
  1041      * @throws NullPointerException if the specified element is null
  1042      */
  1043     public boolean removeFirstOccurrence(Object o) {
  1044         checkNotNull(o);
  1045         for (Node<E> p = first(); p != null; p = succ(p)) {
  1046             E item = p.item;
  1047             if (item != null && o.equals(item) && p.casItem(item, null)) {
  1048                 unlink(p);
  1049                 return true;
  1050             }
  1051         }
  1052         return false;
  1053     }
  1054 
  1055     /**
  1056      * Removes the last element {@code e} such that
  1057      * {@code o.equals(e)}, if such an element exists in this deque.
  1058      * If the deque does not contain the element, it is unchanged.
  1059      *
  1060      * @param o element to be removed from this deque, if present
  1061      * @return {@code true} if the deque contained the specified element
  1062      * @throws NullPointerException if the specified element is null
  1063      */
  1064     public boolean removeLastOccurrence(Object o) {
  1065         checkNotNull(o);
  1066         for (Node<E> p = last(); p != null; p = pred(p)) {
  1067             E item = p.item;
  1068             if (item != null && o.equals(item) && p.casItem(item, null)) {
  1069                 unlink(p);
  1070                 return true;
  1071             }
  1072         }
  1073         return false;
  1074     }
  1075 
  1076     /**
  1077      * Returns {@code true} if this deque contains at least one
  1078      * element {@code e} such that {@code o.equals(e)}.
  1079      *
  1080      * @param o element whose presence in this deque is to be tested
  1081      * @return {@code true} if this deque contains the specified element
  1082      */
  1083     public boolean contains(Object o) {
  1084         if (o == null) return false;
  1085         for (Node<E> p = first(); p != null; p = succ(p)) {
  1086             E item = p.item;
  1087             if (item != null && o.equals(item))
  1088                 return true;
  1089         }
  1090         return false;
  1091     }
  1092 
  1093     /**
  1094      * Returns {@code true} if this collection contains no elements.
  1095      *
  1096      * @return {@code true} if this collection contains no elements
  1097      */
  1098     public boolean isEmpty() {
  1099         return peekFirst() == null;
  1100     }
  1101 
  1102     /**
  1103      * Returns the number of elements in this deque.  If this deque
  1104      * contains more than {@code Integer.MAX_VALUE} elements, it
  1105      * returns {@code Integer.MAX_VALUE}.
  1106      *
  1107      * <p>Beware that, unlike in most collections, this method is
  1108      * <em>NOT</em> a constant-time operation. Because of the
  1109      * asynchronous nature of these deques, determining the current
  1110      * number of elements requires traversing them all to count them.
  1111      * Additionally, it is possible for the size to change during
  1112      * execution of this method, in which case the returned result
  1113      * will be inaccurate. Thus, this method is typically not very
  1114      * useful in concurrent applications.
  1115      *
  1116      * @return the number of elements in this deque
  1117      */
  1118     public int size() {
  1119         int count = 0;
  1120         for (Node<E> p = first(); p != null; p = succ(p))
  1121             if (p.item != null)
  1122                 // Collection.size() spec says to max out
  1123                 if (++count == Integer.MAX_VALUE)
  1124                     break;
  1125         return count;
  1126     }
  1127 
  1128     /**
  1129      * Removes the first element {@code e} such that
  1130      * {@code o.equals(e)}, if such an element exists in this deque.
  1131      * If the deque does not contain the element, it is unchanged.
  1132      *
  1133      * @param o element to be removed from this deque, if present
  1134      * @return {@code true} if the deque contained the specified element
  1135      * @throws NullPointerException if the specified element is null
  1136      */
  1137     public boolean remove(Object o) {
  1138         return removeFirstOccurrence(o);
  1139     }
  1140 
  1141     /**
  1142      * Appends all of the elements in the specified collection to the end of
  1143      * this deque, in the order that they are returned by the specified
  1144      * collection's iterator.  Attempts to {@code addAll} of a deque to
  1145      * itself result in {@code IllegalArgumentException}.
  1146      *
  1147      * @param c the elements to be inserted into this deque
  1148      * @return {@code true} if this deque changed as a result of the call
  1149      * @throws NullPointerException if the specified collection or any
  1150      *         of its elements are null
  1151      * @throws IllegalArgumentException if the collection is this deque
  1152      */
  1153     public boolean addAll(Collection<? extends E> c) {
  1154         if (c == this)
  1155             // As historically specified in AbstractQueue#addAll
  1156             throw new IllegalArgumentException();
  1157 
  1158         // Copy c into a private chain of Nodes
  1159         Node<E> beginningOfTheEnd = null, last = null;
  1160         for (E e : c) {
  1161             checkNotNull(e);
  1162             Node<E> newNode = new Node<E>(e);
  1163             if (beginningOfTheEnd == null)
  1164                 beginningOfTheEnd = last = newNode;
  1165             else {
  1166                 last.lazySetNext(newNode);
  1167                 newNode.lazySetPrev(last);
  1168                 last = newNode;
  1169             }
  1170         }
  1171         if (beginningOfTheEnd == null)
  1172             return false;
  1173 
  1174         // Atomically append the chain at the tail of this collection
  1175         restartFromTail:
  1176         for (;;)
  1177             for (Node<E> t = tail, p = t, q;;) {
  1178                 if ((q = p.next) != null &&
  1179                     (q = (p = q).next) != null)
  1180                     // Check for tail updates every other hop.
  1181                     // If p == q, we are sure to follow tail instead.
  1182                     p = (t != (t = tail)) ? t : q;
  1183                 else if (p.prev == p) // NEXT_TERMINATOR
  1184                     continue restartFromTail;
  1185                 else {
  1186                     // p is last node
  1187                     beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
  1188                     if (p.casNext(null, beginningOfTheEnd)) {
  1189                         // Successful CAS is the linearization point
  1190                         // for all elements to be added to this deque.
  1191                         if (!casTail(t, last)) {
  1192                             // Try a little harder to update tail,
  1193                             // since we may be adding many elements.
  1194                             t = tail;
  1195                             if (last.next == null)
  1196                                 casTail(t, last);
  1197                         }
  1198                         return true;
  1199                     }
  1200                     // Lost CAS race to another thread; re-read next
  1201                 }
  1202             }
  1203     }
  1204 
  1205     /**
  1206      * Removes all of the elements from this deque.
  1207      */
  1208     public void clear() {
  1209         while (pollFirst() != null)
  1210             ;
  1211     }
  1212 
  1213     /**
  1214      * Returns an array containing all of the elements in this deque, in
  1215      * proper sequence (from first to last element).
  1216      *
  1217      * <p>The returned array will be "safe" in that no references to it are
  1218      * maintained by this deque.  (In other words, this method must allocate
  1219      * a new array).  The caller is thus free to modify the returned array.
  1220      *
  1221      * <p>This method acts as bridge between array-based and collection-based
  1222      * APIs.
  1223      *
  1224      * @return an array containing all of the elements in this deque
  1225      */
  1226     public Object[] toArray() {
  1227         return toArrayList().toArray();
  1228     }
  1229 
  1230     /**
  1231      * Returns an array containing all of the elements in this deque,
  1232      * in proper sequence (from first to last element); the runtime
  1233      * type of the returned array is that of the specified array.  If
  1234      * the deque fits in the specified array, it is returned therein.
  1235      * Otherwise, a new array is allocated with the runtime type of
  1236      * the specified array and the size of this deque.
  1237      *
  1238      * <p>If this deque fits in the specified array with room to spare
  1239      * (i.e., the array has more elements than this deque), the element in
  1240      * the array immediately following the end of the deque is set to
  1241      * {@code null}.
  1242      *
  1243      * <p>Like the {@link #toArray()} method, this method acts as
  1244      * bridge between array-based and collection-based APIs.  Further,
  1245      * this method allows precise control over the runtime type of the
  1246      * output array, and may, under certain circumstances, be used to
  1247      * save allocation costs.
  1248      *
  1249      * <p>Suppose {@code x} is a deque known to contain only strings.
  1250      * The following code can be used to dump the deque into a newly
  1251      * allocated array of {@code String}:
  1252      *
  1253      * <pre>
  1254      *     String[] y = x.toArray(new String[0]);</pre>
  1255      *
  1256      * Note that {@code toArray(new Object[0])} is identical in function to
  1257      * {@code toArray()}.
  1258      *
  1259      * @param a the array into which the elements of the deque are to
  1260      *          be stored, if it is big enough; otherwise, a new array of the
  1261      *          same runtime type is allocated for this purpose
  1262      * @return an array containing all of the elements in this deque
  1263      * @throws ArrayStoreException if the runtime type of the specified array
  1264      *         is not a supertype of the runtime type of every element in
  1265      *         this deque
  1266      * @throws NullPointerException if the specified array is null
  1267      */
  1268     public <T> T[] toArray(T[] a) {
  1269         return toArrayList().toArray(a);
  1270     }
  1271 
  1272     /**
  1273      * Returns an iterator over the elements in this deque in proper sequence.
  1274      * The elements will be returned in order from first (head) to last (tail).
  1275      *
  1276      * <p>The returned iterator is a "weakly consistent" iterator that
  1277      * will never throw {@link java.util.ConcurrentModificationException
  1278      * ConcurrentModificationException}, and guarantees to traverse
  1279      * elements as they existed upon construction of the iterator, and
  1280      * may (but is not guaranteed to) reflect any modifications
  1281      * subsequent to construction.
  1282      *
  1283      * @return an iterator over the elements in this deque in proper sequence
  1284      */
  1285     public Iterator<E> iterator() {
  1286         return new Itr();
  1287     }
  1288 
  1289     /**
  1290      * Returns an iterator over the elements in this deque in reverse
  1291      * sequential order.  The elements will be returned in order from
  1292      * last (tail) to first (head).
  1293      *
  1294      * <p>The returned iterator is a "weakly consistent" iterator that
  1295      * will never throw {@link java.util.ConcurrentModificationException
  1296      * ConcurrentModificationException}, and guarantees to traverse
  1297      * elements as they existed upon construction of the iterator, and
  1298      * may (but is not guaranteed to) reflect any modifications
  1299      * subsequent to construction.
  1300      *
  1301      * @return an iterator over the elements in this deque in reverse order
  1302      */
  1303     public Iterator<E> descendingIterator() {
  1304         return new DescendingItr();
  1305     }
  1306 
  1307     private abstract class AbstractItr implements Iterator<E> {
  1308         /**
  1309          * Next node to return item for.
  1310          */
  1311         private Node<E> nextNode;
  1312 
  1313         /**
  1314          * nextItem holds on to item fields because once we claim
  1315          * that an element exists in hasNext(), we must return it in
  1316          * the following next() call even if it was in the process of
  1317          * being removed when hasNext() was called.
  1318          */
  1319         private E nextItem;
  1320 
  1321         /**
  1322          * Node returned by most recent call to next. Needed by remove.
  1323          * Reset to null if this element is deleted by a call to remove.
  1324          */
  1325         private Node<E> lastRet;
  1326 
  1327         abstract Node<E> startNode();
  1328         abstract Node<E> nextNode(Node<E> p);
  1329 
  1330         AbstractItr() {
  1331             advance();
  1332         }
  1333 
  1334         /**
  1335          * Sets nextNode and nextItem to next valid node, or to null
  1336          * if no such.
  1337          */
  1338         private void advance() {
  1339             lastRet = nextNode;
  1340 
  1341             Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
  1342             for (;; p = nextNode(p)) {
  1343                 if (p == null) {
  1344                     // p might be active end or TERMINATOR node; both are OK
  1345                     nextNode = null;
  1346                     nextItem = null;
  1347                     break;
  1348                 }
  1349                 E item = p.item;
  1350                 if (item != null) {
  1351                     nextNode = p;
  1352                     nextItem = item;
  1353                     break;
  1354                 }
  1355             }
  1356         }
  1357 
  1358         public boolean hasNext() {
  1359             return nextItem != null;
  1360         }
  1361 
  1362         public E next() {
  1363             E item = nextItem;
  1364             if (item == null) throw new NoSuchElementException();
  1365             advance();
  1366             return item;
  1367         }
  1368 
  1369         public void remove() {
  1370             Node<E> l = lastRet;
  1371             if (l == null) throw new IllegalStateException();
  1372             l.item = null;
  1373             unlink(l);
  1374             lastRet = null;
  1375         }
  1376     }
  1377 
  1378     /** Forward iterator */
  1379     private class Itr extends AbstractItr {
  1380         Node<E> startNode() { return first(); }
  1381         Node<E> nextNode(Node<E> p) { return succ(p); }
  1382     }
  1383 
  1384     /** Descending iterator */
  1385     private class DescendingItr extends AbstractItr {
  1386         Node<E> startNode() { return last(); }
  1387         Node<E> nextNode(Node<E> p) { return pred(p); }
  1388     }
  1389 
  1390     /**
  1391      * Saves the state to a stream (that is, serializes it).
  1392      *
  1393      * @serialData All of the elements (each an {@code E}) in
  1394      * the proper order, followed by a null
  1395      * @param s the stream
  1396      */
  1397     private void writeObject(java.io.ObjectOutputStream s)
  1398         throws java.io.IOException {
  1399 
  1400         // Write out any hidden stuff
  1401         s.defaultWriteObject();
  1402 
  1403         // Write out all elements in the proper order.
  1404         for (Node<E> p = first(); p != null; p = succ(p)) {
  1405             E item = p.item;
  1406             if (item != null)
  1407                 s.writeObject(item);
  1408         }
  1409 
  1410         // Use trailing null as sentinel
  1411         s.writeObject(null);
  1412     }
  1413 
  1414     /**
  1415      * Reconstitutes the instance from a stream (that is, deserializes it).
  1416      * @param s the stream
  1417      */
  1418     private void readObject(java.io.ObjectInputStream s)
  1419         throws java.io.IOException, ClassNotFoundException {
  1420         s.defaultReadObject();
  1421 
  1422         // Read in elements until trailing null sentinel found
  1423         Node<E> h = null, t = null;
  1424         Object item;
  1425         while ((item = s.readObject()) != null) {
  1426             @SuppressWarnings("unchecked")
  1427             Node<E> newNode = new Node<E>((E) item);
  1428             if (h == null)
  1429                 h = t = newNode;
  1430             else {
  1431                 t.lazySetNext(newNode);
  1432                 newNode.lazySetPrev(t);
  1433                 t = newNode;
  1434             }
  1435         }
  1436         initHeadTail(h, t);
  1437     }
  1438 
  1439 
  1440     private boolean casHead(Node<E> cmp, Node<E> val) {
  1441         return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
  1442     }
  1443 
  1444     private boolean casTail(Node<E> cmp, Node<E> val) {
  1445         return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
  1446     }
  1447 
  1448     // Unsafe mechanics
  1449 
  1450     private static final sun.misc.Unsafe UNSAFE;
  1451     private static final long headOffset;
  1452     private static final long tailOffset;
  1453     static {
  1454         PREV_TERMINATOR = new Node<Object>();
  1455         PREV_TERMINATOR.next = PREV_TERMINATOR;
  1456         NEXT_TERMINATOR = new Node<Object>();
  1457         NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
  1458         try {
  1459             UNSAFE = sun.misc.Unsafe.getUnsafe();
  1460             Class k = ConcurrentLinkedDeque.class;
  1461             headOffset = UNSAFE.objectFieldOffset
  1462                 (k.getDeclaredField("head"));
  1463             tailOffset = UNSAFE.objectFieldOffset
  1464                 (k.getDeclaredField("tail"));
  1465         } catch (Exception e) {
  1466             throw new Error(e);
  1467         }
  1468     }
  1469 }