emul/src/main/java/java/lang/String.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sun, 16 Dec 2012 18:49:35 +0100
changeset 326 23b4a344fe02
parent 296 fbf8eb98a8ef
child 352 c0fd4e7919b3
child 403 2dcc8f2e1a1b
permissions -rw-r--r--
Implementing basic operations on characters
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import java.util.Comparator;
    29 import org.apidesign.bck2brwsr.core.ExtraJavaScript;
    30 import org.apidesign.bck2brwsr.core.JavaScriptBody;
    31 import org.apidesign.bck2brwsr.core.JavaScriptOnly;
    32 import org.apidesign.bck2brwsr.core.JavaScriptPrototype;
    33 
    34 /**
    35  * The <code>String</code> class represents character strings. All
    36  * string literals in Java programs, such as <code>"abc"</code>, are
    37  * implemented as instances of this class.
    38  * <p>
    39  * Strings are constant; their values cannot be changed after they
    40  * are created. String buffers support mutable strings.
    41  * Because String objects are immutable they can be shared. For example:
    42  * <p><blockquote><pre>
    43  *     String str = "abc";
    44  * </pre></blockquote><p>
    45  * is equivalent to:
    46  * <p><blockquote><pre>
    47  *     char data[] = {'a', 'b', 'c'};
    48  *     String str = new String(data);
    49  * </pre></blockquote><p>
    50  * Here are some more examples of how strings can be used:
    51  * <p><blockquote><pre>
    52  *     System.out.println("abc");
    53  *     String cde = "cde";
    54  *     System.out.println("abc" + cde);
    55  *     String c = "abc".substring(2,3);
    56  *     String d = cde.substring(1, 2);
    57  * </pre></blockquote>
    58  * <p>
    59  * The class <code>String</code> includes methods for examining
    60  * individual characters of the sequence, for comparing strings, for
    61  * searching strings, for extracting substrings, and for creating a
    62  * copy of a string with all characters translated to uppercase or to
    63  * lowercase. Case mapping is based on the Unicode Standard version
    64  * specified by the {@link java.lang.Character Character} class.
    65  * <p>
    66  * The Java language provides special support for the string
    67  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
    68  * other objects to strings. String concatenation is implemented
    69  * through the <code>StringBuilder</code>(or <code>StringBuffer</code>)
    70  * class and its <code>append</code> method.
    71  * String conversions are implemented through the method
    72  * <code>toString</code>, defined by <code>Object</code> and
    73  * inherited by all classes in Java. For additional information on
    74  * string concatenation and conversion, see Gosling, Joy, and Steele,
    75  * <i>The Java Language Specification</i>.
    76  *
    77  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
    78  * or method in this class will cause a {@link NullPointerException} to be
    79  * thrown.
    80  *
    81  * <p>A <code>String</code> represents a string in the UTF-16 format
    82  * in which <em>supplementary characters</em> are represented by <em>surrogate
    83  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
    84  * Character Representations</a> in the <code>Character</code> class for
    85  * more information).
    86  * Index values refer to <code>char</code> code units, so a supplementary
    87  * character uses two positions in a <code>String</code>.
    88  * <p>The <code>String</code> class provides methods for dealing with
    89  * Unicode code points (i.e., characters), in addition to those for
    90  * dealing with Unicode code units (i.e., <code>char</code> values).
    91  *
    92  * @author  Lee Boynton
    93  * @author  Arthur van Hoff
    94  * @author  Martin Buchholz
    95  * @author  Ulf Zibis
    96  * @see     java.lang.Object#toString()
    97  * @see     java.lang.StringBuffer
    98  * @see     java.lang.StringBuilder
    99  * @see     java.nio.charset.Charset
   100  * @since   JDK1.0
   101  */
   102 
   103 @ExtraJavaScript(
   104     resource="/org/apidesign/vm4brwsr/emul/java_lang_String.js",
   105     processByteCode=true
   106 )
   107 @JavaScriptPrototype(container = "String.prototype", prototype = "new String")
   108 public final class String
   109     implements java.io.Serializable, Comparable<String>, CharSequence
   110 {
   111     @JavaScriptOnly
   112     /** Cache the hash code for the string */
   113     private int hash; // Default to 0
   114     
   115     /** real string to delegate to */
   116     private Object r;
   117 
   118     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   119     private static final long serialVersionUID = -6849794470754667710L;
   120     
   121     @JavaScriptOnly(name="toString", value="function() { return this.fld_r; }")
   122     private static void jsToString() {
   123     }
   124     
   125     @JavaScriptOnly(name="valueOf", value="function() { return this.toString().valueOf(); }")
   126     private static void jsValudOf() {
   127     }
   128 
   129     /**
   130      * Class String is special cased within the Serialization Stream Protocol.
   131      *
   132      * A String instance is written initially into an ObjectOutputStream in the
   133      * following format:
   134      * <pre>
   135      *      <code>TC_STRING</code> (utf String)
   136      * </pre>
   137      * The String is written by method <code>DataOutput.writeUTF</code>.
   138      * A new handle is generated to  refer to all future references to the
   139      * string instance within the stream.
   140      */
   141 //    private static final ObjectStreamField[] serialPersistentFields =
   142 //        new ObjectStreamField[0];
   143 
   144     /**
   145      * Initializes a newly created {@code String} object so that it represents
   146      * an empty character sequence.  Note that use of this constructor is
   147      * unnecessary since Strings are immutable.
   148      */
   149     public String() {
   150         this.r = "";
   151     }
   152 
   153     /**
   154      * Initializes a newly created {@code String} object so that it represents
   155      * the same sequence of characters as the argument; in other words, the
   156      * newly created string is a copy of the argument string. Unless an
   157      * explicit copy of {@code original} is needed, use of this constructor is
   158      * unnecessary since Strings are immutable.
   159      *
   160      * @param  original
   161      *         A {@code String}
   162      */
   163     public String(String original) {
   164         this.r = original.toString();
   165     }
   166 
   167     /**
   168      * Allocates a new {@code String} so that it represents the sequence of
   169      * characters currently contained in the character array argument. The
   170      * contents of the character array are copied; subsequent modification of
   171      * the character array does not affect the newly created string.
   172      *
   173      * @param  value
   174      *         The initial value of the string
   175      */
   176     @JavaScriptBody(args = { "self", "charArr" }, body=
   177         "for (var i = 0; i < charArr.length; i++) {\n"
   178       + "  if (typeof charArr[i] === 'number') charArr[i] = String.fromCharCode(charArr[i]);\n"
   179       + "}\n"
   180       + "self.fld_r = charArr.join('');\n"
   181     )
   182     public String(char value[]) {
   183     }
   184 
   185     /**
   186      * Allocates a new {@code String} that contains characters from a subarray
   187      * of the character array argument. The {@code offset} argument is the
   188      * index of the first character of the subarray and the {@code count}
   189      * argument specifies the length of the subarray. The contents of the
   190      * subarray are copied; subsequent modification of the character array does
   191      * not affect the newly created string.
   192      *
   193      * @param  value
   194      *         Array that is the source of characters
   195      *
   196      * @param  offset
   197      *         The initial offset
   198      *
   199      * @param  count
   200      *         The length
   201      *
   202      * @throws  IndexOutOfBoundsException
   203      *          If the {@code offset} and {@code count} arguments index
   204      *          characters outside the bounds of the {@code value} array
   205      */
   206     @JavaScriptBody(args = { "self", "charArr", "off", "cnt" }, body =
   207         "var up = off + cnt;\n" +
   208         "for (var i = off; i < up; i++) {\n" +
   209         "  if (typeof charArr[i] === 'number') charArr[i] = String.fromCharCode(charArr[i]);\n" +
   210         "}\n" +
   211         "self.fld_r = charArr.slice(off, up).join(\"\");\n"
   212     )
   213     public String(char value[], int offset, int count) {
   214     }
   215 
   216     /**
   217      * Allocates a new {@code String} that contains characters from a subarray
   218      * of the <a href="Character.html#unicode">Unicode code point</a> array
   219      * argument.  The {@code offset} argument is the index of the first code
   220      * point of the subarray and the {@code count} argument specifies the
   221      * length of the subarray.  The contents of the subarray are converted to
   222      * {@code char}s; subsequent modification of the {@code int} array does not
   223      * affect the newly created string.
   224      *
   225      * @param  codePoints
   226      *         Array that is the source of Unicode code points
   227      *
   228      * @param  offset
   229      *         The initial offset
   230      *
   231      * @param  count
   232      *         The length
   233      *
   234      * @throws  IllegalArgumentException
   235      *          If any invalid Unicode code point is found in {@code
   236      *          codePoints}
   237      *
   238      * @throws  IndexOutOfBoundsException
   239      *          If the {@code offset} and {@code count} arguments index
   240      *          characters outside the bounds of the {@code codePoints} array
   241      *
   242      * @since  1.5
   243      */
   244     public String(int[] codePoints, int offset, int count) {
   245         if (offset < 0) {
   246             throw new StringIndexOutOfBoundsException(offset);
   247         }
   248         if (count < 0) {
   249             throw new StringIndexOutOfBoundsException(count);
   250         }
   251         // Note: offset or count might be near -1>>>1.
   252         if (offset > codePoints.length - count) {
   253             throw new StringIndexOutOfBoundsException(offset + count);
   254         }
   255 
   256         final int end = offset + count;
   257 
   258         // Pass 1: Compute precise size of char[]
   259         int n = count;
   260         for (int i = offset; i < end; i++) {
   261             int c = codePoints[i];
   262             if (Character.isBmpCodePoint(c))
   263                 continue;
   264             else if (Character.isValidCodePoint(c))
   265                 n++;
   266             else throw new IllegalArgumentException(Integer.toString(c));
   267         }
   268 
   269         // Pass 2: Allocate and fill in char[]
   270         final char[] v = new char[n];
   271 
   272         for (int i = offset, j = 0; i < end; i++, j++) {
   273             int c = codePoints[i];
   274             if (Character.isBmpCodePoint(c))
   275                 v[j] = (char) c;
   276             else
   277                 Character.toSurrogates(c, v, j++);
   278         }
   279 
   280         this.r = new String(v, 0, n);
   281     }
   282 
   283     /**
   284      * Allocates a new {@code String} constructed from a subarray of an array
   285      * of 8-bit integer values.
   286      *
   287      * <p> The {@code offset} argument is the index of the first byte of the
   288      * subarray, and the {@code count} argument specifies the length of the
   289      * subarray.
   290      *
   291      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
   292      * specified in the method above.
   293      *
   294      * @deprecated This method does not properly convert bytes into characters.
   295      * As of JDK&nbsp;1.1, the preferred way to do this is via the
   296      * {@code String} constructors that take a {@link
   297      * java.nio.charset.Charset}, charset name, or that use the platform's
   298      * default charset.
   299      *
   300      * @param  ascii
   301      *         The bytes to be converted to characters
   302      *
   303      * @param  hibyte
   304      *         The top 8 bits of each 16-bit Unicode code unit
   305      *
   306      * @param  offset
   307      *         The initial offset
   308      * @param  count
   309      *         The length
   310      *
   311      * @throws  IndexOutOfBoundsException
   312      *          If the {@code offset} or {@code count} argument is invalid
   313      *
   314      * @see  #String(byte[], int)
   315      * @see  #String(byte[], int, int, java.lang.String)
   316      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   317      * @see  #String(byte[], int, int)
   318      * @see  #String(byte[], java.lang.String)
   319      * @see  #String(byte[], java.nio.charset.Charset)
   320      * @see  #String(byte[])
   321      */
   322     @Deprecated
   323     public String(byte ascii[], int hibyte, int offset, int count) {
   324         checkBounds(ascii, offset, count);
   325         char value[] = new char[count];
   326 
   327         if (hibyte == 0) {
   328             for (int i = count ; i-- > 0 ;) {
   329                 value[i] = (char) (ascii[i + offset] & 0xff);
   330             }
   331         } else {
   332             hibyte <<= 8;
   333             for (int i = count ; i-- > 0 ;) {
   334                 value[i] = (char) (hibyte | (ascii[i + offset] & 0xff));
   335             }
   336         }
   337         this.r = new String(value, 0, count);
   338     }
   339 
   340     /**
   341      * Allocates a new {@code String} containing characters constructed from
   342      * an array of 8-bit integer values. Each character <i>c</i>in the
   343      * resulting string is constructed from the corresponding component
   344      * <i>b</i> in the byte array such that:
   345      *
   346      * <blockquote><pre>
   347      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
   348      *                         | (<b><i>b</i></b> &amp; 0xff))
   349      * </pre></blockquote>
   350      *
   351      * @deprecated  This method does not properly convert bytes into
   352      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   353      * {@code String} constructors that take a {@link
   354      * java.nio.charset.Charset}, charset name, or that use the platform's
   355      * default charset.
   356      *
   357      * @param  ascii
   358      *         The bytes to be converted to characters
   359      *
   360      * @param  hibyte
   361      *         The top 8 bits of each 16-bit Unicode code unit
   362      *
   363      * @see  #String(byte[], int, int, java.lang.String)
   364      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   365      * @see  #String(byte[], int, int)
   366      * @see  #String(byte[], java.lang.String)
   367      * @see  #String(byte[], java.nio.charset.Charset)
   368      * @see  #String(byte[])
   369      */
   370     @Deprecated
   371     public String(byte ascii[], int hibyte) {
   372         this(ascii, hibyte, 0, ascii.length);
   373     }
   374 
   375     /* Common private utility method used to bounds check the byte array
   376      * and requested offset & length values used by the String(byte[],..)
   377      * constructors.
   378      */
   379     private static void checkBounds(byte[] bytes, int offset, int length) {
   380         if (length < 0)
   381             throw new StringIndexOutOfBoundsException(length);
   382         if (offset < 0)
   383             throw new StringIndexOutOfBoundsException(offset);
   384         if (offset > bytes.length - length)
   385             throw new StringIndexOutOfBoundsException(offset + length);
   386     }
   387 
   388     /**
   389      * Constructs a new {@code String} by decoding the specified subarray of
   390      * bytes using the specified charset.  The length of the new {@code String}
   391      * is a function of the charset, and hence may not be equal to the length
   392      * of the subarray.
   393      *
   394      * <p> The behavior of this constructor when the given bytes are not valid
   395      * in the given charset is unspecified.  The {@link
   396      * java.nio.charset.CharsetDecoder} class should be used when more control
   397      * over the decoding process is required.
   398      *
   399      * @param  bytes
   400      *         The bytes to be decoded into characters
   401      *
   402      * @param  offset
   403      *         The index of the first byte to decode
   404      *
   405      * @param  length
   406      *         The number of bytes to decode
   407 
   408      * @param  charsetName
   409      *         The name of a supported {@linkplain java.nio.charset.Charset
   410      *         charset}
   411      *
   412      * @throws  UnsupportedEncodingException
   413      *          If the named charset is not supported
   414      *
   415      * @throws  IndexOutOfBoundsException
   416      *          If the {@code offset} and {@code length} arguments index
   417      *          characters outside the bounds of the {@code bytes} array
   418      *
   419      * @since  JDK1.1
   420      */
   421 //    public String(byte bytes[], int offset, int length, String charsetName)
   422 //        throws UnsupportedEncodingException
   423 //    {
   424 //        if (charsetName == null)
   425 //            throw new NullPointerException("charsetName");
   426 //        checkBounds(bytes, offset, length);
   427 //        char[] v = StringCoding.decode(charsetName, bytes, offset, length);
   428 //        this.offset = 0;
   429 //        this.count = v.length;
   430 //        this.value = v;
   431 //    }
   432 
   433     /**
   434      * Constructs a new {@code String} by decoding the specified subarray of
   435      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   436      * The length of the new {@code String} is a function of the charset, and
   437      * hence may not be equal to the length of the subarray.
   438      *
   439      * <p> This method always replaces malformed-input and unmappable-character
   440      * sequences with this charset's default replacement string.  The {@link
   441      * java.nio.charset.CharsetDecoder} class should be used when more control
   442      * over the decoding process is required.
   443      *
   444      * @param  bytes
   445      *         The bytes to be decoded into characters
   446      *
   447      * @param  offset
   448      *         The index of the first byte to decode
   449      *
   450      * @param  length
   451      *         The number of bytes to decode
   452      *
   453      * @param  charset
   454      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   455      *         decode the {@code bytes}
   456      *
   457      * @throws  IndexOutOfBoundsException
   458      *          If the {@code offset} and {@code length} arguments index
   459      *          characters outside the bounds of the {@code bytes} array
   460      *
   461      * @since  1.6
   462      */
   463     /* don't want dependnecy on Charset
   464     public String(byte bytes[], int offset, int length, Charset charset) {
   465         if (charset == null)
   466             throw new NullPointerException("charset");
   467         checkBounds(bytes, offset, length);
   468         char[] v = StringCoding.decode(charset, bytes, offset, length);
   469         this.offset = 0;
   470         this.count = v.length;
   471         this.value = v;
   472     }
   473     */
   474 
   475     /**
   476      * Constructs a new {@code String} by decoding the specified array of bytes
   477      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
   478      * length of the new {@code String} is a function of the charset, and hence
   479      * may not be equal to the length of the byte array.
   480      *
   481      * <p> The behavior of this constructor when the given bytes are not valid
   482      * in the given charset is unspecified.  The {@link
   483      * java.nio.charset.CharsetDecoder} class should be used when more control
   484      * over the decoding process is required.
   485      *
   486      * @param  bytes
   487      *         The bytes to be decoded into characters
   488      *
   489      * @param  charsetName
   490      *         The name of a supported {@linkplain java.nio.charset.Charset
   491      *         charset}
   492      *
   493      * @throws  UnsupportedEncodingException
   494      *          If the named charset is not supported
   495      *
   496      * @since  JDK1.1
   497      */
   498 //    public String(byte bytes[], String charsetName)
   499 //        throws UnsupportedEncodingException
   500 //    {
   501 //        this(bytes, 0, bytes.length, charsetName);
   502 //    }
   503 
   504     /**
   505      * Constructs a new {@code String} by decoding the specified array of
   506      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   507      * The length of the new {@code String} is a function of the charset, and
   508      * hence may not be equal to the length of the byte array.
   509      *
   510      * <p> This method always replaces malformed-input and unmappable-character
   511      * sequences with this charset's default replacement string.  The {@link
   512      * java.nio.charset.CharsetDecoder} class should be used when more control
   513      * over the decoding process is required.
   514      *
   515      * @param  bytes
   516      *         The bytes to be decoded into characters
   517      *
   518      * @param  charset
   519      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   520      *         decode the {@code bytes}
   521      *
   522      * @since  1.6
   523      */
   524     /* don't want dep on Charset
   525     public String(byte bytes[], Charset charset) {
   526         this(bytes, 0, bytes.length, charset);
   527     }
   528     */
   529 
   530     /**
   531      * Constructs a new {@code String} by decoding the specified subarray of
   532      * bytes using the platform's default charset.  The length of the new
   533      * {@code String} is a function of the charset, and hence may not be equal
   534      * to the length of the subarray.
   535      *
   536      * <p> The behavior of this constructor when the given bytes are not valid
   537      * in the default charset is unspecified.  The {@link
   538      * java.nio.charset.CharsetDecoder} class should be used when more control
   539      * over the decoding process is required.
   540      *
   541      * @param  bytes
   542      *         The bytes to be decoded into characters
   543      *
   544      * @param  offset
   545      *         The index of the first byte to decode
   546      *
   547      * @param  length
   548      *         The number of bytes to decode
   549      *
   550      * @throws  IndexOutOfBoundsException
   551      *          If the {@code offset} and the {@code length} arguments index
   552      *          characters outside the bounds of the {@code bytes} array
   553      *
   554      * @since  JDK1.1
   555      */
   556     public String(byte bytes[], int offset, int length) {
   557         checkBounds(bytes, offset, length);
   558         char[] v  = new char[length];
   559         for (int i = 0; i < length; i++) {
   560             v[i] = (char)bytes[offset++];
   561         }
   562         this.r = new String(v, 0, v.length);
   563     }
   564 
   565     /**
   566      * Constructs a new {@code String} by decoding the specified array of bytes
   567      * using the platform's default charset.  The length of the new {@code
   568      * String} is a function of the charset, and hence may not be equal to the
   569      * length of the byte array.
   570      *
   571      * <p> The behavior of this constructor when the given bytes are not valid
   572      * in the default charset is unspecified.  The {@link
   573      * java.nio.charset.CharsetDecoder} class should be used when more control
   574      * over the decoding process is required.
   575      *
   576      * @param  bytes
   577      *         The bytes to be decoded into characters
   578      *
   579      * @since  JDK1.1
   580      */
   581     public String(byte bytes[]) {
   582         this(bytes, 0, bytes.length);
   583     }
   584 
   585     /**
   586      * Allocates a new string that contains the sequence of characters
   587      * currently contained in the string buffer argument. The contents of the
   588      * string buffer are copied; subsequent modification of the string buffer
   589      * does not affect the newly created string.
   590      *
   591      * @param  buffer
   592      *         A {@code StringBuffer}
   593      */
   594     public String(StringBuffer buffer) {
   595         this.r = buffer.toString();
   596     }
   597 
   598     /**
   599      * Allocates a new string that contains the sequence of characters
   600      * currently contained in the string builder argument. The contents of the
   601      * string builder are copied; subsequent modification of the string builder
   602      * does not affect the newly created string.
   603      *
   604      * <p> This constructor is provided to ease migration to {@code
   605      * StringBuilder}. Obtaining a string from a string builder via the {@code
   606      * toString} method is likely to run faster and is generally preferred.
   607      *
   608      * @param   builder
   609      *          A {@code StringBuilder}
   610      *
   611      * @since  1.5
   612      */
   613     public String(StringBuilder builder) {
   614         this.r = builder.toString();
   615     }
   616 
   617     /**
   618      * Returns the length of this string.
   619      * The length is equal to the number of <a href="Character.html#unicode">Unicode
   620      * code units</a> in the string.
   621      *
   622      * @return  the length of the sequence of characters represented by this
   623      *          object.
   624      */
   625     @JavaScriptBody(args = "self", body = "return self.toString().length;")
   626     public int length() {
   627         throw new UnsupportedOperationException();
   628     }
   629 
   630     /**
   631      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
   632      *
   633      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
   634      * <tt>false</tt>
   635      *
   636      * @since 1.6
   637      */
   638     @JavaScriptBody(args = "self", body="return self.toString().length === 0;")
   639     public boolean isEmpty() {
   640         return length() == 0;
   641     }
   642 
   643     /**
   644      * Returns the <code>char</code> value at the
   645      * specified index. An index ranges from <code>0</code> to
   646      * <code>length() - 1</code>. The first <code>char</code> value of the sequence
   647      * is at index <code>0</code>, the next at index <code>1</code>,
   648      * and so on, as for array indexing.
   649      *
   650      * <p>If the <code>char</code> value specified by the index is a
   651      * <a href="Character.html#unicode">surrogate</a>, the surrogate
   652      * value is returned.
   653      *
   654      * @param      index   the index of the <code>char</code> value.
   655      * @return     the <code>char</code> value at the specified index of this string.
   656      *             The first <code>char</code> value is at index <code>0</code>.
   657      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   658      *             argument is negative or not less than the length of this
   659      *             string.
   660      */
   661     @JavaScriptBody(args = { "self", "index" }, 
   662         body = "return self.toString().charCodeAt(index);"
   663     )
   664     public char charAt(int index) {
   665         throw new UnsupportedOperationException();
   666     }
   667 
   668     /**
   669      * Returns the character (Unicode code point) at the specified
   670      * index. The index refers to <code>char</code> values
   671      * (Unicode code units) and ranges from <code>0</code> to
   672      * {@link #length()}<code> - 1</code>.
   673      *
   674      * <p> If the <code>char</code> value specified at the given index
   675      * is in the high-surrogate range, the following index is less
   676      * than the length of this <code>String</code>, and the
   677      * <code>char</code> value at the following index is in the
   678      * low-surrogate range, then the supplementary code point
   679      * corresponding to this surrogate pair is returned. Otherwise,
   680      * the <code>char</code> value at the given index is returned.
   681      *
   682      * @param      index the index to the <code>char</code> values
   683      * @return     the code point value of the character at the
   684      *             <code>index</code>
   685      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   686      *             argument is negative or not less than the length of this
   687      *             string.
   688      * @since      1.5
   689      */
   690     public int codePointAt(int index) {
   691         if ((index < 0) || (index >= length())) {
   692             throw new StringIndexOutOfBoundsException(index);
   693         }
   694         return Character.codePointAtImpl(toCharArray(), offset() + index, offset() + length());
   695     }
   696 
   697     /**
   698      * Returns the character (Unicode code point) before the specified
   699      * index. The index refers to <code>char</code> values
   700      * (Unicode code units) and ranges from <code>1</code> to {@link
   701      * CharSequence#length() length}.
   702      *
   703      * <p> If the <code>char</code> value at <code>(index - 1)</code>
   704      * is in the low-surrogate range, <code>(index - 2)</code> is not
   705      * negative, and the <code>char</code> value at <code>(index -
   706      * 2)</code> is in the high-surrogate range, then the
   707      * supplementary code point value of the surrogate pair is
   708      * returned. If the <code>char</code> value at <code>index -
   709      * 1</code> is an unpaired low-surrogate or a high-surrogate, the
   710      * surrogate value is returned.
   711      *
   712      * @param     index the index following the code point that should be returned
   713      * @return    the Unicode code point value before the given index.
   714      * @exception IndexOutOfBoundsException if the <code>index</code>
   715      *            argument is less than 1 or greater than the length
   716      *            of this string.
   717      * @since     1.5
   718      */
   719     public int codePointBefore(int index) {
   720         int i = index - 1;
   721         if ((i < 0) || (i >= length())) {
   722             throw new StringIndexOutOfBoundsException(index);
   723         }
   724         return Character.codePointBeforeImpl(toCharArray(), offset() + index, offset());
   725     }
   726 
   727     /**
   728      * Returns the number of Unicode code points in the specified text
   729      * range of this <code>String</code>. The text range begins at the
   730      * specified <code>beginIndex</code> and extends to the
   731      * <code>char</code> at index <code>endIndex - 1</code>. Thus the
   732      * length (in <code>char</code>s) of the text range is
   733      * <code>endIndex-beginIndex</code>. Unpaired surrogates within
   734      * the text range count as one code point each.
   735      *
   736      * @param beginIndex the index to the first <code>char</code> of
   737      * the text range.
   738      * @param endIndex the index after the last <code>char</code> of
   739      * the text range.
   740      * @return the number of Unicode code points in the specified text
   741      * range
   742      * @exception IndexOutOfBoundsException if the
   743      * <code>beginIndex</code> is negative, or <code>endIndex</code>
   744      * is larger than the length of this <code>String</code>, or
   745      * <code>beginIndex</code> is larger than <code>endIndex</code>.
   746      * @since  1.5
   747      */
   748     public int codePointCount(int beginIndex, int endIndex) {
   749         if (beginIndex < 0 || endIndex > length() || beginIndex > endIndex) {
   750             throw new IndexOutOfBoundsException();
   751         }
   752         return Character.codePointCountImpl(toCharArray(), offset()+beginIndex, endIndex-beginIndex);
   753     }
   754 
   755     /**
   756      * Returns the index within this <code>String</code> that is
   757      * offset from the given <code>index</code> by
   758      * <code>codePointOffset</code> code points. Unpaired surrogates
   759      * within the text range given by <code>index</code> and
   760      * <code>codePointOffset</code> count as one code point each.
   761      *
   762      * @param index the index to be offset
   763      * @param codePointOffset the offset in code points
   764      * @return the index within this <code>String</code>
   765      * @exception IndexOutOfBoundsException if <code>index</code>
   766      *   is negative or larger then the length of this
   767      *   <code>String</code>, or if <code>codePointOffset</code> is positive
   768      *   and the substring starting with <code>index</code> has fewer
   769      *   than <code>codePointOffset</code> code points,
   770      *   or if <code>codePointOffset</code> is negative and the substring
   771      *   before <code>index</code> has fewer than the absolute value
   772      *   of <code>codePointOffset</code> code points.
   773      * @since 1.5
   774      */
   775     public int offsetByCodePoints(int index, int codePointOffset) {
   776         if (index < 0 || index > length()) {
   777             throw new IndexOutOfBoundsException();
   778         }
   779         return Character.offsetByCodePointsImpl(toCharArray(), offset(), length(),
   780                                                 offset()+index, codePointOffset) - offset();
   781     }
   782 
   783     /**
   784      * Copy characters from this string into dst starting at dstBegin.
   785      * This method doesn't perform any range checking.
   786      */
   787     @JavaScriptBody(args = { "self", "arr", "to" }, body = 
   788         "var s = self.toString();\n" +
   789         "for (var i = 0; i < s.length; i++) {\n" +
   790         "   arr[to++] = s[i];\n" +
   791         "}"
   792     )
   793     void getChars(char dst[], int dstBegin) {
   794         AbstractStringBuilder.arraycopy(toCharArray(), offset(), dst, dstBegin, length());
   795     }
   796 
   797     /**
   798      * Copies characters from this string into the destination character
   799      * array.
   800      * <p>
   801      * The first character to be copied is at index <code>srcBegin</code>;
   802      * the last character to be copied is at index <code>srcEnd-1</code>
   803      * (thus the total number of characters to be copied is
   804      * <code>srcEnd-srcBegin</code>). The characters are copied into the
   805      * subarray of <code>dst</code> starting at index <code>dstBegin</code>
   806      * and ending at index:
   807      * <p><blockquote><pre>
   808      *     dstbegin + (srcEnd-srcBegin) - 1
   809      * </pre></blockquote>
   810      *
   811      * @param      srcBegin   index of the first character in the string
   812      *                        to copy.
   813      * @param      srcEnd     index after the last character in the string
   814      *                        to copy.
   815      * @param      dst        the destination array.
   816      * @param      dstBegin   the start offset in the destination array.
   817      * @exception IndexOutOfBoundsException If any of the following
   818      *            is true:
   819      *            <ul><li><code>srcBegin</code> is negative.
   820      *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>
   821      *            <li><code>srcEnd</code> is greater than the length of this
   822      *                string
   823      *            <li><code>dstBegin</code> is negative
   824      *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than
   825      *                <code>dst.length</code></ul>
   826      */
   827     @JavaScriptBody(args = { "self", "beg", "end", "arr", "dst" }, body=
   828         "var s = self.toString();\n" +
   829         "while (beg < end) {\n" +
   830         "  arr[dst++] = s[beg++];\n" +
   831         "}\n"
   832     )
   833     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
   834         if (srcBegin < 0) {
   835             throw new StringIndexOutOfBoundsException(srcBegin);
   836         }
   837         if (srcEnd > length()) {
   838             throw new StringIndexOutOfBoundsException(srcEnd);
   839         }
   840         if (srcBegin > srcEnd) {
   841             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   842         }
   843         AbstractStringBuilder.arraycopy(toCharArray(), offset() + srcBegin, dst, dstBegin,
   844              srcEnd - srcBegin);
   845     }
   846 
   847     /**
   848      * Copies characters from this string into the destination byte array. Each
   849      * byte receives the 8 low-order bits of the corresponding character. The
   850      * eight high-order bits of each character are not copied and do not
   851      * participate in the transfer in any way.
   852      *
   853      * <p> The first character to be copied is at index {@code srcBegin}; the
   854      * last character to be copied is at index {@code srcEnd-1}.  The total
   855      * number of characters to be copied is {@code srcEnd-srcBegin}. The
   856      * characters, converted to bytes, are copied into the subarray of {@code
   857      * dst} starting at index {@code dstBegin} and ending at index:
   858      *
   859      * <blockquote><pre>
   860      *     dstbegin + (srcEnd-srcBegin) - 1
   861      * </pre></blockquote>
   862      *
   863      * @deprecated  This method does not properly convert characters into
   864      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   865      * {@link #getBytes()} method, which uses the platform's default charset.
   866      *
   867      * @param  srcBegin
   868      *         Index of the first character in the string to copy
   869      *
   870      * @param  srcEnd
   871      *         Index after the last character in the string to copy
   872      *
   873      * @param  dst
   874      *         The destination array
   875      *
   876      * @param  dstBegin
   877      *         The start offset in the destination array
   878      *
   879      * @throws  IndexOutOfBoundsException
   880      *          If any of the following is true:
   881      *          <ul>
   882      *            <li> {@code srcBegin} is negative
   883      *            <li> {@code srcBegin} is greater than {@code srcEnd}
   884      *            <li> {@code srcEnd} is greater than the length of this String
   885      *            <li> {@code dstBegin} is negative
   886      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
   887      *                 dst.length}
   888      *          </ul>
   889      */
   890     @Deprecated
   891     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
   892         if (srcBegin < 0) {
   893             throw new StringIndexOutOfBoundsException(srcBegin);
   894         }
   895         if (srcEnd > length()) {
   896             throw new StringIndexOutOfBoundsException(srcEnd);
   897         }
   898         if (srcBegin > srcEnd) {
   899             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   900         }
   901         int j = dstBegin;
   902         int n = offset() + srcEnd;
   903         int i = offset() + srcBegin;
   904         char[] val = toCharArray();   /* avoid getfield opcode */
   905 
   906         while (i < n) {
   907             dst[j++] = (byte)val[i++];
   908         }
   909     }
   910 
   911     /**
   912      * Encodes this {@code String} into a sequence of bytes using the named
   913      * charset, storing the result into a new byte array.
   914      *
   915      * <p> The behavior of this method when this string cannot be encoded in
   916      * the given charset is unspecified.  The {@link
   917      * java.nio.charset.CharsetEncoder} class should be used when more control
   918      * over the encoding process is required.
   919      *
   920      * @param  charsetName
   921      *         The name of a supported {@linkplain java.nio.charset.Charset
   922      *         charset}
   923      *
   924      * @return  The resultant byte array
   925      *
   926      * @throws  UnsupportedEncodingException
   927      *          If the named charset is not supported
   928      *
   929      * @since  JDK1.1
   930      */
   931 //    public byte[] getBytes(String charsetName)
   932 //        throws UnsupportedEncodingException
   933 //    {
   934 //        if (charsetName == null) throw new NullPointerException();
   935 //        return StringCoding.encode(charsetName, value, offset, count);
   936 //    }
   937 
   938     /**
   939      * Encodes this {@code String} into a sequence of bytes using the given
   940      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
   941      * new byte array.
   942      *
   943      * <p> This method always replaces malformed-input and unmappable-character
   944      * sequences with this charset's default replacement byte array.  The
   945      * {@link java.nio.charset.CharsetEncoder} class should be used when more
   946      * control over the encoding process is required.
   947      *
   948      * @param  charset
   949      *         The {@linkplain java.nio.charset.Charset} to be used to encode
   950      *         the {@code String}
   951      *
   952      * @return  The resultant byte array
   953      *
   954      * @since  1.6
   955      */
   956     /* don't want dep on Charset
   957     public byte[] getBytes(Charset charset) {
   958         if (charset == null) throw new NullPointerException();
   959         return StringCoding.encode(charset, value, offset, count);
   960     }
   961     */
   962 
   963     /**
   964      * Encodes this {@code String} into a sequence of bytes using the
   965      * platform's default charset, storing the result into a new byte array.
   966      *
   967      * <p> The behavior of this method when this string cannot be encoded in
   968      * the default charset is unspecified.  The {@link
   969      * java.nio.charset.CharsetEncoder} class should be used when more control
   970      * over the encoding process is required.
   971      *
   972      * @return  The resultant byte array
   973      *
   974      * @since      JDK1.1
   975      */
   976     public byte[] getBytes() {
   977         byte[] arr = new byte[length()];
   978         for (int i = 0; i < arr.length; i++) {
   979             final char v = charAt(i);
   980             arr[i] = (byte)v;
   981         }
   982         return arr;
   983     }
   984 
   985     /**
   986      * Compares this string to the specified object.  The result is {@code
   987      * true} if and only if the argument is not {@code null} and is a {@code
   988      * String} object that represents the same sequence of characters as this
   989      * object.
   990      *
   991      * @param  anObject
   992      *         The object to compare this {@code String} against
   993      *
   994      * @return  {@code true} if the given object represents a {@code String}
   995      *          equivalent to this string, {@code false} otherwise
   996      *
   997      * @see  #compareTo(String)
   998      * @see  #equalsIgnoreCase(String)
   999      */
  1000     @JavaScriptBody(args = { "self", "obj" }, body = 
  1001         "return obj.$instOf_java_lang_String && "
  1002         + "self.toString() === obj.toString();"
  1003     )
  1004     public boolean equals(Object anObject) {
  1005         if (this == anObject) {
  1006             return true;
  1007         }
  1008         if (anObject instanceof String) {
  1009             String anotherString = (String)anObject;
  1010             int n = length();
  1011             if (n == anotherString.length()) {
  1012                 char v1[] = toCharArray();
  1013                 char v2[] = anotherString.toCharArray();
  1014                 int i = offset();
  1015                 int j = anotherString.offset();
  1016                 while (n-- != 0) {
  1017                     if (v1[i++] != v2[j++])
  1018                         return false;
  1019                 }
  1020                 return true;
  1021             }
  1022         }
  1023         return false;
  1024     }
  1025 
  1026     /**
  1027      * Compares this string to the specified {@code StringBuffer}.  The result
  1028      * is {@code true} if and only if this {@code String} represents the same
  1029      * sequence of characters as the specified {@code StringBuffer}.
  1030      *
  1031      * @param  sb
  1032      *         The {@code StringBuffer} to compare this {@code String} against
  1033      *
  1034      * @return  {@code true} if this {@code String} represents the same
  1035      *          sequence of characters as the specified {@code StringBuffer},
  1036      *          {@code false} otherwise
  1037      *
  1038      * @since  1.4
  1039      */
  1040     public boolean contentEquals(StringBuffer sb) {
  1041         synchronized(sb) {
  1042             return contentEquals((CharSequence)sb);
  1043         }
  1044     }
  1045 
  1046     /**
  1047      * Compares this string to the specified {@code CharSequence}.  The result
  1048      * is {@code true} if and only if this {@code String} represents the same
  1049      * sequence of char values as the specified sequence.
  1050      *
  1051      * @param  cs
  1052      *         The sequence to compare this {@code String} against
  1053      *
  1054      * @return  {@code true} if this {@code String} represents the same
  1055      *          sequence of char values as the specified sequence, {@code
  1056      *          false} otherwise
  1057      *
  1058      * @since  1.5
  1059      */
  1060     public boolean contentEquals(CharSequence cs) {
  1061         if (length() != cs.length())
  1062             return false;
  1063         // Argument is a StringBuffer, StringBuilder
  1064         if (cs instanceof AbstractStringBuilder) {
  1065             char v1[] = toCharArray();
  1066             char v2[] = ((AbstractStringBuilder)cs).getValue();
  1067             int i = offset();
  1068             int j = 0;
  1069             int n = length();
  1070             while (n-- != 0) {
  1071                 if (v1[i++] != v2[j++])
  1072                     return false;
  1073             }
  1074             return true;
  1075         }
  1076         // Argument is a String
  1077         if (cs.equals(this))
  1078             return true;
  1079         // Argument is a generic CharSequence
  1080         char v1[] = toCharArray();
  1081         int i = offset();
  1082         int j = 0;
  1083         int n = length();
  1084         while (n-- != 0) {
  1085             if (v1[i++] != cs.charAt(j++))
  1086                 return false;
  1087         }
  1088         return true;
  1089     }
  1090 
  1091     /**
  1092      * Compares this {@code String} to another {@code String}, ignoring case
  1093      * considerations.  Two strings are considered equal ignoring case if they
  1094      * are of the same length and corresponding characters in the two strings
  1095      * are equal ignoring case.
  1096      *
  1097      * <p> Two characters {@code c1} and {@code c2} are considered the same
  1098      * ignoring case if at least one of the following is true:
  1099      * <ul>
  1100      *   <li> The two characters are the same (as compared by the
  1101      *        {@code ==} operator)
  1102      *   <li> Applying the method {@link
  1103      *        java.lang.Character#toUpperCase(char)} to each character
  1104      *        produces the same result
  1105      *   <li> Applying the method {@link
  1106      *        java.lang.Character#toLowerCase(char)} to each character
  1107      *        produces the same result
  1108      * </ul>
  1109      *
  1110      * @param  anotherString
  1111      *         The {@code String} to compare this {@code String} against
  1112      *
  1113      * @return  {@code true} if the argument is not {@code null} and it
  1114      *          represents an equivalent {@code String} ignoring case; {@code
  1115      *          false} otherwise
  1116      *
  1117      * @see  #equals(Object)
  1118      */
  1119     public boolean equalsIgnoreCase(String anotherString) {
  1120         return (this == anotherString) ? true :
  1121                (anotherString != null) && (anotherString.length() == length()) &&
  1122                regionMatches(true, 0, anotherString, 0, length());
  1123     }
  1124 
  1125     /**
  1126      * Compares two strings lexicographically.
  1127      * The comparison is based on the Unicode value of each character in
  1128      * the strings. The character sequence represented by this
  1129      * <code>String</code> object is compared lexicographically to the
  1130      * character sequence represented by the argument string. The result is
  1131      * a negative integer if this <code>String</code> object
  1132      * lexicographically precedes the argument string. The result is a
  1133      * positive integer if this <code>String</code> object lexicographically
  1134      * follows the argument string. The result is zero if the strings
  1135      * are equal; <code>compareTo</code> returns <code>0</code> exactly when
  1136      * the {@link #equals(Object)} method would return <code>true</code>.
  1137      * <p>
  1138      * This is the definition of lexicographic ordering. If two strings are
  1139      * different, then either they have different characters at some index
  1140      * that is a valid index for both strings, or their lengths are different,
  1141      * or both. If they have different characters at one or more index
  1142      * positions, let <i>k</i> be the smallest such index; then the string
  1143      * whose character at position <i>k</i> has the smaller value, as
  1144      * determined by using the &lt; operator, lexicographically precedes the
  1145      * other string. In this case, <code>compareTo</code> returns the
  1146      * difference of the two character values at position <code>k</code> in
  1147      * the two string -- that is, the value:
  1148      * <blockquote><pre>
  1149      * this.charAt(k)-anotherString.charAt(k)
  1150      * </pre></blockquote>
  1151      * If there is no index position at which they differ, then the shorter
  1152      * string lexicographically precedes the longer string. In this case,
  1153      * <code>compareTo</code> returns the difference of the lengths of the
  1154      * strings -- that is, the value:
  1155      * <blockquote><pre>
  1156      * this.length()-anotherString.length()
  1157      * </pre></blockquote>
  1158      *
  1159      * @param   anotherString   the <code>String</code> to be compared.
  1160      * @return  the value <code>0</code> if the argument string is equal to
  1161      *          this string; a value less than <code>0</code> if this string
  1162      *          is lexicographically less than the string argument; and a
  1163      *          value greater than <code>0</code> if this string is
  1164      *          lexicographically greater than the string argument.
  1165      */
  1166     public int compareTo(String anotherString) {
  1167         int len1 = length();
  1168         int len2 = anotherString.length();
  1169         int n = Math.min(len1, len2);
  1170         char v1[] = toCharArray();
  1171         char v2[] = anotherString.toCharArray();
  1172         int i = offset();
  1173         int j = anotherString.offset();
  1174 
  1175         if (i == j) {
  1176             int k = i;
  1177             int lim = n + i;
  1178             while (k < lim) {
  1179                 char c1 = v1[k];
  1180                 char c2 = v2[k];
  1181                 if (c1 != c2) {
  1182                     return c1 - c2;
  1183                 }
  1184                 k++;
  1185             }
  1186         } else {
  1187             while (n-- != 0) {
  1188                 char c1 = v1[i++];
  1189                 char c2 = v2[j++];
  1190                 if (c1 != c2) {
  1191                     return c1 - c2;
  1192                 }
  1193             }
  1194         }
  1195         return len1 - len2;
  1196     }
  1197 
  1198     /**
  1199      * A Comparator that orders <code>String</code> objects as by
  1200      * <code>compareToIgnoreCase</code>. This comparator is serializable.
  1201      * <p>
  1202      * Note that this Comparator does <em>not</em> take locale into account,
  1203      * and will result in an unsatisfactory ordering for certain locales.
  1204      * The java.text package provides <em>Collators</em> to allow
  1205      * locale-sensitive ordering.
  1206      *
  1207      * @see     java.text.Collator#compare(String, String)
  1208      * @since   1.2
  1209      */
  1210     public static final Comparator<String> CASE_INSENSITIVE_ORDER
  1211                                          = new CaseInsensitiveComparator();
  1212 
  1213     private static int offset() {
  1214         return 0;
  1215     }
  1216     
  1217     private static class CaseInsensitiveComparator
  1218                          implements Comparator<String>, java.io.Serializable {
  1219         // use serialVersionUID from JDK 1.2.2 for interoperability
  1220         private static final long serialVersionUID = 8575799808933029326L;
  1221 
  1222         public int compare(String s1, String s2) {
  1223             int n1 = s1.length();
  1224             int n2 = s2.length();
  1225             int min = Math.min(n1, n2);
  1226             for (int i = 0; i < min; i++) {
  1227                 char c1 = s1.charAt(i);
  1228                 char c2 = s2.charAt(i);
  1229                 if (c1 != c2) {
  1230                     c1 = Character.toUpperCase(c1);
  1231                     c2 = Character.toUpperCase(c2);
  1232                     if (c1 != c2) {
  1233                         c1 = Character.toLowerCase(c1);
  1234                         c2 = Character.toLowerCase(c2);
  1235                         if (c1 != c2) {
  1236                             // No overflow because of numeric promotion
  1237                             return c1 - c2;
  1238                         }
  1239                     }
  1240                 }
  1241             }
  1242             return n1 - n2;
  1243         }
  1244     }
  1245 
  1246     /**
  1247      * Compares two strings lexicographically, ignoring case
  1248      * differences. This method returns an integer whose sign is that of
  1249      * calling <code>compareTo</code> with normalized versions of the strings
  1250      * where case differences have been eliminated by calling
  1251      * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on
  1252      * each character.
  1253      * <p>
  1254      * Note that this method does <em>not</em> take locale into account,
  1255      * and will result in an unsatisfactory ordering for certain locales.
  1256      * The java.text package provides <em>collators</em> to allow
  1257      * locale-sensitive ordering.
  1258      *
  1259      * @param   str   the <code>String</code> to be compared.
  1260      * @return  a negative integer, zero, or a positive integer as the
  1261      *          specified String is greater than, equal to, or less
  1262      *          than this String, ignoring case considerations.
  1263      * @see     java.text.Collator#compare(String, String)
  1264      * @since   1.2
  1265      */
  1266     public int compareToIgnoreCase(String str) {
  1267         return CASE_INSENSITIVE_ORDER.compare(this, str);
  1268     }
  1269 
  1270     /**
  1271      * Tests if two string regions are equal.
  1272      * <p>
  1273      * A substring of this <tt>String</tt> object is compared to a substring
  1274      * of the argument other. The result is true if these substrings
  1275      * represent identical character sequences. The substring of this
  1276      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
  1277      * and has length <tt>len</tt>. The substring of other to be compared
  1278      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
  1279      * result is <tt>false</tt> if and only if at least one of the following
  1280      * is true:
  1281      * <ul><li><tt>toffset</tt> is negative.
  1282      * <li><tt>ooffset</tt> is negative.
  1283      * <li><tt>toffset+len</tt> is greater than the length of this
  1284      * <tt>String</tt> object.
  1285      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1286      * argument.
  1287      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
  1288      * such that:
  1289      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
  1290      * </ul>
  1291      *
  1292      * @param   toffset   the starting offset of the subregion in this string.
  1293      * @param   other     the string argument.
  1294      * @param   ooffset   the starting offset of the subregion in the string
  1295      *                    argument.
  1296      * @param   len       the number of characters to compare.
  1297      * @return  <code>true</code> if the specified subregion of this string
  1298      *          exactly matches the specified subregion of the string argument;
  1299      *          <code>false</code> otherwise.
  1300      */
  1301     public boolean regionMatches(int toffset, String other, int ooffset,
  1302                                  int len) {
  1303         char ta[] = toCharArray();
  1304         int to = offset() + toffset;
  1305         char pa[] = other.toCharArray();
  1306         int po = other.offset() + ooffset;
  1307         // Note: toffset, ooffset, or len might be near -1>>>1.
  1308         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)length() - len)
  1309             || (ooffset > (long)other.length() - len)) {
  1310             return false;
  1311         }
  1312         while (len-- > 0) {
  1313             if (ta[to++] != pa[po++]) {
  1314                 return false;
  1315             }
  1316         }
  1317         return true;
  1318     }
  1319 
  1320     /**
  1321      * Tests if two string regions are equal.
  1322      * <p>
  1323      * A substring of this <tt>String</tt> object is compared to a substring
  1324      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
  1325      * substrings represent character sequences that are the same, ignoring
  1326      * case if and only if <tt>ignoreCase</tt> is true. The substring of
  1327      * this <tt>String</tt> object to be compared begins at index
  1328      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
  1329      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
  1330      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
  1331      * at least one of the following is true:
  1332      * <ul><li><tt>toffset</tt> is negative.
  1333      * <li><tt>ooffset</tt> is negative.
  1334      * <li><tt>toffset+len</tt> is greater than the length of this
  1335      * <tt>String</tt> object.
  1336      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1337      * argument.
  1338      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
  1339      * integer <i>k</i> less than <tt>len</tt> such that:
  1340      * <blockquote><pre>
  1341      * this.charAt(toffset+k) != other.charAt(ooffset+k)
  1342      * </pre></blockquote>
  1343      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
  1344      * integer <i>k</i> less than <tt>len</tt> such that:
  1345      * <blockquote><pre>
  1346      * Character.toLowerCase(this.charAt(toffset+k)) !=
  1347                Character.toLowerCase(other.charAt(ooffset+k))
  1348      * </pre></blockquote>
  1349      * and:
  1350      * <blockquote><pre>
  1351      * Character.toUpperCase(this.charAt(toffset+k)) !=
  1352      *         Character.toUpperCase(other.charAt(ooffset+k))
  1353      * </pre></blockquote>
  1354      * </ul>
  1355      *
  1356      * @param   ignoreCase   if <code>true</code>, ignore case when comparing
  1357      *                       characters.
  1358      * @param   toffset      the starting offset of the subregion in this
  1359      *                       string.
  1360      * @param   other        the string argument.
  1361      * @param   ooffset      the starting offset of the subregion in the string
  1362      *                       argument.
  1363      * @param   len          the number of characters to compare.
  1364      * @return  <code>true</code> if the specified subregion of this string
  1365      *          matches the specified subregion of the string argument;
  1366      *          <code>false</code> otherwise. Whether the matching is exact
  1367      *          or case insensitive depends on the <code>ignoreCase</code>
  1368      *          argument.
  1369      */
  1370     public boolean regionMatches(boolean ignoreCase, int toffset,
  1371                            String other, int ooffset, int len) {
  1372         char ta[] = toCharArray();
  1373         int to = offset() + toffset;
  1374         char pa[] = other.toCharArray();
  1375         int po = other.offset() + ooffset;
  1376         // Note: toffset, ooffset, or len might be near -1>>>1.
  1377         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)length() - len) ||
  1378                 (ooffset > (long)other.length() - len)) {
  1379             return false;
  1380         }
  1381         while (len-- > 0) {
  1382             char c1 = ta[to++];
  1383             char c2 = pa[po++];
  1384             if (c1 == c2) {
  1385                 continue;
  1386             }
  1387             if (ignoreCase) {
  1388                 // If characters don't match but case may be ignored,
  1389                 // try converting both characters to uppercase.
  1390                 // If the results match, then the comparison scan should
  1391                 // continue.
  1392                 char u1 = Character.toUpperCase(c1);
  1393                 char u2 = Character.toUpperCase(c2);
  1394                 if (u1 == u2) {
  1395                     continue;
  1396                 }
  1397                 // Unfortunately, conversion to uppercase does not work properly
  1398                 // for the Georgian alphabet, which has strange rules about case
  1399                 // conversion.  So we need to make one last check before
  1400                 // exiting.
  1401                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
  1402                     continue;
  1403                 }
  1404             }
  1405             return false;
  1406         }
  1407         return true;
  1408     }
  1409 
  1410     /**
  1411      * Tests if the substring of this string beginning at the
  1412      * specified index starts with the specified prefix.
  1413      *
  1414      * @param   prefix    the prefix.
  1415      * @param   toffset   where to begin looking in this string.
  1416      * @return  <code>true</code> if the character sequence represented by the
  1417      *          argument is a prefix of the substring of this object starting
  1418      *          at index <code>toffset</code>; <code>false</code> otherwise.
  1419      *          The result is <code>false</code> if <code>toffset</code> is
  1420      *          negative or greater than the length of this
  1421      *          <code>String</code> object; otherwise the result is the same
  1422      *          as the result of the expression
  1423      *          <pre>
  1424      *          this.substring(toffset).startsWith(prefix)
  1425      *          </pre>
  1426      */
  1427     @JavaScriptBody(args = { "self", "find", "from" }, body=
  1428         "find = find.toString();\n" +
  1429         "return self.toString().substring(from, from + find.length) === find;\n"
  1430     )
  1431     public boolean startsWith(String prefix, int toffset) {
  1432         char ta[] = toCharArray();
  1433         int to = offset() + toffset;
  1434         char pa[] = prefix.toCharArray();
  1435         int po = prefix.offset();
  1436         int pc = prefix.length();
  1437         // Note: toffset might be near -1>>>1.
  1438         if ((toffset < 0) || (toffset > length() - pc)) {
  1439             return false;
  1440         }
  1441         while (--pc >= 0) {
  1442             if (ta[to++] != pa[po++]) {
  1443                 return false;
  1444             }
  1445         }
  1446         return true;
  1447     }
  1448 
  1449     /**
  1450      * Tests if this string starts with the specified prefix.
  1451      *
  1452      * @param   prefix   the prefix.
  1453      * @return  <code>true</code> if the character sequence represented by the
  1454      *          argument is a prefix of the character sequence represented by
  1455      *          this string; <code>false</code> otherwise.
  1456      *          Note also that <code>true</code> will be returned if the
  1457      *          argument is an empty string or is equal to this
  1458      *          <code>String</code> object as determined by the
  1459      *          {@link #equals(Object)} method.
  1460      * @since   1. 0
  1461      */
  1462     public boolean startsWith(String prefix) {
  1463         return startsWith(prefix, 0);
  1464     }
  1465 
  1466     /**
  1467      * Tests if this string ends with the specified suffix.
  1468      *
  1469      * @param   suffix   the suffix.
  1470      * @return  <code>true</code> if the character sequence represented by the
  1471      *          argument is a suffix of the character sequence represented by
  1472      *          this object; <code>false</code> otherwise. Note that the
  1473      *          result will be <code>true</code> if the argument is the
  1474      *          empty string or is equal to this <code>String</code> object
  1475      *          as determined by the {@link #equals(Object)} method.
  1476      */
  1477     public boolean endsWith(String suffix) {
  1478         return startsWith(suffix, length() - suffix.length());
  1479     }
  1480 
  1481     /**
  1482      * Returns a hash code for this string. The hash code for a
  1483      * <code>String</code> object is computed as
  1484      * <blockquote><pre>
  1485      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
  1486      * </pre></blockquote>
  1487      * using <code>int</code> arithmetic, where <code>s[i]</code> is the
  1488      * <i>i</i>th character of the string, <code>n</code> is the length of
  1489      * the string, and <code>^</code> indicates exponentiation.
  1490      * (The hash value of the empty string is zero.)
  1491      *
  1492      * @return  a hash code value for this object.
  1493      */
  1494     @JavaScriptBody(args = "self", body = 
  1495         "var h = 0;\n" +
  1496         "var s = self.toString();\n" +
  1497         "for (var i = 0; i < s.length; i++) {\n" +
  1498         "  var high = (h >> 16) & 0xffff, low = h & 0xffff;\n" +
  1499         "  h = (((((31 * high) & 0xffff) << 16) >>> 0) + (31 * low) + s.charCodeAt(i)) & 0xffffffff;\n" +
  1500         "}\n" +
  1501         "return h;\n"
  1502     )
  1503     public int hashCode() {
  1504         int h = hash;
  1505         if (h == 0 && length() > 0) {
  1506             int off = offset();
  1507             char val[] = toCharArray();
  1508             int len = length();
  1509 
  1510             for (int i = 0; i < len; i++) {
  1511                 h = 31*h + val[off++];
  1512             }
  1513             hash = h;
  1514         }
  1515         return h;
  1516     }
  1517 
  1518     /**
  1519      * Returns the index within this string of the first occurrence of
  1520      * the specified character. If a character with value
  1521      * <code>ch</code> occurs in the character sequence represented by
  1522      * this <code>String</code> object, then the index (in Unicode
  1523      * code units) of the first such occurrence is returned. For
  1524      * values of <code>ch</code> in the range from 0 to 0xFFFF
  1525      * (inclusive), this is the smallest value <i>k</i> such that:
  1526      * <blockquote><pre>
  1527      * this.charAt(<i>k</i>) == ch
  1528      * </pre></blockquote>
  1529      * is true. For other values of <code>ch</code>, it is the
  1530      * smallest value <i>k</i> such that:
  1531      * <blockquote><pre>
  1532      * this.codePointAt(<i>k</i>) == ch
  1533      * </pre></blockquote>
  1534      * is true. In either case, if no such character occurs in this
  1535      * string, then <code>-1</code> is returned.
  1536      *
  1537      * @param   ch   a character (Unicode code point).
  1538      * @return  the index of the first occurrence of the character in the
  1539      *          character sequence represented by this object, or
  1540      *          <code>-1</code> if the character does not occur.
  1541      */
  1542     public int indexOf(int ch) {
  1543         return indexOf(ch, 0);
  1544     }
  1545 
  1546     /**
  1547      * Returns the index within this string of the first occurrence of the
  1548      * specified character, starting the search at the specified index.
  1549      * <p>
  1550      * If a character with value <code>ch</code> occurs in the
  1551      * character sequence represented by this <code>String</code>
  1552      * object at an index no smaller than <code>fromIndex</code>, then
  1553      * the index of the first such occurrence is returned. For values
  1554      * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),
  1555      * this is the smallest value <i>k</i> such that:
  1556      * <blockquote><pre>
  1557      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1558      * </pre></blockquote>
  1559      * is true. For other values of <code>ch</code>, it is the
  1560      * smallest value <i>k</i> such that:
  1561      * <blockquote><pre>
  1562      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1563      * </pre></blockquote>
  1564      * is true. In either case, if no such character occurs in this
  1565      * string at or after position <code>fromIndex</code>, then
  1566      * <code>-1</code> is returned.
  1567      *
  1568      * <p>
  1569      * There is no restriction on the value of <code>fromIndex</code>. If it
  1570      * is negative, it has the same effect as if it were zero: this entire
  1571      * string may be searched. If it is greater than the length of this
  1572      * string, it has the same effect as if it were equal to the length of
  1573      * this string: <code>-1</code> is returned.
  1574      *
  1575      * <p>All indices are specified in <code>char</code> values
  1576      * (Unicode code units).
  1577      *
  1578      * @param   ch          a character (Unicode code point).
  1579      * @param   fromIndex   the index to start the search from.
  1580      * @return  the index of the first occurrence of the character in the
  1581      *          character sequence represented by this object that is greater
  1582      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1583      *          if the character does not occur.
  1584      */
  1585     @JavaScriptBody(args = { "self", "ch", "from" }, body = 
  1586         "if (typeof ch === 'number') ch = String.fromCharCode(ch);\n" +
  1587         "return self.toString().indexOf(ch, from);\n"
  1588     )
  1589     public int indexOf(int ch, int fromIndex) {
  1590         if (fromIndex < 0) {
  1591             fromIndex = 0;
  1592         } else if (fromIndex >= length()) {
  1593             // Note: fromIndex might be near -1>>>1.
  1594             return -1;
  1595         }
  1596 
  1597         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1598             // handle most cases here (ch is a BMP code point or a
  1599             // negative value (invalid code point))
  1600             final char[] value = this.toCharArray();
  1601             final int offset = this.offset();
  1602             final int max = offset + length();
  1603             for (int i = offset + fromIndex; i < max ; i++) {
  1604                 if (value[i] == ch) {
  1605                     return i - offset;
  1606                 }
  1607             }
  1608             return -1;
  1609         } else {
  1610             return indexOfSupplementary(ch, fromIndex);
  1611         }
  1612     }
  1613 
  1614     /**
  1615      * Handles (rare) calls of indexOf with a supplementary character.
  1616      */
  1617     private int indexOfSupplementary(int ch, int fromIndex) {
  1618         if (Character.isValidCodePoint(ch)) {
  1619             final char[] value = this.toCharArray();
  1620             final int offset = this.offset();
  1621             final char hi = Character.highSurrogate(ch);
  1622             final char lo = Character.lowSurrogate(ch);
  1623             final int max = offset + length() - 1;
  1624             for (int i = offset + fromIndex; i < max; i++) {
  1625                 if (value[i] == hi && value[i+1] == lo) {
  1626                     return i - offset;
  1627                 }
  1628             }
  1629         }
  1630         return -1;
  1631     }
  1632 
  1633     /**
  1634      * Returns the index within this string of the last occurrence of
  1635      * the specified character. For values of <code>ch</code> in the
  1636      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
  1637      * units) returned is the largest value <i>k</i> such that:
  1638      * <blockquote><pre>
  1639      * this.charAt(<i>k</i>) == ch
  1640      * </pre></blockquote>
  1641      * is true. For other values of <code>ch</code>, it is the
  1642      * largest value <i>k</i> such that:
  1643      * <blockquote><pre>
  1644      * this.codePointAt(<i>k</i>) == ch
  1645      * </pre></blockquote>
  1646      * is true.  In either case, if no such character occurs in this
  1647      * string, then <code>-1</code> is returned.  The
  1648      * <code>String</code> is searched backwards starting at the last
  1649      * character.
  1650      *
  1651      * @param   ch   a character (Unicode code point).
  1652      * @return  the index of the last occurrence of the character in the
  1653      *          character sequence represented by this object, or
  1654      *          <code>-1</code> if the character does not occur.
  1655      */
  1656     public int lastIndexOf(int ch) {
  1657         return lastIndexOf(ch, length() - 1);
  1658     }
  1659 
  1660     /**
  1661      * Returns the index within this string of the last occurrence of
  1662      * the specified character, searching backward starting at the
  1663      * specified index. For values of <code>ch</code> in the range
  1664      * from 0 to 0xFFFF (inclusive), the index returned is the largest
  1665      * value <i>k</i> such that:
  1666      * <blockquote><pre>
  1667      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1668      * </pre></blockquote>
  1669      * is true. For other values of <code>ch</code>, it is the
  1670      * largest value <i>k</i> such that:
  1671      * <blockquote><pre>
  1672      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1673      * </pre></blockquote>
  1674      * is true. In either case, if no such character occurs in this
  1675      * string at or before position <code>fromIndex</code>, then
  1676      * <code>-1</code> is returned.
  1677      *
  1678      * <p>All indices are specified in <code>char</code> values
  1679      * (Unicode code units).
  1680      *
  1681      * @param   ch          a character (Unicode code point).
  1682      * @param   fromIndex   the index to start the search from. There is no
  1683      *          restriction on the value of <code>fromIndex</code>. If it is
  1684      *          greater than or equal to the length of this string, it has
  1685      *          the same effect as if it were equal to one less than the
  1686      *          length of this string: this entire string may be searched.
  1687      *          If it is negative, it has the same effect as if it were -1:
  1688      *          -1 is returned.
  1689      * @return  the index of the last occurrence of the character in the
  1690      *          character sequence represented by this object that is less
  1691      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1692      *          if the character does not occur before that point.
  1693      */
  1694     @JavaScriptBody(args = { "self", "ch", "from" }, body = 
  1695         "if (typeof ch === 'number') ch = String.fromCharCode(ch);\n" +
  1696         "return self.toString().lastIndexOf(ch, from);"
  1697     )
  1698     public int lastIndexOf(int ch, int fromIndex) {
  1699         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1700             // handle most cases here (ch is a BMP code point or a
  1701             // negative value (invalid code point))
  1702             final char[] value = this.toCharArray();
  1703             final int offset = this.offset();
  1704             int i = offset + Math.min(fromIndex, length() - 1);
  1705             for (; i >= offset ; i--) {
  1706                 if (value[i] == ch) {
  1707                     return i - offset;
  1708                 }
  1709             }
  1710             return -1;
  1711         } else {
  1712             return lastIndexOfSupplementary(ch, fromIndex);
  1713         }
  1714     }
  1715 
  1716     /**
  1717      * Handles (rare) calls of lastIndexOf with a supplementary character.
  1718      */
  1719     private int lastIndexOfSupplementary(int ch, int fromIndex) {
  1720         if (Character.isValidCodePoint(ch)) {
  1721             final char[] value = this.toCharArray();
  1722             final int offset = this.offset();
  1723             char hi = Character.highSurrogate(ch);
  1724             char lo = Character.lowSurrogate(ch);
  1725             int i = offset + Math.min(fromIndex, length() - 2);
  1726             for (; i >= offset; i--) {
  1727                 if (value[i] == hi && value[i+1] == lo) {
  1728                     return i - offset;
  1729                 }
  1730             }
  1731         }
  1732         return -1;
  1733     }
  1734 
  1735     /**
  1736      * Returns the index within this string of the first occurrence of the
  1737      * specified substring.
  1738      *
  1739      * <p>The returned index is the smallest value <i>k</i> for which:
  1740      * <blockquote><pre>
  1741      * this.startsWith(str, <i>k</i>)
  1742      * </pre></blockquote>
  1743      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1744      *
  1745      * @param   str   the substring to search for.
  1746      * @return  the index of the first occurrence of the specified substring,
  1747      *          or {@code -1} if there is no such occurrence.
  1748      */
  1749     public int indexOf(String str) {
  1750         return indexOf(str, 0);
  1751     }
  1752 
  1753     /**
  1754      * Returns the index within this string of the first occurrence of the
  1755      * specified substring, starting at the specified index.
  1756      *
  1757      * <p>The returned index is the smallest value <i>k</i> for which:
  1758      * <blockquote><pre>
  1759      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
  1760      * </pre></blockquote>
  1761      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1762      *
  1763      * @param   str         the substring to search for.
  1764      * @param   fromIndex   the index from which to start the search.
  1765      * @return  the index of the first occurrence of the specified substring,
  1766      *          starting at the specified index,
  1767      *          or {@code -1} if there is no such occurrence.
  1768      */
  1769     @JavaScriptBody(args = { "self", "str", "fromIndex" }, body =
  1770         "return self.toString().indexOf(str.toString(), fromIndex);"
  1771     )
  1772     public int indexOf(String str, int fromIndex) {
  1773         return indexOf(toCharArray(), offset(), length(), str.toCharArray(), str.offset(), str.length(), fromIndex);
  1774     }
  1775 
  1776     /**
  1777      * Code shared by String and StringBuffer to do searches. The
  1778      * source is the character array being searched, and the target
  1779      * is the string being searched for.
  1780      *
  1781      * @param   source       the characters being searched.
  1782      * @param   sourceOffset offset of the source string.
  1783      * @param   sourceCount  count of the source string.
  1784      * @param   target       the characters being searched for.
  1785      * @param   targetOffset offset of the target string.
  1786      * @param   targetCount  count of the target string.
  1787      * @param   fromIndex    the index to begin searching from.
  1788      */
  1789     static int indexOf(char[] source, int sourceOffset, int sourceCount,
  1790                        char[] target, int targetOffset, int targetCount,
  1791                        int fromIndex) {
  1792         if (fromIndex >= sourceCount) {
  1793             return (targetCount == 0 ? sourceCount : -1);
  1794         }
  1795         if (fromIndex < 0) {
  1796             fromIndex = 0;
  1797         }
  1798         if (targetCount == 0) {
  1799             return fromIndex;
  1800         }
  1801 
  1802         char first  = target[targetOffset];
  1803         int max = sourceOffset + (sourceCount - targetCount);
  1804 
  1805         for (int i = sourceOffset + fromIndex; i <= max; i++) {
  1806             /* Look for first character. */
  1807             if (source[i] != first) {
  1808                 while (++i <= max && source[i] != first);
  1809             }
  1810 
  1811             /* Found first character, now look at the rest of v2 */
  1812             if (i <= max) {
  1813                 int j = i + 1;
  1814                 int end = j + targetCount - 1;
  1815                 for (int k = targetOffset + 1; j < end && source[j] ==
  1816                          target[k]; j++, k++);
  1817 
  1818                 if (j == end) {
  1819                     /* Found whole string. */
  1820                     return i - sourceOffset;
  1821                 }
  1822             }
  1823         }
  1824         return -1;
  1825     }
  1826 
  1827     /**
  1828      * Returns the index within this string of the last occurrence of the
  1829      * specified substring.  The last occurrence of the empty string ""
  1830      * is considered to occur at the index value {@code this.length()}.
  1831      *
  1832      * <p>The returned index is the largest value <i>k</i> for which:
  1833      * <blockquote><pre>
  1834      * this.startsWith(str, <i>k</i>)
  1835      * </pre></blockquote>
  1836      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1837      *
  1838      * @param   str   the substring to search for.
  1839      * @return  the index of the last occurrence of the specified substring,
  1840      *          or {@code -1} if there is no such occurrence.
  1841      */
  1842     public int lastIndexOf(String str) {
  1843         return lastIndexOf(str, length());
  1844     }
  1845 
  1846     /**
  1847      * Returns the index within this string of the last occurrence of the
  1848      * specified substring, searching backward starting at the specified index.
  1849      *
  1850      * <p>The returned index is the largest value <i>k</i> for which:
  1851      * <blockquote><pre>
  1852      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
  1853      * </pre></blockquote>
  1854      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1855      *
  1856      * @param   str         the substring to search for.
  1857      * @param   fromIndex   the index to start the search from.
  1858      * @return  the index of the last occurrence of the specified substring,
  1859      *          searching backward from the specified index,
  1860      *          or {@code -1} if there is no such occurrence.
  1861      */
  1862     @JavaScriptBody(args = { "self", "s", "from" }, body = 
  1863         "return self.toString().lastIndexOf(s.toString(), from);"
  1864     )
  1865     public int lastIndexOf(String str, int fromIndex) {
  1866         return lastIndexOf(toCharArray(), offset(), length(), str.toCharArray(), str.offset(), str.length(), fromIndex);
  1867     }
  1868 
  1869     /**
  1870      * Code shared by String and StringBuffer to do searches. The
  1871      * source is the character array being searched, and the target
  1872      * is the string being searched for.
  1873      *
  1874      * @param   source       the characters being searched.
  1875      * @param   sourceOffset offset of the source string.
  1876      * @param   sourceCount  count of the source string.
  1877      * @param   target       the characters being searched for.
  1878      * @param   targetOffset offset of the target string.
  1879      * @param   targetCount  count of the target string.
  1880      * @param   fromIndex    the index to begin searching from.
  1881      */
  1882     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
  1883                            char[] target, int targetOffset, int targetCount,
  1884                            int fromIndex) {
  1885         /*
  1886          * Check arguments; return immediately where possible. For
  1887          * consistency, don't check for null str.
  1888          */
  1889         int rightIndex = sourceCount - targetCount;
  1890         if (fromIndex < 0) {
  1891             return -1;
  1892         }
  1893         if (fromIndex > rightIndex) {
  1894             fromIndex = rightIndex;
  1895         }
  1896         /* Empty string always matches. */
  1897         if (targetCount == 0) {
  1898             return fromIndex;
  1899         }
  1900 
  1901         int strLastIndex = targetOffset + targetCount - 1;
  1902         char strLastChar = target[strLastIndex];
  1903         int min = sourceOffset + targetCount - 1;
  1904         int i = min + fromIndex;
  1905 
  1906     startSearchForLastChar:
  1907         while (true) {
  1908             while (i >= min && source[i] != strLastChar) {
  1909                 i--;
  1910             }
  1911             if (i < min) {
  1912                 return -1;
  1913             }
  1914             int j = i - 1;
  1915             int start = j - (targetCount - 1);
  1916             int k = strLastIndex - 1;
  1917 
  1918             while (j > start) {
  1919                 if (source[j--] != target[k--]) {
  1920                     i--;
  1921                     continue startSearchForLastChar;
  1922                 }
  1923             }
  1924             return start - sourceOffset + 1;
  1925         }
  1926     }
  1927 
  1928     /**
  1929      * Returns a new string that is a substring of this string. The
  1930      * substring begins with the character at the specified index and
  1931      * extends to the end of this string. <p>
  1932      * Examples:
  1933      * <blockquote><pre>
  1934      * "unhappy".substring(2) returns "happy"
  1935      * "Harbison".substring(3) returns "bison"
  1936      * "emptiness".substring(9) returns "" (an empty string)
  1937      * </pre></blockquote>
  1938      *
  1939      * @param      beginIndex   the beginning index, inclusive.
  1940      * @return     the specified substring.
  1941      * @exception  IndexOutOfBoundsException  if
  1942      *             <code>beginIndex</code> is negative or larger than the
  1943      *             length of this <code>String</code> object.
  1944      */
  1945     public String substring(int beginIndex) {
  1946         return substring(beginIndex, length());
  1947     }
  1948 
  1949     /**
  1950      * Returns a new string that is a substring of this string. The
  1951      * substring begins at the specified <code>beginIndex</code> and
  1952      * extends to the character at index <code>endIndex - 1</code>.
  1953      * Thus the length of the substring is <code>endIndex-beginIndex</code>.
  1954      * <p>
  1955      * Examples:
  1956      * <blockquote><pre>
  1957      * "hamburger".substring(4, 8) returns "urge"
  1958      * "smiles".substring(1, 5) returns "mile"
  1959      * </pre></blockquote>
  1960      *
  1961      * @param      beginIndex   the beginning index, inclusive.
  1962      * @param      endIndex     the ending index, exclusive.
  1963      * @return     the specified substring.
  1964      * @exception  IndexOutOfBoundsException  if the
  1965      *             <code>beginIndex</code> is negative, or
  1966      *             <code>endIndex</code> is larger than the length of
  1967      *             this <code>String</code> object, or
  1968      *             <code>beginIndex</code> is larger than
  1969      *             <code>endIndex</code>.
  1970      */
  1971     @JavaScriptBody(args = { "self", "beginIndex", "endIndex" }, body = 
  1972         "return self.toString().substring(beginIndex, endIndex);"
  1973     )
  1974     public String substring(int beginIndex, int endIndex) {
  1975         if (beginIndex < 0) {
  1976             throw new StringIndexOutOfBoundsException(beginIndex);
  1977         }
  1978         if (endIndex > length()) {
  1979             throw new StringIndexOutOfBoundsException(endIndex);
  1980         }
  1981         if (beginIndex > endIndex) {
  1982             throw new StringIndexOutOfBoundsException(endIndex - beginIndex);
  1983         }
  1984         return ((beginIndex == 0) && (endIndex == length())) ? this :
  1985             new String(toCharArray(), offset() + beginIndex, endIndex - beginIndex);
  1986     }
  1987 
  1988     /**
  1989      * Returns a new character sequence that is a subsequence of this sequence.
  1990      *
  1991      * <p> An invocation of this method of the form
  1992      *
  1993      * <blockquote><pre>
  1994      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
  1995      *
  1996      * behaves in exactly the same way as the invocation
  1997      *
  1998      * <blockquote><pre>
  1999      * str.substring(begin,&nbsp;end)</pre></blockquote>
  2000      *
  2001      * This method is defined so that the <tt>String</tt> class can implement
  2002      * the {@link CharSequence} interface. </p>
  2003      *
  2004      * @param      beginIndex   the begin index, inclusive.
  2005      * @param      endIndex     the end index, exclusive.
  2006      * @return     the specified subsequence.
  2007      *
  2008      * @throws  IndexOutOfBoundsException
  2009      *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,
  2010      *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,
  2011      *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>
  2012      *
  2013      * @since 1.4
  2014      * @spec JSR-51
  2015      */
  2016     public CharSequence subSequence(int beginIndex, int endIndex) {
  2017         return this.substring(beginIndex, endIndex);
  2018     }
  2019 
  2020     /**
  2021      * Concatenates the specified string to the end of this string.
  2022      * <p>
  2023      * If the length of the argument string is <code>0</code>, then this
  2024      * <code>String</code> object is returned. Otherwise, a new
  2025      * <code>String</code> object is created, representing a character
  2026      * sequence that is the concatenation of the character sequence
  2027      * represented by this <code>String</code> object and the character
  2028      * sequence represented by the argument string.<p>
  2029      * Examples:
  2030      * <blockquote><pre>
  2031      * "cares".concat("s") returns "caress"
  2032      * "to".concat("get").concat("her") returns "together"
  2033      * </pre></blockquote>
  2034      *
  2035      * @param   str   the <code>String</code> that is concatenated to the end
  2036      *                of this <code>String</code>.
  2037      * @return  a string that represents the concatenation of this object's
  2038      *          characters followed by the string argument's characters.
  2039      */
  2040     public String concat(String str) {
  2041         int otherLen = str.length();
  2042         if (otherLen == 0) {
  2043             return this;
  2044         }
  2045         char buf[] = new char[length() + otherLen];
  2046         getChars(0, length(), buf, 0);
  2047         str.getChars(0, otherLen, buf, length());
  2048         return new String(buf, 0, length() + otherLen);
  2049     }
  2050 
  2051     /**
  2052      * Returns a new string resulting from replacing all occurrences of
  2053      * <code>oldChar</code> in this string with <code>newChar</code>.
  2054      * <p>
  2055      * If the character <code>oldChar</code> does not occur in the
  2056      * character sequence represented by this <code>String</code> object,
  2057      * then a reference to this <code>String</code> object is returned.
  2058      * Otherwise, a new <code>String</code> object is created that
  2059      * represents a character sequence identical to the character sequence
  2060      * represented by this <code>String</code> object, except that every
  2061      * occurrence of <code>oldChar</code> is replaced by an occurrence
  2062      * of <code>newChar</code>.
  2063      * <p>
  2064      * Examples:
  2065      * <blockquote><pre>
  2066      * "mesquite in your cellar".replace('e', 'o')
  2067      *         returns "mosquito in your collar"
  2068      * "the war of baronets".replace('r', 'y')
  2069      *         returns "the way of bayonets"
  2070      * "sparring with a purple porpoise".replace('p', 't')
  2071      *         returns "starring with a turtle tortoise"
  2072      * "JonL".replace('q', 'x') returns "JonL" (no change)
  2073      * </pre></blockquote>
  2074      *
  2075      * @param   oldChar   the old character.
  2076      * @param   newChar   the new character.
  2077      * @return  a string derived from this string by replacing every
  2078      *          occurrence of <code>oldChar</code> with <code>newChar</code>.
  2079      */
  2080     @JavaScriptBody(args = { "self", "arg1", "arg2" }, body =
  2081         "if (typeof arg1 === 'number') arg1 = String.fromCharCode(arg1);\n" +
  2082         "if (typeof arg2 === 'number') arg2 = String.fromCharCode(arg2);\n" +
  2083         "var s = self.toString();\n" +
  2084         "for (;;) {\n" +
  2085         "  var ret = s.replace(arg1, arg2);\n" +
  2086         "  if (ret === s) {\n" +
  2087         "    return ret;\n" +
  2088         "  }\n" +
  2089         "  s = ret;\n" +
  2090         "}"
  2091     )
  2092     public String replace(char oldChar, char newChar) {
  2093         if (oldChar != newChar) {
  2094             int len = length();
  2095             int i = -1;
  2096             char[] val = toCharArray(); /* avoid getfield opcode */
  2097             int off = offset();   /* avoid getfield opcode */
  2098 
  2099             while (++i < len) {
  2100                 if (val[off + i] == oldChar) {
  2101                     break;
  2102                 }
  2103             }
  2104             if (i < len) {
  2105                 char buf[] = new char[len];
  2106                 for (int j = 0 ; j < i ; j++) {
  2107                     buf[j] = val[off+j];
  2108                 }
  2109                 while (i < len) {
  2110                     char c = val[off + i];
  2111                     buf[i] = (c == oldChar) ? newChar : c;
  2112                     i++;
  2113                 }
  2114                 return new String(buf, 0, len);
  2115             }
  2116         }
  2117         return this;
  2118     }
  2119 
  2120     /**
  2121      * Tells whether or not this string matches the given <a
  2122      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2123      *
  2124      * <p> An invocation of this method of the form
  2125      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
  2126      * same result as the expression
  2127      *
  2128      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
  2129      * java.util.regex.Pattern#matches(String,CharSequence)
  2130      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
  2131      *
  2132      * @param   regex
  2133      *          the regular expression to which this string is to be matched
  2134      *
  2135      * @return  <tt>true</tt> if, and only if, this string matches the
  2136      *          given regular expression
  2137      *
  2138      * @throws  PatternSyntaxException
  2139      *          if the regular expression's syntax is invalid
  2140      *
  2141      * @see java.util.regex.Pattern
  2142      *
  2143      * @since 1.4
  2144      * @spec JSR-51
  2145      */
  2146     @JavaScriptBody(args = { "self", "regex" }, body = 
  2147           "self = self.toString();\n"
  2148         + "var re = new RegExp(regex.toString());\n"
  2149         + "var r = re.exec(self);\n"
  2150         + "return r != null && r.length > 0 && self.length == r[0].length;"
  2151     )
  2152     public boolean matches(String regex) {
  2153         throw new UnsupportedOperationException();
  2154     }
  2155 
  2156     /**
  2157      * Returns true if and only if this string contains the specified
  2158      * sequence of char values.
  2159      *
  2160      * @param s the sequence to search for
  2161      * @return true if this string contains <code>s</code>, false otherwise
  2162      * @throws NullPointerException if <code>s</code> is <code>null</code>
  2163      * @since 1.5
  2164      */
  2165     public boolean contains(CharSequence s) {
  2166         return indexOf(s.toString()) > -1;
  2167     }
  2168 
  2169     /**
  2170      * Replaces the first substring of this string that matches the given <a
  2171      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2172      * given replacement.
  2173      *
  2174      * <p> An invocation of this method of the form
  2175      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2176      * yields exactly the same result as the expression
  2177      *
  2178      * <blockquote><tt>
  2179      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2180      * compile}(</tt><i>regex</i><tt>).{@link
  2181      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2182      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
  2183      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
  2184      *
  2185      *<p>
  2186      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2187      * replacement string may cause the results to be different than if it were
  2188      * being treated as a literal replacement string; see
  2189      * {@link java.util.regex.Matcher#replaceFirst}.
  2190      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2191      * meaning of these characters, if desired.
  2192      *
  2193      * @param   regex
  2194      *          the regular expression to which this string is to be matched
  2195      * @param   replacement
  2196      *          the string to be substituted for the first match
  2197      *
  2198      * @return  The resulting <tt>String</tt>
  2199      *
  2200      * @throws  PatternSyntaxException
  2201      *          if the regular expression's syntax is invalid
  2202      *
  2203      * @see java.util.regex.Pattern
  2204      *
  2205      * @since 1.4
  2206      * @spec JSR-51
  2207      */
  2208     public String replaceFirst(String regex, String replacement) {
  2209         throw new UnsupportedOperationException();
  2210     }
  2211 
  2212     /**
  2213      * Replaces each substring of this string that matches the given <a
  2214      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2215      * given replacement.
  2216      *
  2217      * <p> An invocation of this method of the form
  2218      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2219      * yields exactly the same result as the expression
  2220      *
  2221      * <blockquote><tt>
  2222      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2223      * compile}(</tt><i>regex</i><tt>).{@link
  2224      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2225      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
  2226      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
  2227      *
  2228      *<p>
  2229      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2230      * replacement string may cause the results to be different than if it were
  2231      * being treated as a literal replacement string; see
  2232      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
  2233      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2234      * meaning of these characters, if desired.
  2235      *
  2236      * @param   regex
  2237      *          the regular expression to which this string is to be matched
  2238      * @param   replacement
  2239      *          the string to be substituted for each match
  2240      *
  2241      * @return  The resulting <tt>String</tt>
  2242      *
  2243      * @throws  PatternSyntaxException
  2244      *          if the regular expression's syntax is invalid
  2245      *
  2246      * @see java.util.regex.Pattern
  2247      *
  2248      * @since 1.4
  2249      * @spec JSR-51
  2250      */
  2251     public String replaceAll(String regex, String replacement) {
  2252         throw new UnsupportedOperationException();
  2253     }
  2254 
  2255     /**
  2256      * Replaces each substring of this string that matches the literal target
  2257      * sequence with the specified literal replacement sequence. The
  2258      * replacement proceeds from the beginning of the string to the end, for
  2259      * example, replacing "aa" with "b" in the string "aaa" will result in
  2260      * "ba" rather than "ab".
  2261      *
  2262      * @param  target The sequence of char values to be replaced
  2263      * @param  replacement The replacement sequence of char values
  2264      * @return  The resulting string
  2265      * @throws NullPointerException if <code>target</code> or
  2266      *         <code>replacement</code> is <code>null</code>.
  2267      * @since 1.5
  2268      */
  2269     public String replace(CharSequence target, CharSequence replacement) {
  2270         throw new UnsupportedOperationException("This one should be supported, but without dep on rest of regexp");
  2271     }
  2272 
  2273     /**
  2274      * Splits this string around matches of the given
  2275      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
  2276      *
  2277      * <p> The array returned by this method contains each substring of this
  2278      * string that is terminated by another substring that matches the given
  2279      * expression or is terminated by the end of the string.  The substrings in
  2280      * the array are in the order in which they occur in this string.  If the
  2281      * expression does not match any part of the input then the resulting array
  2282      * has just one element, namely this string.
  2283      *
  2284      * <p> The <tt>limit</tt> parameter controls the number of times the
  2285      * pattern is applied and therefore affects the length of the resulting
  2286      * array.  If the limit <i>n</i> is greater than zero then the pattern
  2287      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
  2288      * length will be no greater than <i>n</i>, and the array's last entry
  2289      * will contain all input beyond the last matched delimiter.  If <i>n</i>
  2290      * is non-positive then the pattern will be applied as many times as
  2291      * possible and the array can have any length.  If <i>n</i> is zero then
  2292      * the pattern will be applied as many times as possible, the array can
  2293      * have any length, and trailing empty strings will be discarded.
  2294      *
  2295      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
  2296      * following results with these parameters:
  2297      *
  2298      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
  2299      * <tr>
  2300      *     <th>Regex</th>
  2301      *     <th>Limit</th>
  2302      *     <th>Result</th>
  2303      * </tr>
  2304      * <tr><td align=center>:</td>
  2305      *     <td align=center>2</td>
  2306      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
  2307      * <tr><td align=center>:</td>
  2308      *     <td align=center>5</td>
  2309      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2310      * <tr><td align=center>:</td>
  2311      *     <td align=center>-2</td>
  2312      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2313      * <tr><td align=center>o</td>
  2314      *     <td align=center>5</td>
  2315      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2316      * <tr><td align=center>o</td>
  2317      *     <td align=center>-2</td>
  2318      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2319      * <tr><td align=center>o</td>
  2320      *     <td align=center>0</td>
  2321      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2322      * </table></blockquote>
  2323      *
  2324      * <p> An invocation of this method of the form
  2325      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2326      * yields the same result as the expression
  2327      *
  2328      * <blockquote>
  2329      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2330      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
  2331      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
  2332      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2333      * </blockquote>
  2334      *
  2335      *
  2336      * @param  regex
  2337      *         the delimiting regular expression
  2338      *
  2339      * @param  limit
  2340      *         the result threshold, as described above
  2341      *
  2342      * @return  the array of strings computed by splitting this string
  2343      *          around matches of the given regular expression
  2344      *
  2345      * @throws  PatternSyntaxException
  2346      *          if the regular expression's syntax is invalid
  2347      *
  2348      * @see java.util.regex.Pattern
  2349      *
  2350      * @since 1.4
  2351      * @spec JSR-51
  2352      */
  2353     public String[] split(String regex, int limit) {
  2354         throw new UnsupportedOperationException("Needs regexp");
  2355     }
  2356 
  2357     /**
  2358      * Splits this string around matches of the given <a
  2359      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2360      *
  2361      * <p> This method works as if by invoking the two-argument {@link
  2362      * #split(String, int) split} method with the given expression and a limit
  2363      * argument of zero.  Trailing empty strings are therefore not included in
  2364      * the resulting array.
  2365      *
  2366      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
  2367      * results with these expressions:
  2368      *
  2369      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
  2370      * <tr>
  2371      *  <th>Regex</th>
  2372      *  <th>Result</th>
  2373      * </tr>
  2374      * <tr><td align=center>:</td>
  2375      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2376      * <tr><td align=center>o</td>
  2377      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2378      * </table></blockquote>
  2379      *
  2380      *
  2381      * @param  regex
  2382      *         the delimiting regular expression
  2383      *
  2384      * @return  the array of strings computed by splitting this string
  2385      *          around matches of the given regular expression
  2386      *
  2387      * @throws  PatternSyntaxException
  2388      *          if the regular expression's syntax is invalid
  2389      *
  2390      * @see java.util.regex.Pattern
  2391      *
  2392      * @since 1.4
  2393      * @spec JSR-51
  2394      */
  2395     public String[] split(String regex) {
  2396         return split(regex, 0);
  2397     }
  2398 
  2399     /**
  2400      * Converts all of the characters in this <code>String</code> to lower
  2401      * case using the rules of the given <code>Locale</code>.  Case mapping is based
  2402      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2403      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2404      * <code>String</code> may be a different length than the original <code>String</code>.
  2405      * <p>
  2406      * Examples of lowercase  mappings are in the following table:
  2407      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
  2408      * <tr>
  2409      *   <th>Language Code of Locale</th>
  2410      *   <th>Upper Case</th>
  2411      *   <th>Lower Case</th>
  2412      *   <th>Description</th>
  2413      * </tr>
  2414      * <tr>
  2415      *   <td>tr (Turkish)</td>
  2416      *   <td>&#92;u0130</td>
  2417      *   <td>&#92;u0069</td>
  2418      *   <td>capital letter I with dot above -&gt; small letter i</td>
  2419      * </tr>
  2420      * <tr>
  2421      *   <td>tr (Turkish)</td>
  2422      *   <td>&#92;u0049</td>
  2423      *   <td>&#92;u0131</td>
  2424      *   <td>capital letter I -&gt; small letter dotless i </td>
  2425      * </tr>
  2426      * <tr>
  2427      *   <td>(all)</td>
  2428      *   <td>French Fries</td>
  2429      *   <td>french fries</td>
  2430      *   <td>lowercased all chars in String</td>
  2431      * </tr>
  2432      * <tr>
  2433      *   <td>(all)</td>
  2434      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
  2435      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
  2436      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
  2437      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
  2438      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
  2439      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
  2440      *   <td>lowercased all chars in String</td>
  2441      * </tr>
  2442      * </table>
  2443      *
  2444      * @param locale use the case transformation rules for this locale
  2445      * @return the <code>String</code>, converted to lowercase.
  2446      * @see     java.lang.String#toLowerCase()
  2447      * @see     java.lang.String#toUpperCase()
  2448      * @see     java.lang.String#toUpperCase(Locale)
  2449      * @since   1.1
  2450      */
  2451 //    public String toLowerCase(Locale locale) {
  2452 //        if (locale == null) {
  2453 //            throw new NullPointerException();
  2454 //        }
  2455 //
  2456 //        int     firstUpper;
  2457 //
  2458 //        /* Now check if there are any characters that need to be changed. */
  2459 //        scan: {
  2460 //            for (firstUpper = 0 ; firstUpper < count; ) {
  2461 //                char c = value[offset+firstUpper];
  2462 //                if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2463 //                    (c <= Character.MAX_HIGH_SURROGATE)) {
  2464 //                    int supplChar = codePointAt(firstUpper);
  2465 //                    if (supplChar != Character.toLowerCase(supplChar)) {
  2466 //                        break scan;
  2467 //                    }
  2468 //                    firstUpper += Character.charCount(supplChar);
  2469 //                } else {
  2470 //                    if (c != Character.toLowerCase(c)) {
  2471 //                        break scan;
  2472 //                    }
  2473 //                    firstUpper++;
  2474 //                }
  2475 //            }
  2476 //            return this;
  2477 //        }
  2478 //
  2479 //        char[]  result = new char[count];
  2480 //        int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2481 //                                    * is the write location in result */
  2482 //
  2483 //        /* Just copy the first few lowerCase characters. */
  2484 //        arraycopy(value, offset, result, 0, firstUpper);
  2485 //
  2486 //        String lang = locale.getLanguage();
  2487 //        boolean localeDependent =
  2488 //            (lang == "tr" || lang == "az" || lang == "lt");
  2489 //        char[] lowerCharArray;
  2490 //        int lowerChar;
  2491 //        int srcChar;
  2492 //        int srcCount;
  2493 //        for (int i = firstUpper; i < count; i += srcCount) {
  2494 //            srcChar = (int)value[offset+i];
  2495 //            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2496 //                (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2497 //                srcChar = codePointAt(i);
  2498 //                srcCount = Character.charCount(srcChar);
  2499 //            } else {
  2500 //                srcCount = 1;
  2501 //            }
  2502 //            if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
  2503 //                lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
  2504 //            } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
  2505 //                lowerChar = Character.ERROR;
  2506 //            } else {
  2507 //                lowerChar = Character.toLowerCase(srcChar);
  2508 //            }
  2509 //            if ((lowerChar == Character.ERROR) ||
  2510 //                (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2511 //                if (lowerChar == Character.ERROR) {
  2512 //                     if (!localeDependent && srcChar == '\u0130') {
  2513 //                         lowerCharArray =
  2514 //                             ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
  2515 //                     } else {
  2516 //                        lowerCharArray =
  2517 //                            ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
  2518 //                     }
  2519 //                } else if (srcCount == 2) {
  2520 //                    resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
  2521 //                    continue;
  2522 //                } else {
  2523 //                    lowerCharArray = Character.toChars(lowerChar);
  2524 //                }
  2525 //
  2526 //                /* Grow result if needed */
  2527 //                int mapLen = lowerCharArray.length;
  2528 //                if (mapLen > srcCount) {
  2529 //                    char[] result2 = new char[result.length + mapLen - srcCount];
  2530 //                    arraycopy(result, 0, result2, 0,
  2531 //                        i + resultOffset);
  2532 //                    result = result2;
  2533 //                }
  2534 //                for (int x=0; x<mapLen; ++x) {
  2535 //                    result[i+resultOffset+x] = lowerCharArray[x];
  2536 //                }
  2537 //                resultOffset += (mapLen - srcCount);
  2538 //            } else {
  2539 //                result[i+resultOffset] = (char)lowerChar;
  2540 //            }
  2541 //        }
  2542 //        return new String(0, count+resultOffset, result);
  2543 //    }
  2544 
  2545     /**
  2546      * Converts all of the characters in this <code>String</code> to lower
  2547      * case using the rules of the default locale. This is equivalent to calling
  2548      * <code>toLowerCase(Locale.getDefault())</code>.
  2549      * <p>
  2550      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2551      * results if used for strings that are intended to be interpreted locale
  2552      * independently.
  2553      * Examples are programming language identifiers, protocol keys, and HTML
  2554      * tags.
  2555      * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale
  2556      * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the
  2557      * LATIN SMALL LETTER DOTLESS I character.
  2558      * To obtain correct results for locale insensitive strings, use
  2559      * <code>toLowerCase(Locale.ENGLISH)</code>.
  2560      * <p>
  2561      * @return  the <code>String</code>, converted to lowercase.
  2562      * @see     java.lang.String#toLowerCase(Locale)
  2563      */
  2564     @JavaScriptBody(args = "self", body = "return self.toLowerCase();")
  2565     public String toLowerCase() {
  2566         throw new UnsupportedOperationException("Should be supported but without connection to locale");
  2567     }
  2568 
  2569     /**
  2570      * Converts all of the characters in this <code>String</code> to upper
  2571      * case using the rules of the given <code>Locale</code>. Case mapping is based
  2572      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2573      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2574      * <code>String</code> may be a different length than the original <code>String</code>.
  2575      * <p>
  2576      * Examples of locale-sensitive and 1:M case mappings are in the following table.
  2577      * <p>
  2578      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
  2579      * <tr>
  2580      *   <th>Language Code of Locale</th>
  2581      *   <th>Lower Case</th>
  2582      *   <th>Upper Case</th>
  2583      *   <th>Description</th>
  2584      * </tr>
  2585      * <tr>
  2586      *   <td>tr (Turkish)</td>
  2587      *   <td>&#92;u0069</td>
  2588      *   <td>&#92;u0130</td>
  2589      *   <td>small letter i -&gt; capital letter I with dot above</td>
  2590      * </tr>
  2591      * <tr>
  2592      *   <td>tr (Turkish)</td>
  2593      *   <td>&#92;u0131</td>
  2594      *   <td>&#92;u0049</td>
  2595      *   <td>small letter dotless i -&gt; capital letter I</td>
  2596      * </tr>
  2597      * <tr>
  2598      *   <td>(all)</td>
  2599      *   <td>&#92;u00df</td>
  2600      *   <td>&#92;u0053 &#92;u0053</td>
  2601      *   <td>small letter sharp s -&gt; two letters: SS</td>
  2602      * </tr>
  2603      * <tr>
  2604      *   <td>(all)</td>
  2605      *   <td>Fahrvergn&uuml;gen</td>
  2606      *   <td>FAHRVERGN&Uuml;GEN</td>
  2607      *   <td></td>
  2608      * </tr>
  2609      * </table>
  2610      * @param locale use the case transformation rules for this locale
  2611      * @return the <code>String</code>, converted to uppercase.
  2612      * @see     java.lang.String#toUpperCase()
  2613      * @see     java.lang.String#toLowerCase()
  2614      * @see     java.lang.String#toLowerCase(Locale)
  2615      * @since   1.1
  2616      */
  2617     /* not for javascript 
  2618     public String toUpperCase(Locale locale) {
  2619         if (locale == null) {
  2620             throw new NullPointerException();
  2621         }
  2622 
  2623         int     firstLower;
  2624 
  2625         // Now check if there are any characters that need to be changed. 
  2626         scan: {
  2627             for (firstLower = 0 ; firstLower < count; ) {
  2628                 int c = (int)value[offset+firstLower];
  2629                 int srcCount;
  2630                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2631                     (c <= Character.MAX_HIGH_SURROGATE)) {
  2632                     c = codePointAt(firstLower);
  2633                     srcCount = Character.charCount(c);
  2634                 } else {
  2635                     srcCount = 1;
  2636                 }
  2637                 int upperCaseChar = Character.toUpperCaseEx(c);
  2638                 if ((upperCaseChar == Character.ERROR) ||
  2639                     (c != upperCaseChar)) {
  2640                     break scan;
  2641                 }
  2642                 firstLower += srcCount;
  2643             }
  2644             return this;
  2645         }
  2646 
  2647         char[]  result       = new char[count]; /* may grow *
  2648         int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2649                                     * is the write location in result *
  2650 
  2651         /* Just copy the first few upperCase characters. *
  2652         arraycopy(value, offset, result, 0, firstLower);
  2653 
  2654         String lang = locale.getLanguage();
  2655         boolean localeDependent =
  2656             (lang == "tr" || lang == "az" || lang == "lt");
  2657         char[] upperCharArray;
  2658         int upperChar;
  2659         int srcChar;
  2660         int srcCount;
  2661         for (int i = firstLower; i < count; i += srcCount) {
  2662             srcChar = (int)value[offset+i];
  2663             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2664                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2665                 srcChar = codePointAt(i);
  2666                 srcCount = Character.charCount(srcChar);
  2667             } else {
  2668                 srcCount = 1;
  2669             }
  2670             if (localeDependent) {
  2671                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
  2672             } else {
  2673                 upperChar = Character.toUpperCaseEx(srcChar);
  2674             }
  2675             if ((upperChar == Character.ERROR) ||
  2676                 (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2677                 if (upperChar == Character.ERROR) {
  2678                     if (localeDependent) {
  2679                         upperCharArray =
  2680                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
  2681                     } else {
  2682                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
  2683                     }
  2684                 } else if (srcCount == 2) {
  2685                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
  2686                     continue;
  2687                 } else {
  2688                     upperCharArray = Character.toChars(upperChar);
  2689                 }
  2690 
  2691                 /* Grow result if needed *
  2692                 int mapLen = upperCharArray.length;
  2693                 if (mapLen > srcCount) {
  2694                     char[] result2 = new char[result.length + mapLen - srcCount];
  2695                     arraycopy(result, 0, result2, 0,
  2696                         i + resultOffset);
  2697                     result = result2;
  2698                 }
  2699                 for (int x=0; x<mapLen; ++x) {
  2700                     result[i+resultOffset+x] = upperCharArray[x];
  2701                 }
  2702                 resultOffset += (mapLen - srcCount);
  2703             } else {
  2704                 result[i+resultOffset] = (char)upperChar;
  2705             }
  2706         }
  2707         return new String(0, count+resultOffset, result);
  2708     }
  2709     */
  2710 
  2711     /**
  2712      * Converts all of the characters in this <code>String</code> to upper
  2713      * case using the rules of the default locale. This method is equivalent to
  2714      * <code>toUpperCase(Locale.getDefault())</code>.
  2715      * <p>
  2716      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2717      * results if used for strings that are intended to be interpreted locale
  2718      * independently.
  2719      * Examples are programming language identifiers, protocol keys, and HTML
  2720      * tags.
  2721      * For instance, <code>"title".toUpperCase()</code> in a Turkish locale
  2722      * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the
  2723      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
  2724      * To obtain correct results for locale insensitive strings, use
  2725      * <code>toUpperCase(Locale.ENGLISH)</code>.
  2726      * <p>
  2727      * @return  the <code>String</code>, converted to uppercase.
  2728      * @see     java.lang.String#toUpperCase(Locale)
  2729      */
  2730     @JavaScriptBody(args = "self", body = "return self.toUpperCase();")
  2731     public String toUpperCase() {
  2732         throw new UnsupportedOperationException();
  2733     }
  2734 
  2735     /**
  2736      * Returns a copy of the string, with leading and trailing whitespace
  2737      * omitted.
  2738      * <p>
  2739      * If this <code>String</code> object represents an empty character
  2740      * sequence, or the first and last characters of character sequence
  2741      * represented by this <code>String</code> object both have codes
  2742      * greater than <code>'&#92;u0020'</code> (the space character), then a
  2743      * reference to this <code>String</code> object is returned.
  2744      * <p>
  2745      * Otherwise, if there is no character with a code greater than
  2746      * <code>'&#92;u0020'</code> in the string, then a new
  2747      * <code>String</code> object representing an empty string is created
  2748      * and returned.
  2749      * <p>
  2750      * Otherwise, let <i>k</i> be the index of the first character in the
  2751      * string whose code is greater than <code>'&#92;u0020'</code>, and let
  2752      * <i>m</i> be the index of the last character in the string whose code
  2753      * is greater than <code>'&#92;u0020'</code>. A new <code>String</code>
  2754      * object is created, representing the substring of this string that
  2755      * begins with the character at index <i>k</i> and ends with the
  2756      * character at index <i>m</i>-that is, the result of
  2757      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
  2758      * <p>
  2759      * This method may be used to trim whitespace (as defined above) from
  2760      * the beginning and end of a string.
  2761      *
  2762      * @return  A copy of this string with leading and trailing white
  2763      *          space removed, or this string if it has no leading or
  2764      *          trailing white space.
  2765      */
  2766     public String trim() {
  2767         int len = length();
  2768         int st = 0;
  2769         int off = offset();      /* avoid getfield opcode */
  2770         char[] val = toCharArray();    /* avoid getfield opcode */
  2771 
  2772         while ((st < len) && (val[off + st] <= ' ')) {
  2773             st++;
  2774         }
  2775         while ((st < len) && (val[off + len - 1] <= ' ')) {
  2776             len--;
  2777         }
  2778         return ((st > 0) || (len < length())) ? substring(st, len) : this;
  2779     }
  2780 
  2781     /**
  2782      * This object (which is already a string!) is itself returned.
  2783      *
  2784      * @return  the string itself.
  2785      */
  2786     @JavaScriptBody(args = "self", body = "return self.toString();")
  2787     public String toString() {
  2788         return this;
  2789     }
  2790 
  2791     /**
  2792      * Converts this string to a new character array.
  2793      *
  2794      * @return  a newly allocated character array whose length is the length
  2795      *          of this string and whose contents are initialized to contain
  2796      *          the character sequence represented by this string.
  2797      */
  2798     @JavaScriptBody(args = "self", body = "return self.toString().split('');")
  2799     public char[] toCharArray() {
  2800         char result[] = new char[length()];
  2801         getChars(0, length(), result, 0);
  2802         return result;
  2803     }
  2804 
  2805     /**
  2806      * Returns a formatted string using the specified format string and
  2807      * arguments.
  2808      *
  2809      * <p> The locale always used is the one returned by {@link
  2810      * java.util.Locale#getDefault() Locale.getDefault()}.
  2811      *
  2812      * @param  format
  2813      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2814      *
  2815      * @param  args
  2816      *         Arguments referenced by the format specifiers in the format
  2817      *         string.  If there are more arguments than format specifiers, the
  2818      *         extra arguments are ignored.  The number of arguments is
  2819      *         variable and may be zero.  The maximum number of arguments is
  2820      *         limited by the maximum dimension of a Java array as defined by
  2821      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2822      *         The behaviour on a
  2823      *         <tt>null</tt> argument depends on the <a
  2824      *         href="../util/Formatter.html#syntax">conversion</a>.
  2825      *
  2826      * @throws  IllegalFormatException
  2827      *          If a format string contains an illegal syntax, a format
  2828      *          specifier that is incompatible with the given arguments,
  2829      *          insufficient arguments given the format string, or other
  2830      *          illegal conditions.  For specification of all possible
  2831      *          formatting errors, see the <a
  2832      *          href="../util/Formatter.html#detail">Details</a> section of the
  2833      *          formatter class specification.
  2834      *
  2835      * @throws  NullPointerException
  2836      *          If the <tt>format</tt> is <tt>null</tt>
  2837      *
  2838      * @return  A formatted string
  2839      *
  2840      * @see  java.util.Formatter
  2841      * @since  1.5
  2842      */
  2843     public static String format(String format, Object ... args) {
  2844         throw new UnsupportedOperationException();
  2845     }
  2846 
  2847     /**
  2848      * Returns a formatted string using the specified locale, format string,
  2849      * and arguments.
  2850      *
  2851      * @param  l
  2852      *         The {@linkplain java.util.Locale locale} to apply during
  2853      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
  2854      *         is applied.
  2855      *
  2856      * @param  format
  2857      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2858      *
  2859      * @param  args
  2860      *         Arguments referenced by the format specifiers in the format
  2861      *         string.  If there are more arguments than format specifiers, the
  2862      *         extra arguments are ignored.  The number of arguments is
  2863      *         variable and may be zero.  The maximum number of arguments is
  2864      *         limited by the maximum dimension of a Java array as defined by
  2865      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2866      *         The behaviour on a
  2867      *         <tt>null</tt> argument depends on the <a
  2868      *         href="../util/Formatter.html#syntax">conversion</a>.
  2869      *
  2870      * @throws  IllegalFormatException
  2871      *          If a format string contains an illegal syntax, a format
  2872      *          specifier that is incompatible with the given arguments,
  2873      *          insufficient arguments given the format string, or other
  2874      *          illegal conditions.  For specification of all possible
  2875      *          formatting errors, see the <a
  2876      *          href="../util/Formatter.html#detail">Details</a> section of the
  2877      *          formatter class specification
  2878      *
  2879      * @throws  NullPointerException
  2880      *          If the <tt>format</tt> is <tt>null</tt>
  2881      *
  2882      * @return  A formatted string
  2883      *
  2884      * @see  java.util.Formatter
  2885      * @since  1.5
  2886      */
  2887 //    public static String format(Locale l, String format, Object ... args) {
  2888 //        return new Formatter(l).format(format, args).toString();
  2889 //    }
  2890 
  2891     /**
  2892      * Returns the string representation of the <code>Object</code> argument.
  2893      *
  2894      * @param   obj   an <code>Object</code>.
  2895      * @return  if the argument is <code>null</code>, then a string equal to
  2896      *          <code>"null"</code>; otherwise, the value of
  2897      *          <code>obj.toString()</code> is returned.
  2898      * @see     java.lang.Object#toString()
  2899      */
  2900     public static String valueOf(Object obj) {
  2901         return (obj == null) ? "null" : obj.toString();
  2902     }
  2903 
  2904     /**
  2905      * Returns the string representation of the <code>char</code> array
  2906      * argument. The contents of the character array are copied; subsequent
  2907      * modification of the character array does not affect the newly
  2908      * created string.
  2909      *
  2910      * @param   data   a <code>char</code> array.
  2911      * @return  a newly allocated string representing the same sequence of
  2912      *          characters contained in the character array argument.
  2913      */
  2914     public static String valueOf(char data[]) {
  2915         return new String(data);
  2916     }
  2917 
  2918     /**
  2919      * Returns the string representation of a specific subarray of the
  2920      * <code>char</code> array argument.
  2921      * <p>
  2922      * The <code>offset</code> argument is the index of the first
  2923      * character of the subarray. The <code>count</code> argument
  2924      * specifies the length of the subarray. The contents of the subarray
  2925      * are copied; subsequent modification of the character array does not
  2926      * affect the newly created string.
  2927      *
  2928      * @param   data     the character array.
  2929      * @param   offset   the initial offset into the value of the
  2930      *                  <code>String</code>.
  2931      * @param   count    the length of the value of the <code>String</code>.
  2932      * @return  a string representing the sequence of characters contained
  2933      *          in the subarray of the character array argument.
  2934      * @exception IndexOutOfBoundsException if <code>offset</code> is
  2935      *          negative, or <code>count</code> is negative, or
  2936      *          <code>offset+count</code> is larger than
  2937      *          <code>data.length</code>.
  2938      */
  2939     public static String valueOf(char data[], int offset, int count) {
  2940         return new String(data, offset, count);
  2941     }
  2942 
  2943     /**
  2944      * Returns a String that represents the character sequence in the
  2945      * array specified.
  2946      *
  2947      * @param   data     the character array.
  2948      * @param   offset   initial offset of the subarray.
  2949      * @param   count    length of the subarray.
  2950      * @return  a <code>String</code> that contains the characters of the
  2951      *          specified subarray of the character array.
  2952      */
  2953     public static String copyValueOf(char data[], int offset, int count) {
  2954         // All public String constructors now copy the data.
  2955         return new String(data, offset, count);
  2956     }
  2957 
  2958     /**
  2959      * Returns a String that represents the character sequence in the
  2960      * array specified.
  2961      *
  2962      * @param   data   the character array.
  2963      * @return  a <code>String</code> that contains the characters of the
  2964      *          character array.
  2965      */
  2966     public static String copyValueOf(char data[]) {
  2967         return copyValueOf(data, 0, data.length);
  2968     }
  2969 
  2970     /**
  2971      * Returns the string representation of the <code>boolean</code> argument.
  2972      *
  2973      * @param   b   a <code>boolean</code>.
  2974      * @return  if the argument is <code>true</code>, a string equal to
  2975      *          <code>"true"</code> is returned; otherwise, a string equal to
  2976      *          <code>"false"</code> is returned.
  2977      */
  2978     public static String valueOf(boolean b) {
  2979         return b ? "true" : "false";
  2980     }
  2981 
  2982     /**
  2983      * Returns the string representation of the <code>char</code>
  2984      * argument.
  2985      *
  2986      * @param   c   a <code>char</code>.
  2987      * @return  a string of length <code>1</code> containing
  2988      *          as its single character the argument <code>c</code>.
  2989      */
  2990     public static String valueOf(char c) {
  2991         char data[] = {c};
  2992         return new String(data, 0, 1);
  2993     }
  2994 
  2995     /**
  2996      * Returns the string representation of the <code>int</code> argument.
  2997      * <p>
  2998      * The representation is exactly the one returned by the
  2999      * <code>Integer.toString</code> method of one argument.
  3000      *
  3001      * @param   i   an <code>int</code>.
  3002      * @return  a string representation of the <code>int</code> argument.
  3003      * @see     java.lang.Integer#toString(int, int)
  3004      */
  3005     public static String valueOf(int i) {
  3006         return Integer.toString(i);
  3007     }
  3008 
  3009     /**
  3010      * Returns the string representation of the <code>long</code> argument.
  3011      * <p>
  3012      * The representation is exactly the one returned by the
  3013      * <code>Long.toString</code> method of one argument.
  3014      *
  3015      * @param   l   a <code>long</code>.
  3016      * @return  a string representation of the <code>long</code> argument.
  3017      * @see     java.lang.Long#toString(long)
  3018      */
  3019     public static String valueOf(long l) {
  3020         return Long.toString(l);
  3021     }
  3022 
  3023     /**
  3024      * Returns the string representation of the <code>float</code> argument.
  3025      * <p>
  3026      * The representation is exactly the one returned by the
  3027      * <code>Float.toString</code> method of one argument.
  3028      *
  3029      * @param   f   a <code>float</code>.
  3030      * @return  a string representation of the <code>float</code> argument.
  3031      * @see     java.lang.Float#toString(float)
  3032      */
  3033     public static String valueOf(float f) {
  3034         return Float.toString(f);
  3035     }
  3036 
  3037     /**
  3038      * Returns the string representation of the <code>double</code> argument.
  3039      * <p>
  3040      * The representation is exactly the one returned by the
  3041      * <code>Double.toString</code> method of one argument.
  3042      *
  3043      * @param   d   a <code>double</code>.
  3044      * @return  a  string representation of the <code>double</code> argument.
  3045      * @see     java.lang.Double#toString(double)
  3046      */
  3047     public static String valueOf(double d) {
  3048         return Double.toString(d);
  3049     }
  3050 
  3051     /**
  3052      * Returns a canonical representation for the string object.
  3053      * <p>
  3054      * A pool of strings, initially empty, is maintained privately by the
  3055      * class <code>String</code>.
  3056      * <p>
  3057      * When the intern method is invoked, if the pool already contains a
  3058      * string equal to this <code>String</code> object as determined by
  3059      * the {@link #equals(Object)} method, then the string from the pool is
  3060      * returned. Otherwise, this <code>String</code> object is added to the
  3061      * pool and a reference to this <code>String</code> object is returned.
  3062      * <p>
  3063      * It follows that for any two strings <code>s</code> and <code>t</code>,
  3064      * <code>s.intern()&nbsp;==&nbsp;t.intern()</code> is <code>true</code>
  3065      * if and only if <code>s.equals(t)</code> is <code>true</code>.
  3066      * <p>
  3067      * All literal strings and string-valued constant expressions are
  3068      * interned. String literals are defined in section 3.10.5 of the
  3069      * <cite>The Java&trade; Language Specification</cite>.
  3070      *
  3071      * @return  a string that has the same contents as this string, but is
  3072      *          guaranteed to be from a pool of unique strings.
  3073      */
  3074     public native String intern();
  3075 }