rt/emul/compact/src/main/java/java/lang/invoke/MethodHandle.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sun, 14 Sep 2014 19:27:44 +0200
changeset 1692 2f800fdc371e
permissions -rw-r--r--
Adding necessary fake classes to allow Javac to compile lamda expressions against our emulation library.
     1 /*
     2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang.invoke;
    27 
    28 
    29 import java.util.*;
    30 
    31 /**
    32  * A method handle is a typed, directly executable reference to an underlying method,
    33  * constructor, field, or similar low-level operation, with optional
    34  * transformations of arguments or return values.
    35  * These transformations are quite general, and include such patterns as
    36  * {@linkplain #asType conversion},
    37  * {@linkplain #bindTo insertion},
    38  * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
    39  * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
    40  *
    41  * <h1>Method handle contents</h1>
    42  * Method handles are dynamically and strongly typed according to their parameter and return types.
    43  * They are not distinguished by the name or the defining class of their underlying methods.
    44  * A method handle must be invoked using a symbolic type descriptor which matches
    45  * the method handle's own {@linkplain #type type descriptor}.
    46  * <p>
    47  * Every method handle reports its type descriptor via the {@link #type type} accessor.
    48  * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
    49  * whose structure is a series of classes, one of which is
    50  * the return type of the method (or {@code void.class} if none).
    51  * <p>
    52  * A method handle's type controls the types of invocations it accepts,
    53  * and the kinds of transformations that apply to it.
    54  * <p>
    55  * A method handle contains a pair of special invoker methods
    56  * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
    57  * Both invoker methods provide direct access to the method handle's
    58  * underlying method, constructor, field, or other operation,
    59  * as modified by transformations of arguments and return values.
    60  * Both invokers accept calls which exactly match the method handle's own type.
    61  * The plain, inexact invoker also accepts a range of other call types.
    62  * <p>
    63  * Method handles are immutable and have no visible state.
    64  * Of course, they can be bound to underlying methods or data which exhibit state.
    65  * With respect to the Java Memory Model, any method handle will behave
    66  * as if all of its (internal) fields are final variables.  This means that any method
    67  * handle made visible to the application will always be fully formed.
    68  * This is true even if the method handle is published through a shared
    69  * variable in a data race.
    70  * <p>
    71  * Method handles cannot be subclassed by the user.
    72  * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
    73  * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
    74  * operation.  The programmer should not draw conclusions about a method handle
    75  * from its specific class, as the method handle class hierarchy (if any)
    76  * may change from time to time or across implementations from different vendors.
    77  *
    78  * <h1>Method handle compilation</h1>
    79  * A Java method call expression naming {@code invokeExact} or {@code invoke}
    80  * can invoke a method handle from Java source code.
    81  * From the viewpoint of source code, these methods can take any arguments
    82  * and their result can be cast to any return type.
    83  * Formally this is accomplished by giving the invoker methods
    84  * {@code Object} return types and variable arity {@code Object} arguments,
    85  * but they have an additional quality called <em>signature polymorphism</em>
    86  * which connects this freedom of invocation directly to the JVM execution stack.
    87  * <p>
    88  * As is usual with virtual methods, source-level calls to {@code invokeExact}
    89  * and {@code invoke} compile to an {@code invokevirtual} instruction.
    90  * More unusually, the compiler must record the actual argument types,
    91  * and may not perform method invocation conversions on the arguments.
    92  * Instead, it must push them on the stack according to their own unconverted types.
    93  * The method handle object itself is pushed on the stack before the arguments.
    94  * The compiler then calls the method handle with a symbolic type descriptor which
    95  * describes the argument and return types.
    96  * <p>
    97  * To issue a complete symbolic type descriptor, the compiler must also determine
    98  * the return type.  This is based on a cast on the method invocation expression,
    99  * if there is one, or else {@code Object} if the invocation is an expression
   100  * or else {@code void} if the invocation is a statement.
   101  * The cast may be to a primitive type (but not {@code void}).
   102  * <p>
   103  * As a corner case, an uncasted {@code null} argument is given
   104  * a symbolic type descriptor of {@code java.lang.Void}.
   105  * The ambiguity with the type {@code Void} is harmless, since there are no references of type
   106  * {@code Void} except the null reference.
   107  *
   108  * <h1>Method handle invocation</h1>
   109  * The first time a {@code invokevirtual} instruction is executed
   110  * it is linked, by symbolically resolving the names in the instruction
   111  * and verifying that the method call is statically legal.
   112  * This is true of calls to {@code invokeExact} and {@code invoke}.
   113  * In this case, the symbolic type descriptor emitted by the compiler is checked for
   114  * correct syntax and names it contains are resolved.
   115  * Thus, an {@code invokevirtual} instruction which invokes
   116  * a method handle will always link, as long
   117  * as the symbolic type descriptor is syntactically well-formed
   118  * and the types exist.
   119  * <p>
   120  * When the {@code invokevirtual} is executed after linking,
   121  * the receiving method handle's type is first checked by the JVM
   122  * to ensure that it matches the symbolic type descriptor.
   123  * If the type match fails, it means that the method which the
   124  * caller is invoking is not present on the individual
   125  * method handle being invoked.
   126  * <p>
   127  * In the case of {@code invokeExact}, the type descriptor of the invocation
   128  * (after resolving symbolic type names) must exactly match the method type
   129  * of the receiving method handle.
   130  * In the case of plain, inexact {@code invoke}, the resolved type descriptor
   131  * must be a valid argument to the receiver's {@link #asType asType} method.
   132  * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
   133  * <p>
   134  * After type matching, a call to {@code invokeExact} directly
   135  * and immediately invoke the method handle's underlying method
   136  * (or other behavior, as the case may be).
   137  * <p>
   138  * A call to plain {@code invoke} works the same as a call to
   139  * {@code invokeExact}, if the symbolic type descriptor specified by the caller
   140  * exactly matches the method handle's own type.
   141  * If there is a type mismatch, {@code invoke} attempts
   142  * to adjust the type of the receiving method handle,
   143  * as if by a call to {@link #asType asType},
   144  * to obtain an exactly invokable method handle {@code M2}.
   145  * This allows a more powerful negotiation of method type
   146  * between caller and callee.
   147  * <p>
   148  * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
   149  * and implementations are therefore not required to materialize it.)
   150  *
   151  * <h1>Invocation checking</h1>
   152  * In typical programs, method handle type matching will usually succeed.
   153  * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
   154  * either directly (in the case of {@code invokeExact}) or indirectly as if
   155  * by a failed call to {@code asType} (in the case of {@code invoke}).
   156  * <p>
   157  * Thus, a method type mismatch which might show up as a linkage error
   158  * in a statically typed program can show up as
   159  * a dynamic {@code WrongMethodTypeException}
   160  * in a program which uses method handles.
   161  * <p>
   162  * Because method types contain "live" {@code Class} objects,
   163  * method type matching takes into account both types names and class loaders.
   164  * Thus, even if a method handle {@code M} is created in one
   165  * class loader {@code L1} and used in another {@code L2},
   166  * method handle calls are type-safe, because the caller's symbolic type
   167  * descriptor, as resolved in {@code L2},
   168  * is matched against the original callee method's symbolic type descriptor,
   169  * as resolved in {@code L1}.
   170  * The resolution in {@code L1} happens when {@code M} is created
   171  * and its type is assigned, while the resolution in {@code L2} happens
   172  * when the {@code invokevirtual} instruction is linked.
   173  * <p>
   174  * Apart from the checking of type descriptors,
   175  * a method handle's capability to call its underlying method is unrestricted.
   176  * If a method handle is formed on a non-public method by a class
   177  * that has access to that method, the resulting handle can be used
   178  * in any place by any caller who receives a reference to it.
   179  * <p>
   180  * Unlike with the Core Reflection API, where access is checked every time
   181  * a reflective method is invoked,
   182  * method handle access checking is performed
   183  * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
   184  * In the case of {@code ldc} (see below), access checking is performed as part of linking
   185  * the constant pool entry underlying the constant method handle.
   186  * <p>
   187  * Thus, handles to non-public methods, or to methods in non-public classes,
   188  * should generally be kept secret.
   189  * They should not be passed to untrusted code unless their use from
   190  * the untrusted code would be harmless.
   191  *
   192  * <h1>Method handle creation</h1>
   193  * Java code can create a method handle that directly accesses
   194  * any method, constructor, or field that is accessible to that code.
   195  * This is done via a reflective, capability-based API called
   196  * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
   197  * For example, a static method handle can be obtained
   198  * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
   199  * There are also conversion methods from Core Reflection API objects,
   200  * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
   201  * <p>
   202  * Like classes and strings, method handles that correspond to accessible
   203  * fields, methods, and constructors can also be represented directly
   204  * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
   205  * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
   206  * refers directly to an associated {@code CONSTANT_Methodref},
   207  * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
   208  * constant pool entry.
   209  * (For full details on method handle constants,
   210  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
   211  * <p>
   212  * Method handles produced by lookups or constant loads from methods or
   213  * constructors with the variable arity modifier bit ({@code 0x0080})
   214  * have a corresponding variable arity, as if they were defined with
   215  * the help of {@link #asVarargsCollector asVarargsCollector}.
   216  * <p>
   217  * A method reference may refer either to a static or non-static method.
   218  * In the non-static case, the method handle type includes an explicit
   219  * receiver argument, prepended before any other arguments.
   220  * In the method handle's type, the initial receiver argument is typed
   221  * according to the class under which the method was initially requested.
   222  * (E.g., if a non-static method handle is obtained via {@code ldc},
   223  * the type of the receiver is the class named in the constant pool entry.)
   224  * <p>
   225  * Method handle constants are subject to the same link-time access checks
   226  * their corresponding bytecode instructions, and the {@code ldc} instruction
   227  * will throw corresponding linkage errors if the bytecode behaviors would
   228  * throw such errors.
   229  * <p>
   230  * As a corollary of this, access to protected members is restricted
   231  * to receivers only of the accessing class, or one of its subclasses,
   232  * and the accessing class must in turn be a subclass (or package sibling)
   233  * of the protected member's defining class.
   234  * If a method reference refers to a protected non-static method or field
   235  * of a class outside the current package, the receiver argument will
   236  * be narrowed to the type of the accessing class.
   237  * <p>
   238  * When a method handle to a virtual method is invoked, the method is
   239  * always looked up in the receiver (that is, the first argument).
   240  * <p>
   241  * A non-virtual method handle to a specific virtual method implementation
   242  * can also be created.  These do not perform virtual lookup based on
   243  * receiver type.  Such a method handle simulates the effect of
   244  * an {@code invokespecial} instruction to the same method.
   245  *
   246  * <h1>Usage examples</h1>
   247  * Here are some examples of usage:
   248  * <blockquote><pre>{@code
   249 Object x, y; String s; int i;
   250 MethodType mt; MethodHandle mh;
   251 MethodHandles.Lookup lookup = MethodHandles.lookup();
   252 // mt is (char,char)String
   253 mt = MethodType.methodType(String.class, char.class, char.class);
   254 mh = lookup.findVirtual(String.class, "replace", mt);
   255 s = (String) mh.invokeExact("daddy",'d','n');
   256 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
   257 assertEquals(s, "nanny");
   258 // weakly typed invocation (using MHs.invoke)
   259 s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
   260 assertEquals(s, "savvy");
   261 // mt is (Object[])List
   262 mt = MethodType.methodType(java.util.List.class, Object[].class);
   263 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
   264 assert(mh.isVarargsCollector());
   265 x = mh.invoke("one", "two");
   266 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
   267 assertEquals(x, java.util.Arrays.asList("one","two"));
   268 // mt is (Object,Object,Object)Object
   269 mt = MethodType.genericMethodType(3);
   270 mh = mh.asType(mt);
   271 x = mh.invokeExact((Object)1, (Object)2, (Object)3);
   272 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
   273 assertEquals(x, java.util.Arrays.asList(1,2,3));
   274 // mt is ()int
   275 mt = MethodType.methodType(int.class);
   276 mh = lookup.findVirtual(java.util.List.class, "size", mt);
   277 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
   278 // invokeExact(Ljava/util/List;)I
   279 assert(i == 3);
   280 mt = MethodType.methodType(void.class, String.class);
   281 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
   282 mh.invokeExact(System.out, "Hello, world.");
   283 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
   284  * }</pre></blockquote>
   285  * Each of the above calls to {@code invokeExact} or plain {@code invoke}
   286  * generates a single invokevirtual instruction with
   287  * the symbolic type descriptor indicated in the following comment.
   288  * In these examples, the helper method {@code assertEquals} is assumed to
   289  * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
   290  * on its arguments, and asserts that the result is true.
   291  *
   292  * <h1>Exceptions</h1>
   293  * The methods {@code invokeExact} and {@code invoke} are declared
   294  * to throw {@link java.lang.Throwable Throwable},
   295  * which is to say that there is no static restriction on what a method handle
   296  * can throw.  Since the JVM does not distinguish between checked
   297  * and unchecked exceptions (other than by their class, of course),
   298  * there is no particular effect on bytecode shape from ascribing
   299  * checked exceptions to method handle invocations.  But in Java source
   300  * code, methods which perform method handle calls must either explicitly
   301  * throw {@code Throwable}, or else must catch all
   302  * throwables locally, rethrowing only those which are legal in the context,
   303  * and wrapping ones which are illegal.
   304  *
   305  * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
   306  * The unusual compilation and linkage behavior of
   307  * {@code invokeExact} and plain {@code invoke}
   308  * is referenced by the term <em>signature polymorphism</em>.
   309  * As defined in the Java Language Specification,
   310  * a signature polymorphic method is one which can operate with
   311  * any of a wide range of call signatures and return types.
   312  * <p>
   313  * In source code, a call to a signature polymorphic method will
   314  * compile, regardless of the requested symbolic type descriptor.
   315  * As usual, the Java compiler emits an {@code invokevirtual}
   316  * instruction with the given symbolic type descriptor against the named method.
   317  * The unusual part is that the symbolic type descriptor is derived from
   318  * the actual argument and return types, not from the method declaration.
   319  * <p>
   320  * When the JVM processes bytecode containing signature polymorphic calls,
   321  * it will successfully link any such call, regardless of its symbolic type descriptor.
   322  * (In order to retain type safety, the JVM will guard such calls with suitable
   323  * dynamic type checks, as described elsewhere.)
   324  * <p>
   325  * Bytecode generators, including the compiler back end, are required to emit
   326  * untransformed symbolic type descriptors for these methods.
   327  * Tools which determine symbolic linkage are required to accept such
   328  * untransformed descriptors, without reporting linkage errors.
   329  *
   330  * <h1>Interoperation between method handles and the Core Reflection API</h1>
   331  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
   332  * any class member represented by a Core Reflection API object
   333  * can be converted to a behaviorally equivalent method handle.
   334  * For example, a reflective {@link java.lang.reflect.Method Method} can
   335  * be converted to a method handle using
   336  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
   337  * The resulting method handles generally provide more direct and efficient
   338  * access to the underlying class members.
   339  * <p>
   340  * As a special case,
   341  * when the Core Reflection API is used to view the signature polymorphic
   342  * methods {@code invokeExact} or plain {@code invoke} in this class,
   343  * they appear as ordinary non-polymorphic methods.
   344  * Their reflective appearance, as viewed by
   345  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
   346  * is unaffected by their special status in this API.
   347  * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
   348  * will report exactly those modifier bits required for any similarly
   349  * declared method, including in this case {@code native} and {@code varargs} bits.
   350  * <p>
   351  * As with any reflected method, these methods (when reflected) may be
   352  * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
   353  * However, such reflective calls do not result in method handle invocations.
   354  * Such a call, if passed the required argument
   355  * (a single one, of type {@code Object[]}), will ignore the argument and
   356  * will throw an {@code UnsupportedOperationException}.
   357  * <p>
   358  * Since {@code invokevirtual} instructions can natively
   359  * invoke method handles under any symbolic type descriptor, this reflective view conflicts
   360  * with the normal presentation of these methods via bytecodes.
   361  * Thus, these two native methods, when reflectively viewed by
   362  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
   363  * <p>
   364  * In order to obtain an invoker method for a particular type descriptor,
   365  * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
   366  * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
   367  * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
   368  * API is also able to return a method handle
   369  * to call {@code invokeExact} or plain {@code invoke},
   370  * for any specified type descriptor .
   371  *
   372  * <h1>Interoperation between method handles and Java generics</h1>
   373  * A method handle can be obtained on a method, constructor, or field
   374  * which is declared with Java generic types.
   375  * As with the Core Reflection API, the type of the method handle
   376  * will constructed from the erasure of the source-level type.
   377  * When a method handle is invoked, the types of its arguments
   378  * or the return value cast type may be generic types or type instances.
   379  * If this occurs, the compiler will replace those
   380  * types by their erasures when it constructs the symbolic type descriptor
   381  * for the {@code invokevirtual} instruction.
   382  * <p>
   383  * Method handles do not represent
   384  * their function-like types in terms of Java parameterized (generic) types,
   385  * because there are three mismatches between function-like types and parameterized
   386  * Java types.
   387  * <ul>
   388  * <li>Method types range over all possible arities,
   389  * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
   390  * Generics are not variadic, and so cannot represent this.</li>
   391  * <li>Method types can specify arguments of primitive types,
   392  * which Java generic types cannot range over.</li>
   393  * <li>Higher order functions over method handles (combinators) are
   394  * often generic across a wide range of function types, including
   395  * those of multiple arities.  It is impossible to represent such
   396  * genericity with a Java type parameter.</li>
   397  * </ul>
   398  *
   399  * <h1><a name="maxarity"></a>Arity limits</h1>
   400  * The JVM imposes on all methods and constructors of any kind an absolute
   401  * limit of 255 stacked arguments.  This limit can appear more restrictive
   402  * in certain cases:
   403  * <ul>
   404  * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
   405  * <li>A non-static method consumes an extra argument for the object on which the method is called.
   406  * <li>A constructor consumes an extra argument for the object which is being constructed.
   407  * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
   408  *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
   409  * </ul>
   410  * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
   411  * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
   412  * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
   413  * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
   414  *
   415  * @see MethodType
   416  * @see MethodHandles
   417  * @author John Rose, JSR 292 EG
   418  */
   419 public abstract class MethodHandle {
   420     /**
   421      * Internal marker interface which distinguishes (to the Java compiler)
   422      * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
   423      */
   424     @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
   425     @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
   426     @interface PolymorphicSignature { }
   427 
   428     /**
   429      * Reports the type of this method handle.
   430      * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
   431      * @return the method handle type
   432      */
   433     public MethodType type() {
   434         throw new IllegalStateException();
   435     }
   436 
   437     /**
   438      * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
   439      * The symbolic type descriptor at the call site of {@code invokeExact} must
   440      * exactly match this method handle's {@link #type type}.
   441      * No conversions are allowed on arguments or return values.
   442      * <p>
   443      * When this method is observed via the Core Reflection API,
   444      * it will appear as a single native method, taking an object array and returning an object.
   445      * If this native method is invoked directly via
   446      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
   447      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
   448      * it will throw an {@code UnsupportedOperationException}.
   449      * @param args the signature-polymorphic parameter list, statically represented using varargs
   450      * @return the signature-polymorphic result, statically represented using {@code Object}
   451      * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
   452      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
   453      */
   454     public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
   455 
   456     /**
   457      * Invokes the method handle, allowing any caller type descriptor,
   458      * and optionally performing conversions on arguments and return values.
   459      * <p>
   460      * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
   461      * the call proceeds as if by {@link #invokeExact invokeExact}.
   462      * <p>
   463      * Otherwise, the call proceeds as if this method handle were first
   464      * adjusted by calling {@link #asType asType} to adjust this method handle
   465      * to the required type, and then the call proceeds as if by
   466      * {@link #invokeExact invokeExact} on the adjusted method handle.
   467      * <p>
   468      * There is no guarantee that the {@code asType} call is actually made.
   469      * If the JVM can predict the results of making the call, it may perform
   470      * adaptations directly on the caller's arguments,
   471      * and call the target method handle according to its own exact type.
   472      * <p>
   473      * The resolved type descriptor at the call site of {@code invoke} must
   474      * be a valid argument to the receivers {@code asType} method.
   475      * In particular, the caller must specify the same argument arity
   476      * as the callee's type,
   477      * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
   478      * <p>
   479      * When this method is observed via the Core Reflection API,
   480      * it will appear as a single native method, taking an object array and returning an object.
   481      * If this native method is invoked directly via
   482      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
   483      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
   484      * it will throw an {@code UnsupportedOperationException}.
   485      * @param args the signature-polymorphic parameter list, statically represented using varargs
   486      * @return the signature-polymorphic result, statically represented using {@code Object}
   487      * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
   488      * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
   489      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
   490      */
   491     public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
   492 
   493     /**
   494      * Private method for trusted invocation of a method handle respecting simplified signatures.
   495      * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
   496      * <p>
   497      * The caller signature is restricted to the following basic types:
   498      * Object, int, long, float, double, and void return.
   499      * <p>
   500      * The caller is responsible for maintaining type correctness by ensuring
   501      * that the each outgoing argument value is a member of the range of the corresponding
   502      * callee argument type.
   503      * (The caller should therefore issue appropriate casts and integer narrowing
   504      * operations on outgoing argument values.)
   505      * The caller can assume that the incoming result value is part of the range
   506      * of the callee's return type.
   507      * @param args the signature-polymorphic parameter list, statically represented using varargs
   508      * @return the signature-polymorphic result, statically represented using {@code Object}
   509      */
   510     /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
   511 
   512     /**
   513      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
   514      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   515      * The trailing (not leading) argument must be a MemberName.
   516      * @param args the signature-polymorphic parameter list, statically represented using varargs
   517      * @return the signature-polymorphic result, statically represented using {@code Object}
   518      */
   519     /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
   520 
   521     /**
   522      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
   523      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   524      * The trailing (not leading) argument must be a MemberName.
   525      * @param args the signature-polymorphic parameter list, statically represented using varargs
   526      * @return the signature-polymorphic result, statically represented using {@code Object}
   527      */
   528     /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
   529 
   530     /**
   531      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
   532      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   533      * The trailing (not leading) argument must be a MemberName.
   534      * @param args the signature-polymorphic parameter list, statically represented using varargs
   535      * @return the signature-polymorphic result, statically represented using {@code Object}
   536      */
   537     /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
   538 
   539     /**
   540      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
   541      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   542      * The trailing (not leading) argument must be a MemberName.
   543      * @param args the signature-polymorphic parameter list, statically represented using varargs
   544      * @return the signature-polymorphic result, statically represented using {@code Object}
   545      */
   546     /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
   547 
   548     /**
   549      * Performs a variable arity invocation, passing the arguments in the given list
   550      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
   551      * which mentions only the type {@code Object}, and whose arity is the length
   552      * of the argument list.
   553      * <p>
   554      * Specifically, execution proceeds as if by the following steps,
   555      * although the methods are not guaranteed to be called if the JVM
   556      * can predict their effects.
   557      * <ul>
   558      * <li>Determine the length of the argument array as {@code N}.
   559      *     For a null reference, {@code N=0}. </li>
   560      * <li>Determine the general type {@code TN} of {@code N} arguments as
   561      *     as {@code TN=MethodType.genericMethodType(N)}.</li>
   562      * <li>Force the original target method handle {@code MH0} to the
   563      *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
   564      * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
   565      * <li>Invoke the type-adjusted method handle on the unpacked arguments:
   566      *     MH1.invokeExact(A0, ...). </li>
   567      * <li>Take the return value as an {@code Object} reference. </li>
   568      * </ul>
   569      * <p>
   570      * Because of the action of the {@code asType} step, the following argument
   571      * conversions are applied as necessary:
   572      * <ul>
   573      * <li>reference casting
   574      * <li>unboxing
   575      * <li>widening primitive conversions
   576      * </ul>
   577      * <p>
   578      * The result returned by the call is boxed if it is a primitive,
   579      * or forced to null if the return type is void.
   580      * <p>
   581      * This call is equivalent to the following code:
   582      * <blockquote><pre>{@code
   583      * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
   584      * Object result = invoker.invokeExact(this, arguments);
   585      * }</pre></blockquote>
   586      * <p>
   587      * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
   588      * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
   589      * It can therefore be used as a bridge between native or reflective code and method handles.
   590      *
   591      * @param arguments the arguments to pass to the target
   592      * @return the result returned by the target
   593      * @throws ClassCastException if an argument cannot be converted by reference casting
   594      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
   595      * @throws Throwable anything thrown by the target method invocation
   596      * @see MethodHandles#spreadInvoker
   597      */
   598     public Object invokeWithArguments(Object... arguments) throws Throwable {
   599         throw new IllegalStateException();
   600     }
   601 
   602     /**
   603      * Performs a variable arity invocation, passing the arguments in the given array
   604      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
   605      * which mentions only the type {@code Object}, and whose arity is the length
   606      * of the argument array.
   607      * <p>
   608      * This method is also equivalent to the following code:
   609      * <blockquote><pre>{@code
   610      *   invokeWithArguments(arguments.toArray()
   611      * }</pre></blockquote>
   612      *
   613      * @param arguments the arguments to pass to the target
   614      * @return the result returned by the target
   615      * @throws NullPointerException if {@code arguments} is a null reference
   616      * @throws ClassCastException if an argument cannot be converted by reference casting
   617      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
   618      * @throws Throwable anything thrown by the target method invocation
   619      */
   620     public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
   621         return invokeWithArguments(arguments.toArray());
   622     }
   623 
   624     /**
   625      * Produces an adapter method handle which adapts the type of the
   626      * current method handle to a new type.
   627      * The resulting method handle is guaranteed to report a type
   628      * which is equal to the desired new type.
   629      * <p>
   630      * If the original type and new type are equal, returns {@code this}.
   631      * <p>
   632      * The new method handle, when invoked, will perform the following
   633      * steps:
   634      * <ul>
   635      * <li>Convert the incoming argument list to match the original
   636      *     method handle's argument list.
   637      * <li>Invoke the original method handle on the converted argument list.
   638      * <li>Convert any result returned by the original method handle
   639      *     to the return type of new method handle.
   640      * </ul>
   641      * <p>
   642      * This method provides the crucial behavioral difference between
   643      * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
   644      * The two methods
   645      * perform the same steps when the caller's type descriptor exactly m atches
   646      * the callee's, but when the types differ, plain {@link #invoke invoke}
   647      * also calls {@code asType} (or some internal equivalent) in order
   648      * to match up the caller's and callee's types.
   649      * <p>
   650      * If the current method is a variable arity method handle
   651      * argument list conversion may involve the conversion and collection
   652      * of several arguments into an array, as
   653      * {@linkplain #asVarargsCollector described elsewhere}.
   654      * In every other case, all conversions are applied <em>pairwise</em>,
   655      * which means that each argument or return value is converted to
   656      * exactly one argument or return value (or no return value).
   657      * The applied conversions are defined by consulting the
   658      * the corresponding component types of the old and new
   659      * method handle types.
   660      * <p>
   661      * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
   662      * or old and new return types.  Specifically, for some valid index {@code i}, let
   663      * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
   664      * Or else, going the other way for return values, let
   665      * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
   666      * If the types are the same, the new method handle makes no change
   667      * to the corresponding argument or return value (if any).
   668      * Otherwise, one of the following conversions is applied
   669      * if possible:
   670      * <ul>
   671      * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
   672      *     (The types do not need to be related in any particular way.
   673      *     This is because a dynamic value of null can convert to any reference type.)
   674      * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
   675      *     conversion (JLS 5.3) is applied, if one exists.
   676      *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
   677      * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
   678      *     a Java casting conversion (JLS 5.5) is applied if one exists.
   679      *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
   680      *     which is then widened as needed to <em>T1</em>.)
   681      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
   682      *     conversion will be applied at runtime, possibly followed
   683      *     by a Java method invocation conversion (JLS 5.3)
   684      *     on the primitive value.  (These are the primitive widening conversions.)
   685      *     <em>T0</em> must be a wrapper class or a supertype of one.
   686      *     (In the case where <em>T0</em> is Object, these are the conversions
   687      *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
   688      *     The unboxing conversion must have a possibility of success, which means that
   689      *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
   690      *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
   691      *     primitive value can be widened to <em>T1</em>.
   692      * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
   693      * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
   694      * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
   695      *     a zero value is introduced.
   696      * </ul>
   697     * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
   698      * because neither corresponds specifically to the <em>dynamic type</em> of any
   699      * actual argument or return value.)
   700      * <p>
   701      * The method handle conversion cannot be made if any one of the required
   702      * pairwise conversions cannot be made.
   703      * <p>
   704      * At runtime, the conversions applied to reference arguments
   705      * or return values may require additional runtime checks which can fail.
   706      * An unboxing operation may fail because the original reference is null,
   707      * causing a {@link java.lang.NullPointerException NullPointerException}.
   708      * An unboxing operation or a reference cast may also fail on a reference
   709      * to an object of the wrong type,
   710      * causing a {@link java.lang.ClassCastException ClassCastException}.
   711      * Although an unboxing operation may accept several kinds of wrappers,
   712      * if none are available, a {@code ClassCastException} will be thrown.
   713      *
   714      * @param newType the expected type of the new method handle
   715      * @return a method handle which delegates to {@code this} after performing
   716      *           any necessary argument conversions, and arranges for any
   717      *           necessary return value conversions
   718      * @throws NullPointerException if {@code newType} is a null reference
   719      * @throws WrongMethodTypeException if the conversion cannot be made
   720      * @see MethodHandles#explicitCastArguments
   721      */
   722     public MethodHandle asType(MethodType newType) {
   723         throw new IllegalStateException();
   724     }
   725 
   726     /**
   727      * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
   728      * and spreads its elements as positional arguments.
   729      * The new method handle adapts, as its <i>target</i>,
   730      * the current method handle.  The type of the adapter will be
   731      * the same as the type of the target, except that the final
   732      * {@code arrayLength} parameters of the target's type are replaced
   733      * by a single array parameter of type {@code arrayType}.
   734      * <p>
   735      * If the array element type differs from any of the corresponding
   736      * argument types on the original target,
   737      * the original target is adapted to take the array elements directly,
   738      * as if by a call to {@link #asType asType}.
   739      * <p>
   740      * When called, the adapter replaces a trailing array argument
   741      * by the array's elements, each as its own argument to the target.
   742      * (The order of the arguments is preserved.)
   743      * They are converted pairwise by casting and/or unboxing
   744      * to the types of the trailing parameters of the target.
   745      * Finally the target is called.
   746      * What the target eventually returns is returned unchanged by the adapter.
   747      * <p>
   748      * Before calling the target, the adapter verifies that the array
   749      * contains exactly enough elements to provide a correct argument count
   750      * to the target method handle.
   751      * (The array may also be null when zero elements are required.)
   752      * <p>
   753      * If, when the adapter is called, the supplied array argument does
   754      * not have the correct number of elements, the adapter will throw
   755      * an {@link IllegalArgumentException} instead of invoking the target.
   756      * <p>
   757      * Here are some simple examples of array-spreading method handles:
   758      * <blockquote><pre>{@code
   759 MethodHandle equals = publicLookup()
   760   .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
   761 assert( (boolean) equals.invokeExact("me", (Object)"me"));
   762 assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
   763 // spread both arguments from a 2-array:
   764 MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
   765 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
   766 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
   767 // try to spread from anything but a 2-array:
   768 for (int n = 0; n <= 10; n++) {
   769   Object[] badArityArgs = (n == 2 ? null : new Object[n]);
   770   try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
   771   catch (IllegalArgumentException ex) { } // OK
   772 }
   773 // spread both arguments from a String array:
   774 MethodHandle eq2s = equals.asSpreader(String[].class, 2);
   775 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
   776 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
   777 // spread second arguments from a 1-array:
   778 MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
   779 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
   780 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
   781 // spread no arguments from a 0-array or null:
   782 MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
   783 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
   784 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
   785 // asSpreader and asCollector are approximate inverses:
   786 for (int n = 0; n <= 2; n++) {
   787     for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
   788         MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
   789         assert( (boolean) equals2.invokeWithArguments("me", "me"));
   790         assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
   791     }
   792 }
   793 MethodHandle caToString = publicLookup()
   794   .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
   795 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
   796 MethodHandle caString3 = caToString.asCollector(char[].class, 3);
   797 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
   798 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
   799 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
   800      * }</pre></blockquote>
   801      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
   802      * @param arrayLength the number of arguments to spread from an incoming array argument
   803      * @return a new method handle which spreads its final array argument,
   804      *         before calling the original method handle
   805      * @throws NullPointerException if {@code arrayType} is a null reference
   806      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
   807      *         or if target does not have at least
   808      *         {@code arrayLength} parameter types,
   809      *         or if {@code arrayLength} is negative,
   810      *         or if the resulting method handle's type would have
   811      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
   812      * @throws WrongMethodTypeException if the implied {@code asType} call fails
   813      * @see #asCollector
   814      */
   815     public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
   816         throw new IllegalStateException();
   817     }
   818 
   819     /**
   820      * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
   821      * positional arguments and collects them into an array argument.
   822      * The new method handle adapts, as its <i>target</i>,
   823      * the current method handle.  The type of the adapter will be
   824      * the same as the type of the target, except that a single trailing
   825      * parameter (usually of type {@code arrayType}) is replaced by
   826      * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
   827      * <p>
   828      * If the array type differs from the final argument type on the original target,
   829      * the original target is adapted to take the array type directly,
   830      * as if by a call to {@link #asType asType}.
   831      * <p>
   832      * When called, the adapter replaces its trailing {@code arrayLength}
   833      * arguments by a single new array of type {@code arrayType}, whose elements
   834      * comprise (in order) the replaced arguments.
   835      * Finally the target is called.
   836      * What the target eventually returns is returned unchanged by the adapter.
   837      * <p>
   838      * (The array may also be a shared constant when {@code arrayLength} is zero.)
   839      * <p>
   840      * (<em>Note:</em> The {@code arrayType} is often identical to the last
   841      * parameter type of the original target.
   842      * It is an explicit argument for symmetry with {@code asSpreader}, and also
   843      * to allow the target to use a simple {@code Object} as its last parameter type.)
   844      * <p>
   845      * In order to create a collecting adapter which is not restricted to a particular
   846      * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
   847      * <p>
   848      * Here are some examples of array-collecting method handles:
   849      * <blockquote><pre>{@code
   850 MethodHandle deepToString = publicLookup()
   851   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
   852 assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
   853 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
   854 assertEquals(methodType(String.class, Object.class), ts1.type());
   855 //assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
   856 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
   857 // arrayType can be a subtype of Object[]
   858 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
   859 assertEquals(methodType(String.class, String.class, String.class), ts2.type());
   860 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
   861 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
   862 assertEquals("[]", (String) ts0.invokeExact());
   863 // collectors can be nested, Lisp-style
   864 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
   865 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
   866 // arrayType can be any primitive array type
   867 MethodHandle bytesToString = publicLookup()
   868   .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
   869   .asCollector(byte[].class, 3);
   870 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
   871 MethodHandle longsToString = publicLookup()
   872   .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
   873   .asCollector(long[].class, 1);
   874 assertEquals("[123]", (String) longsToString.invokeExact((long)123));
   875      * }</pre></blockquote>
   876      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
   877      * @param arrayLength the number of arguments to collect into a new array argument
   878      * @return a new method handle which collects some trailing argument
   879      *         into an array, before calling the original method handle
   880      * @throws NullPointerException if {@code arrayType} is a null reference
   881      * @throws IllegalArgumentException if {@code arrayType} is not an array type
   882      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
   883      *         or {@code arrayLength} is not a legal array size,
   884      *         or the resulting method handle's type would have
   885      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
   886      * @throws WrongMethodTypeException if the implied {@code asType} call fails
   887      * @see #asSpreader
   888      * @see #asVarargsCollector
   889      */
   890     public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
   891         throw new IllegalStateException();
   892     }
   893 
   894     /**
   895      * Makes a <em>variable arity</em> adapter which is able to accept
   896      * any number of trailing positional arguments and collect them
   897      * into an array argument.
   898      * <p>
   899      * The type and behavior of the adapter will be the same as
   900      * the type and behavior of the target, except that certain
   901      * {@code invoke} and {@code asType} requests can lead to
   902      * trailing positional arguments being collected into target's
   903      * trailing parameter.
   904      * Also, the last parameter type of the adapter will be
   905      * {@code arrayType}, even if the target has a different
   906      * last parameter type.
   907      * <p>
   908      * This transformation may return {@code this} if the method handle is
   909      * already of variable arity and its trailing parameter type
   910      * is identical to {@code arrayType}.
   911      * <p>
   912      * When called with {@link #invokeExact invokeExact}, the adapter invokes
   913      * the target with no argument changes.
   914      * (<em>Note:</em> This behavior is different from a
   915      * {@linkplain #asCollector fixed arity collector},
   916      * since it accepts a whole array of indeterminate length,
   917      * rather than a fixed number of arguments.)
   918      * <p>
   919      * When called with plain, inexact {@link #invoke invoke}, if the caller
   920      * type is the same as the adapter, the adapter invokes the target as with
   921      * {@code invokeExact}.
   922      * (This is the normal behavior for {@code invoke} when types match.)
   923      * <p>
   924      * Otherwise, if the caller and adapter arity are the same, and the
   925      * trailing parameter type of the caller is a reference type identical to
   926      * or assignable to the trailing parameter type of the adapter,
   927      * the arguments and return values are converted pairwise,
   928      * as if by {@link #asType asType} on a fixed arity
   929      * method handle.
   930      * <p>
   931      * Otherwise, the arities differ, or the adapter's trailing parameter
   932      * type is not assignable from the corresponding caller type.
   933      * In this case, the adapter replaces all trailing arguments from
   934      * the original trailing argument position onward, by
   935      * a new array of type {@code arrayType}, whose elements
   936      * comprise (in order) the replaced arguments.
   937      * <p>
   938      * The caller type must provides as least enough arguments,
   939      * and of the correct type, to satisfy the target's requirement for
   940      * positional arguments before the trailing array argument.
   941      * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
   942      * where {@code N} is the arity of the target.
   943      * Also, there must exist conversions from the incoming arguments
   944      * to the target's arguments.
   945      * As with other uses of plain {@code invoke}, if these basic
   946      * requirements are not fulfilled, a {@code WrongMethodTypeException}
   947      * may be thrown.
   948      * <p>
   949      * In all cases, what the target eventually returns is returned unchanged by the adapter.
   950      * <p>
   951      * In the final case, it is exactly as if the target method handle were
   952      * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
   953      * to the arity required by the caller type.
   954      * (As with {@code asCollector}, if the array length is zero,
   955      * a shared constant may be used instead of a new array.
   956      * If the implied call to {@code asCollector} would throw
   957      * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
   958      * the call to the variable arity adapter must throw
   959      * {@code WrongMethodTypeException}.)
   960      * <p>
   961      * The behavior of {@link #asType asType} is also specialized for
   962      * variable arity adapters, to maintain the invariant that
   963      * plain, inexact {@code invoke} is always equivalent to an {@code asType}
   964      * call to adjust the target type, followed by {@code invokeExact}.
   965      * Therefore, a variable arity adapter responds
   966      * to an {@code asType} request by building a fixed arity collector,
   967      * if and only if the adapter and requested type differ either
   968      * in arity or trailing argument type.
   969      * The resulting fixed arity collector has its type further adjusted
   970      * (if necessary) to the requested type by pairwise conversion,
   971      * as if by another application of {@code asType}.
   972      * <p>
   973      * When a method handle is obtained by executing an {@code ldc} instruction
   974      * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
   975      * as a variable arity method (with the modifier bit {@code 0x0080}),
   976      * the method handle will accept multiple arities, as if the method handle
   977      * constant were created by means of a call to {@code asVarargsCollector}.
   978      * <p>
   979      * In order to create a collecting adapter which collects a predetermined
   980      * number of arguments, and whose type reflects this predetermined number,
   981      * use {@link #asCollector asCollector} instead.
   982      * <p>
   983      * No method handle transformations produce new method handles with
   984      * variable arity, unless they are documented as doing so.
   985      * Therefore, besides {@code asVarargsCollector},
   986      * all methods in {@code MethodHandle} and {@code MethodHandles}
   987      * will return a method handle with fixed arity,
   988      * except in the cases where they are specified to return their original
   989      * operand (e.g., {@code asType} of the method handle's own type).
   990      * <p>
   991      * Calling {@code asVarargsCollector} on a method handle which is already
   992      * of variable arity will produce a method handle with the same type and behavior.
   993      * It may (or may not) return the original variable arity method handle.
   994      * <p>
   995      * Here is an example, of a list-making variable arity method handle:
   996      * <blockquote><pre>{@code
   997 MethodHandle deepToString = publicLookup()
   998   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
   999 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
  1000 assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
  1001 assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
  1002 assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
  1003 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
  1004 // findStatic of Arrays.asList(...) produces a variable arity method handle:
  1005 MethodHandle asList = publicLookup()
  1006   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
  1007 assertEquals(methodType(List.class, Object[].class), asList.type());
  1008 assert(asList.isVarargsCollector());
  1009 assertEquals("[]", asList.invoke().toString());
  1010 assertEquals("[1]", asList.invoke(1).toString());
  1011 assertEquals("[two, too]", asList.invoke("two", "too").toString());
  1012 String[] argv = { "three", "thee", "tee" };
  1013 assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
  1014 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
  1015 List ls = (List) asList.invoke((Object)argv);
  1016 assertEquals(1, ls.size());
  1017 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
  1018      * }</pre></blockquote>
  1019      * <p style="font-size:smaller;">
  1020      * <em>Discussion:</em>
  1021      * These rules are designed as a dynamically-typed variation
  1022      * of the Java rules for variable arity methods.
  1023      * In both cases, callers to a variable arity method or method handle
  1024      * can either pass zero or more positional arguments, or else pass
  1025      * pre-collected arrays of any length.  Users should be aware of the
  1026      * special role of the final argument, and of the effect of a
  1027      * type match on that final argument, which determines whether
  1028      * or not a single trailing argument is interpreted as a whole
  1029      * array or a single element of an array to be collected.
  1030      * Note that the dynamic type of the trailing argument has no
  1031      * effect on this decision, only a comparison between the symbolic
  1032      * type descriptor of the call site and the type descriptor of the method handle.)
  1033      *
  1034      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
  1035      * @return a new method handle which can collect any number of trailing arguments
  1036      *         into an array, before calling the original method handle
  1037      * @throws NullPointerException if {@code arrayType} is a null reference
  1038      * @throws IllegalArgumentException if {@code arrayType} is not an array type
  1039      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
  1040      * @see #asCollector
  1041      * @see #isVarargsCollector
  1042      * @see #asFixedArity
  1043      */
  1044     public MethodHandle asVarargsCollector(Class<?> arrayType) {
  1045         throw new IllegalStateException();
  1046     }
  1047 
  1048     /**
  1049      * Determines if this method handle
  1050      * supports {@linkplain #asVarargsCollector variable arity} calls.
  1051      * Such method handles arise from the following sources:
  1052      * <ul>
  1053      * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
  1054      * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
  1055      *     which resolves to a variable arity Java method or constructor
  1056      * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
  1057      *     which resolves to a variable arity Java method or constructor
  1058      * </ul>
  1059      * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
  1060      * @see #asVarargsCollector
  1061      * @see #asFixedArity
  1062      */
  1063     public boolean isVarargsCollector() {
  1064         return false;
  1065     }
  1066 
  1067     /**
  1068      * Makes a <em>fixed arity</em> method handle which is otherwise
  1069      * equivalent to the current method handle.
  1070      * <p>
  1071      * If the current method handle is not of
  1072      * {@linkplain #asVarargsCollector variable arity},
  1073      * the current method handle is returned.
  1074      * This is true even if the current method handle
  1075      * could not be a valid input to {@code asVarargsCollector}.
  1076      * <p>
  1077      * Otherwise, the resulting fixed-arity method handle has the same
  1078      * type and behavior of the current method handle,
  1079      * except that {@link #isVarargsCollector isVarargsCollector}
  1080      * will be false.
  1081      * The fixed-arity method handle may (or may not) be the
  1082      * a previous argument to {@code asVarargsCollector}.
  1083      * <p>
  1084      * Here is an example, of a list-making variable arity method handle:
  1085      * <blockquote><pre>{@code
  1086 MethodHandle asListVar = publicLookup()
  1087   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
  1088   .asVarargsCollector(Object[].class);
  1089 MethodHandle asListFix = asListVar.asFixedArity();
  1090 assertEquals("[1]", asListVar.invoke(1).toString());
  1091 Exception caught = null;
  1092 try { asListFix.invoke((Object)1); }
  1093 catch (Exception ex) { caught = ex; }
  1094 assert(caught instanceof ClassCastException);
  1095 assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
  1096 try { asListFix.invoke("two", "too"); }
  1097 catch (Exception ex) { caught = ex; }
  1098 assert(caught instanceof WrongMethodTypeException);
  1099 Object[] argv = { "three", "thee", "tee" };
  1100 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
  1101 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
  1102 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
  1103 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
  1104      * }</pre></blockquote>
  1105      *
  1106      * @return a new method handle which accepts only a fixed number of arguments
  1107      * @see #asVarargsCollector
  1108      * @see #isVarargsCollector
  1109      */
  1110     public MethodHandle asFixedArity() {
  1111         assert(!isVarargsCollector());
  1112         return this;
  1113     }
  1114 
  1115     /**
  1116      * Binds a value {@code x} to the first argument of a method handle, without invoking it.
  1117      * The new method handle adapts, as its <i>target</i>,
  1118      * the current method handle by binding it to the given argument.
  1119      * The type of the bound handle will be
  1120      * the same as the type of the target, except that a single leading
  1121      * reference parameter will be omitted.
  1122      * <p>
  1123      * When called, the bound handle inserts the given value {@code x}
  1124      * as a new leading argument to the target.  The other arguments are
  1125      * also passed unchanged.
  1126      * What the target eventually returns is returned unchanged by the bound handle.
  1127      * <p>
  1128      * The reference {@code x} must be convertible to the first parameter
  1129      * type of the target.
  1130      * <p>
  1131      * (<em>Note:</em>  Because method handles are immutable, the target method handle
  1132      * retains its original type and behavior.)
  1133      * @param x  the value to bind to the first argument of the target
  1134      * @return a new method handle which prepends the given value to the incoming
  1135      *         argument list, before calling the original method handle
  1136      * @throws IllegalArgumentException if the target does not have a
  1137      *         leading parameter type that is a reference type
  1138      * @throws ClassCastException if {@code x} cannot be converted
  1139      *         to the leading parameter type of the target
  1140      * @see MethodHandles#insertArguments
  1141      */
  1142     public MethodHandle bindTo(Object x) {
  1143         throw new IllegalStateException();
  1144     }
  1145 
  1146     /**
  1147      * Returns a string representation of the method handle,
  1148      * starting with the string {@code "MethodHandle"} and
  1149      * ending with the string representation of the method handle's type.
  1150      * In other words, this method returns a string equal to the value of:
  1151      * <blockquote><pre>{@code
  1152      * "MethodHandle" + type().toString()
  1153      * }</pre></blockquote>
  1154      * <p>
  1155      * (<em>Note:</em>  Future releases of this API may add further information
  1156      * to the string representation.
  1157      * Therefore, the present syntax should not be parsed by applications.)
  1158      *
  1159      * @return a string representation of the method handle
  1160      */
  1161     @Override
  1162     public String toString() {
  1163         return standardString();
  1164     }
  1165     String standardString() {
  1166         throw new IllegalStateException();
  1167     }
  1168 }