emul/src/main/java/java/lang/String.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sun, 30 Sep 2012 17:17:00 -0700
branchemul
changeset 74 462dbda65533
parent 73 bf8e571de593
child 75 5a8dca9ffc5c
permissions -rw-r--r--
Don't support other encodings than UTF-8
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import java.io.UnsupportedEncodingException;
    29 import java.util.Comparator;
    30 
    31 /**
    32  * The <code>String</code> class represents character strings. All
    33  * string literals in Java programs, such as <code>"abc"</code>, are
    34  * implemented as instances of this class.
    35  * <p>
    36  * Strings are constant; their values cannot be changed after they
    37  * are created. String buffers support mutable strings.
    38  * Because String objects are immutable they can be shared. For example:
    39  * <p><blockquote><pre>
    40  *     String str = "abc";
    41  * </pre></blockquote><p>
    42  * is equivalent to:
    43  * <p><blockquote><pre>
    44  *     char data[] = {'a', 'b', 'c'};
    45  *     String str = new String(data);
    46  * </pre></blockquote><p>
    47  * Here are some more examples of how strings can be used:
    48  * <p><blockquote><pre>
    49  *     System.out.println("abc");
    50  *     String cde = "cde";
    51  *     System.out.println("abc" + cde);
    52  *     String c = "abc".substring(2,3);
    53  *     String d = cde.substring(1, 2);
    54  * </pre></blockquote>
    55  * <p>
    56  * The class <code>String</code> includes methods for examining
    57  * individual characters of the sequence, for comparing strings, for
    58  * searching strings, for extracting substrings, and for creating a
    59  * copy of a string with all characters translated to uppercase or to
    60  * lowercase. Case mapping is based on the Unicode Standard version
    61  * specified by the {@link java.lang.Character Character} class.
    62  * <p>
    63  * The Java language provides special support for the string
    64  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
    65  * other objects to strings. String concatenation is implemented
    66  * through the <code>StringBuilder</code>(or <code>StringBuffer</code>)
    67  * class and its <code>append</code> method.
    68  * String conversions are implemented through the method
    69  * <code>toString</code>, defined by <code>Object</code> and
    70  * inherited by all classes in Java. For additional information on
    71  * string concatenation and conversion, see Gosling, Joy, and Steele,
    72  * <i>The Java Language Specification</i>.
    73  *
    74  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
    75  * or method in this class will cause a {@link NullPointerException} to be
    76  * thrown.
    77  *
    78  * <p>A <code>String</code> represents a string in the UTF-16 format
    79  * in which <em>supplementary characters</em> are represented by <em>surrogate
    80  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
    81  * Character Representations</a> in the <code>Character</code> class for
    82  * more information).
    83  * Index values refer to <code>char</code> code units, so a supplementary
    84  * character uses two positions in a <code>String</code>.
    85  * <p>The <code>String</code> class provides methods for dealing with
    86  * Unicode code points (i.e., characters), in addition to those for
    87  * dealing with Unicode code units (i.e., <code>char</code> values).
    88  *
    89  * @author  Lee Boynton
    90  * @author  Arthur van Hoff
    91  * @author  Martin Buchholz
    92  * @author  Ulf Zibis
    93  * @see     java.lang.Object#toString()
    94  * @see     java.lang.StringBuffer
    95  * @see     java.lang.StringBuilder
    96  * @see     java.nio.charset.Charset
    97  * @since   JDK1.0
    98  */
    99 
   100 public final class String
   101     implements java.io.Serializable, Comparable<String>, CharSequence
   102 {
   103     /** The value is used for character storage. */
   104     private final char value[];
   105 
   106     /** The offset is the first index of the storage that is used. */
   107     private final int offset;
   108 
   109     /** The count is the number of characters in the String. */
   110     private final int count;
   111 
   112     /** Cache the hash code for the string */
   113     private int hash; // Default to 0
   114 
   115     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   116     private static final long serialVersionUID = -6849794470754667710L;
   117 
   118     /**
   119      * Class String is special cased within the Serialization Stream Protocol.
   120      *
   121      * A String instance is written initially into an ObjectOutputStream in the
   122      * following format:
   123      * <pre>
   124      *      <code>TC_STRING</code> (utf String)
   125      * </pre>
   126      * The String is written by method <code>DataOutput.writeUTF</code>.
   127      * A new handle is generated to  refer to all future references to the
   128      * string instance within the stream.
   129      */
   130 //    private static final ObjectStreamField[] serialPersistentFields =
   131 //        new ObjectStreamField[0];
   132 
   133     /**
   134      * Initializes a newly created {@code String} object so that it represents
   135      * an empty character sequence.  Note that use of this constructor is
   136      * unnecessary since Strings are immutable.
   137      */
   138     public String() {
   139         this.offset = 0;
   140         this.count = 0;
   141         this.value = new char[0];
   142     }
   143 
   144     /**
   145      * Initializes a newly created {@code String} object so that it represents
   146      * the same sequence of characters as the argument; in other words, the
   147      * newly created string is a copy of the argument string. Unless an
   148      * explicit copy of {@code original} is needed, use of this constructor is
   149      * unnecessary since Strings are immutable.
   150      *
   151      * @param  original
   152      *         A {@code String}
   153      */
   154     public String(String original) {
   155         int size = original.count;
   156         char[] originalValue = original.value;
   157         char[] v;
   158         if (originalValue.length > size) {
   159             // The array representing the String is bigger than the new
   160             // String itself.  Perhaps this constructor is being called
   161             // in order to trim the baggage, so make a copy of the array.
   162             int off = original.offset;
   163             v = copyOfRange(originalValue, off, off+size);
   164         } else {
   165             // The array representing the String is the same
   166             // size as the String, so no point in making a copy.
   167             v = originalValue;
   168         }
   169         this.offset = 0;
   170         this.count = size;
   171         this.value = v;
   172     }
   173 
   174     /**
   175      * Allocates a new {@code String} so that it represents the sequence of
   176      * characters currently contained in the character array argument. The
   177      * contents of the character array are copied; subsequent modification of
   178      * the character array does not affect the newly created string.
   179      *
   180      * @param  value
   181      *         The initial value of the string
   182      */
   183     public String(char value[]) {
   184         int size = value.length;
   185         this.offset = 0;
   186         this.count = size;
   187         this.value = copyOf(value, size);
   188     }
   189 
   190     /**
   191      * Allocates a new {@code String} that contains characters from a subarray
   192      * of the character array argument. The {@code offset} argument is the
   193      * index of the first character of the subarray and the {@code count}
   194      * argument specifies the length of the subarray. The contents of the
   195      * subarray are copied; subsequent modification of the character array does
   196      * not affect the newly created string.
   197      *
   198      * @param  value
   199      *         Array that is the source of characters
   200      *
   201      * @param  offset
   202      *         The initial offset
   203      *
   204      * @param  count
   205      *         The length
   206      *
   207      * @throws  IndexOutOfBoundsException
   208      *          If the {@code offset} and {@code count} arguments index
   209      *          characters outside the bounds of the {@code value} array
   210      */
   211     public String(char value[], int offset, int count) {
   212         if (offset < 0) {
   213             throw new StringIndexOutOfBoundsException(offset);
   214         }
   215         if (count < 0) {
   216             throw new StringIndexOutOfBoundsException(count);
   217         }
   218         // Note: offset or count might be near -1>>>1.
   219         if (offset > value.length - count) {
   220             throw new StringIndexOutOfBoundsException(offset + count);
   221         }
   222         this.offset = 0;
   223         this.count = count;
   224         this.value = copyOfRange(value, offset, offset+count);
   225     }
   226 
   227     /**
   228      * Allocates a new {@code String} that contains characters from a subarray
   229      * of the <a href="Character.html#unicode">Unicode code point</a> array
   230      * argument.  The {@code offset} argument is the index of the first code
   231      * point of the subarray and the {@code count} argument specifies the
   232      * length of the subarray.  The contents of the subarray are converted to
   233      * {@code char}s; subsequent modification of the {@code int} array does not
   234      * affect the newly created string.
   235      *
   236      * @param  codePoints
   237      *         Array that is the source of Unicode code points
   238      *
   239      * @param  offset
   240      *         The initial offset
   241      *
   242      * @param  count
   243      *         The length
   244      *
   245      * @throws  IllegalArgumentException
   246      *          If any invalid Unicode code point is found in {@code
   247      *          codePoints}
   248      *
   249      * @throws  IndexOutOfBoundsException
   250      *          If the {@code offset} and {@code count} arguments index
   251      *          characters outside the bounds of the {@code codePoints} array
   252      *
   253      * @since  1.5
   254      */
   255     public String(int[] codePoints, int offset, int count) {
   256         if (offset < 0) {
   257             throw new StringIndexOutOfBoundsException(offset);
   258         }
   259         if (count < 0) {
   260             throw new StringIndexOutOfBoundsException(count);
   261         }
   262         // Note: offset or count might be near -1>>>1.
   263         if (offset > codePoints.length - count) {
   264             throw new StringIndexOutOfBoundsException(offset + count);
   265         }
   266 
   267         final int end = offset + count;
   268 
   269         // Pass 1: Compute precise size of char[]
   270         int n = count;
   271         for (int i = offset; i < end; i++) {
   272             int c = codePoints[i];
   273             if (Character.isBmpCodePoint(c))
   274                 continue;
   275             else if (Character.isValidCodePoint(c))
   276                 n++;
   277             else throw new IllegalArgumentException(Integer.toString(c));
   278         }
   279 
   280         // Pass 2: Allocate and fill in char[]
   281         final char[] v = new char[n];
   282 
   283         for (int i = offset, j = 0; i < end; i++, j++) {
   284             int c = codePoints[i];
   285             if (Character.isBmpCodePoint(c))
   286                 v[j] = (char) c;
   287             else
   288                 Character.toSurrogates(c, v, j++);
   289         }
   290 
   291         this.value  = v;
   292         this.count  = n;
   293         this.offset = 0;
   294     }
   295 
   296     /**
   297      * Allocates a new {@code String} constructed from a subarray of an array
   298      * of 8-bit integer values.
   299      *
   300      * <p> The {@code offset} argument is the index of the first byte of the
   301      * subarray, and the {@code count} argument specifies the length of the
   302      * subarray.
   303      *
   304      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
   305      * specified in the method above.
   306      *
   307      * @deprecated This method does not properly convert bytes into characters.
   308      * As of JDK&nbsp;1.1, the preferred way to do this is via the
   309      * {@code String} constructors that take a {@link
   310      * java.nio.charset.Charset}, charset name, or that use the platform's
   311      * default charset.
   312      *
   313      * @param  ascii
   314      *         The bytes to be converted to characters
   315      *
   316      * @param  hibyte
   317      *         The top 8 bits of each 16-bit Unicode code unit
   318      *
   319      * @param  offset
   320      *         The initial offset
   321      * @param  count
   322      *         The length
   323      *
   324      * @throws  IndexOutOfBoundsException
   325      *          If the {@code offset} or {@code count} argument is invalid
   326      *
   327      * @see  #String(byte[], int)
   328      * @see  #String(byte[], int, int, java.lang.String)
   329      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   330      * @see  #String(byte[], int, int)
   331      * @see  #String(byte[], java.lang.String)
   332      * @see  #String(byte[], java.nio.charset.Charset)
   333      * @see  #String(byte[])
   334      */
   335     @Deprecated
   336     public String(byte ascii[], int hibyte, int offset, int count) {
   337         checkBounds(ascii, offset, count);
   338         char value[] = new char[count];
   339 
   340         if (hibyte == 0) {
   341             for (int i = count ; i-- > 0 ;) {
   342                 value[i] = (char) (ascii[i + offset] & 0xff);
   343             }
   344         } else {
   345             hibyte <<= 8;
   346             for (int i = count ; i-- > 0 ;) {
   347                 value[i] = (char) (hibyte | (ascii[i + offset] & 0xff));
   348             }
   349         }
   350         this.offset = 0;
   351         this.count = count;
   352         this.value = value;
   353     }
   354 
   355     /**
   356      * Allocates a new {@code String} containing characters constructed from
   357      * an array of 8-bit integer values. Each character <i>c</i>in the
   358      * resulting string is constructed from the corresponding component
   359      * <i>b</i> in the byte array such that:
   360      *
   361      * <blockquote><pre>
   362      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
   363      *                         | (<b><i>b</i></b> &amp; 0xff))
   364      * </pre></blockquote>
   365      *
   366      * @deprecated  This method does not properly convert bytes into
   367      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   368      * {@code String} constructors that take a {@link
   369      * java.nio.charset.Charset}, charset name, or that use the platform's
   370      * default charset.
   371      *
   372      * @param  ascii
   373      *         The bytes to be converted to characters
   374      *
   375      * @param  hibyte
   376      *         The top 8 bits of each 16-bit Unicode code unit
   377      *
   378      * @see  #String(byte[], int, int, java.lang.String)
   379      * @see  #String(byte[], int, int, java.nio.charset.Charset)
   380      * @see  #String(byte[], int, int)
   381      * @see  #String(byte[], java.lang.String)
   382      * @see  #String(byte[], java.nio.charset.Charset)
   383      * @see  #String(byte[])
   384      */
   385     @Deprecated
   386     public String(byte ascii[], int hibyte) {
   387         this(ascii, hibyte, 0, ascii.length);
   388     }
   389 
   390     /* Common private utility method used to bounds check the byte array
   391      * and requested offset & length values used by the String(byte[],..)
   392      * constructors.
   393      */
   394     private static void checkBounds(byte[] bytes, int offset, int length) {
   395         if (length < 0)
   396             throw new StringIndexOutOfBoundsException(length);
   397         if (offset < 0)
   398             throw new StringIndexOutOfBoundsException(offset);
   399         if (offset > bytes.length - length)
   400             throw new StringIndexOutOfBoundsException(offset + length);
   401     }
   402 
   403     /**
   404      * Constructs a new {@code String} by decoding the specified subarray of
   405      * bytes using the specified charset.  The length of the new {@code String}
   406      * is a function of the charset, and hence may not be equal to the length
   407      * of the subarray.
   408      *
   409      * <p> The behavior of this constructor when the given bytes are not valid
   410      * in the given charset is unspecified.  The {@link
   411      * java.nio.charset.CharsetDecoder} class should be used when more control
   412      * over the decoding process is required.
   413      *
   414      * @param  bytes
   415      *         The bytes to be decoded into characters
   416      *
   417      * @param  offset
   418      *         The index of the first byte to decode
   419      *
   420      * @param  length
   421      *         The number of bytes to decode
   422 
   423      * @param  charsetName
   424      *         The name of a supported {@linkplain java.nio.charset.Charset
   425      *         charset}
   426      *
   427      * @throws  UnsupportedEncodingException
   428      *          If the named charset is not supported
   429      *
   430      * @throws  IndexOutOfBoundsException
   431      *          If the {@code offset} and {@code length} arguments index
   432      *          characters outside the bounds of the {@code bytes} array
   433      *
   434      * @since  JDK1.1
   435      */
   436 //    public String(byte bytes[], int offset, int length, String charsetName)
   437 //        throws UnsupportedEncodingException
   438 //    {
   439 //        if (charsetName == null)
   440 //            throw new NullPointerException("charsetName");
   441 //        checkBounds(bytes, offset, length);
   442 //        char[] v = StringCoding.decode(charsetName, bytes, offset, length);
   443 //        this.offset = 0;
   444 //        this.count = v.length;
   445 //        this.value = v;
   446 //    }
   447 
   448     /**
   449      * Constructs a new {@code String} by decoding the specified subarray of
   450      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   451      * The length of the new {@code String} is a function of the charset, and
   452      * hence may not be equal to the length of the subarray.
   453      *
   454      * <p> This method always replaces malformed-input and unmappable-character
   455      * sequences with this charset's default replacement string.  The {@link
   456      * java.nio.charset.CharsetDecoder} class should be used when more control
   457      * over the decoding process is required.
   458      *
   459      * @param  bytes
   460      *         The bytes to be decoded into characters
   461      *
   462      * @param  offset
   463      *         The index of the first byte to decode
   464      *
   465      * @param  length
   466      *         The number of bytes to decode
   467      *
   468      * @param  charset
   469      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   470      *         decode the {@code bytes}
   471      *
   472      * @throws  IndexOutOfBoundsException
   473      *          If the {@code offset} and {@code length} arguments index
   474      *          characters outside the bounds of the {@code bytes} array
   475      *
   476      * @since  1.6
   477      */
   478     /* don't want dependnecy on Charset
   479     public String(byte bytes[], int offset, int length, Charset charset) {
   480         if (charset == null)
   481             throw new NullPointerException("charset");
   482         checkBounds(bytes, offset, length);
   483         char[] v = StringCoding.decode(charset, bytes, offset, length);
   484         this.offset = 0;
   485         this.count = v.length;
   486         this.value = v;
   487     }
   488     */
   489 
   490     /**
   491      * Constructs a new {@code String} by decoding the specified array of bytes
   492      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
   493      * length of the new {@code String} is a function of the charset, and hence
   494      * may not be equal to the length of the byte array.
   495      *
   496      * <p> The behavior of this constructor when the given bytes are not valid
   497      * in the given charset is unspecified.  The {@link
   498      * java.nio.charset.CharsetDecoder} class should be used when more control
   499      * over the decoding process is required.
   500      *
   501      * @param  bytes
   502      *         The bytes to be decoded into characters
   503      *
   504      * @param  charsetName
   505      *         The name of a supported {@linkplain java.nio.charset.Charset
   506      *         charset}
   507      *
   508      * @throws  UnsupportedEncodingException
   509      *          If the named charset is not supported
   510      *
   511      * @since  JDK1.1
   512      */
   513 //    public String(byte bytes[], String charsetName)
   514 //        throws UnsupportedEncodingException
   515 //    {
   516 //        this(bytes, 0, bytes.length, charsetName);
   517 //    }
   518 
   519     /**
   520      * Constructs a new {@code String} by decoding the specified array of
   521      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
   522      * The length of the new {@code String} is a function of the charset, and
   523      * hence may not be equal to the length of the byte array.
   524      *
   525      * <p> This method always replaces malformed-input and unmappable-character
   526      * sequences with this charset's default replacement string.  The {@link
   527      * java.nio.charset.CharsetDecoder} class should be used when more control
   528      * over the decoding process is required.
   529      *
   530      * @param  bytes
   531      *         The bytes to be decoded into characters
   532      *
   533      * @param  charset
   534      *         The {@linkplain java.nio.charset.Charset charset} to be used to
   535      *         decode the {@code bytes}
   536      *
   537      * @since  1.6
   538      */
   539     /* don't want dep on Charset
   540     public String(byte bytes[], Charset charset) {
   541         this(bytes, 0, bytes.length, charset);
   542     }
   543     */
   544 
   545     /**
   546      * Constructs a new {@code String} by decoding the specified subarray of
   547      * bytes using the platform's default charset.  The length of the new
   548      * {@code String} is a function of the charset, and hence may not be equal
   549      * to the length of the subarray.
   550      *
   551      * <p> The behavior of this constructor when the given bytes are not valid
   552      * in the default charset is unspecified.  The {@link
   553      * java.nio.charset.CharsetDecoder} class should be used when more control
   554      * over the decoding process is required.
   555      *
   556      * @param  bytes
   557      *         The bytes to be decoded into characters
   558      *
   559      * @param  offset
   560      *         The index of the first byte to decode
   561      *
   562      * @param  length
   563      *         The number of bytes to decode
   564      *
   565      * @throws  IndexOutOfBoundsException
   566      *          If the {@code offset} and the {@code length} arguments index
   567      *          characters outside the bounds of the {@code bytes} array
   568      *
   569      * @since  JDK1.1
   570      */
   571     public String(byte bytes[], int offset, int length) {
   572         checkBounds(bytes, offset, length);
   573         char[] v  = StringCoding.decode(bytes, offset, length);
   574         this.offset = 0;
   575         this.count = v.length;
   576         this.value = v;
   577     }
   578 
   579     /**
   580      * Constructs a new {@code String} by decoding the specified array of bytes
   581      * using the platform's default charset.  The length of the new {@code
   582      * String} is a function of the charset, and hence may not be equal to the
   583      * length of the byte array.
   584      *
   585      * <p> The behavior of this constructor when the given bytes are not valid
   586      * in the default charset is unspecified.  The {@link
   587      * java.nio.charset.CharsetDecoder} class should be used when more control
   588      * over the decoding process is required.
   589      *
   590      * @param  bytes
   591      *         The bytes to be decoded into characters
   592      *
   593      * @since  JDK1.1
   594      */
   595     public String(byte bytes[]) {
   596         this(bytes, 0, bytes.length);
   597     }
   598 
   599     /**
   600      * Allocates a new string that contains the sequence of characters
   601      * currently contained in the string buffer argument. The contents of the
   602      * string buffer are copied; subsequent modification of the string buffer
   603      * does not affect the newly created string.
   604      *
   605      * @param  buffer
   606      *         A {@code StringBuffer}
   607      */
   608     public String(StringBuffer buffer) {
   609         String result = buffer.toString();
   610         this.value = result.value;
   611         this.count = result.count;
   612         this.offset = result.offset;
   613     }
   614 
   615     /**
   616      * Allocates a new string that contains the sequence of characters
   617      * currently contained in the string builder argument. The contents of the
   618      * string builder are copied; subsequent modification of the string builder
   619      * does not affect the newly created string.
   620      *
   621      * <p> This constructor is provided to ease migration to {@code
   622      * StringBuilder}. Obtaining a string from a string builder via the {@code
   623      * toString} method is likely to run faster and is generally preferred.
   624      *
   625      * @param   builder
   626      *          A {@code StringBuilder}
   627      *
   628      * @since  1.5
   629      */
   630     public String(StringBuilder builder) {
   631         String result = builder.toString();
   632         this.value = result.value;
   633         this.count = result.count;
   634         this.offset = result.offset;
   635     }
   636 
   637 
   638     // Package private constructor which shares value array for speed.
   639     String(int offset, int count, char value[]) {
   640         this.value = value;
   641         this.offset = offset;
   642         this.count = count;
   643     }
   644 
   645     /**
   646      * Returns the length of this string.
   647      * The length is equal to the number of <a href="Character.html#unicode">Unicode
   648      * code units</a> in the string.
   649      *
   650      * @return  the length of the sequence of characters represented by this
   651      *          object.
   652      */
   653     public int length() {
   654         return count;
   655     }
   656 
   657     /**
   658      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
   659      *
   660      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
   661      * <tt>false</tt>
   662      *
   663      * @since 1.6
   664      */
   665     public boolean isEmpty() {
   666         return count == 0;
   667     }
   668 
   669     /**
   670      * Returns the <code>char</code> value at the
   671      * specified index. An index ranges from <code>0</code> to
   672      * <code>length() - 1</code>. The first <code>char</code> value of the sequence
   673      * is at index <code>0</code>, the next at index <code>1</code>,
   674      * and so on, as for array indexing.
   675      *
   676      * <p>If the <code>char</code> value specified by the index is a
   677      * <a href="Character.html#unicode">surrogate</a>, the surrogate
   678      * value is returned.
   679      *
   680      * @param      index   the index of the <code>char</code> value.
   681      * @return     the <code>char</code> value at the specified index of this string.
   682      *             The first <code>char</code> value is at index <code>0</code>.
   683      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   684      *             argument is negative or not less than the length of this
   685      *             string.
   686      */
   687     public char charAt(int index) {
   688         if ((index < 0) || (index >= count)) {
   689             throw new StringIndexOutOfBoundsException(index);
   690         }
   691         return value[index + offset];
   692     }
   693 
   694     /**
   695      * Returns the character (Unicode code point) at the specified
   696      * index. The index refers to <code>char</code> values
   697      * (Unicode code units) and ranges from <code>0</code> to
   698      * {@link #length()}<code> - 1</code>.
   699      *
   700      * <p> If the <code>char</code> value specified at the given index
   701      * is in the high-surrogate range, the following index is less
   702      * than the length of this <code>String</code>, and the
   703      * <code>char</code> value at the following index is in the
   704      * low-surrogate range, then the supplementary code point
   705      * corresponding to this surrogate pair is returned. Otherwise,
   706      * the <code>char</code> value at the given index is returned.
   707      *
   708      * @param      index the index to the <code>char</code> values
   709      * @return     the code point value of the character at the
   710      *             <code>index</code>
   711      * @exception  IndexOutOfBoundsException  if the <code>index</code>
   712      *             argument is negative or not less than the length of this
   713      *             string.
   714      * @since      1.5
   715      */
   716     public int codePointAt(int index) {
   717         if ((index < 0) || (index >= count)) {
   718             throw new StringIndexOutOfBoundsException(index);
   719         }
   720         return Character.codePointAtImpl(value, offset + index, offset + count);
   721     }
   722 
   723     /**
   724      * Returns the character (Unicode code point) before the specified
   725      * index. The index refers to <code>char</code> values
   726      * (Unicode code units) and ranges from <code>1</code> to {@link
   727      * CharSequence#length() length}.
   728      *
   729      * <p> If the <code>char</code> value at <code>(index - 1)</code>
   730      * is in the low-surrogate range, <code>(index - 2)</code> is not
   731      * negative, and the <code>char</code> value at <code>(index -
   732      * 2)</code> is in the high-surrogate range, then the
   733      * supplementary code point value of the surrogate pair is
   734      * returned. If the <code>char</code> value at <code>index -
   735      * 1</code> is an unpaired low-surrogate or a high-surrogate, the
   736      * surrogate value is returned.
   737      *
   738      * @param     index the index following the code point that should be returned
   739      * @return    the Unicode code point value before the given index.
   740      * @exception IndexOutOfBoundsException if the <code>index</code>
   741      *            argument is less than 1 or greater than the length
   742      *            of this string.
   743      * @since     1.5
   744      */
   745     public int codePointBefore(int index) {
   746         int i = index - 1;
   747         if ((i < 0) || (i >= count)) {
   748             throw new StringIndexOutOfBoundsException(index);
   749         }
   750         return Character.codePointBeforeImpl(value, offset + index, offset);
   751     }
   752 
   753     /**
   754      * Returns the number of Unicode code points in the specified text
   755      * range of this <code>String</code>. The text range begins at the
   756      * specified <code>beginIndex</code> and extends to the
   757      * <code>char</code> at index <code>endIndex - 1</code>. Thus the
   758      * length (in <code>char</code>s) of the text range is
   759      * <code>endIndex-beginIndex</code>. Unpaired surrogates within
   760      * the text range count as one code point each.
   761      *
   762      * @param beginIndex the index to the first <code>char</code> of
   763      * the text range.
   764      * @param endIndex the index after the last <code>char</code> of
   765      * the text range.
   766      * @return the number of Unicode code points in the specified text
   767      * range
   768      * @exception IndexOutOfBoundsException if the
   769      * <code>beginIndex</code> is negative, or <code>endIndex</code>
   770      * is larger than the length of this <code>String</code>, or
   771      * <code>beginIndex</code> is larger than <code>endIndex</code>.
   772      * @since  1.5
   773      */
   774     public int codePointCount(int beginIndex, int endIndex) {
   775         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
   776             throw new IndexOutOfBoundsException();
   777         }
   778         return Character.codePointCountImpl(value, offset+beginIndex, endIndex-beginIndex);
   779     }
   780 
   781     /**
   782      * Returns the index within this <code>String</code> that is
   783      * offset from the given <code>index</code> by
   784      * <code>codePointOffset</code> code points. Unpaired surrogates
   785      * within the text range given by <code>index</code> and
   786      * <code>codePointOffset</code> count as one code point each.
   787      *
   788      * @param index the index to be offset
   789      * @param codePointOffset the offset in code points
   790      * @return the index within this <code>String</code>
   791      * @exception IndexOutOfBoundsException if <code>index</code>
   792      *   is negative or larger then the length of this
   793      *   <code>String</code>, or if <code>codePointOffset</code> is positive
   794      *   and the substring starting with <code>index</code> has fewer
   795      *   than <code>codePointOffset</code> code points,
   796      *   or if <code>codePointOffset</code> is negative and the substring
   797      *   before <code>index</code> has fewer than the absolute value
   798      *   of <code>codePointOffset</code> code points.
   799      * @since 1.5
   800      */
   801     public int offsetByCodePoints(int index, int codePointOffset) {
   802         if (index < 0 || index > count) {
   803             throw new IndexOutOfBoundsException();
   804         }
   805         return Character.offsetByCodePointsImpl(value, offset, count,
   806                                                 offset+index, codePointOffset) - offset;
   807     }
   808 
   809     /**
   810      * Copy characters from this string into dst starting at dstBegin.
   811      * This method doesn't perform any range checking.
   812      */
   813     void getChars(char dst[], int dstBegin) {
   814         arraycopy(value, offset, dst, dstBegin, count);
   815     }
   816 
   817     /**
   818      * Copies characters from this string into the destination character
   819      * array.
   820      * <p>
   821      * The first character to be copied is at index <code>srcBegin</code>;
   822      * the last character to be copied is at index <code>srcEnd-1</code>
   823      * (thus the total number of characters to be copied is
   824      * <code>srcEnd-srcBegin</code>). The characters are copied into the
   825      * subarray of <code>dst</code> starting at index <code>dstBegin</code>
   826      * and ending at index:
   827      * <p><blockquote><pre>
   828      *     dstbegin + (srcEnd-srcBegin) - 1
   829      * </pre></blockquote>
   830      *
   831      * @param      srcBegin   index of the first character in the string
   832      *                        to copy.
   833      * @param      srcEnd     index after the last character in the string
   834      *                        to copy.
   835      * @param      dst        the destination array.
   836      * @param      dstBegin   the start offset in the destination array.
   837      * @exception IndexOutOfBoundsException If any of the following
   838      *            is true:
   839      *            <ul><li><code>srcBegin</code> is negative.
   840      *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>
   841      *            <li><code>srcEnd</code> is greater than the length of this
   842      *                string
   843      *            <li><code>dstBegin</code> is negative
   844      *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than
   845      *                <code>dst.length</code></ul>
   846      */
   847     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
   848         if (srcBegin < 0) {
   849             throw new StringIndexOutOfBoundsException(srcBegin);
   850         }
   851         if (srcEnd > count) {
   852             throw new StringIndexOutOfBoundsException(srcEnd);
   853         }
   854         if (srcBegin > srcEnd) {
   855             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   856         }
   857         arraycopy(value, offset + srcBegin, dst, dstBegin,
   858              srcEnd - srcBegin);
   859     }
   860 
   861     /**
   862      * Copies characters from this string into the destination byte array. Each
   863      * byte receives the 8 low-order bits of the corresponding character. The
   864      * eight high-order bits of each character are not copied and do not
   865      * participate in the transfer in any way.
   866      *
   867      * <p> The first character to be copied is at index {@code srcBegin}; the
   868      * last character to be copied is at index {@code srcEnd-1}.  The total
   869      * number of characters to be copied is {@code srcEnd-srcBegin}. The
   870      * characters, converted to bytes, are copied into the subarray of {@code
   871      * dst} starting at index {@code dstBegin} and ending at index:
   872      *
   873      * <blockquote><pre>
   874      *     dstbegin + (srcEnd-srcBegin) - 1
   875      * </pre></blockquote>
   876      *
   877      * @deprecated  This method does not properly convert characters into
   878      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
   879      * {@link #getBytes()} method, which uses the platform's default charset.
   880      *
   881      * @param  srcBegin
   882      *         Index of the first character in the string to copy
   883      *
   884      * @param  srcEnd
   885      *         Index after the last character in the string to copy
   886      *
   887      * @param  dst
   888      *         The destination array
   889      *
   890      * @param  dstBegin
   891      *         The start offset in the destination array
   892      *
   893      * @throws  IndexOutOfBoundsException
   894      *          If any of the following is true:
   895      *          <ul>
   896      *            <li> {@code srcBegin} is negative
   897      *            <li> {@code srcBegin} is greater than {@code srcEnd}
   898      *            <li> {@code srcEnd} is greater than the length of this String
   899      *            <li> {@code dstBegin} is negative
   900      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
   901      *                 dst.length}
   902      *          </ul>
   903      */
   904     @Deprecated
   905     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
   906         if (srcBegin < 0) {
   907             throw new StringIndexOutOfBoundsException(srcBegin);
   908         }
   909         if (srcEnd > count) {
   910             throw new StringIndexOutOfBoundsException(srcEnd);
   911         }
   912         if (srcBegin > srcEnd) {
   913             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
   914         }
   915         int j = dstBegin;
   916         int n = offset + srcEnd;
   917         int i = offset + srcBegin;
   918         char[] val = value;   /* avoid getfield opcode */
   919 
   920         while (i < n) {
   921             dst[j++] = (byte)val[i++];
   922         }
   923     }
   924 
   925     /**
   926      * Encodes this {@code String} into a sequence of bytes using the named
   927      * charset, storing the result into a new byte array.
   928      *
   929      * <p> The behavior of this method when this string cannot be encoded in
   930      * the given charset is unspecified.  The {@link
   931      * java.nio.charset.CharsetEncoder} class should be used when more control
   932      * over the encoding process is required.
   933      *
   934      * @param  charsetName
   935      *         The name of a supported {@linkplain java.nio.charset.Charset
   936      *         charset}
   937      *
   938      * @return  The resultant byte array
   939      *
   940      * @throws  UnsupportedEncodingException
   941      *          If the named charset is not supported
   942      *
   943      * @since  JDK1.1
   944      */
   945 //    public byte[] getBytes(String charsetName)
   946 //        throws UnsupportedEncodingException
   947 //    {
   948 //        if (charsetName == null) throw new NullPointerException();
   949 //        return StringCoding.encode(charsetName, value, offset, count);
   950 //    }
   951 
   952     /**
   953      * Encodes this {@code String} into a sequence of bytes using the given
   954      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
   955      * new byte array.
   956      *
   957      * <p> This method always replaces malformed-input and unmappable-character
   958      * sequences with this charset's default replacement byte array.  The
   959      * {@link java.nio.charset.CharsetEncoder} class should be used when more
   960      * control over the encoding process is required.
   961      *
   962      * @param  charset
   963      *         The {@linkplain java.nio.charset.Charset} to be used to encode
   964      *         the {@code String}
   965      *
   966      * @return  The resultant byte array
   967      *
   968      * @since  1.6
   969      */
   970     /* don't want dep on Charset
   971     public byte[] getBytes(Charset charset) {
   972         if (charset == null) throw new NullPointerException();
   973         return StringCoding.encode(charset, value, offset, count);
   974     }
   975     */
   976 
   977     /**
   978      * Encodes this {@code String} into a sequence of bytes using the
   979      * platform's default charset, storing the result into a new byte array.
   980      *
   981      * <p> The behavior of this method when this string cannot be encoded in
   982      * the default charset is unspecified.  The {@link
   983      * java.nio.charset.CharsetEncoder} class should be used when more control
   984      * over the encoding process is required.
   985      *
   986      * @return  The resultant byte array
   987      *
   988      * @since      JDK1.1
   989      */
   990     public byte[] getBytes() {
   991         return StringCoding.encode(value, offset, count);
   992     }
   993 
   994     /**
   995      * Compares this string to the specified object.  The result is {@code
   996      * true} if and only if the argument is not {@code null} and is a {@code
   997      * String} object that represents the same sequence of characters as this
   998      * object.
   999      *
  1000      * @param  anObject
  1001      *         The object to compare this {@code String} against
  1002      *
  1003      * @return  {@code true} if the given object represents a {@code String}
  1004      *          equivalent to this string, {@code false} otherwise
  1005      *
  1006      * @see  #compareTo(String)
  1007      * @see  #equalsIgnoreCase(String)
  1008      */
  1009     public boolean equals(Object anObject) {
  1010         if (this == anObject) {
  1011             return true;
  1012         }
  1013         if (anObject instanceof String) {
  1014             String anotherString = (String)anObject;
  1015             int n = count;
  1016             if (n == anotherString.count) {
  1017                 char v1[] = value;
  1018                 char v2[] = anotherString.value;
  1019                 int i = offset;
  1020                 int j = anotherString.offset;
  1021                 while (n-- != 0) {
  1022                     if (v1[i++] != v2[j++])
  1023                         return false;
  1024                 }
  1025                 return true;
  1026             }
  1027         }
  1028         return false;
  1029     }
  1030 
  1031     /**
  1032      * Compares this string to the specified {@code StringBuffer}.  The result
  1033      * is {@code true} if and only if this {@code String} represents the same
  1034      * sequence of characters as the specified {@code StringBuffer}.
  1035      *
  1036      * @param  sb
  1037      *         The {@code StringBuffer} to compare this {@code String} against
  1038      *
  1039      * @return  {@code true} if this {@code String} represents the same
  1040      *          sequence of characters as the specified {@code StringBuffer},
  1041      *          {@code false} otherwise
  1042      *
  1043      * @since  1.4
  1044      */
  1045     public boolean contentEquals(StringBuffer sb) {
  1046         synchronized(sb) {
  1047             return contentEquals((CharSequence)sb);
  1048         }
  1049     }
  1050 
  1051     /**
  1052      * Compares this string to the specified {@code CharSequence}.  The result
  1053      * is {@code true} if and only if this {@code String} represents the same
  1054      * sequence of char values as the specified sequence.
  1055      *
  1056      * @param  cs
  1057      *         The sequence to compare this {@code String} against
  1058      *
  1059      * @return  {@code true} if this {@code String} represents the same
  1060      *          sequence of char values as the specified sequence, {@code
  1061      *          false} otherwise
  1062      *
  1063      * @since  1.5
  1064      */
  1065     public boolean contentEquals(CharSequence cs) {
  1066         if (count != cs.length())
  1067             return false;
  1068         // Argument is a StringBuffer, StringBuilder
  1069         if (cs instanceof AbstractStringBuilder) {
  1070             char v1[] = value;
  1071             char v2[] = ((AbstractStringBuilder)cs).getValue();
  1072             int i = offset;
  1073             int j = 0;
  1074             int n = count;
  1075             while (n-- != 0) {
  1076                 if (v1[i++] != v2[j++])
  1077                     return false;
  1078             }
  1079             return true;
  1080         }
  1081         // Argument is a String
  1082         if (cs.equals(this))
  1083             return true;
  1084         // Argument is a generic CharSequence
  1085         char v1[] = value;
  1086         int i = offset;
  1087         int j = 0;
  1088         int n = count;
  1089         while (n-- != 0) {
  1090             if (v1[i++] != cs.charAt(j++))
  1091                 return false;
  1092         }
  1093         return true;
  1094     }
  1095 
  1096     /**
  1097      * Compares this {@code String} to another {@code String}, ignoring case
  1098      * considerations.  Two strings are considered equal ignoring case if they
  1099      * are of the same length and corresponding characters in the two strings
  1100      * are equal ignoring case.
  1101      *
  1102      * <p> Two characters {@code c1} and {@code c2} are considered the same
  1103      * ignoring case if at least one of the following is true:
  1104      * <ul>
  1105      *   <li> The two characters are the same (as compared by the
  1106      *        {@code ==} operator)
  1107      *   <li> Applying the method {@link
  1108      *        java.lang.Character#toUpperCase(char)} to each character
  1109      *        produces the same result
  1110      *   <li> Applying the method {@link
  1111      *        java.lang.Character#toLowerCase(char)} to each character
  1112      *        produces the same result
  1113      * </ul>
  1114      *
  1115      * @param  anotherString
  1116      *         The {@code String} to compare this {@code String} against
  1117      *
  1118      * @return  {@code true} if the argument is not {@code null} and it
  1119      *          represents an equivalent {@code String} ignoring case; {@code
  1120      *          false} otherwise
  1121      *
  1122      * @see  #equals(Object)
  1123      */
  1124     public boolean equalsIgnoreCase(String anotherString) {
  1125         return (this == anotherString) ? true :
  1126                (anotherString != null) && (anotherString.count == count) &&
  1127                regionMatches(true, 0, anotherString, 0, count);
  1128     }
  1129 
  1130     /**
  1131      * Compares two strings lexicographically.
  1132      * The comparison is based on the Unicode value of each character in
  1133      * the strings. The character sequence represented by this
  1134      * <code>String</code> object is compared lexicographically to the
  1135      * character sequence represented by the argument string. The result is
  1136      * a negative integer if this <code>String</code> object
  1137      * lexicographically precedes the argument string. The result is a
  1138      * positive integer if this <code>String</code> object lexicographically
  1139      * follows the argument string. The result is zero if the strings
  1140      * are equal; <code>compareTo</code> returns <code>0</code> exactly when
  1141      * the {@link #equals(Object)} method would return <code>true</code>.
  1142      * <p>
  1143      * This is the definition of lexicographic ordering. If two strings are
  1144      * different, then either they have different characters at some index
  1145      * that is a valid index for both strings, or their lengths are different,
  1146      * or both. If they have different characters at one or more index
  1147      * positions, let <i>k</i> be the smallest such index; then the string
  1148      * whose character at position <i>k</i> has the smaller value, as
  1149      * determined by using the &lt; operator, lexicographically precedes the
  1150      * other string. In this case, <code>compareTo</code> returns the
  1151      * difference of the two character values at position <code>k</code> in
  1152      * the two string -- that is, the value:
  1153      * <blockquote><pre>
  1154      * this.charAt(k)-anotherString.charAt(k)
  1155      * </pre></blockquote>
  1156      * If there is no index position at which they differ, then the shorter
  1157      * string lexicographically precedes the longer string. In this case,
  1158      * <code>compareTo</code> returns the difference of the lengths of the
  1159      * strings -- that is, the value:
  1160      * <blockquote><pre>
  1161      * this.length()-anotherString.length()
  1162      * </pre></blockquote>
  1163      *
  1164      * @param   anotherString   the <code>String</code> to be compared.
  1165      * @return  the value <code>0</code> if the argument string is equal to
  1166      *          this string; a value less than <code>0</code> if this string
  1167      *          is lexicographically less than the string argument; and a
  1168      *          value greater than <code>0</code> if this string is
  1169      *          lexicographically greater than the string argument.
  1170      */
  1171     public int compareTo(String anotherString) {
  1172         int len1 = count;
  1173         int len2 = anotherString.count;
  1174         int n = Math.min(len1, len2);
  1175         char v1[] = value;
  1176         char v2[] = anotherString.value;
  1177         int i = offset;
  1178         int j = anotherString.offset;
  1179 
  1180         if (i == j) {
  1181             int k = i;
  1182             int lim = n + i;
  1183             while (k < lim) {
  1184                 char c1 = v1[k];
  1185                 char c2 = v2[k];
  1186                 if (c1 != c2) {
  1187                     return c1 - c2;
  1188                 }
  1189                 k++;
  1190             }
  1191         } else {
  1192             while (n-- != 0) {
  1193                 char c1 = v1[i++];
  1194                 char c2 = v2[j++];
  1195                 if (c1 != c2) {
  1196                     return c1 - c2;
  1197                 }
  1198             }
  1199         }
  1200         return len1 - len2;
  1201     }
  1202 
  1203     /**
  1204      * A Comparator that orders <code>String</code> objects as by
  1205      * <code>compareToIgnoreCase</code>. This comparator is serializable.
  1206      * <p>
  1207      * Note that this Comparator does <em>not</em> take locale into account,
  1208      * and will result in an unsatisfactory ordering for certain locales.
  1209      * The java.text package provides <em>Collators</em> to allow
  1210      * locale-sensitive ordering.
  1211      *
  1212      * @see     java.text.Collator#compare(String, String)
  1213      * @since   1.2
  1214      */
  1215     public static final Comparator<String> CASE_INSENSITIVE_ORDER
  1216                                          = new CaseInsensitiveComparator();
  1217     private static class CaseInsensitiveComparator
  1218                          implements Comparator<String>, java.io.Serializable {
  1219         // use serialVersionUID from JDK 1.2.2 for interoperability
  1220         private static final long serialVersionUID = 8575799808933029326L;
  1221 
  1222         public int compare(String s1, String s2) {
  1223             int n1 = s1.length();
  1224             int n2 = s2.length();
  1225             int min = Math.min(n1, n2);
  1226             for (int i = 0; i < min; i++) {
  1227                 char c1 = s1.charAt(i);
  1228                 char c2 = s2.charAt(i);
  1229                 if (c1 != c2) {
  1230                     c1 = Character.toUpperCase(c1);
  1231                     c2 = Character.toUpperCase(c2);
  1232                     if (c1 != c2) {
  1233                         c1 = Character.toLowerCase(c1);
  1234                         c2 = Character.toLowerCase(c2);
  1235                         if (c1 != c2) {
  1236                             // No overflow because of numeric promotion
  1237                             return c1 - c2;
  1238                         }
  1239                     }
  1240                 }
  1241             }
  1242             return n1 - n2;
  1243         }
  1244     }
  1245 
  1246     /**
  1247      * Compares two strings lexicographically, ignoring case
  1248      * differences. This method returns an integer whose sign is that of
  1249      * calling <code>compareTo</code> with normalized versions of the strings
  1250      * where case differences have been eliminated by calling
  1251      * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on
  1252      * each character.
  1253      * <p>
  1254      * Note that this method does <em>not</em> take locale into account,
  1255      * and will result in an unsatisfactory ordering for certain locales.
  1256      * The java.text package provides <em>collators</em> to allow
  1257      * locale-sensitive ordering.
  1258      *
  1259      * @param   str   the <code>String</code> to be compared.
  1260      * @return  a negative integer, zero, or a positive integer as the
  1261      *          specified String is greater than, equal to, or less
  1262      *          than this String, ignoring case considerations.
  1263      * @see     java.text.Collator#compare(String, String)
  1264      * @since   1.2
  1265      */
  1266     public int compareToIgnoreCase(String str) {
  1267         return CASE_INSENSITIVE_ORDER.compare(this, str);
  1268     }
  1269 
  1270     /**
  1271      * Tests if two string regions are equal.
  1272      * <p>
  1273      * A substring of this <tt>String</tt> object is compared to a substring
  1274      * of the argument other. The result is true if these substrings
  1275      * represent identical character sequences. The substring of this
  1276      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
  1277      * and has length <tt>len</tt>. The substring of other to be compared
  1278      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
  1279      * result is <tt>false</tt> if and only if at least one of the following
  1280      * is true:
  1281      * <ul><li><tt>toffset</tt> is negative.
  1282      * <li><tt>ooffset</tt> is negative.
  1283      * <li><tt>toffset+len</tt> is greater than the length of this
  1284      * <tt>String</tt> object.
  1285      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1286      * argument.
  1287      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
  1288      * such that:
  1289      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
  1290      * </ul>
  1291      *
  1292      * @param   toffset   the starting offset of the subregion in this string.
  1293      * @param   other     the string argument.
  1294      * @param   ooffset   the starting offset of the subregion in the string
  1295      *                    argument.
  1296      * @param   len       the number of characters to compare.
  1297      * @return  <code>true</code> if the specified subregion of this string
  1298      *          exactly matches the specified subregion of the string argument;
  1299      *          <code>false</code> otherwise.
  1300      */
  1301     public boolean regionMatches(int toffset, String other, int ooffset,
  1302                                  int len) {
  1303         char ta[] = value;
  1304         int to = offset + toffset;
  1305         char pa[] = other.value;
  1306         int po = other.offset + ooffset;
  1307         // Note: toffset, ooffset, or len might be near -1>>>1.
  1308         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len)
  1309             || (ooffset > (long)other.count - len)) {
  1310             return false;
  1311         }
  1312         while (len-- > 0) {
  1313             if (ta[to++] != pa[po++]) {
  1314                 return false;
  1315             }
  1316         }
  1317         return true;
  1318     }
  1319 
  1320     /**
  1321      * Tests if two string regions are equal.
  1322      * <p>
  1323      * A substring of this <tt>String</tt> object is compared to a substring
  1324      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
  1325      * substrings represent character sequences that are the same, ignoring
  1326      * case if and only if <tt>ignoreCase</tt> is true. The substring of
  1327      * this <tt>String</tt> object to be compared begins at index
  1328      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
  1329      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
  1330      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
  1331      * at least one of the following is true:
  1332      * <ul><li><tt>toffset</tt> is negative.
  1333      * <li><tt>ooffset</tt> is negative.
  1334      * <li><tt>toffset+len</tt> is greater than the length of this
  1335      * <tt>String</tt> object.
  1336      * <li><tt>ooffset+len</tt> is greater than the length of the other
  1337      * argument.
  1338      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
  1339      * integer <i>k</i> less than <tt>len</tt> such that:
  1340      * <blockquote><pre>
  1341      * this.charAt(toffset+k) != other.charAt(ooffset+k)
  1342      * </pre></blockquote>
  1343      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
  1344      * integer <i>k</i> less than <tt>len</tt> such that:
  1345      * <blockquote><pre>
  1346      * Character.toLowerCase(this.charAt(toffset+k)) !=
  1347                Character.toLowerCase(other.charAt(ooffset+k))
  1348      * </pre></blockquote>
  1349      * and:
  1350      * <blockquote><pre>
  1351      * Character.toUpperCase(this.charAt(toffset+k)) !=
  1352      *         Character.toUpperCase(other.charAt(ooffset+k))
  1353      * </pre></blockquote>
  1354      * </ul>
  1355      *
  1356      * @param   ignoreCase   if <code>true</code>, ignore case when comparing
  1357      *                       characters.
  1358      * @param   toffset      the starting offset of the subregion in this
  1359      *                       string.
  1360      * @param   other        the string argument.
  1361      * @param   ooffset      the starting offset of the subregion in the string
  1362      *                       argument.
  1363      * @param   len          the number of characters to compare.
  1364      * @return  <code>true</code> if the specified subregion of this string
  1365      *          matches the specified subregion of the string argument;
  1366      *          <code>false</code> otherwise. Whether the matching is exact
  1367      *          or case insensitive depends on the <code>ignoreCase</code>
  1368      *          argument.
  1369      */
  1370     public boolean regionMatches(boolean ignoreCase, int toffset,
  1371                            String other, int ooffset, int len) {
  1372         char ta[] = value;
  1373         int to = offset + toffset;
  1374         char pa[] = other.value;
  1375         int po = other.offset + ooffset;
  1376         // Note: toffset, ooffset, or len might be near -1>>>1.
  1377         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) ||
  1378                 (ooffset > (long)other.count - len)) {
  1379             return false;
  1380         }
  1381         while (len-- > 0) {
  1382             char c1 = ta[to++];
  1383             char c2 = pa[po++];
  1384             if (c1 == c2) {
  1385                 continue;
  1386             }
  1387             if (ignoreCase) {
  1388                 // If characters don't match but case may be ignored,
  1389                 // try converting both characters to uppercase.
  1390                 // If the results match, then the comparison scan should
  1391                 // continue.
  1392                 char u1 = Character.toUpperCase(c1);
  1393                 char u2 = Character.toUpperCase(c2);
  1394                 if (u1 == u2) {
  1395                     continue;
  1396                 }
  1397                 // Unfortunately, conversion to uppercase does not work properly
  1398                 // for the Georgian alphabet, which has strange rules about case
  1399                 // conversion.  So we need to make one last check before
  1400                 // exiting.
  1401                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
  1402                     continue;
  1403                 }
  1404             }
  1405             return false;
  1406         }
  1407         return true;
  1408     }
  1409 
  1410     /**
  1411      * Tests if the substring of this string beginning at the
  1412      * specified index starts with the specified prefix.
  1413      *
  1414      * @param   prefix    the prefix.
  1415      * @param   toffset   where to begin looking in this string.
  1416      * @return  <code>true</code> if the character sequence represented by the
  1417      *          argument is a prefix of the substring of this object starting
  1418      *          at index <code>toffset</code>; <code>false</code> otherwise.
  1419      *          The result is <code>false</code> if <code>toffset</code> is
  1420      *          negative or greater than the length of this
  1421      *          <code>String</code> object; otherwise the result is the same
  1422      *          as the result of the expression
  1423      *          <pre>
  1424      *          this.substring(toffset).startsWith(prefix)
  1425      *          </pre>
  1426      */
  1427     public boolean startsWith(String prefix, int toffset) {
  1428         char ta[] = value;
  1429         int to = offset + toffset;
  1430         char pa[] = prefix.value;
  1431         int po = prefix.offset;
  1432         int pc = prefix.count;
  1433         // Note: toffset might be near -1>>>1.
  1434         if ((toffset < 0) || (toffset > count - pc)) {
  1435             return false;
  1436         }
  1437         while (--pc >= 0) {
  1438             if (ta[to++] != pa[po++]) {
  1439                 return false;
  1440             }
  1441         }
  1442         return true;
  1443     }
  1444 
  1445     /**
  1446      * Tests if this string starts with the specified prefix.
  1447      *
  1448      * @param   prefix   the prefix.
  1449      * @return  <code>true</code> if the character sequence represented by the
  1450      *          argument is a prefix of the character sequence represented by
  1451      *          this string; <code>false</code> otherwise.
  1452      *          Note also that <code>true</code> will be returned if the
  1453      *          argument is an empty string or is equal to this
  1454      *          <code>String</code> object as determined by the
  1455      *          {@link #equals(Object)} method.
  1456      * @since   1. 0
  1457      */
  1458     public boolean startsWith(String prefix) {
  1459         return startsWith(prefix, 0);
  1460     }
  1461 
  1462     /**
  1463      * Tests if this string ends with the specified suffix.
  1464      *
  1465      * @param   suffix   the suffix.
  1466      * @return  <code>true</code> if the character sequence represented by the
  1467      *          argument is a suffix of the character sequence represented by
  1468      *          this object; <code>false</code> otherwise. Note that the
  1469      *          result will be <code>true</code> if the argument is the
  1470      *          empty string or is equal to this <code>String</code> object
  1471      *          as determined by the {@link #equals(Object)} method.
  1472      */
  1473     public boolean endsWith(String suffix) {
  1474         return startsWith(suffix, count - suffix.count);
  1475     }
  1476 
  1477     /**
  1478      * Returns a hash code for this string. The hash code for a
  1479      * <code>String</code> object is computed as
  1480      * <blockquote><pre>
  1481      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
  1482      * </pre></blockquote>
  1483      * using <code>int</code> arithmetic, where <code>s[i]</code> is the
  1484      * <i>i</i>th character of the string, <code>n</code> is the length of
  1485      * the string, and <code>^</code> indicates exponentiation.
  1486      * (The hash value of the empty string is zero.)
  1487      *
  1488      * @return  a hash code value for this object.
  1489      */
  1490     public int hashCode() {
  1491         int h = hash;
  1492         if (h == 0 && count > 0) {
  1493             int off = offset;
  1494             char val[] = value;
  1495             int len = count;
  1496 
  1497             for (int i = 0; i < len; i++) {
  1498                 h = 31*h + val[off++];
  1499             }
  1500             hash = h;
  1501         }
  1502         return h;
  1503     }
  1504 
  1505     /**
  1506      * Returns the index within this string of the first occurrence of
  1507      * the specified character. If a character with value
  1508      * <code>ch</code> occurs in the character sequence represented by
  1509      * this <code>String</code> object, then the index (in Unicode
  1510      * code units) of the first such occurrence is returned. For
  1511      * values of <code>ch</code> in the range from 0 to 0xFFFF
  1512      * (inclusive), this is the smallest value <i>k</i> such that:
  1513      * <blockquote><pre>
  1514      * this.charAt(<i>k</i>) == ch
  1515      * </pre></blockquote>
  1516      * is true. For other values of <code>ch</code>, it is the
  1517      * smallest value <i>k</i> such that:
  1518      * <blockquote><pre>
  1519      * this.codePointAt(<i>k</i>) == ch
  1520      * </pre></blockquote>
  1521      * is true. In either case, if no such character occurs in this
  1522      * string, then <code>-1</code> is returned.
  1523      *
  1524      * @param   ch   a character (Unicode code point).
  1525      * @return  the index of the first occurrence of the character in the
  1526      *          character sequence represented by this object, or
  1527      *          <code>-1</code> if the character does not occur.
  1528      */
  1529     public int indexOf(int ch) {
  1530         return indexOf(ch, 0);
  1531     }
  1532 
  1533     /**
  1534      * Returns the index within this string of the first occurrence of the
  1535      * specified character, starting the search at the specified index.
  1536      * <p>
  1537      * If a character with value <code>ch</code> occurs in the
  1538      * character sequence represented by this <code>String</code>
  1539      * object at an index no smaller than <code>fromIndex</code>, then
  1540      * the index of the first such occurrence is returned. For values
  1541      * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),
  1542      * this is the smallest value <i>k</i> such that:
  1543      * <blockquote><pre>
  1544      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1545      * </pre></blockquote>
  1546      * is true. For other values of <code>ch</code>, it is the
  1547      * smallest value <i>k</i> such that:
  1548      * <blockquote><pre>
  1549      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
  1550      * </pre></blockquote>
  1551      * is true. In either case, if no such character occurs in this
  1552      * string at or after position <code>fromIndex</code>, then
  1553      * <code>-1</code> is returned.
  1554      *
  1555      * <p>
  1556      * There is no restriction on the value of <code>fromIndex</code>. If it
  1557      * is negative, it has the same effect as if it were zero: this entire
  1558      * string may be searched. If it is greater than the length of this
  1559      * string, it has the same effect as if it were equal to the length of
  1560      * this string: <code>-1</code> is returned.
  1561      *
  1562      * <p>All indices are specified in <code>char</code> values
  1563      * (Unicode code units).
  1564      *
  1565      * @param   ch          a character (Unicode code point).
  1566      * @param   fromIndex   the index to start the search from.
  1567      * @return  the index of the first occurrence of the character in the
  1568      *          character sequence represented by this object that is greater
  1569      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1570      *          if the character does not occur.
  1571      */
  1572     public int indexOf(int ch, int fromIndex) {
  1573         if (fromIndex < 0) {
  1574             fromIndex = 0;
  1575         } else if (fromIndex >= count) {
  1576             // Note: fromIndex might be near -1>>>1.
  1577             return -1;
  1578         }
  1579 
  1580         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1581             // handle most cases here (ch is a BMP code point or a
  1582             // negative value (invalid code point))
  1583             final char[] value = this.value;
  1584             final int offset = this.offset;
  1585             final int max = offset + count;
  1586             for (int i = offset + fromIndex; i < max ; i++) {
  1587                 if (value[i] == ch) {
  1588                     return i - offset;
  1589                 }
  1590             }
  1591             return -1;
  1592         } else {
  1593             return indexOfSupplementary(ch, fromIndex);
  1594         }
  1595     }
  1596 
  1597     /**
  1598      * Handles (rare) calls of indexOf with a supplementary character.
  1599      */
  1600     private int indexOfSupplementary(int ch, int fromIndex) {
  1601         if (Character.isValidCodePoint(ch)) {
  1602             final char[] value = this.value;
  1603             final int offset = this.offset;
  1604             final char hi = Character.highSurrogate(ch);
  1605             final char lo = Character.lowSurrogate(ch);
  1606             final int max = offset + count - 1;
  1607             for (int i = offset + fromIndex; i < max; i++) {
  1608                 if (value[i] == hi && value[i+1] == lo) {
  1609                     return i - offset;
  1610                 }
  1611             }
  1612         }
  1613         return -1;
  1614     }
  1615 
  1616     /**
  1617      * Returns the index within this string of the last occurrence of
  1618      * the specified character. For values of <code>ch</code> in the
  1619      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
  1620      * units) returned is the largest value <i>k</i> such that:
  1621      * <blockquote><pre>
  1622      * this.charAt(<i>k</i>) == ch
  1623      * </pre></blockquote>
  1624      * is true. For other values of <code>ch</code>, it is the
  1625      * largest value <i>k</i> such that:
  1626      * <blockquote><pre>
  1627      * this.codePointAt(<i>k</i>) == ch
  1628      * </pre></blockquote>
  1629      * is true.  In either case, if no such character occurs in this
  1630      * string, then <code>-1</code> is returned.  The
  1631      * <code>String</code> is searched backwards starting at the last
  1632      * character.
  1633      *
  1634      * @param   ch   a character (Unicode code point).
  1635      * @return  the index of the last occurrence of the character in the
  1636      *          character sequence represented by this object, or
  1637      *          <code>-1</code> if the character does not occur.
  1638      */
  1639     public int lastIndexOf(int ch) {
  1640         return lastIndexOf(ch, count - 1);
  1641     }
  1642 
  1643     /**
  1644      * Returns the index within this string of the last occurrence of
  1645      * the specified character, searching backward starting at the
  1646      * specified index. For values of <code>ch</code> in the range
  1647      * from 0 to 0xFFFF (inclusive), the index returned is the largest
  1648      * value <i>k</i> such that:
  1649      * <blockquote><pre>
  1650      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1651      * </pre></blockquote>
  1652      * is true. For other values of <code>ch</code>, it is the
  1653      * largest value <i>k</i> such that:
  1654      * <blockquote><pre>
  1655      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
  1656      * </pre></blockquote>
  1657      * is true. In either case, if no such character occurs in this
  1658      * string at or before position <code>fromIndex</code>, then
  1659      * <code>-1</code> is returned.
  1660      *
  1661      * <p>All indices are specified in <code>char</code> values
  1662      * (Unicode code units).
  1663      *
  1664      * @param   ch          a character (Unicode code point).
  1665      * @param   fromIndex   the index to start the search from. There is no
  1666      *          restriction on the value of <code>fromIndex</code>. If it is
  1667      *          greater than or equal to the length of this string, it has
  1668      *          the same effect as if it were equal to one less than the
  1669      *          length of this string: this entire string may be searched.
  1670      *          If it is negative, it has the same effect as if it were -1:
  1671      *          -1 is returned.
  1672      * @return  the index of the last occurrence of the character in the
  1673      *          character sequence represented by this object that is less
  1674      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
  1675      *          if the character does not occur before that point.
  1676      */
  1677     public int lastIndexOf(int ch, int fromIndex) {
  1678         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
  1679             // handle most cases here (ch is a BMP code point or a
  1680             // negative value (invalid code point))
  1681             final char[] value = this.value;
  1682             final int offset = this.offset;
  1683             int i = offset + Math.min(fromIndex, count - 1);
  1684             for (; i >= offset ; i--) {
  1685                 if (value[i] == ch) {
  1686                     return i - offset;
  1687                 }
  1688             }
  1689             return -1;
  1690         } else {
  1691             return lastIndexOfSupplementary(ch, fromIndex);
  1692         }
  1693     }
  1694 
  1695     /**
  1696      * Handles (rare) calls of lastIndexOf with a supplementary character.
  1697      */
  1698     private int lastIndexOfSupplementary(int ch, int fromIndex) {
  1699         if (Character.isValidCodePoint(ch)) {
  1700             final char[] value = this.value;
  1701             final int offset = this.offset;
  1702             char hi = Character.highSurrogate(ch);
  1703             char lo = Character.lowSurrogate(ch);
  1704             int i = offset + Math.min(fromIndex, count - 2);
  1705             for (; i >= offset; i--) {
  1706                 if (value[i] == hi && value[i+1] == lo) {
  1707                     return i - offset;
  1708                 }
  1709             }
  1710         }
  1711         return -1;
  1712     }
  1713 
  1714     /**
  1715      * Returns the index within this string of the first occurrence of the
  1716      * specified substring.
  1717      *
  1718      * <p>The returned index is the smallest value <i>k</i> for which:
  1719      * <blockquote><pre>
  1720      * this.startsWith(str, <i>k</i>)
  1721      * </pre></blockquote>
  1722      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1723      *
  1724      * @param   str   the substring to search for.
  1725      * @return  the index of the first occurrence of the specified substring,
  1726      *          or {@code -1} if there is no such occurrence.
  1727      */
  1728     public int indexOf(String str) {
  1729         return indexOf(str, 0);
  1730     }
  1731 
  1732     /**
  1733      * Returns the index within this string of the first occurrence of the
  1734      * specified substring, starting at the specified index.
  1735      *
  1736      * <p>The returned index is the smallest value <i>k</i> for which:
  1737      * <blockquote><pre>
  1738      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
  1739      * </pre></blockquote>
  1740      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1741      *
  1742      * @param   str         the substring to search for.
  1743      * @param   fromIndex   the index from which to start the search.
  1744      * @return  the index of the first occurrence of the specified substring,
  1745      *          starting at the specified index,
  1746      *          or {@code -1} if there is no such occurrence.
  1747      */
  1748     public int indexOf(String str, int fromIndex) {
  1749         return indexOf(value, offset, count,
  1750                        str.value, str.offset, str.count, fromIndex);
  1751     }
  1752 
  1753     /**
  1754      * Code shared by String and StringBuffer to do searches. The
  1755      * source is the character array being searched, and the target
  1756      * is the string being searched for.
  1757      *
  1758      * @param   source       the characters being searched.
  1759      * @param   sourceOffset offset of the source string.
  1760      * @param   sourceCount  count of the source string.
  1761      * @param   target       the characters being searched for.
  1762      * @param   targetOffset offset of the target string.
  1763      * @param   targetCount  count of the target string.
  1764      * @param   fromIndex    the index to begin searching from.
  1765      */
  1766     static int indexOf(char[] source, int sourceOffset, int sourceCount,
  1767                        char[] target, int targetOffset, int targetCount,
  1768                        int fromIndex) {
  1769         if (fromIndex >= sourceCount) {
  1770             return (targetCount == 0 ? sourceCount : -1);
  1771         }
  1772         if (fromIndex < 0) {
  1773             fromIndex = 0;
  1774         }
  1775         if (targetCount == 0) {
  1776             return fromIndex;
  1777         }
  1778 
  1779         char first  = target[targetOffset];
  1780         int max = sourceOffset + (sourceCount - targetCount);
  1781 
  1782         for (int i = sourceOffset + fromIndex; i <= max; i++) {
  1783             /* Look for first character. */
  1784             if (source[i] != first) {
  1785                 while (++i <= max && source[i] != first);
  1786             }
  1787 
  1788             /* Found first character, now look at the rest of v2 */
  1789             if (i <= max) {
  1790                 int j = i + 1;
  1791                 int end = j + targetCount - 1;
  1792                 for (int k = targetOffset + 1; j < end && source[j] ==
  1793                          target[k]; j++, k++);
  1794 
  1795                 if (j == end) {
  1796                     /* Found whole string. */
  1797                     return i - sourceOffset;
  1798                 }
  1799             }
  1800         }
  1801         return -1;
  1802     }
  1803 
  1804     /**
  1805      * Returns the index within this string of the last occurrence of the
  1806      * specified substring.  The last occurrence of the empty string ""
  1807      * is considered to occur at the index value {@code this.length()}.
  1808      *
  1809      * <p>The returned index is the largest value <i>k</i> for which:
  1810      * <blockquote><pre>
  1811      * this.startsWith(str, <i>k</i>)
  1812      * </pre></blockquote>
  1813      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1814      *
  1815      * @param   str   the substring to search for.
  1816      * @return  the index of the last occurrence of the specified substring,
  1817      *          or {@code -1} if there is no such occurrence.
  1818      */
  1819     public int lastIndexOf(String str) {
  1820         return lastIndexOf(str, count);
  1821     }
  1822 
  1823     /**
  1824      * Returns the index within this string of the last occurrence of the
  1825      * specified substring, searching backward starting at the specified index.
  1826      *
  1827      * <p>The returned index is the largest value <i>k</i> for which:
  1828      * <blockquote><pre>
  1829      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
  1830      * </pre></blockquote>
  1831      * If no such value of <i>k</i> exists, then {@code -1} is returned.
  1832      *
  1833      * @param   str         the substring to search for.
  1834      * @param   fromIndex   the index to start the search from.
  1835      * @return  the index of the last occurrence of the specified substring,
  1836      *          searching backward from the specified index,
  1837      *          or {@code -1} if there is no such occurrence.
  1838      */
  1839     public int lastIndexOf(String str, int fromIndex) {
  1840         return lastIndexOf(value, offset, count,
  1841                            str.value, str.offset, str.count, fromIndex);
  1842     }
  1843 
  1844     /**
  1845      * Code shared by String and StringBuffer to do searches. The
  1846      * source is the character array being searched, and the target
  1847      * is the string being searched for.
  1848      *
  1849      * @param   source       the characters being searched.
  1850      * @param   sourceOffset offset of the source string.
  1851      * @param   sourceCount  count of the source string.
  1852      * @param   target       the characters being searched for.
  1853      * @param   targetOffset offset of the target string.
  1854      * @param   targetCount  count of the target string.
  1855      * @param   fromIndex    the index to begin searching from.
  1856      */
  1857     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
  1858                            char[] target, int targetOffset, int targetCount,
  1859                            int fromIndex) {
  1860         /*
  1861          * Check arguments; return immediately where possible. For
  1862          * consistency, don't check for null str.
  1863          */
  1864         int rightIndex = sourceCount - targetCount;
  1865         if (fromIndex < 0) {
  1866             return -1;
  1867         }
  1868         if (fromIndex > rightIndex) {
  1869             fromIndex = rightIndex;
  1870         }
  1871         /* Empty string always matches. */
  1872         if (targetCount == 0) {
  1873             return fromIndex;
  1874         }
  1875 
  1876         int strLastIndex = targetOffset + targetCount - 1;
  1877         char strLastChar = target[strLastIndex];
  1878         int min = sourceOffset + targetCount - 1;
  1879         int i = min + fromIndex;
  1880 
  1881     startSearchForLastChar:
  1882         while (true) {
  1883             while (i >= min && source[i] != strLastChar) {
  1884                 i--;
  1885             }
  1886             if (i < min) {
  1887                 return -1;
  1888             }
  1889             int j = i - 1;
  1890             int start = j - (targetCount - 1);
  1891             int k = strLastIndex - 1;
  1892 
  1893             while (j > start) {
  1894                 if (source[j--] != target[k--]) {
  1895                     i--;
  1896                     continue startSearchForLastChar;
  1897                 }
  1898             }
  1899             return start - sourceOffset + 1;
  1900         }
  1901     }
  1902 
  1903     /**
  1904      * Returns a new string that is a substring of this string. The
  1905      * substring begins with the character at the specified index and
  1906      * extends to the end of this string. <p>
  1907      * Examples:
  1908      * <blockquote><pre>
  1909      * "unhappy".substring(2) returns "happy"
  1910      * "Harbison".substring(3) returns "bison"
  1911      * "emptiness".substring(9) returns "" (an empty string)
  1912      * </pre></blockquote>
  1913      *
  1914      * @param      beginIndex   the beginning index, inclusive.
  1915      * @return     the specified substring.
  1916      * @exception  IndexOutOfBoundsException  if
  1917      *             <code>beginIndex</code> is negative or larger than the
  1918      *             length of this <code>String</code> object.
  1919      */
  1920     public String substring(int beginIndex) {
  1921         return substring(beginIndex, count);
  1922     }
  1923 
  1924     /**
  1925      * Returns a new string that is a substring of this string. The
  1926      * substring begins at the specified <code>beginIndex</code> and
  1927      * extends to the character at index <code>endIndex - 1</code>.
  1928      * Thus the length of the substring is <code>endIndex-beginIndex</code>.
  1929      * <p>
  1930      * Examples:
  1931      * <blockquote><pre>
  1932      * "hamburger".substring(4, 8) returns "urge"
  1933      * "smiles".substring(1, 5) returns "mile"
  1934      * </pre></blockquote>
  1935      *
  1936      * @param      beginIndex   the beginning index, inclusive.
  1937      * @param      endIndex     the ending index, exclusive.
  1938      * @return     the specified substring.
  1939      * @exception  IndexOutOfBoundsException  if the
  1940      *             <code>beginIndex</code> is negative, or
  1941      *             <code>endIndex</code> is larger than the length of
  1942      *             this <code>String</code> object, or
  1943      *             <code>beginIndex</code> is larger than
  1944      *             <code>endIndex</code>.
  1945      */
  1946     public String substring(int beginIndex, int endIndex) {
  1947         if (beginIndex < 0) {
  1948             throw new StringIndexOutOfBoundsException(beginIndex);
  1949         }
  1950         if (endIndex > count) {
  1951             throw new StringIndexOutOfBoundsException(endIndex);
  1952         }
  1953         if (beginIndex > endIndex) {
  1954             throw new StringIndexOutOfBoundsException(endIndex - beginIndex);
  1955         }
  1956         return ((beginIndex == 0) && (endIndex == count)) ? this :
  1957             new String(offset + beginIndex, endIndex - beginIndex, value);
  1958     }
  1959 
  1960     /**
  1961      * Returns a new character sequence that is a subsequence of this sequence.
  1962      *
  1963      * <p> An invocation of this method of the form
  1964      *
  1965      * <blockquote><pre>
  1966      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
  1967      *
  1968      * behaves in exactly the same way as the invocation
  1969      *
  1970      * <blockquote><pre>
  1971      * str.substring(begin,&nbsp;end)</pre></blockquote>
  1972      *
  1973      * This method is defined so that the <tt>String</tt> class can implement
  1974      * the {@link CharSequence} interface. </p>
  1975      *
  1976      * @param      beginIndex   the begin index, inclusive.
  1977      * @param      endIndex     the end index, exclusive.
  1978      * @return     the specified subsequence.
  1979      *
  1980      * @throws  IndexOutOfBoundsException
  1981      *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,
  1982      *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,
  1983      *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>
  1984      *
  1985      * @since 1.4
  1986      * @spec JSR-51
  1987      */
  1988     public CharSequence subSequence(int beginIndex, int endIndex) {
  1989         return this.substring(beginIndex, endIndex);
  1990     }
  1991 
  1992     /**
  1993      * Concatenates the specified string to the end of this string.
  1994      * <p>
  1995      * If the length of the argument string is <code>0</code>, then this
  1996      * <code>String</code> object is returned. Otherwise, a new
  1997      * <code>String</code> object is created, representing a character
  1998      * sequence that is the concatenation of the character sequence
  1999      * represented by this <code>String</code> object and the character
  2000      * sequence represented by the argument string.<p>
  2001      * Examples:
  2002      * <blockquote><pre>
  2003      * "cares".concat("s") returns "caress"
  2004      * "to".concat("get").concat("her") returns "together"
  2005      * </pre></blockquote>
  2006      *
  2007      * @param   str   the <code>String</code> that is concatenated to the end
  2008      *                of this <code>String</code>.
  2009      * @return  a string that represents the concatenation of this object's
  2010      *          characters followed by the string argument's characters.
  2011      */
  2012     public String concat(String str) {
  2013         int otherLen = str.length();
  2014         if (otherLen == 0) {
  2015             return this;
  2016         }
  2017         char buf[] = new char[count + otherLen];
  2018         getChars(0, count, buf, 0);
  2019         str.getChars(0, otherLen, buf, count);
  2020         return new String(0, count + otherLen, buf);
  2021     }
  2022 
  2023     /**
  2024      * Returns a new string resulting from replacing all occurrences of
  2025      * <code>oldChar</code> in this string with <code>newChar</code>.
  2026      * <p>
  2027      * If the character <code>oldChar</code> does not occur in the
  2028      * character sequence represented by this <code>String</code> object,
  2029      * then a reference to this <code>String</code> object is returned.
  2030      * Otherwise, a new <code>String</code> object is created that
  2031      * represents a character sequence identical to the character sequence
  2032      * represented by this <code>String</code> object, except that every
  2033      * occurrence of <code>oldChar</code> is replaced by an occurrence
  2034      * of <code>newChar</code>.
  2035      * <p>
  2036      * Examples:
  2037      * <blockquote><pre>
  2038      * "mesquite in your cellar".replace('e', 'o')
  2039      *         returns "mosquito in your collar"
  2040      * "the war of baronets".replace('r', 'y')
  2041      *         returns "the way of bayonets"
  2042      * "sparring with a purple porpoise".replace('p', 't')
  2043      *         returns "starring with a turtle tortoise"
  2044      * "JonL".replace('q', 'x') returns "JonL" (no change)
  2045      * </pre></blockquote>
  2046      *
  2047      * @param   oldChar   the old character.
  2048      * @param   newChar   the new character.
  2049      * @return  a string derived from this string by replacing every
  2050      *          occurrence of <code>oldChar</code> with <code>newChar</code>.
  2051      */
  2052     public String replace(char oldChar, char newChar) {
  2053         if (oldChar != newChar) {
  2054             int len = count;
  2055             int i = -1;
  2056             char[] val = value; /* avoid getfield opcode */
  2057             int off = offset;   /* avoid getfield opcode */
  2058 
  2059             while (++i < len) {
  2060                 if (val[off + i] == oldChar) {
  2061                     break;
  2062                 }
  2063             }
  2064             if (i < len) {
  2065                 char buf[] = new char[len];
  2066                 for (int j = 0 ; j < i ; j++) {
  2067                     buf[j] = val[off+j];
  2068                 }
  2069                 while (i < len) {
  2070                     char c = val[off + i];
  2071                     buf[i] = (c == oldChar) ? newChar : c;
  2072                     i++;
  2073                 }
  2074                 return new String(0, len, buf);
  2075             }
  2076         }
  2077         return this;
  2078     }
  2079 
  2080     /**
  2081      * Tells whether or not this string matches the given <a
  2082      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2083      *
  2084      * <p> An invocation of this method of the form
  2085      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
  2086      * same result as the expression
  2087      *
  2088      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
  2089      * java.util.regex.Pattern#matches(String,CharSequence)
  2090      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
  2091      *
  2092      * @param   regex
  2093      *          the regular expression to which this string is to be matched
  2094      *
  2095      * @return  <tt>true</tt> if, and only if, this string matches the
  2096      *          given regular expression
  2097      *
  2098      * @throws  PatternSyntaxException
  2099      *          if the regular expression's syntax is invalid
  2100      *
  2101      * @see java.util.regex.Pattern
  2102      *
  2103      * @since 1.4
  2104      * @spec JSR-51
  2105      */
  2106     public boolean matches(String regex) {
  2107         throw new UnsupportedOperationException();
  2108     }
  2109 
  2110     /**
  2111      * Returns true if and only if this string contains the specified
  2112      * sequence of char values.
  2113      *
  2114      * @param s the sequence to search for
  2115      * @return true if this string contains <code>s</code>, false otherwise
  2116      * @throws NullPointerException if <code>s</code> is <code>null</code>
  2117      * @since 1.5
  2118      */
  2119     public boolean contains(CharSequence s) {
  2120         return indexOf(s.toString()) > -1;
  2121     }
  2122 
  2123     /**
  2124      * Replaces the first substring of this string that matches the given <a
  2125      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2126      * given replacement.
  2127      *
  2128      * <p> An invocation of this method of the form
  2129      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2130      * yields exactly the same result as the expression
  2131      *
  2132      * <blockquote><tt>
  2133      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2134      * compile}(</tt><i>regex</i><tt>).{@link
  2135      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2136      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
  2137      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
  2138      *
  2139      *<p>
  2140      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2141      * replacement string may cause the results to be different than if it were
  2142      * being treated as a literal replacement string; see
  2143      * {@link java.util.regex.Matcher#replaceFirst}.
  2144      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2145      * meaning of these characters, if desired.
  2146      *
  2147      * @param   regex
  2148      *          the regular expression to which this string is to be matched
  2149      * @param   replacement
  2150      *          the string to be substituted for the first match
  2151      *
  2152      * @return  The resulting <tt>String</tt>
  2153      *
  2154      * @throws  PatternSyntaxException
  2155      *          if the regular expression's syntax is invalid
  2156      *
  2157      * @see java.util.regex.Pattern
  2158      *
  2159      * @since 1.4
  2160      * @spec JSR-51
  2161      */
  2162     public String replaceFirst(String regex, String replacement) {
  2163         throw new UnsupportedOperationException();
  2164     }
  2165 
  2166     /**
  2167      * Replaces each substring of this string that matches the given <a
  2168      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
  2169      * given replacement.
  2170      *
  2171      * <p> An invocation of this method of the form
  2172      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
  2173      * yields exactly the same result as the expression
  2174      *
  2175      * <blockquote><tt>
  2176      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2177      * compile}(</tt><i>regex</i><tt>).{@link
  2178      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
  2179      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
  2180      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
  2181      *
  2182      *<p>
  2183      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
  2184      * replacement string may cause the results to be different than if it were
  2185      * being treated as a literal replacement string; see
  2186      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
  2187      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
  2188      * meaning of these characters, if desired.
  2189      *
  2190      * @param   regex
  2191      *          the regular expression to which this string is to be matched
  2192      * @param   replacement
  2193      *          the string to be substituted for each match
  2194      *
  2195      * @return  The resulting <tt>String</tt>
  2196      *
  2197      * @throws  PatternSyntaxException
  2198      *          if the regular expression's syntax is invalid
  2199      *
  2200      * @see java.util.regex.Pattern
  2201      *
  2202      * @since 1.4
  2203      * @spec JSR-51
  2204      */
  2205     public String replaceAll(String regex, String replacement) {
  2206         throw new UnsupportedOperationException();
  2207     }
  2208 
  2209     /**
  2210      * Replaces each substring of this string that matches the literal target
  2211      * sequence with the specified literal replacement sequence. The
  2212      * replacement proceeds from the beginning of the string to the end, for
  2213      * example, replacing "aa" with "b" in the string "aaa" will result in
  2214      * "ba" rather than "ab".
  2215      *
  2216      * @param  target The sequence of char values to be replaced
  2217      * @param  replacement The replacement sequence of char values
  2218      * @return  The resulting string
  2219      * @throws NullPointerException if <code>target</code> or
  2220      *         <code>replacement</code> is <code>null</code>.
  2221      * @since 1.5
  2222      */
  2223     public String replace(CharSequence target, CharSequence replacement) {
  2224         throw new UnsupportedOperationException("This one should be supported, but without dep on rest of regexp");
  2225     }
  2226 
  2227     /**
  2228      * Splits this string around matches of the given
  2229      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
  2230      *
  2231      * <p> The array returned by this method contains each substring of this
  2232      * string that is terminated by another substring that matches the given
  2233      * expression or is terminated by the end of the string.  The substrings in
  2234      * the array are in the order in which they occur in this string.  If the
  2235      * expression does not match any part of the input then the resulting array
  2236      * has just one element, namely this string.
  2237      *
  2238      * <p> The <tt>limit</tt> parameter controls the number of times the
  2239      * pattern is applied and therefore affects the length of the resulting
  2240      * array.  If the limit <i>n</i> is greater than zero then the pattern
  2241      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
  2242      * length will be no greater than <i>n</i>, and the array's last entry
  2243      * will contain all input beyond the last matched delimiter.  If <i>n</i>
  2244      * is non-positive then the pattern will be applied as many times as
  2245      * possible and the array can have any length.  If <i>n</i> is zero then
  2246      * the pattern will be applied as many times as possible, the array can
  2247      * have any length, and trailing empty strings will be discarded.
  2248      *
  2249      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
  2250      * following results with these parameters:
  2251      *
  2252      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
  2253      * <tr>
  2254      *     <th>Regex</th>
  2255      *     <th>Limit</th>
  2256      *     <th>Result</th>
  2257      * </tr>
  2258      * <tr><td align=center>:</td>
  2259      *     <td align=center>2</td>
  2260      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
  2261      * <tr><td align=center>:</td>
  2262      *     <td align=center>5</td>
  2263      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2264      * <tr><td align=center>:</td>
  2265      *     <td align=center>-2</td>
  2266      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2267      * <tr><td align=center>o</td>
  2268      *     <td align=center>5</td>
  2269      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2270      * <tr><td align=center>o</td>
  2271      *     <td align=center>-2</td>
  2272      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
  2273      * <tr><td align=center>o</td>
  2274      *     <td align=center>0</td>
  2275      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2276      * </table></blockquote>
  2277      *
  2278      * <p> An invocation of this method of the form
  2279      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2280      * yields the same result as the expression
  2281      *
  2282      * <blockquote>
  2283      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
  2284      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
  2285      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
  2286      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
  2287      * </blockquote>
  2288      *
  2289      *
  2290      * @param  regex
  2291      *         the delimiting regular expression
  2292      *
  2293      * @param  limit
  2294      *         the result threshold, as described above
  2295      *
  2296      * @return  the array of strings computed by splitting this string
  2297      *          around matches of the given regular expression
  2298      *
  2299      * @throws  PatternSyntaxException
  2300      *          if the regular expression's syntax is invalid
  2301      *
  2302      * @see java.util.regex.Pattern
  2303      *
  2304      * @since 1.4
  2305      * @spec JSR-51
  2306      */
  2307     public String[] split(String regex, int limit) {
  2308         throw new UnsupportedOperationException("Needs regexp");
  2309     }
  2310 
  2311     /**
  2312      * Splits this string around matches of the given <a
  2313      * href="../util/regex/Pattern.html#sum">regular expression</a>.
  2314      *
  2315      * <p> This method works as if by invoking the two-argument {@link
  2316      * #split(String, int) split} method with the given expression and a limit
  2317      * argument of zero.  Trailing empty strings are therefore not included in
  2318      * the resulting array.
  2319      *
  2320      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
  2321      * results with these expressions:
  2322      *
  2323      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
  2324      * <tr>
  2325      *  <th>Regex</th>
  2326      *  <th>Result</th>
  2327      * </tr>
  2328      * <tr><td align=center>:</td>
  2329      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
  2330      * <tr><td align=center>o</td>
  2331      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
  2332      * </table></blockquote>
  2333      *
  2334      *
  2335      * @param  regex
  2336      *         the delimiting regular expression
  2337      *
  2338      * @return  the array of strings computed by splitting this string
  2339      *          around matches of the given regular expression
  2340      *
  2341      * @throws  PatternSyntaxException
  2342      *          if the regular expression's syntax is invalid
  2343      *
  2344      * @see java.util.regex.Pattern
  2345      *
  2346      * @since 1.4
  2347      * @spec JSR-51
  2348      */
  2349     public String[] split(String regex) {
  2350         return split(regex, 0);
  2351     }
  2352 
  2353     /**
  2354      * Converts all of the characters in this <code>String</code> to lower
  2355      * case using the rules of the given <code>Locale</code>.  Case mapping is based
  2356      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2357      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2358      * <code>String</code> may be a different length than the original <code>String</code>.
  2359      * <p>
  2360      * Examples of lowercase  mappings are in the following table:
  2361      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
  2362      * <tr>
  2363      *   <th>Language Code of Locale</th>
  2364      *   <th>Upper Case</th>
  2365      *   <th>Lower Case</th>
  2366      *   <th>Description</th>
  2367      * </tr>
  2368      * <tr>
  2369      *   <td>tr (Turkish)</td>
  2370      *   <td>&#92;u0130</td>
  2371      *   <td>&#92;u0069</td>
  2372      *   <td>capital letter I with dot above -&gt; small letter i</td>
  2373      * </tr>
  2374      * <tr>
  2375      *   <td>tr (Turkish)</td>
  2376      *   <td>&#92;u0049</td>
  2377      *   <td>&#92;u0131</td>
  2378      *   <td>capital letter I -&gt; small letter dotless i </td>
  2379      * </tr>
  2380      * <tr>
  2381      *   <td>(all)</td>
  2382      *   <td>French Fries</td>
  2383      *   <td>french fries</td>
  2384      *   <td>lowercased all chars in String</td>
  2385      * </tr>
  2386      * <tr>
  2387      *   <td>(all)</td>
  2388      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
  2389      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
  2390      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
  2391      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
  2392      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
  2393      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
  2394      *   <td>lowercased all chars in String</td>
  2395      * </tr>
  2396      * </table>
  2397      *
  2398      * @param locale use the case transformation rules for this locale
  2399      * @return the <code>String</code>, converted to lowercase.
  2400      * @see     java.lang.String#toLowerCase()
  2401      * @see     java.lang.String#toUpperCase()
  2402      * @see     java.lang.String#toUpperCase(Locale)
  2403      * @since   1.1
  2404      */
  2405 //    public String toLowerCase(Locale locale) {
  2406 //        if (locale == null) {
  2407 //            throw new NullPointerException();
  2408 //        }
  2409 //
  2410 //        int     firstUpper;
  2411 //
  2412 //        /* Now check if there are any characters that need to be changed. */
  2413 //        scan: {
  2414 //            for (firstUpper = 0 ; firstUpper < count; ) {
  2415 //                char c = value[offset+firstUpper];
  2416 //                if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2417 //                    (c <= Character.MAX_HIGH_SURROGATE)) {
  2418 //                    int supplChar = codePointAt(firstUpper);
  2419 //                    if (supplChar != Character.toLowerCase(supplChar)) {
  2420 //                        break scan;
  2421 //                    }
  2422 //                    firstUpper += Character.charCount(supplChar);
  2423 //                } else {
  2424 //                    if (c != Character.toLowerCase(c)) {
  2425 //                        break scan;
  2426 //                    }
  2427 //                    firstUpper++;
  2428 //                }
  2429 //            }
  2430 //            return this;
  2431 //        }
  2432 //
  2433 //        char[]  result = new char[count];
  2434 //        int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2435 //                                    * is the write location in result */
  2436 //
  2437 //        /* Just copy the first few lowerCase characters. */
  2438 //        arraycopy(value, offset, result, 0, firstUpper);
  2439 //
  2440 //        String lang = locale.getLanguage();
  2441 //        boolean localeDependent =
  2442 //            (lang == "tr" || lang == "az" || lang == "lt");
  2443 //        char[] lowerCharArray;
  2444 //        int lowerChar;
  2445 //        int srcChar;
  2446 //        int srcCount;
  2447 //        for (int i = firstUpper; i < count; i += srcCount) {
  2448 //            srcChar = (int)value[offset+i];
  2449 //            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2450 //                (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2451 //                srcChar = codePointAt(i);
  2452 //                srcCount = Character.charCount(srcChar);
  2453 //            } else {
  2454 //                srcCount = 1;
  2455 //            }
  2456 //            if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
  2457 //                lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
  2458 //            } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
  2459 //                lowerChar = Character.ERROR;
  2460 //            } else {
  2461 //                lowerChar = Character.toLowerCase(srcChar);
  2462 //            }
  2463 //            if ((lowerChar == Character.ERROR) ||
  2464 //                (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2465 //                if (lowerChar == Character.ERROR) {
  2466 //                     if (!localeDependent && srcChar == '\u0130') {
  2467 //                         lowerCharArray =
  2468 //                             ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
  2469 //                     } else {
  2470 //                        lowerCharArray =
  2471 //                            ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
  2472 //                     }
  2473 //                } else if (srcCount == 2) {
  2474 //                    resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
  2475 //                    continue;
  2476 //                } else {
  2477 //                    lowerCharArray = Character.toChars(lowerChar);
  2478 //                }
  2479 //
  2480 //                /* Grow result if needed */
  2481 //                int mapLen = lowerCharArray.length;
  2482 //                if (mapLen > srcCount) {
  2483 //                    char[] result2 = new char[result.length + mapLen - srcCount];
  2484 //                    arraycopy(result, 0, result2, 0,
  2485 //                        i + resultOffset);
  2486 //                    result = result2;
  2487 //                }
  2488 //                for (int x=0; x<mapLen; ++x) {
  2489 //                    result[i+resultOffset+x] = lowerCharArray[x];
  2490 //                }
  2491 //                resultOffset += (mapLen - srcCount);
  2492 //            } else {
  2493 //                result[i+resultOffset] = (char)lowerChar;
  2494 //            }
  2495 //        }
  2496 //        return new String(0, count+resultOffset, result);
  2497 //    }
  2498 
  2499     /**
  2500      * Converts all of the characters in this <code>String</code> to lower
  2501      * case using the rules of the default locale. This is equivalent to calling
  2502      * <code>toLowerCase(Locale.getDefault())</code>.
  2503      * <p>
  2504      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2505      * results if used for strings that are intended to be interpreted locale
  2506      * independently.
  2507      * Examples are programming language identifiers, protocol keys, and HTML
  2508      * tags.
  2509      * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale
  2510      * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the
  2511      * LATIN SMALL LETTER DOTLESS I character.
  2512      * To obtain correct results for locale insensitive strings, use
  2513      * <code>toLowerCase(Locale.ENGLISH)</code>.
  2514      * <p>
  2515      * @return  the <code>String</code>, converted to lowercase.
  2516      * @see     java.lang.String#toLowerCase(Locale)
  2517      */
  2518     public String toLowerCase() {
  2519         throw new UnsupportedOperationException("Should be supported but without connection to locale");
  2520     }
  2521 
  2522     /**
  2523      * Converts all of the characters in this <code>String</code> to upper
  2524      * case using the rules of the given <code>Locale</code>. Case mapping is based
  2525      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
  2526      * class. Since case mappings are not always 1:1 char mappings, the resulting
  2527      * <code>String</code> may be a different length than the original <code>String</code>.
  2528      * <p>
  2529      * Examples of locale-sensitive and 1:M case mappings are in the following table.
  2530      * <p>
  2531      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
  2532      * <tr>
  2533      *   <th>Language Code of Locale</th>
  2534      *   <th>Lower Case</th>
  2535      *   <th>Upper Case</th>
  2536      *   <th>Description</th>
  2537      * </tr>
  2538      * <tr>
  2539      *   <td>tr (Turkish)</td>
  2540      *   <td>&#92;u0069</td>
  2541      *   <td>&#92;u0130</td>
  2542      *   <td>small letter i -&gt; capital letter I with dot above</td>
  2543      * </tr>
  2544      * <tr>
  2545      *   <td>tr (Turkish)</td>
  2546      *   <td>&#92;u0131</td>
  2547      *   <td>&#92;u0049</td>
  2548      *   <td>small letter dotless i -&gt; capital letter I</td>
  2549      * </tr>
  2550      * <tr>
  2551      *   <td>(all)</td>
  2552      *   <td>&#92;u00df</td>
  2553      *   <td>&#92;u0053 &#92;u0053</td>
  2554      *   <td>small letter sharp s -&gt; two letters: SS</td>
  2555      * </tr>
  2556      * <tr>
  2557      *   <td>(all)</td>
  2558      *   <td>Fahrvergn&uuml;gen</td>
  2559      *   <td>FAHRVERGN&Uuml;GEN</td>
  2560      *   <td></td>
  2561      * </tr>
  2562      * </table>
  2563      * @param locale use the case transformation rules for this locale
  2564      * @return the <code>String</code>, converted to uppercase.
  2565      * @see     java.lang.String#toUpperCase()
  2566      * @see     java.lang.String#toLowerCase()
  2567      * @see     java.lang.String#toLowerCase(Locale)
  2568      * @since   1.1
  2569      */
  2570     /* not for javascript 
  2571     public String toUpperCase(Locale locale) {
  2572         if (locale == null) {
  2573             throw new NullPointerException();
  2574         }
  2575 
  2576         int     firstLower;
  2577 
  2578         // Now check if there are any characters that need to be changed. 
  2579         scan: {
  2580             for (firstLower = 0 ; firstLower < count; ) {
  2581                 int c = (int)value[offset+firstLower];
  2582                 int srcCount;
  2583                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
  2584                     (c <= Character.MAX_HIGH_SURROGATE)) {
  2585                     c = codePointAt(firstLower);
  2586                     srcCount = Character.charCount(c);
  2587                 } else {
  2588                     srcCount = 1;
  2589                 }
  2590                 int upperCaseChar = Character.toUpperCaseEx(c);
  2591                 if ((upperCaseChar == Character.ERROR) ||
  2592                     (c != upperCaseChar)) {
  2593                     break scan;
  2594                 }
  2595                 firstLower += srcCount;
  2596             }
  2597             return this;
  2598         }
  2599 
  2600         char[]  result       = new char[count]; /* may grow *
  2601         int     resultOffset = 0;  /* result may grow, so i+resultOffset
  2602                                     * is the write location in result *
  2603 
  2604         /* Just copy the first few upperCase characters. *
  2605         arraycopy(value, offset, result, 0, firstLower);
  2606 
  2607         String lang = locale.getLanguage();
  2608         boolean localeDependent =
  2609             (lang == "tr" || lang == "az" || lang == "lt");
  2610         char[] upperCharArray;
  2611         int upperChar;
  2612         int srcChar;
  2613         int srcCount;
  2614         for (int i = firstLower; i < count; i += srcCount) {
  2615             srcChar = (int)value[offset+i];
  2616             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
  2617                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
  2618                 srcChar = codePointAt(i);
  2619                 srcCount = Character.charCount(srcChar);
  2620             } else {
  2621                 srcCount = 1;
  2622             }
  2623             if (localeDependent) {
  2624                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
  2625             } else {
  2626                 upperChar = Character.toUpperCaseEx(srcChar);
  2627             }
  2628             if ((upperChar == Character.ERROR) ||
  2629                 (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
  2630                 if (upperChar == Character.ERROR) {
  2631                     if (localeDependent) {
  2632                         upperCharArray =
  2633                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
  2634                     } else {
  2635                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
  2636                     }
  2637                 } else if (srcCount == 2) {
  2638                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
  2639                     continue;
  2640                 } else {
  2641                     upperCharArray = Character.toChars(upperChar);
  2642                 }
  2643 
  2644                 /* Grow result if needed *
  2645                 int mapLen = upperCharArray.length;
  2646                 if (mapLen > srcCount) {
  2647                     char[] result2 = new char[result.length + mapLen - srcCount];
  2648                     arraycopy(result, 0, result2, 0,
  2649                         i + resultOffset);
  2650                     result = result2;
  2651                 }
  2652                 for (int x=0; x<mapLen; ++x) {
  2653                     result[i+resultOffset+x] = upperCharArray[x];
  2654                 }
  2655                 resultOffset += (mapLen - srcCount);
  2656             } else {
  2657                 result[i+resultOffset] = (char)upperChar;
  2658             }
  2659         }
  2660         return new String(0, count+resultOffset, result);
  2661     }
  2662     */
  2663 
  2664     /**
  2665      * Converts all of the characters in this <code>String</code> to upper
  2666      * case using the rules of the default locale. This method is equivalent to
  2667      * <code>toUpperCase(Locale.getDefault())</code>.
  2668      * <p>
  2669      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
  2670      * results if used for strings that are intended to be interpreted locale
  2671      * independently.
  2672      * Examples are programming language identifiers, protocol keys, and HTML
  2673      * tags.
  2674      * For instance, <code>"title".toUpperCase()</code> in a Turkish locale
  2675      * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the
  2676      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
  2677      * To obtain correct results for locale insensitive strings, use
  2678      * <code>toUpperCase(Locale.ENGLISH)</code>.
  2679      * <p>
  2680      * @return  the <code>String</code>, converted to uppercase.
  2681      * @see     java.lang.String#toUpperCase(Locale)
  2682      */
  2683     public String toUpperCase() {
  2684         throw new UnsupportedOperationException();
  2685     }
  2686 
  2687     /**
  2688      * Returns a copy of the string, with leading and trailing whitespace
  2689      * omitted.
  2690      * <p>
  2691      * If this <code>String</code> object represents an empty character
  2692      * sequence, or the first and last characters of character sequence
  2693      * represented by this <code>String</code> object both have codes
  2694      * greater than <code>'&#92;u0020'</code> (the space character), then a
  2695      * reference to this <code>String</code> object is returned.
  2696      * <p>
  2697      * Otherwise, if there is no character with a code greater than
  2698      * <code>'&#92;u0020'</code> in the string, then a new
  2699      * <code>String</code> object representing an empty string is created
  2700      * and returned.
  2701      * <p>
  2702      * Otherwise, let <i>k</i> be the index of the first character in the
  2703      * string whose code is greater than <code>'&#92;u0020'</code>, and let
  2704      * <i>m</i> be the index of the last character in the string whose code
  2705      * is greater than <code>'&#92;u0020'</code>. A new <code>String</code>
  2706      * object is created, representing the substring of this string that
  2707      * begins with the character at index <i>k</i> and ends with the
  2708      * character at index <i>m</i>-that is, the result of
  2709      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
  2710      * <p>
  2711      * This method may be used to trim whitespace (as defined above) from
  2712      * the beginning and end of a string.
  2713      *
  2714      * @return  A copy of this string with leading and trailing white
  2715      *          space removed, or this string if it has no leading or
  2716      *          trailing white space.
  2717      */
  2718     public String trim() {
  2719         int len = count;
  2720         int st = 0;
  2721         int off = offset;      /* avoid getfield opcode */
  2722         char[] val = value;    /* avoid getfield opcode */
  2723 
  2724         while ((st < len) && (val[off + st] <= ' ')) {
  2725             st++;
  2726         }
  2727         while ((st < len) && (val[off + len - 1] <= ' ')) {
  2728             len--;
  2729         }
  2730         return ((st > 0) || (len < count)) ? substring(st, len) : this;
  2731     }
  2732 
  2733     /**
  2734      * This object (which is already a string!) is itself returned.
  2735      *
  2736      * @return  the string itself.
  2737      */
  2738     public String toString() {
  2739         return this;
  2740     }
  2741 
  2742     /**
  2743      * Converts this string to a new character array.
  2744      *
  2745      * @return  a newly allocated character array whose length is the length
  2746      *          of this string and whose contents are initialized to contain
  2747      *          the character sequence represented by this string.
  2748      */
  2749     public char[] toCharArray() {
  2750         char result[] = new char[count];
  2751         getChars(0, count, result, 0);
  2752         return result;
  2753     }
  2754 
  2755     /**
  2756      * Returns a formatted string using the specified format string and
  2757      * arguments.
  2758      *
  2759      * <p> The locale always used is the one returned by {@link
  2760      * java.util.Locale#getDefault() Locale.getDefault()}.
  2761      *
  2762      * @param  format
  2763      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2764      *
  2765      * @param  args
  2766      *         Arguments referenced by the format specifiers in the format
  2767      *         string.  If there are more arguments than format specifiers, the
  2768      *         extra arguments are ignored.  The number of arguments is
  2769      *         variable and may be zero.  The maximum number of arguments is
  2770      *         limited by the maximum dimension of a Java array as defined by
  2771      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2772      *         The behaviour on a
  2773      *         <tt>null</tt> argument depends on the <a
  2774      *         href="../util/Formatter.html#syntax">conversion</a>.
  2775      *
  2776      * @throws  IllegalFormatException
  2777      *          If a format string contains an illegal syntax, a format
  2778      *          specifier that is incompatible with the given arguments,
  2779      *          insufficient arguments given the format string, or other
  2780      *          illegal conditions.  For specification of all possible
  2781      *          formatting errors, see the <a
  2782      *          href="../util/Formatter.html#detail">Details</a> section of the
  2783      *          formatter class specification.
  2784      *
  2785      * @throws  NullPointerException
  2786      *          If the <tt>format</tt> is <tt>null</tt>
  2787      *
  2788      * @return  A formatted string
  2789      *
  2790      * @see  java.util.Formatter
  2791      * @since  1.5
  2792      */
  2793     public static String format(String format, Object ... args) {
  2794         throw new UnsupportedOperationException();
  2795     }
  2796 
  2797     /**
  2798      * Returns a formatted string using the specified locale, format string,
  2799      * and arguments.
  2800      *
  2801      * @param  l
  2802      *         The {@linkplain java.util.Locale locale} to apply during
  2803      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
  2804      *         is applied.
  2805      *
  2806      * @param  format
  2807      *         A <a href="../util/Formatter.html#syntax">format string</a>
  2808      *
  2809      * @param  args
  2810      *         Arguments referenced by the format specifiers in the format
  2811      *         string.  If there are more arguments than format specifiers, the
  2812      *         extra arguments are ignored.  The number of arguments is
  2813      *         variable and may be zero.  The maximum number of arguments is
  2814      *         limited by the maximum dimension of a Java array as defined by
  2815      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
  2816      *         The behaviour on a
  2817      *         <tt>null</tt> argument depends on the <a
  2818      *         href="../util/Formatter.html#syntax">conversion</a>.
  2819      *
  2820      * @throws  IllegalFormatException
  2821      *          If a format string contains an illegal syntax, a format
  2822      *          specifier that is incompatible with the given arguments,
  2823      *          insufficient arguments given the format string, or other
  2824      *          illegal conditions.  For specification of all possible
  2825      *          formatting errors, see the <a
  2826      *          href="../util/Formatter.html#detail">Details</a> section of the
  2827      *          formatter class specification
  2828      *
  2829      * @throws  NullPointerException
  2830      *          If the <tt>format</tt> is <tt>null</tt>
  2831      *
  2832      * @return  A formatted string
  2833      *
  2834      * @see  java.util.Formatter
  2835      * @since  1.5
  2836      */
  2837 //    public static String format(Locale l, String format, Object ... args) {
  2838 //        return new Formatter(l).format(format, args).toString();
  2839 //    }
  2840 
  2841     /**
  2842      * Returns the string representation of the <code>Object</code> argument.
  2843      *
  2844      * @param   obj   an <code>Object</code>.
  2845      * @return  if the argument is <code>null</code>, then a string equal to
  2846      *          <code>"null"</code>; otherwise, the value of
  2847      *          <code>obj.toString()</code> is returned.
  2848      * @see     java.lang.Object#toString()
  2849      */
  2850     public static String valueOf(Object obj) {
  2851         return (obj == null) ? "null" : obj.toString();
  2852     }
  2853 
  2854     /**
  2855      * Returns the string representation of the <code>char</code> array
  2856      * argument. The contents of the character array are copied; subsequent
  2857      * modification of the character array does not affect the newly
  2858      * created string.
  2859      *
  2860      * @param   data   a <code>char</code> array.
  2861      * @return  a newly allocated string representing the same sequence of
  2862      *          characters contained in the character array argument.
  2863      */
  2864     public static String valueOf(char data[]) {
  2865         return new String(data);
  2866     }
  2867 
  2868     /**
  2869      * Returns the string representation of a specific subarray of the
  2870      * <code>char</code> array argument.
  2871      * <p>
  2872      * The <code>offset</code> argument is the index of the first
  2873      * character of the subarray. The <code>count</code> argument
  2874      * specifies the length of the subarray. The contents of the subarray
  2875      * are copied; subsequent modification of the character array does not
  2876      * affect the newly created string.
  2877      *
  2878      * @param   data     the character array.
  2879      * @param   offset   the initial offset into the value of the
  2880      *                  <code>String</code>.
  2881      * @param   count    the length of the value of the <code>String</code>.
  2882      * @return  a string representing the sequence of characters contained
  2883      *          in the subarray of the character array argument.
  2884      * @exception IndexOutOfBoundsException if <code>offset</code> is
  2885      *          negative, or <code>count</code> is negative, or
  2886      *          <code>offset+count</code> is larger than
  2887      *          <code>data.length</code>.
  2888      */
  2889     public static String valueOf(char data[], int offset, int count) {
  2890         return new String(data, offset, count);
  2891     }
  2892 
  2893     /**
  2894      * Returns a String that represents the character sequence in the
  2895      * array specified.
  2896      *
  2897      * @param   data     the character array.
  2898      * @param   offset   initial offset of the subarray.
  2899      * @param   count    length of the subarray.
  2900      * @return  a <code>String</code> that contains the characters of the
  2901      *          specified subarray of the character array.
  2902      */
  2903     public static String copyValueOf(char data[], int offset, int count) {
  2904         // All public String constructors now copy the data.
  2905         return new String(data, offset, count);
  2906     }
  2907 
  2908     /**
  2909      * Returns a String that represents the character sequence in the
  2910      * array specified.
  2911      *
  2912      * @param   data   the character array.
  2913      * @return  a <code>String</code> that contains the characters of the
  2914      *          character array.
  2915      */
  2916     public static String copyValueOf(char data[]) {
  2917         return copyValueOf(data, 0, data.length);
  2918     }
  2919 
  2920     /**
  2921      * Returns the string representation of the <code>boolean</code> argument.
  2922      *
  2923      * @param   b   a <code>boolean</code>.
  2924      * @return  if the argument is <code>true</code>, a string equal to
  2925      *          <code>"true"</code> is returned; otherwise, a string equal to
  2926      *          <code>"false"</code> is returned.
  2927      */
  2928     public static String valueOf(boolean b) {
  2929         return b ? "true" : "false";
  2930     }
  2931 
  2932     /**
  2933      * Returns the string representation of the <code>char</code>
  2934      * argument.
  2935      *
  2936      * @param   c   a <code>char</code>.
  2937      * @return  a string of length <code>1</code> containing
  2938      *          as its single character the argument <code>c</code>.
  2939      */
  2940     public static String valueOf(char c) {
  2941         char data[] = {c};
  2942         return new String(0, 1, data);
  2943     }
  2944 
  2945     /**
  2946      * Returns the string representation of the <code>int</code> argument.
  2947      * <p>
  2948      * The representation is exactly the one returned by the
  2949      * <code>Integer.toString</code> method of one argument.
  2950      *
  2951      * @param   i   an <code>int</code>.
  2952      * @return  a string representation of the <code>int</code> argument.
  2953      * @see     java.lang.Integer#toString(int, int)
  2954      */
  2955     public static String valueOf(int i) {
  2956         return Integer.toString(i);
  2957     }
  2958 
  2959     /**
  2960      * Returns the string representation of the <code>long</code> argument.
  2961      * <p>
  2962      * The representation is exactly the one returned by the
  2963      * <code>Long.toString</code> method of one argument.
  2964      *
  2965      * @param   l   a <code>long</code>.
  2966      * @return  a string representation of the <code>long</code> argument.
  2967      * @see     java.lang.Long#toString(long)
  2968      */
  2969     public static String valueOf(long l) {
  2970         return Long.toString(l);
  2971     }
  2972 
  2973     /**
  2974      * Returns the string representation of the <code>float</code> argument.
  2975      * <p>
  2976      * The representation is exactly the one returned by the
  2977      * <code>Float.toString</code> method of one argument.
  2978      *
  2979      * @param   f   a <code>float</code>.
  2980      * @return  a string representation of the <code>float</code> argument.
  2981      * @see     java.lang.Float#toString(float)
  2982      */
  2983     public static String valueOf(float f) {
  2984         return Float.toString(f);
  2985     }
  2986 
  2987     /**
  2988      * Returns the string representation of the <code>double</code> argument.
  2989      * <p>
  2990      * The representation is exactly the one returned by the
  2991      * <code>Double.toString</code> method of one argument.
  2992      *
  2993      * @param   d   a <code>double</code>.
  2994      * @return  a  string representation of the <code>double</code> argument.
  2995      * @see     java.lang.Double#toString(double)
  2996      */
  2997     public static String valueOf(double d) {
  2998         return Double.toString(d);
  2999     }
  3000 
  3001     /**
  3002      * Returns a canonical representation for the string object.
  3003      * <p>
  3004      * A pool of strings, initially empty, is maintained privately by the
  3005      * class <code>String</code>.
  3006      * <p>
  3007      * When the intern method is invoked, if the pool already contains a
  3008      * string equal to this <code>String</code> object as determined by
  3009      * the {@link #equals(Object)} method, then the string from the pool is
  3010      * returned. Otherwise, this <code>String</code> object is added to the
  3011      * pool and a reference to this <code>String</code> object is returned.
  3012      * <p>
  3013      * It follows that for any two strings <code>s</code> and <code>t</code>,
  3014      * <code>s.intern()&nbsp;==&nbsp;t.intern()</code> is <code>true</code>
  3015      * if and only if <code>s.equals(t)</code> is <code>true</code>.
  3016      * <p>
  3017      * All literal strings and string-valued constant expressions are
  3018      * interned. String literals are defined in section 3.10.5 of the
  3019      * <cite>The Java&trade; Language Specification</cite>.
  3020      *
  3021      * @return  a string that has the same contents as this string, but is
  3022      *          guaranteed to be from a pool of unique strings.
  3023      */
  3024     public native String intern();
  3025 
  3026     static char[] copyOfRange(char[] original, int from, int to) {
  3027         int newLength = to - from;
  3028         if (newLength < 0) {
  3029             throw new IllegalArgumentException(from + " > " + to);
  3030         }
  3031         char[] copy = new char[newLength];
  3032         arraycopy(original, from, copy, 0,
  3033             Math.min(original.length - from, newLength));
  3034         return copy;
  3035     }
  3036     static char[] copyOf(char[] original, int newLength) {
  3037         char[] copy = new char[newLength];
  3038         arraycopy(original, 0, copy, 0,
  3039             Math.min(original.length, newLength));
  3040         return copy;
  3041     }
  3042     static void arraycopy(
  3043         char[] value, int srcBegin, char[] dst, int dstBegin, int count
  3044     ) {
  3045         while (count-- > 0) {
  3046             dst[dstBegin++] = value[srcBegin++];
  3047         }
  3048     }
  3049 
  3050 }