emul/compact/src/main/java/java/lang/ThreadLocal.java
author Jaroslav Tulach <jtulach@netbeans.org>
Thu, 12 Sep 2013 12:19:53 +0200
branchjdk7-b147
changeset 1280 c1e76ee31360
permissions -rw-r--r--
Need access to thread local class
     1 /*
     2  * Copyright (c) 1997, 2007, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 import java.lang.ref.*;
    28 import java.util.concurrent.atomic.AtomicInteger;
    29 
    30 /**
    31  * This class provides thread-local variables.  These variables differ from
    32  * their normal counterparts in that each thread that accesses one (via its
    33  * <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized
    34  * copy of the variable.  <tt>ThreadLocal</tt> instances are typically private
    35  * static fields in classes that wish to associate state with a thread (e.g.,
    36  * a user ID or Transaction ID).
    37  *
    38  * <p>For example, the class below generates unique identifiers local to each
    39  * thread.
    40  * A thread's id is assigned the first time it invokes <tt>ThreadId.get()</tt>
    41  * and remains unchanged on subsequent calls.
    42  * <pre>
    43  * import java.util.concurrent.atomic.AtomicInteger;
    44  *
    45  * public class ThreadId {
    46  *     // Atomic integer containing the next thread ID to be assigned
    47  *     private static final AtomicInteger nextId = new AtomicInteger(0);
    48  *
    49  *     // Thread local variable containing each thread's ID
    50  *     private static final ThreadLocal&lt;Integer> threadId =
    51  *         new ThreadLocal&lt;Integer>() {
    52  *             &#64;Override protected Integer initialValue() {
    53  *                 return nextId.getAndIncrement();
    54  *         }
    55  *     };
    56  *
    57  *     // Returns the current thread's unique ID, assigning it if necessary
    58  *     public static int get() {
    59  *         return threadId.get();
    60  *     }
    61  * }
    62  * </pre>
    63  * <p>Each thread holds an implicit reference to its copy of a thread-local
    64  * variable as long as the thread is alive and the <tt>ThreadLocal</tt>
    65  * instance is accessible; after a thread goes away, all of its copies of
    66  * thread-local instances are subject to garbage collection (unless other
    67  * references to these copies exist).
    68  *
    69  * @author  Josh Bloch and Doug Lea
    70  * @since   1.2
    71  */
    72 public class ThreadLocal<T> {
    73     /**
    74      * ThreadLocals rely on per-thread linear-probe hash maps attached
    75      * to each thread (Thread.threadLocals and
    76      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
    77      * searched via threadLocalHashCode.  This is a custom hash code
    78      * (useful only within ThreadLocalMaps) that eliminates collisions
    79      * in the common case where consecutively constructed ThreadLocals
    80      * are used by the same threads, while remaining well-behaved in
    81      * less common cases.
    82      */
    83     private final int threadLocalHashCode = nextHashCode();
    84 
    85     /**
    86      * The next hash code to be given out. Updated atomically. Starts at
    87      * zero.
    88      */
    89     private static AtomicInteger nextHashCode =
    90         new AtomicInteger();
    91 
    92     /**
    93      * The difference between successively generated hash codes - turns
    94      * implicit sequential thread-local IDs into near-optimally spread
    95      * multiplicative hash values for power-of-two-sized tables.
    96      */
    97     private static final int HASH_INCREMENT = 0x61c88647;
    98 
    99     /**
   100      * Returns the next hash code.
   101      */
   102     private static int nextHashCode() {
   103         return nextHashCode.getAndAdd(HASH_INCREMENT);
   104     }
   105 
   106     /**
   107      * Returns the current thread's "initial value" for this
   108      * thread-local variable.  This method will be invoked the first
   109      * time a thread accesses the variable with the {@link #get}
   110      * method, unless the thread previously invoked the {@link #set}
   111      * method, in which case the <tt>initialValue</tt> method will not
   112      * be invoked for the thread.  Normally, this method is invoked at
   113      * most once per thread, but it may be invoked again in case of
   114      * subsequent invocations of {@link #remove} followed by {@link #get}.
   115      *
   116      * <p>This implementation simply returns <tt>null</tt>; if the
   117      * programmer desires thread-local variables to have an initial
   118      * value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be
   119      * subclassed, and this method overridden.  Typically, an
   120      * anonymous inner class will be used.
   121      *
   122      * @return the initial value for this thread-local
   123      */
   124     protected T initialValue() {
   125         return null;
   126     }
   127 
   128     /**
   129      * Creates a thread local variable.
   130      */
   131     public ThreadLocal() {
   132     }
   133 
   134     /**
   135      * Returns the value in the current thread's copy of this
   136      * thread-local variable.  If the variable has no value for the
   137      * current thread, it is first initialized to the value returned
   138      * by an invocation of the {@link #initialValue} method.
   139      *
   140      * @return the current thread's value of this thread-local
   141      */
   142     public T get() {
   143         Thread t = Thread.currentThread();
   144         ThreadLocalMap map = getMap(t);
   145         if (map != null) {
   146             ThreadLocalMap.Entry e = map.getEntry(this);
   147             if (e != null)
   148                 return (T)e.value;
   149         }
   150         return setInitialValue();
   151     }
   152 
   153     /**
   154      * Variant of set() to establish initialValue. Used instead
   155      * of set() in case user has overridden the set() method.
   156      *
   157      * @return the initial value
   158      */
   159     private T setInitialValue() {
   160         T value = initialValue();
   161         Thread t = Thread.currentThread();
   162         ThreadLocalMap map = getMap(t);
   163         if (map != null)
   164             map.set(this, value);
   165         else
   166             createMap(t, value);
   167         return value;
   168     }
   169 
   170     /**
   171      * Sets the current thread's copy of this thread-local variable
   172      * to the specified value.  Most subclasses will have no need to
   173      * override this method, relying solely on the {@link #initialValue}
   174      * method to set the values of thread-locals.
   175      *
   176      * @param value the value to be stored in the current thread's copy of
   177      *        this thread-local.
   178      */
   179     public void set(T value) {
   180         Thread t = Thread.currentThread();
   181         ThreadLocalMap map = getMap(t);
   182         if (map != null)
   183             map.set(this, value);
   184         else
   185             createMap(t, value);
   186     }
   187 
   188     /**
   189      * Removes the current thread's value for this thread-local
   190      * variable.  If this thread-local variable is subsequently
   191      * {@linkplain #get read} by the current thread, its value will be
   192      * reinitialized by invoking its {@link #initialValue} method,
   193      * unless its value is {@linkplain #set set} by the current thread
   194      * in the interim.  This may result in multiple invocations of the
   195      * <tt>initialValue</tt> method in the current thread.
   196      *
   197      * @since 1.5
   198      */
   199      public void remove() {
   200          ThreadLocalMap m = getMap(Thread.currentThread());
   201          if (m != null)
   202              m.remove(this);
   203      }
   204 
   205     /**
   206      * Get the map associated with a ThreadLocal. Overridden in
   207      * InheritableThreadLocal.
   208      *
   209      * @param  t the current thread
   210      * @return the map
   211      */
   212     ThreadLocalMap getMap(Thread t) {
   213         return t.threadLocals;
   214     }
   215 
   216     /**
   217      * Create the map associated with a ThreadLocal. Overridden in
   218      * InheritableThreadLocal.
   219      *
   220      * @param t the current thread
   221      * @param firstValue value for the initial entry of the map
   222      * @param map the map to store.
   223      */
   224     void createMap(Thread t, T firstValue) {
   225         t.threadLocals = new ThreadLocalMap(this, firstValue);
   226     }
   227 
   228     /**
   229      * Factory method to create map of inherited thread locals.
   230      * Designed to be called only from Thread constructor.
   231      *
   232      * @param  parentMap the map associated with parent thread
   233      * @return a map containing the parent's inheritable bindings
   234      */
   235     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
   236         return new ThreadLocalMap(parentMap);
   237     }
   238 
   239     /**
   240      * Method childValue is visibly defined in subclass
   241      * InheritableThreadLocal, but is internally defined here for the
   242      * sake of providing createInheritedMap factory method without
   243      * needing to subclass the map class in InheritableThreadLocal.
   244      * This technique is preferable to the alternative of embedding
   245      * instanceof tests in methods.
   246      */
   247     T childValue(T parentValue) {
   248         throw new UnsupportedOperationException();
   249     }
   250 
   251     /**
   252      * ThreadLocalMap is a customized hash map suitable only for
   253      * maintaining thread local values. No operations are exported
   254      * outside of the ThreadLocal class. The class is package private to
   255      * allow declaration of fields in class Thread.  To help deal with
   256      * very large and long-lived usages, the hash table entries use
   257      * WeakReferences for keys. However, since reference queues are not
   258      * used, stale entries are guaranteed to be removed only when
   259      * the table starts running out of space.
   260      */
   261     static class ThreadLocalMap {
   262 
   263         /**
   264          * The entries in this hash map extend WeakReference, using
   265          * its main ref field as the key (which is always a
   266          * ThreadLocal object).  Note that null keys (i.e. entry.get()
   267          * == null) mean that the key is no longer referenced, so the
   268          * entry can be expunged from table.  Such entries are referred to
   269          * as "stale entries" in the code that follows.
   270          */
   271         static class Entry extends WeakReference<ThreadLocal> {
   272             /** The value associated with this ThreadLocal. */
   273             Object value;
   274 
   275             Entry(ThreadLocal k, Object v) {
   276                 super(k);
   277                 value = v;
   278             }
   279         }
   280 
   281         /**
   282          * The initial capacity -- MUST be a power of two.
   283          */
   284         private static final int INITIAL_CAPACITY = 16;
   285 
   286         /**
   287          * The table, resized as necessary.
   288          * table.length MUST always be a power of two.
   289          */
   290         private Entry[] table;
   291 
   292         /**
   293          * The number of entries in the table.
   294          */
   295         private int size = 0;
   296 
   297         /**
   298          * The next size value at which to resize.
   299          */
   300         private int threshold; // Default to 0
   301 
   302         /**
   303          * Set the resize threshold to maintain at worst a 2/3 load factor.
   304          */
   305         private void setThreshold(int len) {
   306             threshold = len * 2 / 3;
   307         }
   308 
   309         /**
   310          * Increment i modulo len.
   311          */
   312         private static int nextIndex(int i, int len) {
   313             return ((i + 1 < len) ? i + 1 : 0);
   314         }
   315 
   316         /**
   317          * Decrement i modulo len.
   318          */
   319         private static int prevIndex(int i, int len) {
   320             return ((i - 1 >= 0) ? i - 1 : len - 1);
   321         }
   322 
   323         /**
   324          * Construct a new map initially containing (firstKey, firstValue).
   325          * ThreadLocalMaps are constructed lazily, so we only create
   326          * one when we have at least one entry to put in it.
   327          */
   328         ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
   329             table = new Entry[INITIAL_CAPACITY];
   330             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
   331             table[i] = new Entry(firstKey, firstValue);
   332             size = 1;
   333             setThreshold(INITIAL_CAPACITY);
   334         }
   335 
   336         /**
   337          * Construct a new map including all Inheritable ThreadLocals
   338          * from given parent map. Called only by createInheritedMap.
   339          *
   340          * @param parentMap the map associated with parent thread.
   341          */
   342         private ThreadLocalMap(ThreadLocalMap parentMap) {
   343             Entry[] parentTable = parentMap.table;
   344             int len = parentTable.length;
   345             setThreshold(len);
   346             table = new Entry[len];
   347 
   348             for (int j = 0; j < len; j++) {
   349                 Entry e = parentTable[j];
   350                 if (e != null) {
   351                     ThreadLocal key = e.get();
   352                     if (key != null) {
   353                         Object value = key.childValue(e.value);
   354                         Entry c = new Entry(key, value);
   355                         int h = key.threadLocalHashCode & (len - 1);
   356                         while (table[h] != null)
   357                             h = nextIndex(h, len);
   358                         table[h] = c;
   359                         size++;
   360                     }
   361                 }
   362             }
   363         }
   364 
   365         /**
   366          * Get the entry associated with key.  This method
   367          * itself handles only the fast path: a direct hit of existing
   368          * key. It otherwise relays to getEntryAfterMiss.  This is
   369          * designed to maximize performance for direct hits, in part
   370          * by making this method readily inlinable.
   371          *
   372          * @param  key the thread local object
   373          * @return the entry associated with key, or null if no such
   374          */
   375         private Entry getEntry(ThreadLocal key) {
   376             int i = key.threadLocalHashCode & (table.length - 1);
   377             Entry e = table[i];
   378             if (e != null && e.get() == key)
   379                 return e;
   380             else
   381                 return getEntryAfterMiss(key, i, e);
   382         }
   383 
   384         /**
   385          * Version of getEntry method for use when key is not found in
   386          * its direct hash slot.
   387          *
   388          * @param  key the thread local object
   389          * @param  i the table index for key's hash code
   390          * @param  e the entry at table[i]
   391          * @return the entry associated with key, or null if no such
   392          */
   393         private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
   394             Entry[] tab = table;
   395             int len = tab.length;
   396 
   397             while (e != null) {
   398                 ThreadLocal k = e.get();
   399                 if (k == key)
   400                     return e;
   401                 if (k == null)
   402                     expungeStaleEntry(i);
   403                 else
   404                     i = nextIndex(i, len);
   405                 e = tab[i];
   406             }
   407             return null;
   408         }
   409 
   410         /**
   411          * Set the value associated with key.
   412          *
   413          * @param key the thread local object
   414          * @param value the value to be set
   415          */
   416         private void set(ThreadLocal key, Object value) {
   417 
   418             // We don't use a fast path as with get() because it is at
   419             // least as common to use set() to create new entries as
   420             // it is to replace existing ones, in which case, a fast
   421             // path would fail more often than not.
   422 
   423             Entry[] tab = table;
   424             int len = tab.length;
   425             int i = key.threadLocalHashCode & (len-1);
   426 
   427             for (Entry e = tab[i];
   428                  e != null;
   429                  e = tab[i = nextIndex(i, len)]) {
   430                 ThreadLocal k = e.get();
   431 
   432                 if (k == key) {
   433                     e.value = value;
   434                     return;
   435                 }
   436 
   437                 if (k == null) {
   438                     replaceStaleEntry(key, value, i);
   439                     return;
   440                 }
   441             }
   442 
   443             tab[i] = new Entry(key, value);
   444             int sz = ++size;
   445             if (!cleanSomeSlots(i, sz) && sz >= threshold)
   446                 rehash();
   447         }
   448 
   449         /**
   450          * Remove the entry for key.
   451          */
   452         private void remove(ThreadLocal key) {
   453             Entry[] tab = table;
   454             int len = tab.length;
   455             int i = key.threadLocalHashCode & (len-1);
   456             for (Entry e = tab[i];
   457                  e != null;
   458                  e = tab[i = nextIndex(i, len)]) {
   459                 if (e.get() == key) {
   460                     e.clear();
   461                     expungeStaleEntry(i);
   462                     return;
   463                 }
   464             }
   465         }
   466 
   467         /**
   468          * Replace a stale entry encountered during a set operation
   469          * with an entry for the specified key.  The value passed in
   470          * the value parameter is stored in the entry, whether or not
   471          * an entry already exists for the specified key.
   472          *
   473          * As a side effect, this method expunges all stale entries in the
   474          * "run" containing the stale entry.  (A run is a sequence of entries
   475          * between two null slots.)
   476          *
   477          * @param  key the key
   478          * @param  value the value to be associated with key
   479          * @param  staleSlot index of the first stale entry encountered while
   480          *         searching for key.
   481          */
   482         private void replaceStaleEntry(ThreadLocal key, Object value,
   483                                        int staleSlot) {
   484             Entry[] tab = table;
   485             int len = tab.length;
   486             Entry e;
   487 
   488             // Back up to check for prior stale entry in current run.
   489             // We clean out whole runs at a time to avoid continual
   490             // incremental rehashing due to garbage collector freeing
   491             // up refs in bunches (i.e., whenever the collector runs).
   492             int slotToExpunge = staleSlot;
   493             for (int i = prevIndex(staleSlot, len);
   494                  (e = tab[i]) != null;
   495                  i = prevIndex(i, len))
   496                 if (e.get() == null)
   497                     slotToExpunge = i;
   498 
   499             // Find either the key or trailing null slot of run, whichever
   500             // occurs first
   501             for (int i = nextIndex(staleSlot, len);
   502                  (e = tab[i]) != null;
   503                  i = nextIndex(i, len)) {
   504                 ThreadLocal k = e.get();
   505 
   506                 // If we find key, then we need to swap it
   507                 // with the stale entry to maintain hash table order.
   508                 // The newly stale slot, or any other stale slot
   509                 // encountered above it, can then be sent to expungeStaleEntry
   510                 // to remove or rehash all of the other entries in run.
   511                 if (k == key) {
   512                     e.value = value;
   513 
   514                     tab[i] = tab[staleSlot];
   515                     tab[staleSlot] = e;
   516 
   517                     // Start expunge at preceding stale entry if it exists
   518                     if (slotToExpunge == staleSlot)
   519                         slotToExpunge = i;
   520                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
   521                     return;
   522                 }
   523 
   524                 // If we didn't find stale entry on backward scan, the
   525                 // first stale entry seen while scanning for key is the
   526                 // first still present in the run.
   527                 if (k == null && slotToExpunge == staleSlot)
   528                     slotToExpunge = i;
   529             }
   530 
   531             // If key not found, put new entry in stale slot
   532             tab[staleSlot].value = null;
   533             tab[staleSlot] = new Entry(key, value);
   534 
   535             // If there are any other stale entries in run, expunge them
   536             if (slotToExpunge != staleSlot)
   537                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
   538         }
   539 
   540         /**
   541          * Expunge a stale entry by rehashing any possibly colliding entries
   542          * lying between staleSlot and the next null slot.  This also expunges
   543          * any other stale entries encountered before the trailing null.  See
   544          * Knuth, Section 6.4
   545          *
   546          * @param staleSlot index of slot known to have null key
   547          * @return the index of the next null slot after staleSlot
   548          * (all between staleSlot and this slot will have been checked
   549          * for expunging).
   550          */
   551         private int expungeStaleEntry(int staleSlot) {
   552             Entry[] tab = table;
   553             int len = tab.length;
   554 
   555             // expunge entry at staleSlot
   556             tab[staleSlot].value = null;
   557             tab[staleSlot] = null;
   558             size--;
   559 
   560             // Rehash until we encounter null
   561             Entry e;
   562             int i;
   563             for (i = nextIndex(staleSlot, len);
   564                  (e = tab[i]) != null;
   565                  i = nextIndex(i, len)) {
   566                 ThreadLocal k = e.get();
   567                 if (k == null) {
   568                     e.value = null;
   569                     tab[i] = null;
   570                     size--;
   571                 } else {
   572                     int h = k.threadLocalHashCode & (len - 1);
   573                     if (h != i) {
   574                         tab[i] = null;
   575 
   576                         // Unlike Knuth 6.4 Algorithm R, we must scan until
   577                         // null because multiple entries could have been stale.
   578                         while (tab[h] != null)
   579                             h = nextIndex(h, len);
   580                         tab[h] = e;
   581                     }
   582                 }
   583             }
   584             return i;
   585         }
   586 
   587         /**
   588          * Heuristically scan some cells looking for stale entries.
   589          * This is invoked when either a new element is added, or
   590          * another stale one has been expunged. It performs a
   591          * logarithmic number of scans, as a balance between no
   592          * scanning (fast but retains garbage) and a number of scans
   593          * proportional to number of elements, that would find all
   594          * garbage but would cause some insertions to take O(n) time.
   595          *
   596          * @param i a position known NOT to hold a stale entry. The
   597          * scan starts at the element after i.
   598          *
   599          * @param n scan control: <tt>log2(n)</tt> cells are scanned,
   600          * unless a stale entry is found, in which case
   601          * <tt>log2(table.length)-1</tt> additional cells are scanned.
   602          * When called from insertions, this parameter is the number
   603          * of elements, but when from replaceStaleEntry, it is the
   604          * table length. (Note: all this could be changed to be either
   605          * more or less aggressive by weighting n instead of just
   606          * using straight log n. But this version is simple, fast, and
   607          * seems to work well.)
   608          *
   609          * @return true if any stale entries have been removed.
   610          */
   611         private boolean cleanSomeSlots(int i, int n) {
   612             boolean removed = false;
   613             Entry[] tab = table;
   614             int len = tab.length;
   615             do {
   616                 i = nextIndex(i, len);
   617                 Entry e = tab[i];
   618                 if (e != null && e.get() == null) {
   619                     n = len;
   620                     removed = true;
   621                     i = expungeStaleEntry(i);
   622                 }
   623             } while ( (n >>>= 1) != 0);
   624             return removed;
   625         }
   626 
   627         /**
   628          * Re-pack and/or re-size the table. First scan the entire
   629          * table removing stale entries. If this doesn't sufficiently
   630          * shrink the size of the table, double the table size.
   631          */
   632         private void rehash() {
   633             expungeStaleEntries();
   634 
   635             // Use lower threshold for doubling to avoid hysteresis
   636             if (size >= threshold - threshold / 4)
   637                 resize();
   638         }
   639 
   640         /**
   641          * Double the capacity of the table.
   642          */
   643         private void resize() {
   644             Entry[] oldTab = table;
   645             int oldLen = oldTab.length;
   646             int newLen = oldLen * 2;
   647             Entry[] newTab = new Entry[newLen];
   648             int count = 0;
   649 
   650             for (int j = 0; j < oldLen; ++j) {
   651                 Entry e = oldTab[j];
   652                 if (e != null) {
   653                     ThreadLocal k = e.get();
   654                     if (k == null) {
   655                         e.value = null; // Help the GC
   656                     } else {
   657                         int h = k.threadLocalHashCode & (newLen - 1);
   658                         while (newTab[h] != null)
   659                             h = nextIndex(h, newLen);
   660                         newTab[h] = e;
   661                         count++;
   662                     }
   663                 }
   664             }
   665 
   666             setThreshold(newLen);
   667             size = count;
   668             table = newTab;
   669         }
   670 
   671         /**
   672          * Expunge all stale entries in the table.
   673          */
   674         private void expungeStaleEntries() {
   675             Entry[] tab = table;
   676             int len = tab.length;
   677             for (int j = 0; j < len; j++) {
   678                 Entry e = tab[j];
   679                 if (e != null && e.get() == null)
   680                     expungeStaleEntry(j);
   681             }
   682         }
   683     }
   684 }