rt/emul/compact/src/main/java/java/text/DigitList.java
author Jaroslav Tulach <jtulach@netbeans.org>
Thu, 03 Oct 2013 15:40:35 +0200
branchjdk7-b147
changeset 1334 588d5bf7a560
permissions -rw-r--r--
Set of JDK classes needed to run javac
     1 /*
     2  * Copyright (c) 1996, 2006, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 /*
    27  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
    28  * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
    29  *
    30  *   The original version of this source code and documentation is copyrighted
    31  * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
    32  * materials are provided under terms of a License Agreement between Taligent
    33  * and Sun. This technology is protected by multiple US and International
    34  * patents. This notice and attribution to Taligent may not be removed.
    35  *   Taligent is a registered trademark of Taligent, Inc.
    36  *
    37  */
    38 
    39 package java.text;
    40 
    41 import java.math.BigDecimal;
    42 import java.math.BigInteger;
    43 import java.math.RoundingMode;
    44 
    45 /**
    46  * Digit List. Private to DecimalFormat.
    47  * Handles the transcoding
    48  * between numeric values and strings of characters.  Only handles
    49  * non-negative numbers.  The division of labor between DigitList and
    50  * DecimalFormat is that DigitList handles the radix 10 representation
    51  * issues; DecimalFormat handles the locale-specific issues such as
    52  * positive/negative, grouping, decimal point, currency, and so on.
    53  *
    54  * A DigitList is really a representation of a floating point value.
    55  * It may be an integer value; we assume that a double has sufficient
    56  * precision to represent all digits of a long.
    57  *
    58  * The DigitList representation consists of a string of characters,
    59  * which are the digits radix 10, from '0' to '9'.  It also has a radix
    60  * 10 exponent associated with it.  The value represented by a DigitList
    61  * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
    62  * derived by placing all the digits of the list to the right of the
    63  * decimal point, by 10^exponent.
    64  *
    65  * @see  Locale
    66  * @see  Format
    67  * @see  NumberFormat
    68  * @see  DecimalFormat
    69  * @see  ChoiceFormat
    70  * @see  MessageFormat
    71  * @author       Mark Davis, Alan Liu
    72  */
    73 final class DigitList implements Cloneable {
    74     /**
    75      * The maximum number of significant digits in an IEEE 754 double, that
    76      * is, in a Java double.  This must not be increased, or garbage digits
    77      * will be generated, and should not be decreased, or accuracy will be lost.
    78      */
    79     public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
    80 
    81     /**
    82      * These data members are intentionally public and can be set directly.
    83      *
    84      * The value represented is given by placing the decimal point before
    85      * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
    86      * the decimal point and the first nonzero digit are implied.  If decimalAt
    87      * is > count, then trailing zeros between the digits[count-1] and the
    88      * decimal point are implied.
    89      *
    90      * Equivalently, the represented value is given by f * 10^decimalAt.  Here
    91      * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
    92      * the right of the decimal.
    93      *
    94      * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
    95      * don't allow denormalized numbers because our exponent is effectively of
    96      * unlimited magnitude.  The count value contains the number of significant
    97      * digits present in digits[].
    98      *
    99      * Zero is represented by any DigitList with count == 0 or with each digits[i]
   100      * for all i <= count == '0'.
   101      */
   102     public int decimalAt = 0;
   103     public int count = 0;
   104     public char[] digits = new char[MAX_COUNT];
   105 
   106     private char[] data;
   107     private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
   108     private boolean isNegative = false;
   109 
   110     /**
   111      * Return true if the represented number is zero.
   112      */
   113     boolean isZero() {
   114         for (int i=0; i < count; ++i) {
   115             if (digits[i] != '0') {
   116                 return false;
   117             }
   118         }
   119         return true;
   120     }
   121 
   122     /**
   123      * Set the rounding mode
   124      */
   125     void setRoundingMode(RoundingMode r) {
   126         roundingMode = r;
   127     }
   128 
   129     /**
   130      * Clears out the digits.
   131      * Use before appending them.
   132      * Typically, you set a series of digits with append, then at the point
   133      * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
   134      * then go on appending digits.
   135      */
   136     public void clear () {
   137         decimalAt = 0;
   138         count = 0;
   139     }
   140 
   141     /**
   142      * Appends a digit to the list, extending the list when necessary.
   143      */
   144     public void append(char digit) {
   145         if (count == digits.length) {
   146             char[] data = new char[count + 100];
   147             System.arraycopy(digits, 0, data, 0, count);
   148             digits = data;
   149         }
   150         digits[count++] = digit;
   151     }
   152 
   153     /**
   154      * Utility routine to get the value of the digit list
   155      * If (count == 0) this throws a NumberFormatException, which
   156      * mimics Long.parseLong().
   157      */
   158     public final double getDouble() {
   159         if (count == 0) {
   160             return 0.0;
   161         }
   162 
   163         StringBuffer temp = getStringBuffer();
   164         temp.append('.');
   165         temp.append(digits, 0, count);
   166         temp.append('E');
   167         temp.append(decimalAt);
   168         return Double.parseDouble(temp.toString());
   169     }
   170 
   171     /**
   172      * Utility routine to get the value of the digit list.
   173      * If (count == 0) this returns 0, unlike Long.parseLong().
   174      */
   175     public final long getLong() {
   176         // for now, simple implementation; later, do proper IEEE native stuff
   177 
   178         if (count == 0) {
   179             return 0;
   180         }
   181 
   182         // We have to check for this, because this is the one NEGATIVE value
   183         // we represent.  If we tried to just pass the digits off to parseLong,
   184         // we'd get a parse failure.
   185         if (isLongMIN_VALUE()) {
   186             return Long.MIN_VALUE;
   187         }
   188 
   189         StringBuffer temp = getStringBuffer();
   190         temp.append(digits, 0, count);
   191         for (int i = count; i < decimalAt; ++i) {
   192             temp.append('0');
   193         }
   194         return Long.parseLong(temp.toString());
   195     }
   196 
   197     public final BigDecimal getBigDecimal() {
   198         if (count == 0) {
   199             if (decimalAt == 0) {
   200                 return BigDecimal.ZERO;
   201             } else {
   202                 return new BigDecimal("0E" + decimalAt);
   203             }
   204         }
   205 
   206        if (decimalAt == count) {
   207            return new BigDecimal(digits, 0, count);
   208        } else {
   209            return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
   210        }
   211     }
   212 
   213     /**
   214      * Return true if the number represented by this object can fit into
   215      * a long.
   216      * @param isPositive true if this number should be regarded as positive
   217      * @param ignoreNegativeZero true if -0 should be regarded as identical to
   218      * +0; otherwise they are considered distinct
   219      * @return true if this number fits into a Java long
   220      */
   221     boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
   222         // Figure out if the result will fit in a long.  We have to
   223         // first look for nonzero digits after the decimal point;
   224         // then check the size.  If the digit count is 18 or less, then
   225         // the value can definitely be represented as a long.  If it is 19
   226         // then it may be too large.
   227 
   228         // Trim trailing zeros.  This does not change the represented value.
   229         while (count > 0 && digits[count - 1] == '0') {
   230             --count;
   231         }
   232 
   233         if (count == 0) {
   234             // Positive zero fits into a long, but negative zero can only
   235             // be represented as a double. - bug 4162852
   236             return isPositive || ignoreNegativeZero;
   237         }
   238 
   239         if (decimalAt < count || decimalAt > MAX_COUNT) {
   240             return false;
   241         }
   242 
   243         if (decimalAt < MAX_COUNT) return true;
   244 
   245         // At this point we have decimalAt == count, and count == MAX_COUNT.
   246         // The number will overflow if it is larger than 9223372036854775807
   247         // or smaller than -9223372036854775808.
   248         for (int i=0; i<count; ++i) {
   249             char dig = digits[i], max = LONG_MIN_REP[i];
   250             if (dig > max) return false;
   251             if (dig < max) return true;
   252         }
   253 
   254         // At this point the first count digits match.  If decimalAt is less
   255         // than count, then the remaining digits are zero, and we return true.
   256         if (count < decimalAt) return true;
   257 
   258         // Now we have a representation of Long.MIN_VALUE, without the leading
   259         // negative sign.  If this represents a positive value, then it does
   260         // not fit; otherwise it fits.
   261         return !isPositive;
   262     }
   263 
   264     /**
   265      * Set the digit list to a representation of the given double value.
   266      * This method supports fixed-point notation.
   267      * @param isNegative Boolean value indicating whether the number is negative.
   268      * @param source Value to be converted; must not be Inf, -Inf, Nan,
   269      * or a value <= 0.
   270      * @param maximumFractionDigits The most fractional digits which should
   271      * be converted.
   272      */
   273     public final void set(boolean isNegative, double source, int maximumFractionDigits) {
   274         set(isNegative, source, maximumFractionDigits, true);
   275     }
   276 
   277     /**
   278      * Set the digit list to a representation of the given double value.
   279      * This method supports both fixed-point and exponential notation.
   280      * @param isNegative Boolean value indicating whether the number is negative.
   281      * @param source Value to be converted; must not be Inf, -Inf, Nan,
   282      * or a value <= 0.
   283      * @param maximumDigits The most fractional or total digits which should
   284      * be converted.
   285      * @param fixedPoint If true, then maximumDigits is the maximum
   286      * fractional digits to be converted.  If false, total digits.
   287      */
   288     final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
   289         set(isNegative, Double.toString(source), maximumDigits, fixedPoint);
   290     }
   291 
   292     /**
   293      * Generate a representation of the form DDDDD, DDDDD.DDDDD, or
   294      * DDDDDE+/-DDDDD.
   295      */
   296     final void set(boolean isNegative, String s, int maximumDigits, boolean fixedPoint) {
   297         this.isNegative = isNegative;
   298         int len = s.length();
   299         char[] source = getDataChars(len);
   300         s.getChars(0, len, source, 0);
   301 
   302         decimalAt = -1;
   303         count = 0;
   304         int exponent = 0;
   305         // Number of zeros between decimal point and first non-zero digit after
   306         // decimal point, for numbers < 1.
   307         int leadingZerosAfterDecimal = 0;
   308         boolean nonZeroDigitSeen = false;
   309 
   310         for (int i = 0; i < len; ) {
   311             char c = source[i++];
   312             if (c == '.') {
   313                 decimalAt = count;
   314             } else if (c == 'e' || c == 'E') {
   315                 exponent = parseInt(source, i, len);
   316                 break;
   317             } else {
   318                 if (!nonZeroDigitSeen) {
   319                     nonZeroDigitSeen = (c != '0');
   320                     if (!nonZeroDigitSeen && decimalAt != -1)
   321                         ++leadingZerosAfterDecimal;
   322                 }
   323                 if (nonZeroDigitSeen) {
   324                     digits[count++] = c;
   325                 }
   326             }
   327         }
   328         if (decimalAt == -1) {
   329             decimalAt = count;
   330         }
   331         if (nonZeroDigitSeen) {
   332             decimalAt += exponent - leadingZerosAfterDecimal;
   333         }
   334 
   335         if (fixedPoint) {
   336             // The negative of the exponent represents the number of leading
   337             // zeros between the decimal and the first non-zero digit, for
   338             // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
   339             // is more than the maximum fraction digits, then we have an underflow
   340             // for the printed representation.
   341             if (-decimalAt > maximumDigits) {
   342                 // Handle an underflow to zero when we round something like
   343                 // 0.0009 to 2 fractional digits.
   344                 count = 0;
   345                 return;
   346             } else if (-decimalAt == maximumDigits) {
   347                 // If we round 0.0009 to 3 fractional digits, then we have to
   348                 // create a new one digit in the least significant location.
   349                 if (shouldRoundUp(0)) {
   350                     count = 1;
   351                     ++decimalAt;
   352                     digits[0] = '1';
   353                 } else {
   354                     count = 0;
   355                 }
   356                 return;
   357             }
   358             // else fall through
   359         }
   360 
   361         // Eliminate trailing zeros.
   362         while (count > 1 && digits[count - 1] == '0') {
   363             --count;
   364         }
   365 
   366         // Eliminate digits beyond maximum digits to be displayed.
   367         // Round up if appropriate.
   368         round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);
   369     }
   370 
   371     /**
   372      * Round the representation to the given number of digits.
   373      * @param maximumDigits The maximum number of digits to be shown.
   374      * Upon return, count will be less than or equal to maximumDigits.
   375      */
   376     private final void round(int maximumDigits) {
   377         // Eliminate digits beyond maximum digits to be displayed.
   378         // Round up if appropriate.
   379         if (maximumDigits >= 0 && maximumDigits < count) {
   380             if (shouldRoundUp(maximumDigits)) {
   381                 // Rounding up involved incrementing digits from LSD to MSD.
   382                 // In most cases this is simple, but in a worst case situation
   383                 // (9999..99) we have to adjust the decimalAt value.
   384                 for (;;) {
   385                     --maximumDigits;
   386                     if (maximumDigits < 0) {
   387                         // We have all 9's, so we increment to a single digit
   388                         // of one and adjust the exponent.
   389                         digits[0] = '1';
   390                         ++decimalAt;
   391                         maximumDigits = 0; // Adjust the count
   392                         break;
   393                     }
   394 
   395                     ++digits[maximumDigits];
   396                     if (digits[maximumDigits] <= '9') break;
   397                     // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
   398                 }
   399                 ++maximumDigits; // Increment for use as count
   400             }
   401             count = maximumDigits;
   402 
   403             // Eliminate trailing zeros.
   404             while (count > 1 && digits[count-1] == '0') {
   405                 --count;
   406             }
   407         }
   408     }
   409 
   410 
   411     /**
   412      * Return true if truncating the representation to the given number
   413      * of digits will result in an increment to the last digit.  This
   414      * method implements the rounding modes defined in the
   415      * java.math.RoundingMode class.
   416      * [bnf]
   417      * @param maximumDigits the number of digits to keep, from 0 to
   418      * <code>count-1</code>.  If 0, then all digits are rounded away, and
   419      * this method returns true if a one should be generated (e.g., formatting
   420      * 0.09 with "#.#").
   421      * @exception ArithmeticException if rounding is needed with rounding
   422      *            mode being set to RoundingMode.UNNECESSARY
   423      * @return true if digit <code>maximumDigits-1</code> should be
   424      * incremented
   425      */
   426     private boolean shouldRoundUp(int maximumDigits) {
   427         if (maximumDigits < count) {
   428             switch(roundingMode) {
   429             case UP:
   430                 for (int i=maximumDigits; i<count; ++i) {
   431                     if (digits[i] != '0') {
   432                         return true;
   433                     }
   434                 }
   435                 break;
   436             case DOWN:
   437                 break;
   438             case CEILING:
   439                 for (int i=maximumDigits; i<count; ++i) {
   440                     if (digits[i] != '0') {
   441                         return !isNegative;
   442                     }
   443                 }
   444                 break;
   445             case FLOOR:
   446                 for (int i=maximumDigits; i<count; ++i) {
   447                     if (digits[i] != '0') {
   448                         return isNegative;
   449                     }
   450                 }
   451                 break;
   452             case HALF_UP:
   453                 if (digits[maximumDigits] >= '5') {
   454                     return true;
   455                 }
   456                 break;
   457             case HALF_DOWN:
   458                 if (digits[maximumDigits] > '5') {
   459                     return true;
   460                 } else if (digits[maximumDigits] == '5' ) {
   461                     for (int i=maximumDigits+1; i<count; ++i) {
   462                         if (digits[i] != '0') {
   463                             return true;
   464                         }
   465                     }
   466                 }
   467                 break;
   468             case HALF_EVEN:
   469                 // Implement IEEE half-even rounding
   470                 if (digits[maximumDigits] > '5') {
   471                     return true;
   472                 } else if (digits[maximumDigits] == '5' ) {
   473                     for (int i=maximumDigits+1; i<count; ++i) {
   474                         if (digits[i] != '0') {
   475                             return true;
   476                         }
   477                     }
   478                     return maximumDigits > 0 && (digits[maximumDigits-1] % 2 != 0);
   479                 }
   480                 break;
   481             case UNNECESSARY:
   482                 for (int i=maximumDigits; i<count; ++i) {
   483                     if (digits[i] != '0') {
   484                         throw new ArithmeticException(
   485                             "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
   486                     }
   487                 }
   488                 break;
   489             default:
   490                 assert false;
   491             }
   492         }
   493         return false;
   494     }
   495 
   496     /**
   497      * Utility routine to set the value of the digit list from a long
   498      */
   499     public final void set(boolean isNegative, long source) {
   500         set(isNegative, source, 0);
   501     }
   502 
   503     /**
   504      * Set the digit list to a representation of the given long value.
   505      * @param isNegative Boolean value indicating whether the number is negative.
   506      * @param source Value to be converted; must be >= 0 or ==
   507      * Long.MIN_VALUE.
   508      * @param maximumDigits The most digits which should be converted.
   509      * If maximumDigits is lower than the number of significant digits
   510      * in source, the representation will be rounded.  Ignored if <= 0.
   511      */
   512     public final void set(boolean isNegative, long source, int maximumDigits) {
   513         this.isNegative = isNegative;
   514 
   515         // This method does not expect a negative number. However,
   516         // "source" can be a Long.MIN_VALUE (-9223372036854775808),
   517         // if the number being formatted is a Long.MIN_VALUE.  In that
   518         // case, it will be formatted as -Long.MIN_VALUE, a number
   519         // which is outside the legal range of a long, but which can
   520         // be represented by DigitList.
   521         if (source <= 0) {
   522             if (source == Long.MIN_VALUE) {
   523                 decimalAt = count = MAX_COUNT;
   524                 System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
   525             } else {
   526                 decimalAt = count = 0; // Values <= 0 format as zero
   527             }
   528         } else {
   529             // Rewritten to improve performance.  I used to call
   530             // Long.toString(), which was about 4x slower than this code.
   531             int left = MAX_COUNT;
   532             int right;
   533             while (source > 0) {
   534                 digits[--left] = (char)('0' + (source % 10));
   535                 source /= 10;
   536             }
   537             decimalAt = MAX_COUNT - left;
   538             // Don't copy trailing zeros.  We are guaranteed that there is at
   539             // least one non-zero digit, so we don't have to check lower bounds.
   540             for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
   541                 ;
   542             count = right - left + 1;
   543             System.arraycopy(digits, left, digits, 0, count);
   544         }
   545         if (maximumDigits > 0) round(maximumDigits);
   546     }
   547 
   548     /**
   549      * Set the digit list to a representation of the given BigDecimal value.
   550      * This method supports both fixed-point and exponential notation.
   551      * @param isNegative Boolean value indicating whether the number is negative.
   552      * @param source Value to be converted; must not be a value <= 0.
   553      * @param maximumDigits The most fractional or total digits which should
   554      * be converted.
   555      * @param fixedPoint If true, then maximumDigits is the maximum
   556      * fractional digits to be converted.  If false, total digits.
   557      */
   558     final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
   559         String s = source.toString();
   560         extendDigits(s.length());
   561 
   562         set(isNegative, s, maximumDigits, fixedPoint);
   563     }
   564 
   565     /**
   566      * Set the digit list to a representation of the given BigInteger value.
   567      * @param isNegative Boolean value indicating whether the number is negative.
   568      * @param source Value to be converted; must be >= 0.
   569      * @param maximumDigits The most digits which should be converted.
   570      * If maximumDigits is lower than the number of significant digits
   571      * in source, the representation will be rounded.  Ignored if <= 0.
   572      */
   573     final void set(boolean isNegative, BigInteger source, int maximumDigits) {
   574         this.isNegative = isNegative;
   575         String s = source.toString();
   576         int len = s.length();
   577         extendDigits(len);
   578         s.getChars(0, len, digits, 0);
   579 
   580         decimalAt = len;
   581         int right;
   582         for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
   583             ;
   584         count = right + 1;
   585 
   586         if (maximumDigits > 0) {
   587             round(maximumDigits);
   588         }
   589     }
   590 
   591     /**
   592      * equality test between two digit lists.
   593      */
   594     public boolean equals(Object obj) {
   595         if (this == obj)                      // quick check
   596             return true;
   597         if (!(obj instanceof DigitList))         // (1) same object?
   598             return false;
   599         DigitList other = (DigitList) obj;
   600         if (count != other.count ||
   601         decimalAt != other.decimalAt)
   602             return false;
   603         for (int i = 0; i < count; i++)
   604             if (digits[i] != other.digits[i])
   605                 return false;
   606         return true;
   607     }
   608 
   609     /**
   610      * Generates the hash code for the digit list.
   611      */
   612     public int hashCode() {
   613         int hashcode = decimalAt;
   614 
   615         for (int i = 0; i < count; i++) {
   616             hashcode = hashcode * 37 + digits[i];
   617         }
   618 
   619         return hashcode;
   620     }
   621 
   622     /**
   623      * Creates a copy of this object.
   624      * @return a clone of this instance.
   625      */
   626     public Object clone() {
   627         try {
   628             DigitList other = (DigitList) super.clone();
   629             char[] newDigits = new char[digits.length];
   630             System.arraycopy(digits, 0, newDigits, 0, digits.length);
   631             other.digits = newDigits;
   632             other.tempBuffer = null;
   633             return other;
   634         } catch (CloneNotSupportedException e) {
   635             throw new InternalError();
   636         }
   637     }
   638 
   639     /**
   640      * Returns true if this DigitList represents Long.MIN_VALUE;
   641      * false, otherwise.  This is required so that getLong() works.
   642      */
   643     private boolean isLongMIN_VALUE() {
   644         if (decimalAt != count || count != MAX_COUNT) {
   645             return false;
   646         }
   647 
   648         for (int i = 0; i < count; ++i) {
   649             if (digits[i] != LONG_MIN_REP[i]) return false;
   650         }
   651 
   652         return true;
   653     }
   654 
   655     private static final int parseInt(char[] str, int offset, int strLen) {
   656         char c;
   657         boolean positive = true;
   658         if ((c = str[offset]) == '-') {
   659             positive = false;
   660             offset++;
   661         } else if (c == '+') {
   662             offset++;
   663         }
   664 
   665         int value = 0;
   666         while (offset < strLen) {
   667             c = str[offset++];
   668             if (c >= '0' && c <= '9') {
   669                 value = value * 10 + (c - '0');
   670             } else {
   671                 break;
   672             }
   673         }
   674         return positive ? value : -value;
   675     }
   676 
   677     // The digit part of -9223372036854775808L
   678     private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
   679 
   680     public String toString() {
   681         if (isZero()) {
   682             return "0";
   683         }
   684         StringBuffer buf = getStringBuffer();
   685         buf.append("0.");
   686         buf.append(digits, 0, count);
   687         buf.append("x10^");
   688         buf.append(decimalAt);
   689         return buf.toString();
   690     }
   691 
   692     private StringBuffer tempBuffer;
   693 
   694     private StringBuffer getStringBuffer() {
   695         if (tempBuffer == null) {
   696             tempBuffer = new StringBuffer(MAX_COUNT);
   697         } else {
   698             tempBuffer.setLength(0);
   699         }
   700         return tempBuffer;
   701     }
   702 
   703     private void extendDigits(int len) {
   704         if (len > digits.length) {
   705             digits = new char[len];
   706         }
   707     }
   708 
   709     private final char[] getDataChars(int length) {
   710         if (data == null || data.length < length) {
   711             data = new char[length];
   712         }
   713         return data;
   714     }
   715 }