rt/emul/compact/src/main/java/java/lang/invoke/MethodHandles.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sun, 10 Aug 2014 06:13:36 +0200
branchjdk8
changeset 1651 5c990ed353e9
parent 1646 c880a8a8803b
child 1659 d279ddd06652
permissions -rw-r--r--
Almost compiled java.lang.invoke, except the parts that deal with Asm bytecode generator
     1 /*
     2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang.invoke;
    27 
    28 import java.lang.reflect.*;
    29 import java.util.List;
    30 import java.util.ArrayList;
    31 import java.util.Arrays;
    32 
    33 import sun.invoke.util.ValueConversions;
    34 import sun.invoke.util.VerifyAccess;
    35 import sun.invoke.util.Wrapper;
    36 import static java.lang.invoke.MethodHandleStatics.*;
    37 import static java.lang.invoke.MethodHandleNatives.Constants.*;
    38 import java.util.concurrent.ConcurrentHashMap;
    39 
    40 /**
    41  * This class consists exclusively of static methods that operate on or return
    42  * method handles. They fall into several categories:
    43  * <ul>
    44  * <li>Lookup methods which help create method handles for methods and fields.
    45  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
    46  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
    47  * </ul>
    48  * <p>
    49  * @author John Rose, JSR 292 EG
    50  * @since 1.7
    51  */
    52 public class MethodHandles {
    53 
    54     private MethodHandles() { }  // do not instantiate
    55 
    56     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
    57     static { MethodHandleImpl.initStatics(); }
    58     // See IMPL_LOOKUP below.
    59 
    60     //// Method handle creation from ordinary methods.
    61 
    62     /**
    63      * Returns a {@link Lookup lookup object} with
    64      * full capabilities to emulate all supported bytecode behaviors of the caller.
    65      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
    66      * Factory methods on the lookup object can create
    67      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
    68      * for any member that the caller has access to via bytecodes,
    69      * including protected and private fields and methods.
    70      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
    71      * Do not store it in place where untrusted code can access it.
    72      * <p>
    73      * This method is caller sensitive, which means that it may return different
    74      * values to different callers.
    75      * <p>
    76      * For any given caller class {@code C}, the lookup object returned by this call
    77      * has equivalent capabilities to any lookup object
    78      * supplied by the JVM to the bootstrap method of an
    79      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
    80      * executing in the same caller class {@code C}.
    81      * @return a lookup object for the caller of this method, with private access
    82      */
    83 //    @CallerSensitive
    84     public static Lookup lookup() {
    85         throw new IllegalStateException("Implement me!");
    86 //        return new Lookup(Reflection.getCallerClass());
    87     }
    88 
    89     /**
    90      * Returns a {@link Lookup lookup object} which is trusted minimally.
    91      * It can only be used to create method handles to
    92      * publicly accessible fields and methods.
    93      * <p>
    94      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
    95      * of this lookup object will be {@link java.lang.Object}.
    96      *
    97      * <p style="font-size:smaller;">
    98      * <em>Discussion:</em>
    99      * The lookup class can be changed to any other class {@code C} using an expression of the form
   100      * {@link Lookup#in publicLookup().in(C.class)}.
   101      * Since all classes have equal access to public names,
   102      * such a change would confer no new access rights.
   103      * A public lookup object is always subject to
   104      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
   105      * Also, it cannot access
   106      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
   107      * @return a lookup object which is trusted minimally
   108      */
   109     public static Lookup publicLookup() {
   110         return Lookup.PUBLIC_LOOKUP;
   111     }
   112 
   113     /**
   114      * Performs an unchecked "crack" of a
   115      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
   116      * The result is as if the user had obtained a lookup object capable enough
   117      * to crack the target method handle, called
   118      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
   119      * on the target to obtain its symbolic reference, and then called
   120      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
   121      * to resolve the symbolic reference to a member.
   122      * <p>
   123      * If there is a security manager, its {@code checkPermission} method
   124      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
   125      * @param <T> the desired type of the result, either {@link Member} or a subtype
   126      * @param target a direct method handle to crack into symbolic reference components
   127      * @param expected a class object representing the desired result type {@code T}
   128      * @return a reference to the method, constructor, or field object
   129      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
   130      * @exception NullPointerException if either argument is {@code null}
   131      * @exception IllegalArgumentException if the target is not a direct method handle
   132      * @exception ClassCastException if the member is not of the expected type
   133      * @since 1.8
   134      */
   135     public static <T extends Member> T
   136     reflectAs(Class<T> expected, MethodHandle target) {
   137 //        SecurityManager smgr = System.getSecurityManager();
   138 //        if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
   139         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
   140         return lookup.revealDirect(target).reflectAs(expected, lookup);
   141     }
   142     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
   143 //    static final private java.security.Permission ACCESS_PERMISSION =
   144 //        new ReflectPermission("suppressAccessChecks");
   145 
   146     /**
   147      * A <em>lookup object</em> is a factory for creating method handles,
   148      * when the creation requires access checking.
   149      * Method handles do not perform
   150      * access checks when they are called, but rather when they are created.
   151      * Therefore, method handle access
   152      * restrictions must be enforced when a method handle is created.
   153      * The caller class against which those restrictions are enforced
   154      * is known as the {@linkplain #lookupClass lookup class}.
   155      * <p>
   156      * A lookup class which needs to create method handles will call
   157      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
   158      * When the {@code Lookup} factory object is created, the identity of the lookup class is
   159      * determined, and securely stored in the {@code Lookup} object.
   160      * The lookup class (or its delegates) may then use factory methods
   161      * on the {@code Lookup} object to create method handles for access-checked members.
   162      * This includes all methods, constructors, and fields which are allowed to the lookup class,
   163      * even private ones.
   164      *
   165      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
   166      * The factory methods on a {@code Lookup} object correspond to all major
   167      * use cases for methods, constructors, and fields.
   168      * Each method handle created by a factory method is the functional
   169      * equivalent of a particular <em>bytecode behavior</em>.
   170      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
   171      * Here is a summary of the correspondence between these factory methods and
   172      * the behavior the resulting method handles:
   173      * <table border=1 cellpadding=5 summary="lookup method behaviors">
   174      * <tr>
   175      *     <th><a name="equiv"></a>lookup expression</th>
   176      *     <th>member</th>
   177      *     <th>bytecode behavior</th>
   178      * </tr>
   179      * <tr>
   180      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
   181      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
   182      * </tr>
   183      * <tr>
   184      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
   185      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
   186      * </tr>
   187      * <tr>
   188      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
   189      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
   190      * </tr>
   191      * <tr>
   192      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
   193      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
   194      * </tr>
   195      * <tr>
   196      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
   197      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
   198      * </tr>
   199      * <tr>
   200      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
   201      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
   202      * </tr>
   203      * <tr>
   204      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
   205      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
   206      * </tr>
   207      * <tr>
   208      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
   209      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
   210      * </tr>
   211      * <tr>
   212      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
   213      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
   214      * </tr>
   215      * <tr>
   216      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
   217      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
   218      * </tr>
   219      * <tr>
   220      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
   221      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
   222      * </tr>
   223      * <tr>
   224      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
   225      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
   226      * </tr>
   227      * <tr>
   228      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
   229      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
   230      * </tr>
   231      * </table>
   232      *
   233      * Here, the type {@code C} is the class or interface being searched for a member,
   234      * documented as a parameter named {@code refc} in the lookup methods.
   235      * The method type {@code MT} is composed from the return type {@code T}
   236      * and the sequence of argument types {@code A*}.
   237      * The constructor also has a sequence of argument types {@code A*} and
   238      * is deemed to return the newly-created object of type {@code C}.
   239      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
   240      * The formal parameter {@code this} stands for the self-reference of type {@code C};
   241      * if it is present, it is always the leading argument to the method handle invocation.
   242      * (In the case of some {@code protected} members, {@code this} may be
   243      * restricted in type to the lookup class; see below.)
   244      * The name {@code arg} stands for all the other method handle arguments.
   245      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
   246      * stands for a null reference if the accessed method or field is static,
   247      * and {@code this} otherwise.
   248      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
   249      * for reflective objects corresponding to the given members.
   250      * <p>
   251      * In cases where the given member is of variable arity (i.e., a method or constructor)
   252      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
   253      * In all other cases, the returned method handle will be of fixed arity.
   254      * <p style="font-size:smaller;">
   255      * <em>Discussion:</em>
   256      * The equivalence between looked-up method handles and underlying
   257      * class members and bytecode behaviors
   258      * can break down in a few ways:
   259      * <ul style="font-size:smaller;">
   260      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
   261      * the lookup can still succeed, even when there is no equivalent
   262      * Java expression or bytecoded constant.
   263      * <li>Likewise, if {@code T} or {@code MT}
   264      * is not symbolically accessible from the lookup class's loader,
   265      * the lookup can still succeed.
   266      * For example, lookups for {@code MethodHandle.invokeExact} and
   267      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
   268      * <li>If there is a security manager installed, it can forbid the lookup
   269      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
   270      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
   271      * constant is not subject to security manager checks.
   272      * <li>If the looked-up method has a
   273      * <a href="MethodHandle.html#maxarity">very large arity</a>,
   274      * the method handle creation may fail, due to the method handle
   275      * type having too many parameters.
   276      * </ul>
   277      *
   278      * <h1><a name="access"></a>Access checking</h1>
   279      * Access checks are applied in the factory methods of {@code Lookup},
   280      * when a method handle is created.
   281      * This is a key difference from the Core Reflection API, since
   282      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
   283      * performs access checking against every caller, on every call.
   284      * <p>
   285      * All access checks start from a {@code Lookup} object, which
   286      * compares its recorded lookup class against all requests to
   287      * create method handles.
   288      * A single {@code Lookup} object can be used to create any number
   289      * of access-checked method handles, all checked against a single
   290      * lookup class.
   291      * <p>
   292      * A {@code Lookup} object can be shared with other trusted code,
   293      * such as a metaobject protocol.
   294      * A shared {@code Lookup} object delegates the capability
   295      * to create method handles on private members of the lookup class.
   296      * Even if privileged code uses the {@code Lookup} object,
   297      * the access checking is confined to the privileges of the
   298      * original lookup class.
   299      * <p>
   300      * A lookup can fail, because
   301      * the containing class is not accessible to the lookup class, or
   302      * because the desired class member is missing, or because the
   303      * desired class member is not accessible to the lookup class, or
   304      * because the lookup object is not trusted enough to access the member.
   305      * In any of these cases, a {@code ReflectiveOperationException} will be
   306      * thrown from the attempted lookup.  The exact class will be one of
   307      * the following:
   308      * <ul>
   309      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
   310      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
   311      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
   312      * </ul>
   313      * <p>
   314      * In general, the conditions under which a method handle may be
   315      * looked up for a method {@code M} are no more restrictive than the conditions
   316      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
   317      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
   318      * a method handle lookup will generally raise a corresponding
   319      * checked exception, such as {@code NoSuchMethodException}.
   320      * And the effect of invoking the method handle resulting from the lookup
   321      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
   322      * to executing the compiled, verified, and resolved call to {@code M}.
   323      * The same point is true of fields and constructors.
   324      * <p style="font-size:smaller;">
   325      * <em>Discussion:</em>
   326      * Access checks only apply to named and reflected methods,
   327      * constructors, and fields.
   328      * Other method handle creation methods, such as
   329      * {@link MethodHandle#asType MethodHandle.asType},
   330      * do not require any access checks, and are used
   331      * independently of any {@code Lookup} object.
   332      * <p>
   333      * If the desired member is {@code protected}, the usual JVM rules apply,
   334      * including the requirement that the lookup class must be either be in the
   335      * same package as the desired member, or must inherit that member.
   336      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
   337      * In addition, if the desired member is a non-static field or method
   338      * in a different package, the resulting method handle may only be applied
   339      * to objects of the lookup class or one of its subclasses.
   340      * This requirement is enforced by narrowing the type of the leading
   341      * {@code this} parameter from {@code C}
   342      * (which will necessarily be a superclass of the lookup class)
   343      * to the lookup class itself.
   344      * <p>
   345      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
   346      * that the receiver argument must match both the resolved method <em>and</em>
   347      * the current class.  Again, this requirement is enforced by narrowing the
   348      * type of the leading parameter to the resulting method handle.
   349      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
   350      * <p>
   351      * The JVM represents constructors and static initializer blocks as internal methods
   352      * with special names ({@code "<init>"} and {@code "<clinit>"}).
   353      * The internal syntax of invocation instructions allows them to refer to such internal
   354      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
   355      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
   356      * <p>
   357      * In some cases, access between nested classes is obtained by the Java compiler by creating
   358      * an wrapper method to access a private method of another class
   359      * in the same top-level declaration.
   360      * For example, a nested class {@code C.D}
   361      * can access private members within other related classes such as
   362      * {@code C}, {@code C.D.E}, or {@code C.B},
   363      * but the Java compiler may need to generate wrapper methods in
   364      * those related classes.  In such cases, a {@code Lookup} object on
   365      * {@code C.E} would be unable to those private members.
   366      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
   367      * which can transform a lookup on {@code C.E} into one on any of those other
   368      * classes, without special elevation of privilege.
   369      * <p>
   370      * The accesses permitted to a given lookup object may be limited,
   371      * according to its set of {@link #lookupModes lookupModes},
   372      * to a subset of members normally accessible to the lookup class.
   373      * For example, the {@link MethodHandles#publicLookup publicLookup}
   374      * method produces a lookup object which is only allowed to access
   375      * public members in public classes.
   376      * The caller sensitive method {@link MethodHandles#lookup lookup}
   377      * produces a lookup object with full capabilities relative to
   378      * its caller class, to emulate all supported bytecode behaviors.
   379      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
   380      * with fewer access modes than the original lookup object.
   381      *
   382      * <p style="font-size:smaller;">
   383      * <a name="privacc"></a>
   384      * <em>Discussion of private access:</em>
   385      * We say that a lookup has <em>private access</em>
   386      * if its {@linkplain #lookupModes lookup modes}
   387      * include the possibility of accessing {@code private} members.
   388      * As documented in the relevant methods elsewhere,
   389      * only lookups with private access possess the following capabilities:
   390      * <ul style="font-size:smaller;">
   391      * <li>access private fields, methods, and constructors of the lookup class
   392      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
   393      *     such as {@code Class.forName}
   394      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
   395      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
   396      *     for classes accessible to the lookup class
   397      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
   398      *     within the same package member
   399      * </ul>
   400      * <p style="font-size:smaller;">
   401      * Each of these permissions is a consequence of the fact that a lookup object
   402      * with private access can be securely traced back to an originating class,
   403      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
   404      * can be reliably determined and emulated by method handles.
   405      *
   406      * <h1><a name="secmgr"></a>Security manager interactions</h1>
   407      * Although bytecode instructions can only refer to classes in
   408      * a related class loader, this API can search for methods in any
   409      * class, as long as a reference to its {@code Class} object is
   410      * available.  Such cross-loader references are also possible with the
   411      * Core Reflection API, and are impossible to bytecode instructions
   412      * such as {@code invokestatic} or {@code getfield}.
   413      * There is a {@linkplain java.lang.SecurityManager security manager API}
   414      * to allow applications to check such cross-loader references.
   415      * These checks apply to both the {@code MethodHandles.Lookup} API
   416      * and the Core Reflection API
   417      * (as found on {@link java.lang.Class Class}).
   418      * <p>
   419      * If a security manager is present, member lookups are subject to
   420      * additional checks.
   421      * From one to three calls are made to the security manager.
   422      * Any of these calls can refuse access by throwing a
   423      * {@link java.lang.SecurityException SecurityException}.
   424      * Define {@code smgr} as the security manager,
   425      * {@code lookc} as the lookup class of the current lookup object,
   426      * {@code refc} as the containing class in which the member
   427      * is being sought, and {@code defc} as the class in which the
   428      * member is actually defined.
   429      * The value {@code lookc} is defined as <em>not present</em>
   430      * if the current lookup object does not have
   431      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
   432      * The calls are made according to the following rules:
   433      * <ul>
   434      * <li><b>Step 1:</b>
   435      *     If {@code lookc} is not present, or if its class loader is not
   436      *     the same as or an ancestor of the class loader of {@code refc},
   437      *     then {@link SecurityManager#checkPackageAccess
   438      *     smgr.checkPackageAccess(refcPkg)} is called,
   439      *     where {@code refcPkg} is the package of {@code refc}.
   440      * <li><b>Step 2:</b>
   441      *     If the retrieved member is not public and
   442      *     {@code lookc} is not present, then
   443      *     {@link SecurityManager#checkPermission smgr.checkPermission}
   444      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
   445      * <li><b>Step 3:</b>
   446      *     If the retrieved member is not public,
   447      *     and if {@code lookc} is not present,
   448      *     and if {@code defc} and {@code refc} are different,
   449      *     then {@link SecurityManager#checkPackageAccess
   450      *     smgr.checkPackageAccess(defcPkg)} is called,
   451      *     where {@code defcPkg} is the package of {@code defc}.
   452      * </ul>
   453      * Security checks are performed after other access checks have passed.
   454      * Therefore, the above rules presuppose a member that is public,
   455      * or else that is being accessed from a lookup class that has
   456      * rights to access the member.
   457      *
   458      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
   459      * A small number of Java methods have a special property called caller sensitivity.
   460      * A <em>caller-sensitive</em> method can behave differently depending on the
   461      * identity of its immediate caller.
   462      * <p>
   463      * If a method handle for a caller-sensitive method is requested,
   464      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
   465      * but they take account of the lookup class in a special way.
   466      * The resulting method handle behaves as if it were called
   467      * from an instruction contained in the lookup class,
   468      * so that the caller-sensitive method detects the lookup class.
   469      * (By contrast, the invoker of the method handle is disregarded.)
   470      * Thus, in the case of caller-sensitive methods,
   471      * different lookup classes may give rise to
   472      * differently behaving method handles.
   473      * <p>
   474      * In cases where the lookup object is
   475      * {@link MethodHandles#publicLookup() publicLookup()},
   476      * or some other lookup object without
   477      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
   478      * the lookup class is disregarded.
   479      * In such cases, no caller-sensitive method handle can be created,
   480      * access is forbidden, and the lookup fails with an
   481      * {@code IllegalAccessException}.
   482      * <p style="font-size:smaller;">
   483      * <em>Discussion:</em>
   484      * For example, the caller-sensitive method
   485      * {@link java.lang.Class#forName(String) Class.forName(x)}
   486      * can return varying classes or throw varying exceptions,
   487      * depending on the class loader of the class that calls it.
   488      * A public lookup of {@code Class.forName} will fail, because
   489      * there is no reasonable way to determine its bytecode behavior.
   490      * <p style="font-size:smaller;">
   491      * If an application caches method handles for broad sharing,
   492      * it should use {@code publicLookup()} to create them.
   493      * If there is a lookup of {@code Class.forName}, it will fail,
   494      * and the application must take appropriate action in that case.
   495      * It may be that a later lookup, perhaps during the invocation of a
   496      * bootstrap method, can incorporate the specific identity
   497      * of the caller, making the method accessible.
   498      * <p style="font-size:smaller;">
   499      * The function {@code MethodHandles.lookup} is caller sensitive
   500      * so that there can be a secure foundation for lookups.
   501      * Nearly all other methods in the JSR 292 API rely on lookup
   502      * objects to check access requests.
   503      */
   504     public static final
   505     class Lookup {
   506         /** The class on behalf of whom the lookup is being performed. */
   507         private final Class<?> lookupClass;
   508 
   509         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
   510         private final int allowedModes;
   511 
   512         /** A single-bit mask representing {@code public} access,
   513          *  which may contribute to the result of {@link #lookupModes lookupModes}.
   514          *  The value, {@code 0x01}, happens to be the same as the value of the
   515          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
   516          */
   517         public static final int PUBLIC = Modifier.PUBLIC;
   518 
   519         /** A single-bit mask representing {@code private} access,
   520          *  which may contribute to the result of {@link #lookupModes lookupModes}.
   521          *  The value, {@code 0x02}, happens to be the same as the value of the
   522          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
   523          */
   524         public static final int PRIVATE = Modifier.PRIVATE;
   525 
   526         /** A single-bit mask representing {@code protected} access,
   527          *  which may contribute to the result of {@link #lookupModes lookupModes}.
   528          *  The value, {@code 0x04}, happens to be the same as the value of the
   529          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
   530          */
   531         public static final int PROTECTED = Modifier.PROTECTED;
   532 
   533         /** A single-bit mask representing {@code package} access (default access),
   534          *  which may contribute to the result of {@link #lookupModes lookupModes}.
   535          *  The value is {@code 0x08}, which does not correspond meaningfully to
   536          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
   537          */
   538         public static final int PACKAGE = Modifier.STATIC;
   539 
   540         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
   541         private static final int TRUSTED   = -1;
   542 
   543         private static int fixmods(int mods) {
   544             mods &= (ALL_MODES - PACKAGE);
   545             return (mods != 0) ? mods : PACKAGE;
   546         }
   547 
   548         /** Tells which class is performing the lookup.  It is this class against
   549          *  which checks are performed for visibility and access permissions.
   550          *  <p>
   551          *  The class implies a maximum level of access permission,
   552          *  but the permissions may be additionally limited by the bitmask
   553          *  {@link #lookupModes lookupModes}, which controls whether non-public members
   554          *  can be accessed.
   555          *  @return the lookup class, on behalf of which this lookup object finds members
   556          */
   557         public Class<?> lookupClass() {
   558             return lookupClass;
   559         }
   560 
   561         // This is just for calling out to MethodHandleImpl.
   562         private Class<?> lookupClassOrNull() {
   563             return (allowedModes == TRUSTED) ? null : lookupClass;
   564         }
   565 
   566         /** Tells which access-protection classes of members this lookup object can produce.
   567          *  The result is a bit-mask of the bits
   568          *  {@linkplain #PUBLIC PUBLIC (0x01)},
   569          *  {@linkplain #PRIVATE PRIVATE (0x02)},
   570          *  {@linkplain #PROTECTED PROTECTED (0x04)},
   571          *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
   572          *  <p>
   573          *  A freshly-created lookup object
   574          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
   575          *  has all possible bits set, since the caller class can access all its own members.
   576          *  A lookup object on a new lookup class
   577          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
   578          *  may have some mode bits set to zero.
   579          *  The purpose of this is to restrict access via the new lookup object,
   580          *  so that it can access only names which can be reached by the original
   581          *  lookup object, and also by the new lookup class.
   582          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
   583          */
   584         public int lookupModes() {
   585             return allowedModes & ALL_MODES;
   586         }
   587 
   588         /** Embody the current class (the lookupClass) as a lookup class
   589          * for method handle creation.
   590          * Must be called by from a method in this package,
   591          * which in turn is called by a method not in this package.
   592          */
   593         Lookup(Class<?> lookupClass) {
   594             this(lookupClass, ALL_MODES);
   595             // make sure we haven't accidentally picked up a privileged class:
   596             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
   597         }
   598 
   599         private Lookup(Class<?> lookupClass, int allowedModes) {
   600             this.lookupClass = lookupClass;
   601             this.allowedModes = allowedModes;
   602         }
   603 
   604         /**
   605          * Creates a lookup on the specified new lookup class.
   606          * The resulting object will report the specified
   607          * class as its own {@link #lookupClass lookupClass}.
   608          * <p>
   609          * However, the resulting {@code Lookup} object is guaranteed
   610          * to have no more access capabilities than the original.
   611          * In particular, access capabilities can be lost as follows:<ul>
   612          * <li>If the new lookup class differs from the old one,
   613          * protected members will not be accessible by virtue of inheritance.
   614          * (Protected members may continue to be accessible because of package sharing.)
   615          * <li>If the new lookup class is in a different package
   616          * than the old one, protected and default (package) members will not be accessible.
   617          * <li>If the new lookup class is not within the same package member
   618          * as the old one, private members will not be accessible.
   619          * <li>If the new lookup class is not accessible to the old lookup class,
   620          * then no members, not even public members, will be accessible.
   621          * (In all other cases, public members will continue to be accessible.)
   622          * </ul>
   623          *
   624          * @param requestedLookupClass the desired lookup class for the new lookup object
   625          * @return a lookup object which reports the desired lookup class
   626          * @throws NullPointerException if the argument is null
   627          */
   628         public Lookup in(Class<?> requestedLookupClass) {
   629             requestedLookupClass.getClass();  // null check
   630             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
   631                 return new Lookup(requestedLookupClass, ALL_MODES);
   632             if (requestedLookupClass == this.lookupClass)
   633                 return this;  // keep same capabilities
   634             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
   635             if ((newModes & PACKAGE) != 0
   636                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
   637                 newModes &= ~(PACKAGE|PRIVATE);
   638             }
   639             // Allow nestmate lookups to be created without special privilege:
   640             if ((newModes & PRIVATE) != 0
   641                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
   642                 newModes &= ~PRIVATE;
   643             }
   644             if ((newModes & PUBLIC) != 0
   645                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
   646                 // The requested class it not accessible from the lookup class.
   647                 // No permissions.
   648                 newModes = 0;
   649             }
   650             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
   651             return new Lookup(requestedLookupClass, newModes);
   652         }
   653 
   654         // Make sure outer class is initialized first.
   655         static { IMPL_NAMES.getClass(); }
   656 
   657         /** Version of lookup which is trusted minimally.
   658          *  It can only be used to create method handles to
   659          *  publicly accessible members.
   660          */
   661         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
   662 
   663         /** Package-private version of lookup which is trusted. */
   664         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
   665 
   666         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
   667             String name = lookupClass.getName();
   668             if (name.startsWith("java.lang.invoke."))
   669                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
   670 
   671             // For caller-sensitive MethodHandles.lookup()
   672             // disallow lookup more restricted packages
   673             if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
   674                 if (name.startsWith("java.") ||
   675                         (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
   676                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
   677                 }
   678             }
   679         }
   680 
   681         /**
   682          * Displays the name of the class from which lookups are to be made.
   683          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
   684          * If there are restrictions on the access permitted to this lookup,
   685          * this is indicated by adding a suffix to the class name, consisting
   686          * of a slash and a keyword.  The keyword represents the strongest
   687          * allowed access, and is chosen as follows:
   688          * <ul>
   689          * <li>If no access is allowed, the suffix is "/noaccess".
   690          * <li>If only public access is allowed, the suffix is "/public".
   691          * <li>If only public and package access are allowed, the suffix is "/package".
   692          * <li>If only public, package, and private access are allowed, the suffix is "/private".
   693          * </ul>
   694          * If none of the above cases apply, it is the case that full
   695          * access (public, package, private, and protected) is allowed.
   696          * In this case, no suffix is added.
   697          * This is true only of an object obtained originally from
   698          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
   699          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
   700          * always have restricted access, and will display a suffix.
   701          * <p>
   702          * (It may seem strange that protected access should be
   703          * stronger than private access.  Viewed independently from
   704          * package access, protected access is the first to be lost,
   705          * because it requires a direct subclass relationship between
   706          * caller and callee.)
   707          * @see #in
   708          */
   709         @Override
   710         public String toString() {
   711             String cname = lookupClass.getName();
   712             switch (allowedModes) {
   713             case 0:  // no privileges
   714                 return cname + "/noaccess";
   715             case PUBLIC:
   716                 return cname + "/public";
   717             case PUBLIC|PACKAGE:
   718                 return cname + "/package";
   719             case ALL_MODES & ~PROTECTED:
   720                 return cname + "/private";
   721             case ALL_MODES:
   722                 return cname;
   723             case TRUSTED:
   724                 return "/trusted";  // internal only; not exported
   725             default:  // Should not happen, but it's a bitfield...
   726                 cname = cname + "/" + Integer.toHexString(allowedModes);
   727                 assert(false) : cname;
   728                 return cname;
   729             }
   730         }
   731 
   732         /**
   733          * Produces a method handle for a static method.
   734          * The type of the method handle will be that of the method.
   735          * (Since static methods do not take receivers, there is no
   736          * additional receiver argument inserted into the method handle type,
   737          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
   738          * The method and all its argument types must be accessible to the lookup object.
   739          * <p>
   740          * The returned method handle will have
   741          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   742          * the method's variable arity modifier bit ({@code 0x0080}) is set.
   743          * <p>
   744          * If the returned method handle is invoked, the method's class will
   745          * be initialized, if it has not already been initialized.
   746          * <p><b>Example:</b>
   747          * <blockquote><pre>{@code
   748 import static java.lang.invoke.MethodHandles.*;
   749 import static java.lang.invoke.MethodType.*;
   750 ...
   751 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
   752   "asList", methodType(List.class, Object[].class));
   753 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
   754          * }</pre></blockquote>
   755          * @param refc the class from which the method is accessed
   756          * @param name the name of the method
   757          * @param type the type of the method
   758          * @return the desired method handle
   759          * @throws NoSuchMethodException if the method does not exist
   760          * @throws IllegalAccessException if access checking fails,
   761          *                                or if the method is not {@code static},
   762          *                                or if the method's variable arity modifier bit
   763          *                                is set and {@code asVarargsCollector} fails
   764          * @exception SecurityException if a security manager is present and it
   765          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   766          * @throws NullPointerException if any argument is null
   767          */
   768         public
   769         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
   770             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
   771             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
   772         }
   773 
   774         /**
   775          * Produces a method handle for a virtual method.
   776          * The type of the method handle will be that of the method,
   777          * with the receiver type (usually {@code refc}) prepended.
   778          * The method and all its argument types must be accessible to the lookup object.
   779          * <p>
   780          * When called, the handle will treat the first argument as a receiver
   781          * and dispatch on the receiver's type to determine which method
   782          * implementation to enter.
   783          * (The dispatching action is identical with that performed by an
   784          * {@code invokevirtual} or {@code invokeinterface} instruction.)
   785          * <p>
   786          * The first argument will be of type {@code refc} if the lookup
   787          * class has full privileges to access the member.  Otherwise
   788          * the member must be {@code protected} and the first argument
   789          * will be restricted in type to the lookup class.
   790          * <p>
   791          * The returned method handle will have
   792          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   793          * the method's variable arity modifier bit ({@code 0x0080}) is set.
   794          * <p>
   795          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
   796          * instructions and method handles produced by {@code findVirtual},
   797          * if the class is {@code MethodHandle} and the name string is
   798          * {@code invokeExact} or {@code invoke}, the resulting
   799          * method handle is equivalent to one produced by
   800          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
   801          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
   802          * with the same {@code type} argument.
   803          *
   804          * <b>Example:</b>
   805          * <blockquote><pre>{@code
   806 import static java.lang.invoke.MethodHandles.*;
   807 import static java.lang.invoke.MethodType.*;
   808 ...
   809 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
   810   "concat", methodType(String.class, String.class));
   811 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
   812   "hashCode", methodType(int.class));
   813 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
   814   "hashCode", methodType(int.class));
   815 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
   816 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
   817 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
   818 // interface method:
   819 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
   820   "subSequence", methodType(CharSequence.class, int.class, int.class));
   821 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
   822 // constructor "internal method" must be accessed differently:
   823 MethodType MT_newString = methodType(void.class); //()V for new String()
   824 try { assertEquals("impossible", lookup()
   825         .findVirtual(String.class, "<init>", MT_newString));
   826  } catch (NoSuchMethodException ex) { } // OK
   827 MethodHandle MH_newString = publicLookup()
   828   .findConstructor(String.class, MT_newString);
   829 assertEquals("", (String) MH_newString.invokeExact());
   830          * }</pre></blockquote>
   831          *
   832          * @param refc the class or interface from which the method is accessed
   833          * @param name the name of the method
   834          * @param type the type of the method, with the receiver argument omitted
   835          * @return the desired method handle
   836          * @throws NoSuchMethodException if the method does not exist
   837          * @throws IllegalAccessException if access checking fails,
   838          *                                or if the method is {@code static}
   839          *                                or if the method's variable arity modifier bit
   840          *                                is set and {@code asVarargsCollector} fails
   841          * @exception SecurityException if a security manager is present and it
   842          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   843          * @throws NullPointerException if any argument is null
   844          */
   845         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
   846             if (refc == MethodHandle.class) {
   847                 MethodHandle mh = findVirtualForMH(name, type);
   848                 if (mh != null)  return mh;
   849             }
   850             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
   851             MemberName method = resolveOrFail(refKind, refc, name, type);
   852             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
   853         }
   854         private MethodHandle findVirtualForMH(String name, MethodType type) {
   855             // these names require special lookups because of the implicit MethodType argument
   856             if ("invoke".equals(name))
   857                 return invoker(type);
   858             if ("invokeExact".equals(name))
   859                 return exactInvoker(type);
   860             assert(!MemberName.isMethodHandleInvokeName(name));
   861             return null;
   862         }
   863 
   864         /**
   865          * Produces a method handle which creates an object and initializes it, using
   866          * the constructor of the specified type.
   867          * The parameter types of the method handle will be those of the constructor,
   868          * while the return type will be a reference to the constructor's class.
   869          * The constructor and all its argument types must be accessible to the lookup object.
   870          * <p>
   871          * The requested type must have a return type of {@code void}.
   872          * (This is consistent with the JVM's treatment of constructor type descriptors.)
   873          * <p>
   874          * The returned method handle will have
   875          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   876          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
   877          * <p>
   878          * If the returned method handle is invoked, the constructor's class will
   879          * be initialized, if it has not already been initialized.
   880          * <p><b>Example:</b>
   881          * <blockquote><pre>{@code
   882 import static java.lang.invoke.MethodHandles.*;
   883 import static java.lang.invoke.MethodType.*;
   884 ...
   885 MethodHandle MH_newArrayList = publicLookup().findConstructor(
   886   ArrayList.class, methodType(void.class, Collection.class));
   887 Collection orig = Arrays.asList("x", "y");
   888 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
   889 assert(orig != copy);
   890 assertEquals(orig, copy);
   891 // a variable-arity constructor:
   892 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
   893   ProcessBuilder.class, methodType(void.class, String[].class));
   894 ProcessBuilder pb = (ProcessBuilder)
   895   MH_newProcessBuilder.invoke("x", "y", "z");
   896 assertEquals("[x, y, z]", pb.command().toString());
   897          * }</pre></blockquote>
   898          * @param refc the class or interface from which the method is accessed
   899          * @param type the type of the method, with the receiver argument omitted, and a void return type
   900          * @return the desired method handle
   901          * @throws NoSuchMethodException if the constructor does not exist
   902          * @throws IllegalAccessException if access checking fails
   903          *                                or if the method's variable arity modifier bit
   904          *                                is set and {@code asVarargsCollector} fails
   905          * @exception SecurityException if a security manager is present and it
   906          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   907          * @throws NullPointerException if any argument is null
   908          */
   909         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
   910             String name = "<init>";
   911             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
   912             return getDirectConstructor(refc, ctor);
   913         }
   914 
   915         /**
   916          * Produces an early-bound method handle for a virtual method.
   917          * It will bypass checks for overriding methods on the receiver,
   918          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
   919          * instruction from within the explicitly specified {@code specialCaller}.
   920          * The type of the method handle will be that of the method,
   921          * with a suitably restricted receiver type prepended.
   922          * (The receiver type will be {@code specialCaller} or a subtype.)
   923          * The method and all its argument types must be accessible
   924          * to the lookup object.
   925          * <p>
   926          * Before method resolution,
   927          * if the explicitly specified caller class is not identical with the
   928          * lookup class, or if this lookup object does not have
   929          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
   930          * privileges, the access fails.
   931          * <p>
   932          * The returned method handle will have
   933          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   934          * the method's variable arity modifier bit ({@code 0x0080}) is set.
   935          * <p style="font-size:smaller;">
   936          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
   937          * even though the {@code invokespecial} instruction can refer to them
   938          * in special circumstances.  Use {@link #findConstructor findConstructor}
   939          * to access instance initialization methods in a safe manner.)</em>
   940          * <p><b>Example:</b>
   941          * <blockquote><pre>{@code
   942 import static java.lang.invoke.MethodHandles.*;
   943 import static java.lang.invoke.MethodType.*;
   944 ...
   945 static class Listie extends ArrayList {
   946   public String toString() { return "[wee Listie]"; }
   947   static Lookup lookup() { return MethodHandles.lookup(); }
   948 }
   949 ...
   950 // no access to constructor via invokeSpecial:
   951 MethodHandle MH_newListie = Listie.lookup()
   952   .findConstructor(Listie.class, methodType(void.class));
   953 Listie l = (Listie) MH_newListie.invokeExact();
   954 try { assertEquals("impossible", Listie.lookup().findSpecial(
   955         Listie.class, "<init>", methodType(void.class), Listie.class));
   956  } catch (NoSuchMethodException ex) { } // OK
   957 // access to super and self methods via invokeSpecial:
   958 MethodHandle MH_super = Listie.lookup().findSpecial(
   959   ArrayList.class, "toString" , methodType(String.class), Listie.class);
   960 MethodHandle MH_this = Listie.lookup().findSpecial(
   961   Listie.class, "toString" , methodType(String.class), Listie.class);
   962 MethodHandle MH_duper = Listie.lookup().findSpecial(
   963   Object.class, "toString" , methodType(String.class), Listie.class);
   964 assertEquals("[]", (String) MH_super.invokeExact(l));
   965 assertEquals(""+l, (String) MH_this.invokeExact(l));
   966 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
   967 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
   968         String.class, "toString", methodType(String.class), Listie.class));
   969  } catch (IllegalAccessException ex) { } // OK
   970 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
   971 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
   972          * }</pre></blockquote>
   973          *
   974          * @param refc the class or interface from which the method is accessed
   975          * @param name the name of the method (which must not be "&lt;init&gt;")
   976          * @param type the type of the method, with the receiver argument omitted
   977          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
   978          * @return the desired method handle
   979          * @throws NoSuchMethodException if the method does not exist
   980          * @throws IllegalAccessException if access checking fails
   981          *                                or if the method's variable arity modifier bit
   982          *                                is set and {@code asVarargsCollector} fails
   983          * @exception SecurityException if a security manager is present and it
   984          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   985          * @throws NullPointerException if any argument is null
   986          */
   987         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
   988                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
   989             checkSpecialCaller(specialCaller);
   990             Lookup specialLookup = this.in(specialCaller);
   991             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
   992             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
   993         }
   994 
   995         /**
   996          * Produces a method handle giving read access to a non-static field.
   997          * The type of the method handle will have a return type of the field's
   998          * value type.
   999          * The method handle's single argument will be the instance containing
  1000          * the field.
  1001          * Access checking is performed immediately on behalf of the lookup class.
  1002          * @param refc the class or interface from which the method is accessed
  1003          * @param name the field's name
  1004          * @param type the field's type
  1005          * @return a method handle which can load values from the field
  1006          * @throws NoSuchFieldException if the field does not exist
  1007          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
  1008          * @exception SecurityException if a security manager is present and it
  1009          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1010          * @throws NullPointerException if any argument is null
  1011          */
  1012         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1013             MemberName field = resolveOrFail(REF_getField, refc, name, type);
  1014             return getDirectField(REF_getField, refc, field);
  1015         }
  1016 
  1017         /**
  1018          * Produces a method handle giving write access to a non-static field.
  1019          * The type of the method handle will have a void return type.
  1020          * The method handle will take two arguments, the instance containing
  1021          * the field, and the value to be stored.
  1022          * The second argument will be of the field's value type.
  1023          * Access checking is performed immediately on behalf of the lookup class.
  1024          * @param refc the class or interface from which the method is accessed
  1025          * @param name the field's name
  1026          * @param type the field's type
  1027          * @return a method handle which can store values into the field
  1028          * @throws NoSuchFieldException if the field does not exist
  1029          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
  1030          * @exception SecurityException if a security manager is present and it
  1031          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1032          * @throws NullPointerException if any argument is null
  1033          */
  1034         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1035             MemberName field = resolveOrFail(REF_putField, refc, name, type);
  1036             return getDirectField(REF_putField, refc, field);
  1037         }
  1038 
  1039         /**
  1040          * Produces a method handle giving read access to a static field.
  1041          * The type of the method handle will have a return type of the field's
  1042          * value type.
  1043          * The method handle will take no arguments.
  1044          * Access checking is performed immediately on behalf of the lookup class.
  1045          * <p>
  1046          * If the returned method handle is invoked, the field's class will
  1047          * be initialized, if it has not already been initialized.
  1048          * @param refc the class or interface from which the method is accessed
  1049          * @param name the field's name
  1050          * @param type the field's type
  1051          * @return a method handle which can load values from the field
  1052          * @throws NoSuchFieldException if the field does not exist
  1053          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
  1054          * @exception SecurityException if a security manager is present and it
  1055          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1056          * @throws NullPointerException if any argument is null
  1057          */
  1058         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1059             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
  1060             return getDirectField(REF_getStatic, refc, field);
  1061         }
  1062 
  1063         /**
  1064          * Produces a method handle giving write access to a static field.
  1065          * The type of the method handle will have a void return type.
  1066          * The method handle will take a single
  1067          * argument, of the field's value type, the value to be stored.
  1068          * Access checking is performed immediately on behalf of the lookup class.
  1069          * <p>
  1070          * If the returned method handle is invoked, the field's class will
  1071          * be initialized, if it has not already been initialized.
  1072          * @param refc the class or interface from which the method is accessed
  1073          * @param name the field's name
  1074          * @param type the field's type
  1075          * @return a method handle which can store values into the field
  1076          * @throws NoSuchFieldException if the field does not exist
  1077          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
  1078          * @exception SecurityException if a security manager is present and it
  1079          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1080          * @throws NullPointerException if any argument is null
  1081          */
  1082         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1083             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
  1084             return getDirectField(REF_putStatic, refc, field);
  1085         }
  1086 
  1087         /**
  1088          * Produces an early-bound method handle for a non-static method.
  1089          * The receiver must have a supertype {@code defc} in which a method
  1090          * of the given name and type is accessible to the lookup class.
  1091          * The method and all its argument types must be accessible to the lookup object.
  1092          * The type of the method handle will be that of the method,
  1093          * without any insertion of an additional receiver parameter.
  1094          * The given receiver will be bound into the method handle,
  1095          * so that every call to the method handle will invoke the
  1096          * requested method on the given receiver.
  1097          * <p>
  1098          * The returned method handle will have
  1099          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
  1100          * the method's variable arity modifier bit ({@code 0x0080}) is set
  1101          * <em>and</em> the trailing array argument is not the only argument.
  1102          * (If the trailing array argument is the only argument,
  1103          * the given receiver value will be bound to it.)
  1104          * <p>
  1105          * This is equivalent to the following code:
  1106          * <blockquote><pre>{@code
  1107 import static java.lang.invoke.MethodHandles.*;
  1108 import static java.lang.invoke.MethodType.*;
  1109 ...
  1110 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
  1111 MethodHandle mh1 = mh0.bindTo(receiver);
  1112 MethodType mt1 = mh1.type();
  1113 if (mh0.isVarargsCollector())
  1114   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
  1115 return mh1;
  1116          * }</pre></blockquote>
  1117          * where {@code defc} is either {@code receiver.getClass()} or a super
  1118          * type of that class, in which the requested method is accessible
  1119          * to the lookup class.
  1120          * (Note that {@code bindTo} does not preserve variable arity.)
  1121          * @param receiver the object from which the method is accessed
  1122          * @param name the name of the method
  1123          * @param type the type of the method, with the receiver argument omitted
  1124          * @return the desired method handle
  1125          * @throws NoSuchMethodException if the method does not exist
  1126          * @throws IllegalAccessException if access checking fails
  1127          *                                or if the method's variable arity modifier bit
  1128          *                                is set and {@code asVarargsCollector} fails
  1129          * @exception SecurityException if a security manager is present and it
  1130          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1131          * @throws NullPointerException if any argument is null
  1132          * @see MethodHandle#bindTo
  1133          * @see #findVirtual
  1134          */
  1135         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
  1136             Class<? extends Object> refc = receiver.getClass(); // may get NPE
  1137             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
  1138             MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
  1139             return mh.bindReceiver(receiver).setVarargs(method);
  1140         }
  1141 
  1142         /**
  1143          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
  1144          * to <i>m</i>, if the lookup class has permission.
  1145          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
  1146          * If <i>m</i> is virtual, overriding is respected on every call.
  1147          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
  1148          * The type of the method handle will be that of the method,
  1149          * with the receiver type prepended (but only if it is non-static).
  1150          * If the method's {@code accessible} flag is not set,
  1151          * access checking is performed immediately on behalf of the lookup class.
  1152          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
  1153          * <p>
  1154          * The returned method handle will have
  1155          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
  1156          * the method's variable arity modifier bit ({@code 0x0080}) is set.
  1157          * <p>
  1158          * If <i>m</i> is static, and
  1159          * if the returned method handle is invoked, the method's class will
  1160          * be initialized, if it has not already been initialized.
  1161          * @param m the reflected method
  1162          * @return a method handle which can invoke the reflected method
  1163          * @throws IllegalAccessException if access checking fails
  1164          *                                or if the method's variable arity modifier bit
  1165          *                                is set and {@code asVarargsCollector} fails
  1166          * @throws NullPointerException if the argument is null
  1167          */
  1168         public MethodHandle unreflect(Method m) throws IllegalAccessException {
  1169             if (m.getDeclaringClass() == MethodHandle.class) {
  1170                 MethodHandle mh = unreflectForMH(m);
  1171                 if (mh != null)  return mh;
  1172             }
  1173             MemberName method = new MemberName(m);
  1174             byte refKind = method.getReferenceKind();
  1175             if (refKind == REF_invokeSpecial)
  1176                 refKind = REF_invokeVirtual;
  1177             assert(method.isMethod());
  1178             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
  1179             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
  1180         }
  1181         private MethodHandle unreflectForMH(Method m) {
  1182             // these names require special lookups because they throw UnsupportedOperationException
  1183             if (MemberName.isMethodHandleInvokeName(m.getName()))
  1184                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
  1185             return null;
  1186         }
  1187 
  1188         /**
  1189          * Produces a method handle for a reflected method.
  1190          * It will bypass checks for overriding methods on the receiver,
  1191          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
  1192          * instruction from within the explicitly specified {@code specialCaller}.
  1193          * The type of the method handle will be that of the method,
  1194          * with a suitably restricted receiver type prepended.
  1195          * (The receiver type will be {@code specialCaller} or a subtype.)
  1196          * If the method's {@code accessible} flag is not set,
  1197          * access checking is performed immediately on behalf of the lookup class,
  1198          * as if {@code invokespecial} instruction were being linked.
  1199          * <p>
  1200          * Before method resolution,
  1201          * if the explicitly specified caller class is not identical with the
  1202          * lookup class, or if this lookup object does not have
  1203          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
  1204          * privileges, the access fails.
  1205          * <p>
  1206          * The returned method handle will have
  1207          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
  1208          * the method's variable arity modifier bit ({@code 0x0080}) is set.
  1209          * @param m the reflected method
  1210          * @param specialCaller the class nominally calling the method
  1211          * @return a method handle which can invoke the reflected method
  1212          * @throws IllegalAccessException if access checking fails
  1213          *                                or if the method's variable arity modifier bit
  1214          *                                is set and {@code asVarargsCollector} fails
  1215          * @throws NullPointerException if any argument is null
  1216          */
  1217         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
  1218             checkSpecialCaller(specialCaller);
  1219             Lookup specialLookup = this.in(specialCaller);
  1220             MemberName method = new MemberName(m, true);
  1221             assert(method.isMethod());
  1222             // ignore m.isAccessible:  this is a new kind of access
  1223             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
  1224         }
  1225 
  1226         /**
  1227          * Produces a method handle for a reflected constructor.
  1228          * The type of the method handle will be that of the constructor,
  1229          * with the return type changed to the declaring class.
  1230          * The method handle will perform a {@code newInstance} operation,
  1231          * creating a new instance of the constructor's class on the
  1232          * arguments passed to the method handle.
  1233          * <p>
  1234          * If the constructor's {@code accessible} flag is not set,
  1235          * access checking is performed immediately on behalf of the lookup class.
  1236          * <p>
  1237          * The returned method handle will have
  1238          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
  1239          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
  1240          * <p>
  1241          * If the returned method handle is invoked, the constructor's class will
  1242          * be initialized, if it has not already been initialized.
  1243          * @param c the reflected constructor
  1244          * @return a method handle which can invoke the reflected constructor
  1245          * @throws IllegalAccessException if access checking fails
  1246          *                                or if the method's variable arity modifier bit
  1247          *                                is set and {@code asVarargsCollector} fails
  1248          * @throws NullPointerException if the argument is null
  1249          */
  1250         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
  1251             MemberName ctor = new MemberName(c);
  1252             assert(ctor.isConstructor());
  1253             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
  1254             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
  1255         }
  1256 
  1257         /**
  1258          * Produces a method handle giving read access to a reflected field.
  1259          * The type of the method handle will have a return type of the field's
  1260          * value type.
  1261          * If the field is static, the method handle will take no arguments.
  1262          * Otherwise, its single argument will be the instance containing
  1263          * the field.
  1264          * If the field's {@code accessible} flag is not set,
  1265          * access checking is performed immediately on behalf of the lookup class.
  1266          * <p>
  1267          * If the field is static, and
  1268          * if the returned method handle is invoked, the field's class will
  1269          * be initialized, if it has not already been initialized.
  1270          * @param f the reflected field
  1271          * @return a method handle which can load values from the reflected field
  1272          * @throws IllegalAccessException if access checking fails
  1273          * @throws NullPointerException if the argument is null
  1274          */
  1275         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
  1276             return unreflectField(f, false);
  1277         }
  1278         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
  1279             MemberName field = new MemberName(f, isSetter);
  1280             assert(isSetter
  1281                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
  1282                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
  1283             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
  1284             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
  1285         }
  1286 
  1287         /**
  1288          * Produces a method handle giving write access to a reflected field.
  1289          * The type of the method handle will have a void return type.
  1290          * If the field is static, the method handle will take a single
  1291          * argument, of the field's value type, the value to be stored.
  1292          * Otherwise, the two arguments will be the instance containing
  1293          * the field, and the value to be stored.
  1294          * If the field's {@code accessible} flag is not set,
  1295          * access checking is performed immediately on behalf of the lookup class.
  1296          * <p>
  1297          * If the field is static, and
  1298          * if the returned method handle is invoked, the field's class will
  1299          * be initialized, if it has not already been initialized.
  1300          * @param f the reflected field
  1301          * @return a method handle which can store values into the reflected field
  1302          * @throws IllegalAccessException if access checking fails
  1303          * @throws NullPointerException if the argument is null
  1304          */
  1305         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
  1306             return unreflectField(f, true);
  1307         }
  1308 
  1309         /**
  1310          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
  1311          * created by this lookup object or a similar one.
  1312          * Security and access checks are performed to ensure that this lookup object
  1313          * is capable of reproducing the target method handle.
  1314          * This means that the cracking may fail if target is a direct method handle
  1315          * but was created by an unrelated lookup object.
  1316          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
  1317          * and was created by a lookup object for a different class.
  1318          * @param target a direct method handle to crack into symbolic reference components
  1319          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
  1320          * @exception SecurityException if a security manager is present and it
  1321          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
  1322          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
  1323          * @exception NullPointerException if the target is {@code null}
  1324          * @see MethodHandleInfo
  1325          * @since 1.8
  1326          */
  1327         public MethodHandleInfo revealDirect(MethodHandle target) {
  1328             MemberName member = target.internalMemberName();
  1329             if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke()))
  1330                 throw newIllegalArgumentException("not a direct method handle");
  1331             Class<?> defc = member.getDeclaringClass();
  1332             byte refKind = member.getReferenceKind();
  1333             assert(MethodHandleNatives.refKindIsValid(refKind));
  1334             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
  1335                 // Devirtualized method invocation is usually formally virtual.
  1336                 // To avoid creating extra MemberName objects for this common case,
  1337                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
  1338                 refKind = REF_invokeVirtual;
  1339             if (refKind == REF_invokeVirtual && defc.isInterface())
  1340                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
  1341                 refKind = REF_invokeInterface;
  1342             // Check SM permissions and member access before cracking.
  1343             try {
  1344                 checkAccess(refKind, defc, member);
  1345                 checkSecurityManager(defc, member);
  1346             } catch (IllegalAccessException ex) {
  1347                 throw new IllegalArgumentException(ex);
  1348             }
  1349             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
  1350                 Class<?> callerClass = target.internalCallerClass();
  1351                 if (!hasPrivateAccess() || callerClass != lookupClass())
  1352                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
  1353             }
  1354             // Produce the handle to the results.
  1355             return new InfoFromMemberName(this, member, refKind);
  1356         }
  1357 
  1358         /// Helper methods, all package-private.
  1359 
  1360         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
  1361             checkSymbolicClass(refc);  // do this before attempting to resolve
  1362             name.getClass();  // NPE
  1363             type.getClass();  // NPE
  1364             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
  1365                                             NoSuchFieldException.class);
  1366         }
  1367 
  1368         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
  1369             checkSymbolicClass(refc);  // do this before attempting to resolve
  1370             name.getClass();  // NPE
  1371             type.getClass();  // NPE
  1372             checkMethodName(refKind, name);  // NPE check on name
  1373             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
  1374                                             NoSuchMethodException.class);
  1375         }
  1376 
  1377         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
  1378             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
  1379             member.getName().getClass();  // NPE
  1380             member.getType().getClass();  // NPE
  1381             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
  1382                                             ReflectiveOperationException.class);
  1383         }
  1384 
  1385         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
  1386             refc.getClass();  // NPE
  1387             Class<?> caller = lookupClassOrNull();
  1388             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
  1389                 throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
  1390         }
  1391 
  1392         /** Check name for an illegal leading "&lt;" character. */
  1393         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
  1394             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
  1395                 throw new NoSuchMethodException("illegal method name: "+name);
  1396         }
  1397 
  1398 
  1399         /**
  1400          * Find my trustable caller class if m is a caller sensitive method.
  1401          * If this lookup object has private access, then the caller class is the lookupClass.
  1402          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
  1403          */
  1404         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
  1405             Class<?> callerClass = null;
  1406             if (MethodHandleNatives.isCallerSensitive(m)) {
  1407                 // Only lookups with private access are allowed to resolve caller-sensitive methods
  1408                 if (hasPrivateAccess()) {
  1409                     callerClass = lookupClass;
  1410                 } else {
  1411                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
  1412                 }
  1413             }
  1414             return callerClass;
  1415         }
  1416 
  1417         private boolean hasPrivateAccess() {
  1418             return (allowedModes & PRIVATE) != 0;
  1419         }
  1420 
  1421         /**
  1422          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
  1423          * Determines a trustable caller class to compare with refc, the symbolic reference class.
  1424          * If this lookup object has private access, then the caller class is the lookupClass.
  1425          */
  1426         void checkSecurityManager(Class<?> refc, MemberName m) {
  1427 //            SecurityManager smgr = System.getSecurityManager();
  1428 //            if (smgr == null)  return;
  1429 //            if (allowedModes == TRUSTED)  return;
  1430 //
  1431 //            // Step 1:
  1432 //            boolean fullPowerLookup = hasPrivateAccess();
  1433 //            if (!fullPowerLookup ||
  1434 //                !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
  1435 //                ReflectUtil.checkPackageAccess(refc);
  1436 //            }
  1437 //
  1438 //            // Step 2:
  1439 //            if (m.isPublic()) return;
  1440 //            if (!fullPowerLookup) {
  1441 //                smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
  1442 //            }
  1443 //
  1444 //            // Step 3:
  1445 //            Class<?> defc = m.getDeclaringClass();
  1446 //            if (!fullPowerLookup && defc != refc) {
  1447 //                ReflectUtil.checkPackageAccess(defc);
  1448 //            }
  1449         }
  1450 
  1451         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
  1452             boolean wantStatic = (refKind == REF_invokeStatic);
  1453             String message;
  1454             if (m.isConstructor())
  1455                 message = "expected a method, not a constructor";
  1456             else if (!m.isMethod())
  1457                 message = "expected a method";
  1458             else if (wantStatic != m.isStatic())
  1459                 message = wantStatic ? "expected a static method" : "expected a non-static method";
  1460             else
  1461                 { checkAccess(refKind, refc, m); return; }
  1462             throw m.makeAccessException(message, this);
  1463         }
  1464 
  1465         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
  1466             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
  1467             String message;
  1468             if (wantStatic != m.isStatic())
  1469                 message = wantStatic ? "expected a static field" : "expected a non-static field";
  1470             else
  1471                 { checkAccess(refKind, refc, m); return; }
  1472             throw m.makeAccessException(message, this);
  1473         }
  1474 
  1475         /** Check public/protected/private bits on the symbolic reference class and its member. */
  1476         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
  1477             assert(m.referenceKindIsConsistentWith(refKind) &&
  1478                    MethodHandleNatives.refKindIsValid(refKind) &&
  1479                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
  1480             int allowedModes = this.allowedModes;
  1481             if (allowedModes == TRUSTED)  return;
  1482             int mods = m.getModifiers();
  1483             if (Modifier.isProtected(mods) &&
  1484                     refKind == REF_invokeVirtual &&
  1485                     m.getDeclaringClass() == Object.class &&
  1486                     m.getName().equals("clone") &&
  1487                     refc.isArray()) {
  1488                 // The JVM does this hack also.
  1489                 // (See ClassVerifier::verify_invoke_instructions
  1490                 // and LinkResolver::check_method_accessability.)
  1491                 // Because the JVM does not allow separate methods on array types,
  1492                 // there is no separate method for int[].clone.
  1493                 // All arrays simply inherit Object.clone.
  1494                 // But for access checking logic, we make Object.clone
  1495                 // (normally protected) appear to be public.
  1496                 // Later on, when the DirectMethodHandle is created,
  1497                 // its leading argument will be restricted to the
  1498                 // requested array type.
  1499                 // N.B. The return type is not adjusted, because
  1500                 // that is *not* the bytecode behavior.
  1501                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
  1502             }
  1503             if (Modifier.isFinal(mods) &&
  1504                     MethodHandleNatives.refKindIsSetter(refKind))
  1505                 throw m.makeAccessException("unexpected set of a final field", this);
  1506             if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
  1507                 return;  // common case
  1508             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
  1509             if ((requestedModes & allowedModes) != 0) {
  1510                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
  1511                                                     mods, lookupClass(), allowedModes))
  1512                     return;
  1513             } else {
  1514                 // Protected members can also be checked as if they were package-private.
  1515                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
  1516                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
  1517                     return;
  1518             }
  1519             throw m.makeAccessException(accessFailedMessage(refc, m), this);
  1520         }
  1521 
  1522         String accessFailedMessage(Class<?> refc, MemberName m) {
  1523             Class<?> defc = m.getDeclaringClass();
  1524             int mods = m.getModifiers();
  1525             // check the class first:
  1526             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
  1527                                (defc == refc ||
  1528                                 Modifier.isPublic(refc.getModifiers())));
  1529             if (!classOK && (allowedModes & PACKAGE) != 0) {
  1530                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
  1531                            (defc == refc ||
  1532                             VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
  1533             }
  1534             if (!classOK)
  1535                 return "class is not public";
  1536             if (Modifier.isPublic(mods))
  1537                 return "access to public member failed";  // (how?)
  1538             if (Modifier.isPrivate(mods))
  1539                 return "member is private";
  1540             if (Modifier.isProtected(mods))
  1541                 return "member is protected";
  1542             return "member is private to package";
  1543         }
  1544 
  1545         private static final boolean ALLOW_NESTMATE_ACCESS = false;
  1546 
  1547         private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
  1548             int allowedModes = this.allowedModes;
  1549             if (allowedModes == TRUSTED)  return;
  1550             if (!hasPrivateAccess()
  1551                 || (specialCaller != lookupClass()
  1552                     && !(ALLOW_NESTMATE_ACCESS &&
  1553                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
  1554                 throw new MemberName(specialCaller).
  1555                     makeAccessException("no private access for invokespecial", this);
  1556         }
  1557 
  1558         private boolean restrictProtectedReceiver(MemberName method) {
  1559             // The accessing class only has the right to use a protected member
  1560             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
  1561             if (!method.isProtected() || method.isStatic()
  1562                 || allowedModes == TRUSTED
  1563                 || method.getDeclaringClass() == lookupClass()
  1564                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
  1565                 || (ALLOW_NESTMATE_ACCESS &&
  1566                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
  1567                 return false;
  1568             return true;
  1569         }
  1570         private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
  1571             assert(!method.isStatic());
  1572             // receiver type of mh is too wide; narrow to caller
  1573             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
  1574                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
  1575             }
  1576             MethodType rawType = mh.type();
  1577             if (rawType.parameterType(0) == caller)  return mh;
  1578             MethodType narrowType = rawType.changeParameterType(0, caller);
  1579             return mh.viewAsType(narrowType);
  1580         }
  1581 
  1582         /** Check access and get the requested method. */
  1583         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
  1584             final boolean doRestrict    = true;
  1585             final boolean checkSecurity = true;
  1586             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
  1587         }
  1588         /** Check access and get the requested method, eliding receiver narrowing rules. */
  1589         private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
  1590             final boolean doRestrict    = false;
  1591             final boolean checkSecurity = true;
  1592             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
  1593         }
  1594         /** Check access and get the requested method, eliding security manager checks. */
  1595         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
  1596             final boolean doRestrict    = true;
  1597             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
  1598             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
  1599         }
  1600         /** Common code for all methods; do not call directly except from immediately above. */
  1601         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
  1602                                                    boolean checkSecurity,
  1603                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
  1604             checkMethod(refKind, refc, method);
  1605             // Optionally check with the security manager; this isn't needed for unreflect* calls.
  1606             if (checkSecurity)
  1607                 checkSecurityManager(refc, method);
  1608             assert(!method.isMethodHandleInvoke());
  1609 
  1610             Class<?> refcAsSuper;
  1611             if (refKind == REF_invokeSpecial &&
  1612                 refc != lookupClass() &&
  1613                 !refc.isInterface() &&
  1614                 refc != (refcAsSuper = lookupClass().getSuperclass()) &&
  1615                 refc.isAssignableFrom(lookupClass())) {
  1616                 assert(!method.getName().equals("<init>"));  // not this code path
  1617                 // Per JVMS 6.5, desc. of invokespecial instruction:
  1618                 // If the method is in a superclass of the LC,
  1619                 // and if our original search was above LC.super,
  1620                 // repeat the search (symbolic lookup) from LC.super.
  1621                 // FIXME: MemberName.resolve should handle this instead.
  1622                 MemberName m2 = new MemberName(refcAsSuper,
  1623                                                method.getName(),
  1624                                                method.getMethodType(),
  1625                                                REF_invokeSpecial);
  1626                 m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
  1627                 if (m2 == null)  throw new InternalError(method.toString());
  1628                 method = m2;
  1629                 refc = refcAsSuper;
  1630                 // redo basic checks
  1631                 checkMethod(refKind, refc, method);
  1632             }
  1633 
  1634             MethodHandle mh = DirectMethodHandle.make(refKind, refc, method);
  1635             mh = maybeBindCaller(method, mh, callerClass);
  1636             mh = mh.setVarargs(method);
  1637             // Optionally narrow the receiver argument to refc using restrictReceiver.
  1638             if (doRestrict &&
  1639                    (refKind == REF_invokeSpecial ||
  1640                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
  1641                            restrictProtectedReceiver(method))))
  1642                 mh = restrictReceiver(method, mh, lookupClass());
  1643             return mh;
  1644         }
  1645         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
  1646                                              Class<?> callerClass)
  1647                                              throws IllegalAccessException {
  1648             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
  1649                 return mh;
  1650             Class<?> hostClass = lookupClass;
  1651             if (!hasPrivateAccess())  // caller must have private access
  1652                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
  1653             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
  1654             // Note: caller will apply varargs after this step happens.
  1655             return cbmh;
  1656         }
  1657         /** Check access and get the requested field. */
  1658         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
  1659             final boolean checkSecurity = true;
  1660             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
  1661         }
  1662         /** Check access and get the requested field, eliding security manager checks. */
  1663         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
  1664             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
  1665             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
  1666         }
  1667         /** Common code for all fields; do not call directly except from immediately above. */
  1668         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
  1669                                                   boolean checkSecurity) throws IllegalAccessException {
  1670             checkField(refKind, refc, field);
  1671             // Optionally check with the security manager; this isn't needed for unreflect* calls.
  1672             if (checkSecurity)
  1673                 checkSecurityManager(refc, field);
  1674             MethodHandle mh = DirectMethodHandle.make(refc, field);
  1675             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
  1676                                     restrictProtectedReceiver(field));
  1677             if (doRestrict)
  1678                 mh = restrictReceiver(field, mh, lookupClass());
  1679             return mh;
  1680         }
  1681         /** Check access and get the requested constructor. */
  1682         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
  1683             final boolean checkSecurity = true;
  1684             return getDirectConstructorCommon(refc, ctor, checkSecurity);
  1685         }
  1686         /** Check access and get the requested constructor, eliding security manager checks. */
  1687         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
  1688             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
  1689             return getDirectConstructorCommon(refc, ctor, checkSecurity);
  1690         }
  1691         /** Common code for all constructors; do not call directly except from immediately above. */
  1692         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
  1693                                                   boolean checkSecurity) throws IllegalAccessException {
  1694             assert(ctor.isConstructor());
  1695             checkAccess(REF_newInvokeSpecial, refc, ctor);
  1696             // Optionally check with the security manager; this isn't needed for unreflect* calls.
  1697             if (checkSecurity)
  1698                 checkSecurityManager(refc, ctor);
  1699             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
  1700             return DirectMethodHandle.make(ctor).setVarargs(ctor);
  1701         }
  1702 
  1703         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
  1704          */
  1705         /*non-public*/
  1706         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
  1707             if (!(type instanceof Class || type instanceof MethodType))
  1708                 throw new InternalError("unresolved MemberName");
  1709             MemberName member = new MemberName(refKind, defc, name, type);
  1710             MethodHandle mh = LOOKASIDE_TABLE.get(member);
  1711             if (mh != null) {
  1712                 checkSymbolicClass(defc);
  1713                 return mh;
  1714             }
  1715             // Treat MethodHandle.invoke and invokeExact specially.
  1716             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
  1717                 mh = findVirtualForMH(member.getName(), member.getMethodType());
  1718                 if (mh != null) {
  1719                     return mh;
  1720                 }
  1721             }
  1722             MemberName resolved = resolveOrFail(refKind, member);
  1723             mh = getDirectMethodForConstant(refKind, defc, resolved);
  1724             if (mh instanceof DirectMethodHandle
  1725                     && canBeCached(refKind, defc, resolved)) {
  1726                 MemberName key = mh.internalMemberName();
  1727                 if (key != null) {
  1728                     key = key.asNormalOriginal();
  1729                 }
  1730                 if (member.equals(key)) {  // better safe than sorry
  1731                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
  1732                 }
  1733             }
  1734             return mh;
  1735         }
  1736         private
  1737         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
  1738             if (refKind == REF_invokeSpecial) {
  1739                 return false;
  1740             }
  1741             if (!Modifier.isPublic(defc.getModifiers()) ||
  1742                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
  1743                     !member.isPublic() ||
  1744                     member.isCallerSensitive()) {
  1745                 return false;
  1746             }
  1747             ClassLoader loader = defc.getClassLoader();
  1748 //            if (!sun.misc.VM.isSystemDomainLoader(loader)) {
  1749 //                ClassLoader sysl = ClassLoader.getSystemClassLoader();
  1750 //                boolean found = false;
  1751 //                while (sysl != null) {
  1752 //                    if (loader == sysl) { found = true; break; }
  1753 //                    sysl = sysl.getParent();
  1754 //                }
  1755 //                if (!found) {
  1756 //                    return false;
  1757 //                }
  1758 //            }
  1759             try {
  1760                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
  1761                     new MemberName(refKind, defc, member.getName(), member.getType()));
  1762                 checkSecurityManager(defc, resolved2);
  1763             } catch (ReflectiveOperationException | SecurityException ex) {
  1764                 return false;
  1765             }
  1766             return true;
  1767         }
  1768         private
  1769         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
  1770                 throws ReflectiveOperationException {
  1771             if (MethodHandleNatives.refKindIsField(refKind)) {
  1772                 return getDirectFieldNoSecurityManager(refKind, defc, member);
  1773             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
  1774                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
  1775             } else if (refKind == REF_newInvokeSpecial) {
  1776                 return getDirectConstructorNoSecurityManager(defc, member);
  1777             }
  1778             // oops
  1779             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
  1780         }
  1781 
  1782         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
  1783     }
  1784 
  1785     /**
  1786      * Produces a method handle giving read access to elements of an array.
  1787      * The type of the method handle will have a return type of the array's
  1788      * element type.  Its first argument will be the array type,
  1789      * and the second will be {@code int}.
  1790      * @param arrayClass an array type
  1791      * @return a method handle which can load values from the given array type
  1792      * @throws NullPointerException if the argument is null
  1793      * @throws  IllegalArgumentException if arrayClass is not an array type
  1794      */
  1795     public static
  1796     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
  1797         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
  1798     }
  1799 
  1800     /**
  1801      * Produces a method handle giving write access to elements of an array.
  1802      * The type of the method handle will have a void return type.
  1803      * Its last argument will be the array's element type.
  1804      * The first and second arguments will be the array type and int.
  1805      * @param arrayClass the class of an array
  1806      * @return a method handle which can store values into the array type
  1807      * @throws NullPointerException if the argument is null
  1808      * @throws IllegalArgumentException if arrayClass is not an array type
  1809      */
  1810     public static
  1811     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
  1812         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
  1813     }
  1814 
  1815     /// method handle invocation (reflective style)
  1816 
  1817     /**
  1818      * Produces a method handle which will invoke any method handle of the
  1819      * given {@code type}, with a given number of trailing arguments replaced by
  1820      * a single trailing {@code Object[]} array.
  1821      * The resulting invoker will be a method handle with the following
  1822      * arguments:
  1823      * <ul>
  1824      * <li>a single {@code MethodHandle} target
  1825      * <li>zero or more leading values (counted by {@code leadingArgCount})
  1826      * <li>an {@code Object[]} array containing trailing arguments
  1827      * </ul>
  1828      * <p>
  1829      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
  1830      * the indicated {@code type}.
  1831      * That is, if the target is exactly of the given {@code type}, it will behave
  1832      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
  1833      * is used to convert the target to the required {@code type}.
  1834      * <p>
  1835      * The type of the returned invoker will not be the given {@code type}, but rather
  1836      * will have all parameters except the first {@code leadingArgCount}
  1837      * replaced by a single array of type {@code Object[]}, which will be
  1838      * the final parameter.
  1839      * <p>
  1840      * Before invoking its target, the invoker will spread the final array, apply
  1841      * reference casts as necessary, and unbox and widen primitive arguments.
  1842      * If, when the invoker is called, the supplied array argument does
  1843      * not have the correct number of elements, the invoker will throw
  1844      * an {@link IllegalArgumentException} instead of invoking the target.
  1845      * <p>
  1846      * This method is equivalent to the following code (though it may be more efficient):
  1847      * <blockquote><pre>{@code
  1848 MethodHandle invoker = MethodHandles.invoker(type);
  1849 int spreadArgCount = type.parameterCount() - leadingArgCount;
  1850 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
  1851 return invoker;
  1852      * }</pre></blockquote>
  1853      * This method throws no reflective or security exceptions.
  1854      * @param type the desired target type
  1855      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
  1856      * @return a method handle suitable for invoking any method handle of the given type
  1857      * @throws NullPointerException if {@code type} is null
  1858      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
  1859      *                  the range from 0 to {@code type.parameterCount()} inclusive,
  1860      *                  or if the resulting method handle's type would have
  1861      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  1862      */
  1863     static public
  1864     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
  1865         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
  1866             throw new IllegalArgumentException("bad argument count "+leadingArgCount);
  1867         return type.invokers().spreadInvoker(leadingArgCount);
  1868     }
  1869 
  1870     /**
  1871      * Produces a special <em>invoker method handle</em> which can be used to
  1872      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
  1873      * The resulting invoker will have a type which is
  1874      * exactly equal to the desired type, except that it will accept
  1875      * an additional leading argument of type {@code MethodHandle}.
  1876      * <p>
  1877      * This method is equivalent to the following code (though it may be more efficient):
  1878      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
  1879      *
  1880      * <p style="font-size:smaller;">
  1881      * <em>Discussion:</em>
  1882      * Invoker method handles can be useful when working with variable method handles
  1883      * of unknown types.
  1884      * For example, to emulate an {@code invokeExact} call to a variable method
  1885      * handle {@code M}, extract its type {@code T},
  1886      * look up the invoker method {@code X} for {@code T},
  1887      * and call the invoker method, as {@code X.invoke(T, A...)}.
  1888      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
  1889      * is unknown.)
  1890      * If spreading, collecting, or other argument transformations are required,
  1891      * they can be applied once to the invoker {@code X} and reused on many {@code M}
  1892      * method handle values, as long as they are compatible with the type of {@code X}.
  1893      * <p style="font-size:smaller;">
  1894      * <em>(Note:  The invoker method is not available via the Core Reflection API.
  1895      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
  1896      * on the declared {@code invokeExact} or {@code invoke} method will raise an
  1897      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
  1898      * <p>
  1899      * This method throws no reflective or security exceptions.
  1900      * @param type the desired target type
  1901      * @return a method handle suitable for invoking any method handle of the given type
  1902      * @throws IllegalArgumentException if the resulting method handle's type would have
  1903      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  1904      */
  1905     static public
  1906     MethodHandle exactInvoker(MethodType type) {
  1907         return type.invokers().exactInvoker();
  1908     }
  1909 
  1910     /**
  1911      * Produces a special <em>invoker method handle</em> which can be used to
  1912      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
  1913      * The resulting invoker will have a type which is
  1914      * exactly equal to the desired type, except that it will accept
  1915      * an additional leading argument of type {@code MethodHandle}.
  1916      * <p>
  1917      * Before invoking its target, if the target differs from the expected type,
  1918      * the invoker will apply reference casts as
  1919      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
  1920      * Similarly, the return value will be converted as necessary.
  1921      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
  1922      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
  1923      * <p>
  1924      * This method is equivalent to the following code (though it may be more efficient):
  1925      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
  1926      * <p style="font-size:smaller;">
  1927      * <em>Discussion:</em>
  1928      * A {@linkplain MethodType#genericMethodType general method type} is one which
  1929      * mentions only {@code Object} arguments and return values.
  1930      * An invoker for such a type is capable of calling any method handle
  1931      * of the same arity as the general type.
  1932      * <p style="font-size:smaller;">
  1933      * <em>(Note:  The invoker method is not available via the Core Reflection API.
  1934      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
  1935      * on the declared {@code invokeExact} or {@code invoke} method will raise an
  1936      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
  1937      * <p>
  1938      * This method throws no reflective or security exceptions.
  1939      * @param type the desired target type
  1940      * @return a method handle suitable for invoking any method handle convertible to the given type
  1941      * @throws IllegalArgumentException if the resulting method handle's type would have
  1942      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  1943      */
  1944     static public
  1945     MethodHandle invoker(MethodType type) {
  1946         return type.invokers().generalInvoker();
  1947     }
  1948 
  1949     static /*non-public*/
  1950     MethodHandle basicInvoker(MethodType type) {
  1951         return type.form().basicInvoker();
  1952     }
  1953 
  1954      /// method handle modification (creation from other method handles)
  1955 
  1956     /**
  1957      * Produces a method handle which adapts the type of the
  1958      * given method handle to a new type by pairwise argument and return type conversion.
  1959      * The original type and new type must have the same number of arguments.
  1960      * The resulting method handle is guaranteed to report a type
  1961      * which is equal to the desired new type.
  1962      * <p>
  1963      * If the original type and new type are equal, returns target.
  1964      * <p>
  1965      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
  1966      * and some additional conversions are also applied if those conversions fail.
  1967      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
  1968      * if possible, before or instead of any conversions done by {@code asType}:
  1969      * <ul>
  1970      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
  1971      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
  1972      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
  1973      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
  1974      *     the boolean is converted to a byte value, 1 for true, 0 for false.
  1975      *     (This treatment follows the usage of the bytecode verifier.)
  1976      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
  1977      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
  1978      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
  1979      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
  1980      *     then a Java casting conversion (JLS 5.5) is applied.
  1981      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
  1982      *     widening and/or narrowing.)
  1983      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
  1984      *     conversion will be applied at runtime, possibly followed
  1985      *     by a Java casting conversion (JLS 5.5) on the primitive value,
  1986      *     possibly followed by a conversion from byte to boolean by testing
  1987      *     the low-order bit.
  1988      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
  1989      *     and if the reference is null at runtime, a zero value is introduced.
  1990      * </ul>
  1991      * @param target the method handle to invoke after arguments are retyped
  1992      * @param newType the expected type of the new method handle
  1993      * @return a method handle which delegates to the target after performing
  1994      *           any necessary argument conversions, and arranges for any
  1995      *           necessary return value conversions
  1996      * @throws NullPointerException if either argument is null
  1997      * @throws WrongMethodTypeException if the conversion cannot be made
  1998      * @see MethodHandle#asType
  1999      */
  2000     public static
  2001     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
  2002         if (!target.type().isCastableTo(newType)) {
  2003             throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType);
  2004         }
  2005         return MethodHandleImpl.makePairwiseConvert(target, newType, 2);
  2006     }
  2007 
  2008     /**
  2009      * Produces a method handle which adapts the calling sequence of the
  2010      * given method handle to a new type, by reordering the arguments.
  2011      * The resulting method handle is guaranteed to report a type
  2012      * which is equal to the desired new type.
  2013      * <p>
  2014      * The given array controls the reordering.
  2015      * Call {@code #I} the number of incoming parameters (the value
  2016      * {@code newType.parameterCount()}, and call {@code #O} the number
  2017      * of outgoing parameters (the value {@code target.type().parameterCount()}).
  2018      * Then the length of the reordering array must be {@code #O},
  2019      * and each element must be a non-negative number less than {@code #I}.
  2020      * For every {@code N} less than {@code #O}, the {@code N}-th
  2021      * outgoing argument will be taken from the {@code I}-th incoming
  2022      * argument, where {@code I} is {@code reorder[N]}.
  2023      * <p>
  2024      * No argument or return value conversions are applied.
  2025      * The type of each incoming argument, as determined by {@code newType},
  2026      * must be identical to the type of the corresponding outgoing parameter
  2027      * or parameters in the target method handle.
  2028      * The return type of {@code newType} must be identical to the return
  2029      * type of the original target.
  2030      * <p>
  2031      * The reordering array need not specify an actual permutation.
  2032      * An incoming argument will be duplicated if its index appears
  2033      * more than once in the array, and an incoming argument will be dropped
  2034      * if its index does not appear in the array.
  2035      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
  2036      * incoming arguments which are not mentioned in the reordering array
  2037      * are may be any type, as determined only by {@code newType}.
  2038      * <blockquote><pre>{@code
  2039 import static java.lang.invoke.MethodHandles.*;
  2040 import static java.lang.invoke.MethodType.*;
  2041 ...
  2042 MethodType intfn1 = methodType(int.class, int.class);
  2043 MethodType intfn2 = methodType(int.class, int.class, int.class);
  2044 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
  2045 assert(sub.type().equals(intfn2));
  2046 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
  2047 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
  2048 assert((int)rsub.invokeExact(1, 100) == 99);
  2049 MethodHandle add = ... (int x, int y) -> (x+y) ...;
  2050 assert(add.type().equals(intfn2));
  2051 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
  2052 assert(twice.type().equals(intfn1));
  2053 assert((int)twice.invokeExact(21) == 42);
  2054      * }</pre></blockquote>
  2055      * @param target the method handle to invoke after arguments are reordered
  2056      * @param newType the expected type of the new method handle
  2057      * @param reorder an index array which controls the reordering
  2058      * @return a method handle which delegates to the target after it
  2059      *           drops unused arguments and moves and/or duplicates the other arguments
  2060      * @throws NullPointerException if any argument is null
  2061      * @throws IllegalArgumentException if the index array length is not equal to
  2062      *                  the arity of the target, or if any index array element
  2063      *                  not a valid index for a parameter of {@code newType},
  2064      *                  or if two corresponding parameter types in
  2065      *                  {@code target.type()} and {@code newType} are not identical,
  2066      */
  2067     public static
  2068     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
  2069         checkReorder(reorder, newType, target.type());
  2070         return target.permuteArguments(newType, reorder);
  2071     }
  2072 
  2073     private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
  2074         if (newType.returnType() != oldType.returnType())
  2075             throw newIllegalArgumentException("return types do not match",
  2076                     oldType, newType);
  2077         if (reorder.length == oldType.parameterCount()) {
  2078             int limit = newType.parameterCount();
  2079             boolean bad = false;
  2080             for (int j = 0; j < reorder.length; j++) {
  2081                 int i = reorder[j];
  2082                 if (i < 0 || i >= limit) {
  2083                     bad = true; break;
  2084                 }
  2085                 Class<?> src = newType.parameterType(i);
  2086                 Class<?> dst = oldType.parameterType(j);
  2087                 if (src != dst)
  2088                     throw newIllegalArgumentException("parameter types do not match after reorder",
  2089                             oldType, newType);
  2090             }
  2091             if (!bad)  return;
  2092         }
  2093         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
  2094     }
  2095 
  2096     /**
  2097      * Produces a method handle of the requested return type which returns the given
  2098      * constant value every time it is invoked.
  2099      * <p>
  2100      * Before the method handle is returned, the passed-in value is converted to the requested type.
  2101      * If the requested type is primitive, widening primitive conversions are attempted,
  2102      * else reference conversions are attempted.
  2103      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
  2104      * @param type the return type of the desired method handle
  2105      * @param value the value to return
  2106      * @return a method handle of the given return type and no arguments, which always returns the given value
  2107      * @throws NullPointerException if the {@code type} argument is null
  2108      * @throws ClassCastException if the value cannot be converted to the required return type
  2109      * @throws IllegalArgumentException if the given type is {@code void.class}
  2110      */
  2111     public static
  2112     MethodHandle constant(Class<?> type, Object value) {
  2113         if (type.isPrimitive()) {
  2114             if (type == void.class)
  2115                 throw newIllegalArgumentException("void type");
  2116             Wrapper w = Wrapper.forPrimitiveType(type);
  2117             return insertArguments(identity(type), 0, w.convert(value, type));
  2118         } else {
  2119             return identity(type).bindTo(type.cast(value));
  2120         }
  2121     }
  2122 
  2123     /**
  2124      * Produces a method handle which returns its sole argument when invoked.
  2125      * @param type the type of the sole parameter and return value of the desired method handle
  2126      * @return a unary method handle which accepts and returns the given type
  2127      * @throws NullPointerException if the argument is null
  2128      * @throws IllegalArgumentException if the given type is {@code void.class}
  2129      */
  2130     public static
  2131     MethodHandle identity(Class<?> type) {
  2132         if (type == void.class)
  2133             throw newIllegalArgumentException("void type");
  2134         else if (type == Object.class)
  2135             return ValueConversions.identity();
  2136         else if (type.isPrimitive())
  2137             return ValueConversions.identity(Wrapper.forPrimitiveType(type));
  2138         else
  2139             return MethodHandleImpl.makeReferenceIdentity(type);
  2140     }
  2141 
  2142     /**
  2143      * Provides a target method handle with one or more <em>bound arguments</em>
  2144      * in advance of the method handle's invocation.
  2145      * The formal parameters to the target corresponding to the bound
  2146      * arguments are called <em>bound parameters</em>.
  2147      * Returns a new method handle which saves away the bound arguments.
  2148      * When it is invoked, it receives arguments for any non-bound parameters,
  2149      * binds the saved arguments to their corresponding parameters,
  2150      * and calls the original target.
  2151      * <p>
  2152      * The type of the new method handle will drop the types for the bound
  2153      * parameters from the original target type, since the new method handle
  2154      * will no longer require those arguments to be supplied by its callers.
  2155      * <p>
  2156      * Each given argument object must match the corresponding bound parameter type.
  2157      * If a bound parameter type is a primitive, the argument object
  2158      * must be a wrapper, and will be unboxed to produce the primitive value.
  2159      * <p>
  2160      * The {@code pos} argument selects which parameters are to be bound.
  2161      * It may range between zero and <i>N-L</i> (inclusively),
  2162      * where <i>N</i> is the arity of the target method handle
  2163      * and <i>L</i> is the length of the values array.
  2164      * @param target the method handle to invoke after the argument is inserted
  2165      * @param pos where to insert the argument (zero for the first)
  2166      * @param values the series of arguments to insert
  2167      * @return a method handle which inserts an additional argument,
  2168      *         before calling the original method handle
  2169      * @throws NullPointerException if the target or the {@code values} array is null
  2170      * @see MethodHandle#bindTo
  2171      */
  2172     public static
  2173     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
  2174         int insCount = values.length;
  2175         MethodType oldType = target.type();
  2176         int outargs = oldType.parameterCount();
  2177         int inargs  = outargs - insCount;
  2178         if (inargs < 0)
  2179             throw newIllegalArgumentException("too many values to insert");
  2180         if (pos < 0 || pos > inargs)
  2181             throw newIllegalArgumentException("no argument type to append");
  2182         MethodHandle result = target;
  2183         for (int i = 0; i < insCount; i++) {
  2184             Object value = values[i];
  2185             Class<?> ptype = oldType.parameterType(pos+i);
  2186             if (ptype.isPrimitive()) {
  2187                 char btype = 'I';
  2188                 Wrapper w = Wrapper.forPrimitiveType(ptype);
  2189                 switch (w) {
  2190                 case LONG:    btype = 'J'; break;
  2191                 case FLOAT:   btype = 'F'; break;
  2192                 case DOUBLE:  btype = 'D'; break;
  2193                 }
  2194                 // perform unboxing and/or primitive conversion
  2195                 value = w.convert(value, ptype);
  2196                 result = result.bindArgument(pos, btype, value);
  2197                 continue;
  2198             }
  2199             value = ptype.cast(value);  // throw CCE if needed
  2200             if (pos == 0) {
  2201                 result = result.bindReceiver(value);
  2202             } else {
  2203                 result = result.bindArgument(pos, 'L', value);
  2204             }
  2205         }
  2206         return result;
  2207     }
  2208 
  2209     /**
  2210      * Produces a method handle which will discard some dummy arguments
  2211      * before calling some other specified <i>target</i> method handle.
  2212      * The type of the new method handle will be the same as the target's type,
  2213      * except it will also include the dummy argument types,
  2214      * at some given position.
  2215      * <p>
  2216      * The {@code pos} argument may range between zero and <i>N</i>,
  2217      * where <i>N</i> is the arity of the target.
  2218      * If {@code pos} is zero, the dummy arguments will precede
  2219      * the target's real arguments; if {@code pos} is <i>N</i>
  2220      * they will come after.
  2221      * <p>
  2222      * <b>Example:</b>
  2223      * <blockquote><pre>{@code
  2224 import static java.lang.invoke.MethodHandles.*;
  2225 import static java.lang.invoke.MethodType.*;
  2226 ...
  2227 MethodHandle cat = lookup().findVirtual(String.class,
  2228   "concat", methodType(String.class, String.class));
  2229 assertEquals("xy", (String) cat.invokeExact("x", "y"));
  2230 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
  2231 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
  2232 assertEquals(bigType, d0.type());
  2233 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
  2234      * }</pre></blockquote>
  2235      * <p>
  2236      * This method is also equivalent to the following code:
  2237      * <blockquote><pre>
  2238      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
  2239      * </pre></blockquote>
  2240      * @param target the method handle to invoke after the arguments are dropped
  2241      * @param valueTypes the type(s) of the argument(s) to drop
  2242      * @param pos position of first argument to drop (zero for the leftmost)
  2243      * @return a method handle which drops arguments of the given types,
  2244      *         before calling the original method handle
  2245      * @throws NullPointerException if the target is null,
  2246      *                              or if the {@code valueTypes} list or any of its elements is null
  2247      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
  2248      *                  or if {@code pos} is negative or greater than the arity of the target,
  2249      *                  or if the new method handle's type would have too many parameters
  2250      */
  2251     public static
  2252     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
  2253         MethodType oldType = target.type();  // get NPE
  2254         int dropped = valueTypes.size();
  2255         MethodType.checkSlotCount(dropped);
  2256         if (dropped == 0)  return target;
  2257         int outargs = oldType.parameterCount();
  2258         int inargs  = outargs + dropped;
  2259         if (pos < 0 || pos >= inargs)
  2260             throw newIllegalArgumentException("no argument type to remove");
  2261         ArrayList<Class<?>> ptypes = new ArrayList<>(oldType.parameterList());
  2262         ptypes.addAll(pos, valueTypes);
  2263         MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
  2264         return target.dropArguments(newType, pos, dropped);
  2265     }
  2266 
  2267     /**
  2268      * Produces a method handle which will discard some dummy arguments
  2269      * before calling some other specified <i>target</i> method handle.
  2270      * The type of the new method handle will be the same as the target's type,
  2271      * except it will also include the dummy argument types,
  2272      * at some given position.
  2273      * <p>
  2274      * The {@code pos} argument may range between zero and <i>N</i>,
  2275      * where <i>N</i> is the arity of the target.
  2276      * If {@code pos} is zero, the dummy arguments will precede
  2277      * the target's real arguments; if {@code pos} is <i>N</i>
  2278      * they will come after.
  2279      * <p>
  2280      * <b>Example:</b>
  2281      * <blockquote><pre>{@code
  2282 import static java.lang.invoke.MethodHandles.*;
  2283 import static java.lang.invoke.MethodType.*;
  2284 ...
  2285 MethodHandle cat = lookup().findVirtual(String.class,
  2286   "concat", methodType(String.class, String.class));
  2287 assertEquals("xy", (String) cat.invokeExact("x", "y"));
  2288 MethodHandle d0 = dropArguments(cat, 0, String.class);
  2289 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
  2290 MethodHandle d1 = dropArguments(cat, 1, String.class);
  2291 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
  2292 MethodHandle d2 = dropArguments(cat, 2, String.class);
  2293 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
  2294 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
  2295 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
  2296      * }</pre></blockquote>
  2297      * <p>
  2298      * This method is also equivalent to the following code:
  2299      * <blockquote><pre>
  2300      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
  2301      * </pre></blockquote>
  2302      * @param target the method handle to invoke after the arguments are dropped
  2303      * @param valueTypes the type(s) of the argument(s) to drop
  2304      * @param pos position of first argument to drop (zero for the leftmost)
  2305      * @return a method handle which drops arguments of the given types,
  2306      *         before calling the original method handle
  2307      * @throws NullPointerException if the target is null,
  2308      *                              or if the {@code valueTypes} array or any of its elements is null
  2309      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
  2310      *                  or if {@code pos} is negative or greater than the arity of the target,
  2311      *                  or if the new method handle's type would have
  2312      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
  2313      */
  2314     public static
  2315     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
  2316         return dropArguments(target, pos, Arrays.asList(valueTypes));
  2317     }
  2318 
  2319     /**
  2320      * Adapts a target method handle by pre-processing
  2321      * one or more of its arguments, each with its own unary filter function,
  2322      * and then calling the target with each pre-processed argument
  2323      * replaced by the result of its corresponding filter function.
  2324      * <p>
  2325      * The pre-processing is performed by one or more method handles,
  2326      * specified in the elements of the {@code filters} array.
  2327      * The first element of the filter array corresponds to the {@code pos}
  2328      * argument of the target, and so on in sequence.
  2329      * <p>
  2330      * Null arguments in the array are treated as identity functions,
  2331      * and the corresponding arguments left unchanged.
  2332      * (If there are no non-null elements in the array, the original target is returned.)
  2333      * Each filter is applied to the corresponding argument of the adapter.
  2334      * <p>
  2335      * If a filter {@code F} applies to the {@code N}th argument of
  2336      * the target, then {@code F} must be a method handle which
  2337      * takes exactly one argument.  The type of {@code F}'s sole argument
  2338      * replaces the corresponding argument type of the target
  2339      * in the resulting adapted method handle.
  2340      * The return type of {@code F} must be identical to the corresponding
  2341      * parameter type of the target.
  2342      * <p>
  2343      * It is an error if there are elements of {@code filters}
  2344      * (null or not)
  2345      * which do not correspond to argument positions in the target.
  2346      * <p><b>Example:</b>
  2347      * <blockquote><pre>{@code
  2348 import static java.lang.invoke.MethodHandles.*;
  2349 import static java.lang.invoke.MethodType.*;
  2350 ...
  2351 MethodHandle cat = lookup().findVirtual(String.class,
  2352   "concat", methodType(String.class, String.class));
  2353 MethodHandle upcase = lookup().findVirtual(String.class,
  2354   "toUpperCase", methodType(String.class));
  2355 assertEquals("xy", (String) cat.invokeExact("x", "y"));
  2356 MethodHandle f0 = filterArguments(cat, 0, upcase);
  2357 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
  2358 MethodHandle f1 = filterArguments(cat, 1, upcase);
  2359 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
  2360 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
  2361 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
  2362      * }</pre></blockquote>
  2363      * <p> Here is pseudocode for the resulting adapter:
  2364      * <blockquote><pre>{@code
  2365      * V target(P... p, A[i]... a[i], B... b);
  2366      * A[i] filter[i](V[i]);
  2367      * T adapter(P... p, V[i]... v[i], B... b) {
  2368      *   return target(p..., f[i](v[i])..., b...);
  2369      * }
  2370      * }</pre></blockquote>
  2371      *
  2372      * @param target the method handle to invoke after arguments are filtered
  2373      * @param pos the position of the first argument to filter
  2374      * @param filters method handles to call initially on filtered arguments
  2375      * @return method handle which incorporates the specified argument filtering logic
  2376      * @throws NullPointerException if the target is null
  2377      *                              or if the {@code filters} array is null
  2378      * @throws IllegalArgumentException if a non-null element of {@code filters}
  2379      *          does not match a corresponding argument type of target as described above,
  2380      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
  2381      *          or if the resulting method handle's type would have
  2382      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  2383      */
  2384     public static
  2385     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
  2386         MethodType targetType = target.type();
  2387         MethodHandle adapter = target;
  2388         MethodType adapterType = null;
  2389         assert((adapterType = targetType) != null);
  2390         int maxPos = targetType.parameterCount();
  2391         if (pos + filters.length > maxPos)
  2392             throw newIllegalArgumentException("too many filters");
  2393         int curPos = pos-1;  // pre-incremented
  2394         for (MethodHandle filter : filters) {
  2395             curPos += 1;
  2396             if (filter == null)  continue;  // ignore null elements of filters
  2397             adapter = filterArgument(adapter, curPos, filter);
  2398             assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null);
  2399         }
  2400         assert(adapterType.equals(adapter.type()));
  2401         return adapter;
  2402     }
  2403 
  2404     /*non-public*/ static
  2405     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
  2406         MethodType targetType = target.type();
  2407         MethodType filterType = filter.type();
  2408         if (filterType.parameterCount() != 1
  2409             || filterType.returnType() != targetType.parameterType(pos))
  2410             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
  2411         return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
  2412     }
  2413 
  2414     /**
  2415      * Adapts a target method handle by pre-processing
  2416      * a sub-sequence of its arguments with a filter (another method handle).
  2417      * The pre-processed arguments are replaced by the result (if any) of the
  2418      * filter function.
  2419      * The target is then called on the modified (usually shortened) argument list.
  2420      * <p>
  2421      * If the filter returns a value, the target must accept that value as
  2422      * its argument in position {@code pos}, preceded and/or followed by
  2423      * any arguments not passed to the filter.
  2424      * If the filter returns void, the target must accept all arguments
  2425      * not passed to the filter.
  2426      * No arguments are reordered, and a result returned from the filter
  2427      * replaces (in order) the whole subsequence of arguments originally
  2428      * passed to the adapter.
  2429      * <p>
  2430      * The argument types (if any) of the filter
  2431      * replace zero or one argument types of the target, at position {@code pos},
  2432      * in the resulting adapted method handle.
  2433      * The return type of the filter (if any) must be identical to the
  2434      * argument type of the target at position {@code pos}, and that target argument
  2435      * is supplied by the return value of the filter.
  2436      * <p>
  2437      * In all cases, {@code pos} must be greater than or equal to zero, and
  2438      * {@code pos} must also be less than or equal to the target's arity.
  2439      * <p><b>Example:</b>
  2440      * <blockquote><pre>{@code
  2441 import static java.lang.invoke.MethodHandles.*;
  2442 import static java.lang.invoke.MethodType.*;
  2443 ...
  2444 MethodHandle deepToString = publicLookup()
  2445   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
  2446 
  2447 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
  2448 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
  2449 
  2450 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
  2451 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
  2452 
  2453 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
  2454 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
  2455 assertEquals("[top, [up, down], strange]",
  2456              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
  2457 
  2458 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
  2459 assertEquals("[top, [up, down], [strange]]",
  2460              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
  2461 
  2462 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
  2463 assertEquals("[top, [[up, down, strange], charm], bottom]",
  2464              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
  2465      * }</pre></blockquote>
  2466      * <p> Here is pseudocode for the resulting adapter:
  2467      * <blockquote><pre>{@code
  2468      * T target(A...,V,C...);
  2469      * V filter(B...);
  2470      * T adapter(A... a,B... b,C... c) {
  2471      *   V v = filter(b...);
  2472      *   return target(a...,v,c...);
  2473      * }
  2474      * // and if the filter has no arguments:
  2475      * T target2(A...,V,C...);
  2476      * V filter2();
  2477      * T adapter2(A... a,C... c) {
  2478      *   V v = filter2();
  2479      *   return target2(a...,v,c...);
  2480      * }
  2481      * // and if the filter has a void return:
  2482      * T target3(A...,C...);
  2483      * void filter3(B...);
  2484      * void adapter3(A... a,B... b,C... c) {
  2485      *   filter3(b...);
  2486      *   return target3(a...,c...);
  2487      * }
  2488      * }</pre></blockquote>
  2489      * <p>
  2490      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
  2491      * one which first "folds" the affected arguments, and then drops them, in separate
  2492      * steps as follows:
  2493      * <blockquote><pre>{@code
  2494      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
  2495      * mh = MethodHandles.foldArguments(mh, coll); //step 1
  2496      * }</pre></blockquote>
  2497      * If the target method handle consumes no arguments besides than the result
  2498      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
  2499      * is equivalent to {@code filterReturnValue(coll, mh)}.
  2500      * If the filter method handle {@code coll} consumes one argument and produces
  2501      * a non-void result, then {@code collectArguments(mh, N, coll)}
  2502      * is equivalent to {@code filterArguments(mh, N, coll)}.
  2503      * Other equivalences are possible but would require argument permutation.
  2504      *
  2505      * @param target the method handle to invoke after filtering the subsequence of arguments
  2506      * @param pos the position of the first adapter argument to pass to the filter,
  2507      *            and/or the target argument which receives the result of the filter
  2508      * @param filter method handle to call on the subsequence of arguments
  2509      * @return method handle which incorporates the specified argument subsequence filtering logic
  2510      * @throws NullPointerException if either argument is null
  2511      * @throws IllegalArgumentException if the return type of {@code filter}
  2512      *          is non-void and is not the same as the {@code pos} argument of the target,
  2513      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
  2514      *          or if the resulting method handle's type would have
  2515      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
  2516      * @see MethodHandles#foldArguments
  2517      * @see MethodHandles#filterArguments
  2518      * @see MethodHandles#filterReturnValue
  2519      */
  2520     public static
  2521     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
  2522         MethodType targetType = target.type();
  2523         MethodType filterType = filter.type();
  2524         if (filterType.returnType() != void.class &&
  2525             filterType.returnType() != targetType.parameterType(pos))
  2526             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
  2527         return MethodHandleImpl.makeCollectArguments(target, filter, pos, false);
  2528     }
  2529 
  2530     /**
  2531      * Adapts a target method handle by post-processing
  2532      * its return value (if any) with a filter (another method handle).
  2533      * The result of the filter is returned from the adapter.
  2534      * <p>
  2535      * If the target returns a value, the filter must accept that value as
  2536      * its only argument.
  2537      * If the target returns void, the filter must accept no arguments.
  2538      * <p>
  2539      * The return type of the filter
  2540      * replaces the return type of the target
  2541      * in the resulting adapted method handle.
  2542      * The argument type of the filter (if any) must be identical to the
  2543      * return type of the target.
  2544      * <p><b>Example:</b>
  2545      * <blockquote><pre>{@code
  2546 import static java.lang.invoke.MethodHandles.*;
  2547 import static java.lang.invoke.MethodType.*;
  2548 ...
  2549 MethodHandle cat = lookup().findVirtual(String.class,
  2550   "concat", methodType(String.class, String.class));
  2551 MethodHandle length = lookup().findVirtual(String.class,
  2552   "length", methodType(int.class));
  2553 System.out.println((String) cat.invokeExact("x", "y")); // xy
  2554 MethodHandle f0 = filterReturnValue(cat, length);
  2555 System.out.println((int) f0.invokeExact("x", "y")); // 2
  2556      * }</pre></blockquote>
  2557      * <p> Here is pseudocode for the resulting adapter:
  2558      * <blockquote><pre>{@code
  2559      * V target(A...);
  2560      * T filter(V);
  2561      * T adapter(A... a) {
  2562      *   V v = target(a...);
  2563      *   return filter(v);
  2564      * }
  2565      * // and if the target has a void return:
  2566      * void target2(A...);
  2567      * T filter2();
  2568      * T adapter2(A... a) {
  2569      *   target2(a...);
  2570      *   return filter2();
  2571      * }
  2572      * // and if the filter has a void return:
  2573      * V target3(A...);
  2574      * void filter3(V);
  2575      * void adapter3(A... a) {
  2576      *   V v = target3(a...);
  2577      *   filter3(v);
  2578      * }
  2579      * }</pre></blockquote>
  2580      * @param target the method handle to invoke before filtering the return value
  2581      * @param filter method handle to call on the return value
  2582      * @return method handle which incorporates the specified return value filtering logic
  2583      * @throws NullPointerException if either argument is null
  2584      * @throws IllegalArgumentException if the argument list of {@code filter}
  2585      *          does not match the return type of target as described above
  2586      */
  2587     public static
  2588     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
  2589         MethodType targetType = target.type();
  2590         MethodType filterType = filter.type();
  2591         Class<?> rtype = targetType.returnType();
  2592         int filterValues = filterType.parameterCount();
  2593         if (filterValues == 0
  2594                 ? (rtype != void.class)
  2595                 : (rtype != filterType.parameterType(0)))
  2596             throw newIllegalArgumentException("target and filter types do not match", target, filter);
  2597         // result = fold( lambda(retval, arg...) { filter(retval) },
  2598         //                lambda(        arg...) { target(arg...) } )
  2599         return MethodHandleImpl.makeCollectArguments(filter, target, 0, false);
  2600     }
  2601 
  2602     /**
  2603      * Adapts a target method handle by pre-processing
  2604      * some of its arguments, and then calling the target with
  2605      * the result of the pre-processing, inserted into the original
  2606      * sequence of arguments.
  2607      * <p>
  2608      * The pre-processing is performed by {@code combiner}, a second method handle.
  2609      * Of the arguments passed to the adapter, the first {@code N} arguments
  2610      * are copied to the combiner, which is then called.
  2611      * (Here, {@code N} is defined as the parameter count of the combiner.)
  2612      * After this, control passes to the target, with any result
  2613      * from the combiner inserted before the original {@code N} incoming
  2614      * arguments.
  2615      * <p>
  2616      * If the combiner returns a value, the first parameter type of the target
  2617      * must be identical with the return type of the combiner, and the next
  2618      * {@code N} parameter types of the target must exactly match the parameters
  2619      * of the combiner.
  2620      * <p>
  2621      * If the combiner has a void return, no result will be inserted,
  2622      * and the first {@code N} parameter types of the target
  2623      * must exactly match the parameters of the combiner.
  2624      * <p>
  2625      * The resulting adapter is the same type as the target, except that the
  2626      * first parameter type is dropped,
  2627      * if it corresponds to the result of the combiner.
  2628      * <p>
  2629      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
  2630      * that either the combiner or the target does not wish to receive.
  2631      * If some of the incoming arguments are destined only for the combiner,
  2632      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
  2633      * arguments will not need to be live on the stack on entry to the
  2634      * target.)
  2635      * <p><b>Example:</b>
  2636      * <blockquote><pre>{@code
  2637 import static java.lang.invoke.MethodHandles.*;
  2638 import static java.lang.invoke.MethodType.*;
  2639 ...
  2640 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
  2641   "println", methodType(void.class, String.class))
  2642     .bindTo(System.out);
  2643 MethodHandle cat = lookup().findVirtual(String.class,
  2644   "concat", methodType(String.class, String.class));
  2645 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
  2646 MethodHandle catTrace = foldArguments(cat, trace);
  2647 // also prints "boo":
  2648 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
  2649      * }</pre></blockquote>
  2650      * <p> Here is pseudocode for the resulting adapter:
  2651      * <blockquote><pre>{@code
  2652      * // there are N arguments in A...
  2653      * T target(V, A[N]..., B...);
  2654      * V combiner(A...);
  2655      * T adapter(A... a, B... b) {
  2656      *   V v = combiner(a...);
  2657      *   return target(v, a..., b...);
  2658      * }
  2659      * // and if the combiner has a void return:
  2660      * T target2(A[N]..., B...);
  2661      * void combiner2(A...);
  2662      * T adapter2(A... a, B... b) {
  2663      *   combiner2(a...);
  2664      *   return target2(a..., b...);
  2665      * }
  2666      * }</pre></blockquote>
  2667      * @param target the method handle to invoke after arguments are combined
  2668      * @param combiner method handle to call initially on the incoming arguments
  2669      * @return method handle which incorporates the specified argument folding logic
  2670      * @throws NullPointerException if either argument is null
  2671      * @throws IllegalArgumentException if {@code combiner}'s return type
  2672      *          is non-void and not the same as the first argument type of
  2673      *          the target, or if the initial {@code N} argument types
  2674      *          of the target
  2675      *          (skipping one matching the {@code combiner}'s return type)
  2676      *          are not identical with the argument types of {@code combiner}
  2677      */
  2678     public static
  2679     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
  2680         int pos = 0;
  2681         MethodType targetType = target.type();
  2682         MethodType combinerType = combiner.type();
  2683         int foldPos = pos;
  2684         int foldArgs = combinerType.parameterCount();
  2685         int foldVals = combinerType.returnType() == void.class ? 0 : 1;
  2686         int afterInsertPos = foldPos + foldVals;
  2687         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
  2688         if (ok && !(combinerType.parameterList()
  2689                     .equals(targetType.parameterList().subList(afterInsertPos,
  2690                                                                afterInsertPos + foldArgs))))
  2691             ok = false;
  2692         if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0)))
  2693             ok = false;
  2694         if (!ok)
  2695             throw misMatchedTypes("target and combiner types", targetType, combinerType);
  2696         MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos);
  2697         return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true);
  2698     }
  2699 
  2700     /**
  2701      * Makes a method handle which adapts a target method handle,
  2702      * by guarding it with a test, a boolean-valued method handle.
  2703      * If the guard fails, a fallback handle is called instead.
  2704      * All three method handles must have the same corresponding
  2705      * argument and return types, except that the return type
  2706      * of the test must be boolean, and the test is allowed
  2707      * to have fewer arguments than the other two method handles.
  2708      * <p> Here is pseudocode for the resulting adapter:
  2709      * <blockquote><pre>{@code
  2710      * boolean test(A...);
  2711      * T target(A...,B...);
  2712      * T fallback(A...,B...);
  2713      * T adapter(A... a,B... b) {
  2714      *   if (test(a...))
  2715      *     return target(a..., b...);
  2716      *   else
  2717      *     return fallback(a..., b...);
  2718      * }
  2719      * }</pre></blockquote>
  2720      * Note that the test arguments ({@code a...} in the pseudocode) cannot
  2721      * be modified by execution of the test, and so are passed unchanged
  2722      * from the caller to the target or fallback as appropriate.
  2723      * @param test method handle used for test, must return boolean
  2724      * @param target method handle to call if test passes
  2725      * @param fallback method handle to call if test fails
  2726      * @return method handle which incorporates the specified if/then/else logic
  2727      * @throws NullPointerException if any argument is null
  2728      * @throws IllegalArgumentException if {@code test} does not return boolean,
  2729      *          or if all three method types do not match (with the return
  2730      *          type of {@code test} changed to match that of the target).
  2731      */
  2732     public static
  2733     MethodHandle guardWithTest(MethodHandle test,
  2734                                MethodHandle target,
  2735                                MethodHandle fallback) {
  2736         MethodType gtype = test.type();
  2737         MethodType ttype = target.type();
  2738         MethodType ftype = fallback.type();
  2739         if (!ttype.equals(ftype))
  2740             throw misMatchedTypes("target and fallback types", ttype, ftype);
  2741         if (gtype.returnType() != boolean.class)
  2742             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
  2743         List<Class<?>> targs = ttype.parameterList();
  2744         List<Class<?>> gargs = gtype.parameterList();
  2745         if (!targs.equals(gargs)) {
  2746             int gpc = gargs.size(), tpc = targs.size();
  2747             if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
  2748                 throw misMatchedTypes("target and test types", ttype, gtype);
  2749             test = dropArguments(test, gpc, targs.subList(gpc, tpc));
  2750             gtype = test.type();
  2751         }
  2752         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
  2753     }
  2754 
  2755     static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
  2756         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
  2757     }
  2758 
  2759     /**
  2760      * Makes a method handle which adapts a target method handle,
  2761      * by running it inside an exception handler.
  2762      * If the target returns normally, the adapter returns that value.
  2763      * If an exception matching the specified type is thrown, the fallback
  2764      * handle is called instead on the exception, plus the original arguments.
  2765      * <p>
  2766      * The target and handler must have the same corresponding
  2767      * argument and return types, except that handler may omit trailing arguments
  2768      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
  2769      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
  2770      * <p> Here is pseudocode for the resulting adapter:
  2771      * <blockquote><pre>{@code
  2772      * T target(A..., B...);
  2773      * T handler(ExType, A...);
  2774      * T adapter(A... a, B... b) {
  2775      *   try {
  2776      *     return target(a..., b...);
  2777      *   } catch (ExType ex) {
  2778      *     return handler(ex, a...);
  2779      *   }
  2780      * }
  2781      * }</pre></blockquote>
  2782      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
  2783      * be modified by execution of the target, and so are passed unchanged
  2784      * from the caller to the handler, if the handler is invoked.
  2785      * <p>
  2786      * The target and handler must return the same type, even if the handler
  2787      * always throws.  (This might happen, for instance, because the handler
  2788      * is simulating a {@code finally} clause).
  2789      * To create such a throwing handler, compose the handler creation logic
  2790      * with {@link #throwException throwException},
  2791      * in order to create a method handle of the correct return type.
  2792      * @param target method handle to call
  2793      * @param exType the type of exception which the handler will catch
  2794      * @param handler method handle to call if a matching exception is thrown
  2795      * @return method handle which incorporates the specified try/catch logic
  2796      * @throws NullPointerException if any argument is null
  2797      * @throws IllegalArgumentException if {@code handler} does not accept
  2798      *          the given exception type, or if the method handle types do
  2799      *          not match in their return types and their
  2800      *          corresponding parameters
  2801      */
  2802     public static
  2803     MethodHandle catchException(MethodHandle target,
  2804                                 Class<? extends Throwable> exType,
  2805                                 MethodHandle handler) {
  2806         MethodType ttype = target.type();
  2807         MethodType htype = handler.type();
  2808         if (htype.parameterCount() < 1 ||
  2809             !htype.parameterType(0).isAssignableFrom(exType))
  2810             throw newIllegalArgumentException("handler does not accept exception type "+exType);
  2811         if (htype.returnType() != ttype.returnType())
  2812             throw misMatchedTypes("target and handler return types", ttype, htype);
  2813         List<Class<?>> targs = ttype.parameterList();
  2814         List<Class<?>> hargs = htype.parameterList();
  2815         hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
  2816         if (!targs.equals(hargs)) {
  2817             int hpc = hargs.size(), tpc = targs.size();
  2818             if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
  2819                 throw misMatchedTypes("target and handler types", ttype, htype);
  2820             handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
  2821             htype = handler.type();
  2822         }
  2823         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
  2824     }
  2825 
  2826     /**
  2827      * Produces a method handle which will throw exceptions of the given {@code exType}.
  2828      * The method handle will accept a single argument of {@code exType},
  2829      * and immediately throw it as an exception.
  2830      * The method type will nominally specify a return of {@code returnType}.
  2831      * The return type may be anything convenient:  It doesn't matter to the
  2832      * method handle's behavior, since it will never return normally.
  2833      * @param returnType the return type of the desired method handle
  2834      * @param exType the parameter type of the desired method handle
  2835      * @return method handle which can throw the given exceptions
  2836      * @throws NullPointerException if either argument is null
  2837      */
  2838     public static
  2839     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
  2840         if (!Throwable.class.isAssignableFrom(exType))
  2841             throw new ClassCastException(exType.getName());
  2842         return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
  2843     }
  2844 }