emul/compact/src/main/java/java/math/BitSieve.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 07 Sep 2013 13:51:24 +0200
branchjdk7-b147
changeset 1258 724f3e1ea53e
permissions -rw-r--r--
Additional set of classes to make porting of lookup library more easier
     1 /*
     2  * Copyright (c) 1999, 2007, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.math;
    27 
    28 /**
    29  * A simple bit sieve used for finding prime number candidates. Allows setting
    30  * and clearing of bits in a storage array. The size of the sieve is assumed to
    31  * be constant to reduce overhead. All the bits of a new bitSieve are zero, and
    32  * bits are removed from it by setting them.
    33  *
    34  * To reduce storage space and increase efficiency, no even numbers are
    35  * represented in the sieve (each bit in the sieve represents an odd number).
    36  * The relationship between the index of a bit and the number it represents is
    37  * given by
    38  * N = offset + (2*index + 1);
    39  * Where N is the integer represented by a bit in the sieve, offset is some
    40  * even integer offset indicating where the sieve begins, and index is the
    41  * index of a bit in the sieve array.
    42  *
    43  * @see     BigInteger
    44  * @author  Michael McCloskey
    45  * @since   1.3
    46  */
    47 class BitSieve {
    48     /**
    49      * Stores the bits in this bitSieve.
    50      */
    51     private long bits[];
    52 
    53     /**
    54      * Length is how many bits this sieve holds.
    55      */
    56     private int length;
    57 
    58     /**
    59      * A small sieve used to filter out multiples of small primes in a search
    60      * sieve.
    61      */
    62     private static BitSieve smallSieve = new BitSieve();
    63 
    64     /**
    65      * Construct a "small sieve" with a base of 0.  This constructor is
    66      * used internally to generate the set of "small primes" whose multiples
    67      * are excluded from sieves generated by the main (package private)
    68      * constructor, BitSieve(BigInteger base, int searchLen).  The length
    69      * of the sieve generated by this constructor was chosen for performance;
    70      * it controls a tradeoff between how much time is spent constructing
    71      * other sieves, and how much time is wasted testing composite candidates
    72      * for primality.  The length was chosen experimentally to yield good
    73      * performance.
    74      */
    75     private BitSieve() {
    76         length = 150 * 64;
    77         bits = new long[(unitIndex(length - 1) + 1)];
    78 
    79         // Mark 1 as composite
    80         set(0);
    81         int nextIndex = 1;
    82         int nextPrime = 3;
    83 
    84         // Find primes and remove their multiples from sieve
    85         do {
    86             sieveSingle(length, nextIndex + nextPrime, nextPrime);
    87             nextIndex = sieveSearch(length, nextIndex + 1);
    88             nextPrime = 2*nextIndex + 1;
    89         } while((nextIndex > 0) && (nextPrime < length));
    90     }
    91 
    92     /**
    93      * Construct a bit sieve of searchLen bits used for finding prime number
    94      * candidates. The new sieve begins at the specified base, which must
    95      * be even.
    96      */
    97     BitSieve(BigInteger base, int searchLen) {
    98         /*
    99          * Candidates are indicated by clear bits in the sieve. As a candidates
   100          * nonprimality is calculated, a bit is set in the sieve to eliminate
   101          * it. To reduce storage space and increase efficiency, no even numbers
   102          * are represented in the sieve (each bit in the sieve represents an
   103          * odd number).
   104          */
   105         bits = new long[(unitIndex(searchLen-1) + 1)];
   106         length = searchLen;
   107         int start = 0;
   108 
   109         int step = smallSieve.sieveSearch(smallSieve.length, start);
   110         int convertedStep = (step *2) + 1;
   111 
   112         // Construct the large sieve at an even offset specified by base
   113         MutableBigInteger b = new MutableBigInteger(base);
   114         MutableBigInteger q = new MutableBigInteger();
   115         do {
   116             // Calculate base mod convertedStep
   117             start = b.divideOneWord(convertedStep, q);
   118 
   119             // Take each multiple of step out of sieve
   120             start = convertedStep - start;
   121             if (start%2 == 0)
   122                 start += convertedStep;
   123             sieveSingle(searchLen, (start-1)/2, convertedStep);
   124 
   125             // Find next prime from small sieve
   126             step = smallSieve.sieveSearch(smallSieve.length, step+1);
   127             convertedStep = (step *2) + 1;
   128         } while (step > 0);
   129     }
   130 
   131     /**
   132      * Given a bit index return unit index containing it.
   133      */
   134     private static int unitIndex(int bitIndex) {
   135         return bitIndex >>> 6;
   136     }
   137 
   138     /**
   139      * Return a unit that masks the specified bit in its unit.
   140      */
   141     private static long bit(int bitIndex) {
   142         return 1L << (bitIndex & ((1<<6) - 1));
   143     }
   144 
   145     /**
   146      * Get the value of the bit at the specified index.
   147      */
   148     private boolean get(int bitIndex) {
   149         int unitIndex = unitIndex(bitIndex);
   150         return ((bits[unitIndex] & bit(bitIndex)) != 0);
   151     }
   152 
   153     /**
   154      * Set the bit at the specified index.
   155      */
   156     private void set(int bitIndex) {
   157         int unitIndex = unitIndex(bitIndex);
   158         bits[unitIndex] |= bit(bitIndex);
   159     }
   160 
   161     /**
   162      * This method returns the index of the first clear bit in the search
   163      * array that occurs at or after start. It will not search past the
   164      * specified limit. It returns -1 if there is no such clear bit.
   165      */
   166     private int sieveSearch(int limit, int start) {
   167         if (start >= limit)
   168             return -1;
   169 
   170         int index = start;
   171         do {
   172             if (!get(index))
   173                 return index;
   174             index++;
   175         } while(index < limit-1);
   176         return -1;
   177     }
   178 
   179     /**
   180      * Sieve a single set of multiples out of the sieve. Begin to remove
   181      * multiples of the specified step starting at the specified start index,
   182      * up to the specified limit.
   183      */
   184     private void sieveSingle(int limit, int start, int step) {
   185         while(start < limit) {
   186             set(start);
   187             start += step;
   188         }
   189     }
   190 
   191     /**
   192      * Test probable primes in the sieve and return successful candidates.
   193      */
   194     BigInteger retrieve(BigInteger initValue, int certainty, java.util.Random random) {
   195         // Examine the sieve one long at a time to find possible primes
   196         int offset = 1;
   197         for (int i=0; i<bits.length; i++) {
   198             long nextLong = ~bits[i];
   199             for (int j=0; j<64; j++) {
   200                 if ((nextLong & 1) == 1) {
   201                     BigInteger candidate = initValue.add(
   202                                            BigInteger.valueOf(offset));
   203                     if (candidate.primeToCertainty(certainty, random))
   204                         return candidate;
   205                 }
   206                 nextLong >>>= 1;
   207                 offset+=2;
   208             }
   209         }
   210         return null;
   211     }
   212 }