emul/compact/src/main/java/java/util/IdentityHashMap.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 07 Sep 2013 13:51:24 +0200
branchjdk7-b147
changeset 1258 724f3e1ea53e
permissions -rw-r--r--
Additional set of classes to make porting of lookup library more easier
     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.util;
    27 import java.io.*;
    28 
    29 /**
    30  * This class implements the <tt>Map</tt> interface with a hash table, using
    31  * reference-equality in place of object-equality when comparing keys (and
    32  * values).  In other words, in an <tt>IdentityHashMap</tt>, two keys
    33  * <tt>k1</tt> and <tt>k2</tt> are considered equal if and only if
    34  * <tt>(k1==k2)</tt>.  (In normal <tt>Map</tt> implementations (like
    35  * <tt>HashMap</tt>) two keys <tt>k1</tt> and <tt>k2</tt> are considered equal
    36  * if and only if <tt>(k1==null ? k2==null : k1.equals(k2))</tt>.)
    37  *
    38  * <p><b>This class is <i>not</i> a general-purpose <tt>Map</tt>
    39  * implementation!  While this class implements the <tt>Map</tt> interface, it
    40  * intentionally violates <tt>Map's</tt> general contract, which mandates the
    41  * use of the <tt>equals</tt> method when comparing objects.  This class is
    42  * designed for use only in the rare cases wherein reference-equality
    43  * semantics are required.</b>
    44  *
    45  * <p>A typical use of this class is <i>topology-preserving object graph
    46  * transformations</i>, such as serialization or deep-copying.  To perform such
    47  * a transformation, a program must maintain a "node table" that keeps track
    48  * of all the object references that have already been processed.  The node
    49  * table must not equate distinct objects even if they happen to be equal.
    50  * Another typical use of this class is to maintain <i>proxy objects</i>.  For
    51  * example, a debugging facility might wish to maintain a proxy object for
    52  * each object in the program being debugged.
    53  *
    54  * <p>This class provides all of the optional map operations, and permits
    55  * <tt>null</tt> values and the <tt>null</tt> key.  This class makes no
    56  * guarantees as to the order of the map; in particular, it does not guarantee
    57  * that the order will remain constant over time.
    58  *
    59  * <p>This class provides constant-time performance for the basic
    60  * operations (<tt>get</tt> and <tt>put</tt>), assuming the system
    61  * identity hash function ({@link System#identityHashCode(Object)})
    62  * disperses elements properly among the buckets.
    63  *
    64  * <p>This class has one tuning parameter (which affects performance but not
    65  * semantics): <i>expected maximum size</i>.  This parameter is the maximum
    66  * number of key-value mappings that the map is expected to hold.  Internally,
    67  * this parameter is used to determine the number of buckets initially
    68  * comprising the hash table.  The precise relationship between the expected
    69  * maximum size and the number of buckets is unspecified.
    70  *
    71  * <p>If the size of the map (the number of key-value mappings) sufficiently
    72  * exceeds the expected maximum size, the number of buckets is increased
    73  * Increasing the number of buckets ("rehashing") may be fairly expensive, so
    74  * it pays to create identity hash maps with a sufficiently large expected
    75  * maximum size.  On the other hand, iteration over collection views requires
    76  * time proportional to the number of buckets in the hash table, so it
    77  * pays not to set the expected maximum size too high if you are especially
    78  * concerned with iteration performance or memory usage.
    79  *
    80  * <p><strong>Note that this implementation is not synchronized.</strong>
    81  * If multiple threads access an identity hash map concurrently, and at
    82  * least one of the threads modifies the map structurally, it <i>must</i>
    83  * be synchronized externally.  (A structural modification is any operation
    84  * that adds or deletes one or more mappings; merely changing the value
    85  * associated with a key that an instance already contains is not a
    86  * structural modification.)  This is typically accomplished by
    87  * synchronizing on some object that naturally encapsulates the map.
    88  *
    89  * If no such object exists, the map should be "wrapped" using the
    90  * {@link Collections#synchronizedMap Collections.synchronizedMap}
    91  * method.  This is best done at creation time, to prevent accidental
    92  * unsynchronized access to the map:<pre>
    93  *   Map m = Collections.synchronizedMap(new IdentityHashMap(...));</pre>
    94  *
    95  * <p>The iterators returned by the <tt>iterator</tt> method of the
    96  * collections returned by all of this class's "collection view
    97  * methods" are <i>fail-fast</i>: if the map is structurally modified
    98  * at any time after the iterator is created, in any way except
    99  * through the iterator's own <tt>remove</tt> method, the iterator
   100  * will throw a {@link ConcurrentModificationException}.  Thus, in the
   101  * face of concurrent modification, the iterator fails quickly and
   102  * cleanly, rather than risking arbitrary, non-deterministic behavior
   103  * at an undetermined time in the future.
   104  *
   105  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
   106  * as it is, generally speaking, impossible to make any hard guarantees in the
   107  * presence of unsynchronized concurrent modification.  Fail-fast iterators
   108  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
   109  * Therefore, it would be wrong to write a program that depended on this
   110  * exception for its correctness: <i>fail-fast iterators should be used only
   111  * to detect bugs.</i>
   112  *
   113  * <p>Implementation note: This is a simple <i>linear-probe</i> hash table,
   114  * as described for example in texts by Sedgewick and Knuth.  The array
   115  * alternates holding keys and values.  (This has better locality for large
   116  * tables than does using separate arrays.)  For many JRE implementations
   117  * and operation mixes, this class will yield better performance than
   118  * {@link HashMap} (which uses <i>chaining</i> rather than linear-probing).
   119  *
   120  * <p>This class is a member of the
   121  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
   122  * Java Collections Framework</a>.
   123  *
   124  * @see     System#identityHashCode(Object)
   125  * @see     Object#hashCode()
   126  * @see     Collection
   127  * @see     Map
   128  * @see     HashMap
   129  * @see     TreeMap
   130  * @author  Doug Lea and Josh Bloch
   131  * @since   1.4
   132  */
   133 
   134 public class IdentityHashMap<K,V>
   135     extends AbstractMap<K,V>
   136     implements Map<K,V>, java.io.Serializable, Cloneable
   137 {
   138     /**
   139      * The initial capacity used by the no-args constructor.
   140      * MUST be a power of two.  The value 32 corresponds to the
   141      * (specified) expected maximum size of 21, given a load factor
   142      * of 2/3.
   143      */
   144     private static final int DEFAULT_CAPACITY = 32;
   145 
   146     /**
   147      * The minimum capacity, used if a lower value is implicitly specified
   148      * by either of the constructors with arguments.  The value 4 corresponds
   149      * to an expected maximum size of 2, given a load factor of 2/3.
   150      * MUST be a power of two.
   151      */
   152     private static final int MINIMUM_CAPACITY = 4;
   153 
   154     /**
   155      * The maximum capacity, used if a higher value is implicitly specified
   156      * by either of the constructors with arguments.
   157      * MUST be a power of two <= 1<<29.
   158      */
   159     private static final int MAXIMUM_CAPACITY = 1 << 29;
   160 
   161     /**
   162      * The table, resized as necessary. Length MUST always be a power of two.
   163      */
   164     private transient Object[] table;
   165 
   166     /**
   167      * The number of key-value mappings contained in this identity hash map.
   168      *
   169      * @serial
   170      */
   171     private int size;
   172 
   173     /**
   174      * The number of modifications, to support fast-fail iterators
   175      */
   176     private transient int modCount;
   177 
   178     /**
   179      * The next size value at which to resize (capacity * load factor).
   180      */
   181     private transient int threshold;
   182 
   183     /**
   184      * Value representing null keys inside tables.
   185      */
   186     private static final Object NULL_KEY = new Object();
   187 
   188     /**
   189      * Use NULL_KEY for key if it is null.
   190      */
   191     private static Object maskNull(Object key) {
   192         return (key == null ? NULL_KEY : key);
   193     }
   194 
   195     /**
   196      * Returns internal representation of null key back to caller as null.
   197      */
   198     private static Object unmaskNull(Object key) {
   199         return (key == NULL_KEY ? null : key);
   200     }
   201 
   202     /**
   203      * Constructs a new, empty identity hash map with a default expected
   204      * maximum size (21).
   205      */
   206     public IdentityHashMap() {
   207         init(DEFAULT_CAPACITY);
   208     }
   209 
   210     /**
   211      * Constructs a new, empty map with the specified expected maximum size.
   212      * Putting more than the expected number of key-value mappings into
   213      * the map may cause the internal data structure to grow, which may be
   214      * somewhat time-consuming.
   215      *
   216      * @param expectedMaxSize the expected maximum size of the map
   217      * @throws IllegalArgumentException if <tt>expectedMaxSize</tt> is negative
   218      */
   219     public IdentityHashMap(int expectedMaxSize) {
   220         if (expectedMaxSize < 0)
   221             throw new IllegalArgumentException("expectedMaxSize is negative: "
   222                                                + expectedMaxSize);
   223         init(capacity(expectedMaxSize));
   224     }
   225 
   226     /**
   227      * Returns the appropriate capacity for the specified expected maximum
   228      * size.  Returns the smallest power of two between MINIMUM_CAPACITY
   229      * and MAXIMUM_CAPACITY, inclusive, that is greater than
   230      * (3 * expectedMaxSize)/2, if such a number exists.  Otherwise
   231      * returns MAXIMUM_CAPACITY.  If (3 * expectedMaxSize)/2 is negative, it
   232      * is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned.
   233      */
   234     private int capacity(int expectedMaxSize) {
   235         // Compute min capacity for expectedMaxSize given a load factor of 2/3
   236         int minCapacity = (3 * expectedMaxSize)/2;
   237 
   238         // Compute the appropriate capacity
   239         int result;
   240         if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) {
   241             result = MAXIMUM_CAPACITY;
   242         } else {
   243             result = MINIMUM_CAPACITY;
   244             while (result < minCapacity)
   245                 result <<= 1;
   246         }
   247         return result;
   248     }
   249 
   250     /**
   251      * Initializes object to be an empty map with the specified initial
   252      * capacity, which is assumed to be a power of two between
   253      * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
   254      */
   255     private void init(int initCapacity) {
   256         // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
   257         // assert initCapacity >= MINIMUM_CAPACITY;
   258         // assert initCapacity <= MAXIMUM_CAPACITY;
   259 
   260         threshold = (initCapacity * 2)/3;
   261         table = new Object[2 * initCapacity];
   262     }
   263 
   264     /**
   265      * Constructs a new identity hash map containing the keys-value mappings
   266      * in the specified map.
   267      *
   268      * @param m the map whose mappings are to be placed into this map
   269      * @throws NullPointerException if the specified map is null
   270      */
   271     public IdentityHashMap(Map<? extends K, ? extends V> m) {
   272         // Allow for a bit of growth
   273         this((int) ((1 + m.size()) * 1.1));
   274         putAll(m);
   275     }
   276 
   277     /**
   278      * Returns the number of key-value mappings in this identity hash map.
   279      *
   280      * @return the number of key-value mappings in this map
   281      */
   282     public int size() {
   283         return size;
   284     }
   285 
   286     /**
   287      * Returns <tt>true</tt> if this identity hash map contains no key-value
   288      * mappings.
   289      *
   290      * @return <tt>true</tt> if this identity hash map contains no key-value
   291      *         mappings
   292      */
   293     public boolean isEmpty() {
   294         return size == 0;
   295     }
   296 
   297     /**
   298      * Returns index for Object x.
   299      */
   300     private static int hash(Object x, int length) {
   301         int h = System.identityHashCode(x);
   302         // Multiply by -127, and left-shift to use least bit as part of hash
   303         return ((h << 1) - (h << 8)) & (length - 1);
   304     }
   305 
   306     /**
   307      * Circularly traverses table of size len.
   308      */
   309     private static int nextKeyIndex(int i, int len) {
   310         return (i + 2 < len ? i + 2 : 0);
   311     }
   312 
   313     /**
   314      * Returns the value to which the specified key is mapped,
   315      * or {@code null} if this map contains no mapping for the key.
   316      *
   317      * <p>More formally, if this map contains a mapping from a key
   318      * {@code k} to a value {@code v} such that {@code (key == k)},
   319      * then this method returns {@code v}; otherwise it returns
   320      * {@code null}.  (There can be at most one such mapping.)
   321      *
   322      * <p>A return value of {@code null} does not <i>necessarily</i>
   323      * indicate that the map contains no mapping for the key; it's also
   324      * possible that the map explicitly maps the key to {@code null}.
   325      * The {@link #containsKey containsKey} operation may be used to
   326      * distinguish these two cases.
   327      *
   328      * @see #put(Object, Object)
   329      */
   330     public V get(Object key) {
   331         Object k = maskNull(key);
   332         Object[] tab = table;
   333         int len = tab.length;
   334         int i = hash(k, len);
   335         while (true) {
   336             Object item = tab[i];
   337             if (item == k)
   338                 return (V) tab[i + 1];
   339             if (item == null)
   340                 return null;
   341             i = nextKeyIndex(i, len);
   342         }
   343     }
   344 
   345     /**
   346      * Tests whether the specified object reference is a key in this identity
   347      * hash map.
   348      *
   349      * @param   key   possible key
   350      * @return  <code>true</code> if the specified object reference is a key
   351      *          in this map
   352      * @see     #containsValue(Object)
   353      */
   354     public boolean containsKey(Object key) {
   355         Object k = maskNull(key);
   356         Object[] tab = table;
   357         int len = tab.length;
   358         int i = hash(k, len);
   359         while (true) {
   360             Object item = tab[i];
   361             if (item == k)
   362                 return true;
   363             if (item == null)
   364                 return false;
   365             i = nextKeyIndex(i, len);
   366         }
   367     }
   368 
   369     /**
   370      * Tests whether the specified object reference is a value in this identity
   371      * hash map.
   372      *
   373      * @param value value whose presence in this map is to be tested
   374      * @return <tt>true</tt> if this map maps one or more keys to the
   375      *         specified object reference
   376      * @see     #containsKey(Object)
   377      */
   378     public boolean containsValue(Object value) {
   379         Object[] tab = table;
   380         for (int i = 1; i < tab.length; i += 2)
   381             if (tab[i] == value && tab[i - 1] != null)
   382                 return true;
   383 
   384         return false;
   385     }
   386 
   387     /**
   388      * Tests if the specified key-value mapping is in the map.
   389      *
   390      * @param   key   possible key
   391      * @param   value possible value
   392      * @return  <code>true</code> if and only if the specified key-value
   393      *          mapping is in the map
   394      */
   395     private boolean containsMapping(Object key, Object value) {
   396         Object k = maskNull(key);
   397         Object[] tab = table;
   398         int len = tab.length;
   399         int i = hash(k, len);
   400         while (true) {
   401             Object item = tab[i];
   402             if (item == k)
   403                 return tab[i + 1] == value;
   404             if (item == null)
   405                 return false;
   406             i = nextKeyIndex(i, len);
   407         }
   408     }
   409 
   410     /**
   411      * Associates the specified value with the specified key in this identity
   412      * hash map.  If the map previously contained a mapping for the key, the
   413      * old value is replaced.
   414      *
   415      * @param key the key with which the specified value is to be associated
   416      * @param value the value to be associated with the specified key
   417      * @return the previous value associated with <tt>key</tt>, or
   418      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
   419      *         (A <tt>null</tt> return can also indicate that the map
   420      *         previously associated <tt>null</tt> with <tt>key</tt>.)
   421      * @see     Object#equals(Object)
   422      * @see     #get(Object)
   423      * @see     #containsKey(Object)
   424      */
   425     public V put(K key, V value) {
   426         Object k = maskNull(key);
   427         Object[] tab = table;
   428         int len = tab.length;
   429         int i = hash(k, len);
   430 
   431         Object item;
   432         while ( (item = tab[i]) != null) {
   433             if (item == k) {
   434                 V oldValue = (V) tab[i + 1];
   435                 tab[i + 1] = value;
   436                 return oldValue;
   437             }
   438             i = nextKeyIndex(i, len);
   439         }
   440 
   441         modCount++;
   442         tab[i] = k;
   443         tab[i + 1] = value;
   444         if (++size >= threshold)
   445             resize(len); // len == 2 * current capacity.
   446         return null;
   447     }
   448 
   449     /**
   450      * Resize the table to hold given capacity.
   451      *
   452      * @param newCapacity the new capacity, must be a power of two.
   453      */
   454     private void resize(int newCapacity) {
   455         // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
   456         int newLength = newCapacity * 2;
   457 
   458         Object[] oldTable = table;
   459         int oldLength = oldTable.length;
   460         if (oldLength == 2*MAXIMUM_CAPACITY) { // can't expand any further
   461             if (threshold == MAXIMUM_CAPACITY-1)
   462                 throw new IllegalStateException("Capacity exhausted.");
   463             threshold = MAXIMUM_CAPACITY-1;  // Gigantic map!
   464             return;
   465         }
   466         if (oldLength >= newLength)
   467             return;
   468 
   469         Object[] newTable = new Object[newLength];
   470         threshold = newLength / 3;
   471 
   472         for (int j = 0; j < oldLength; j += 2) {
   473             Object key = oldTable[j];
   474             if (key != null) {
   475                 Object value = oldTable[j+1];
   476                 oldTable[j] = null;
   477                 oldTable[j+1] = null;
   478                 int i = hash(key, newLength);
   479                 while (newTable[i] != null)
   480                     i = nextKeyIndex(i, newLength);
   481                 newTable[i] = key;
   482                 newTable[i + 1] = value;
   483             }
   484         }
   485         table = newTable;
   486     }
   487 
   488     /**
   489      * Copies all of the mappings from the specified map to this map.
   490      * These mappings will replace any mappings that this map had for
   491      * any of the keys currently in the specified map.
   492      *
   493      * @param m mappings to be stored in this map
   494      * @throws NullPointerException if the specified map is null
   495      */
   496     public void putAll(Map<? extends K, ? extends V> m) {
   497         int n = m.size();
   498         if (n == 0)
   499             return;
   500         if (n > threshold) // conservatively pre-expand
   501             resize(capacity(n));
   502 
   503         for (Entry<? extends K, ? extends V> e : m.entrySet())
   504             put(e.getKey(), e.getValue());
   505     }
   506 
   507     /**
   508      * Removes the mapping for this key from this map if present.
   509      *
   510      * @param key key whose mapping is to be removed from the map
   511      * @return the previous value associated with <tt>key</tt>, or
   512      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
   513      *         (A <tt>null</tt> return can also indicate that the map
   514      *         previously associated <tt>null</tt> with <tt>key</tt>.)
   515      */
   516     public V remove(Object key) {
   517         Object k = maskNull(key);
   518         Object[] tab = table;
   519         int len = tab.length;
   520         int i = hash(k, len);
   521 
   522         while (true) {
   523             Object item = tab[i];
   524             if (item == k) {
   525                 modCount++;
   526                 size--;
   527                 V oldValue = (V) tab[i + 1];
   528                 tab[i + 1] = null;
   529                 tab[i] = null;
   530                 closeDeletion(i);
   531                 return oldValue;
   532             }
   533             if (item == null)
   534                 return null;
   535             i = nextKeyIndex(i, len);
   536         }
   537 
   538     }
   539 
   540     /**
   541      * Removes the specified key-value mapping from the map if it is present.
   542      *
   543      * @param   key   possible key
   544      * @param   value possible value
   545      * @return  <code>true</code> if and only if the specified key-value
   546      *          mapping was in the map
   547      */
   548     private boolean removeMapping(Object key, Object value) {
   549         Object k = maskNull(key);
   550         Object[] tab = table;
   551         int len = tab.length;
   552         int i = hash(k, len);
   553 
   554         while (true) {
   555             Object item = tab[i];
   556             if (item == k) {
   557                 if (tab[i + 1] != value)
   558                     return false;
   559                 modCount++;
   560                 size--;
   561                 tab[i] = null;
   562                 tab[i + 1] = null;
   563                 closeDeletion(i);
   564                 return true;
   565             }
   566             if (item == null)
   567                 return false;
   568             i = nextKeyIndex(i, len);
   569         }
   570     }
   571 
   572     /**
   573      * Rehash all possibly-colliding entries following a
   574      * deletion. This preserves the linear-probe
   575      * collision properties required by get, put, etc.
   576      *
   577      * @param d the index of a newly empty deleted slot
   578      */
   579     private void closeDeletion(int d) {
   580         // Adapted from Knuth Section 6.4 Algorithm R
   581         Object[] tab = table;
   582         int len = tab.length;
   583 
   584         // Look for items to swap into newly vacated slot
   585         // starting at index immediately following deletion,
   586         // and continuing until a null slot is seen, indicating
   587         // the end of a run of possibly-colliding keys.
   588         Object item;
   589         for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
   590              i = nextKeyIndex(i, len) ) {
   591             // The following test triggers if the item at slot i (which
   592             // hashes to be at slot r) should take the spot vacated by d.
   593             // If so, we swap it in, and then continue with d now at the
   594             // newly vacated i.  This process will terminate when we hit
   595             // the null slot at the end of this run.
   596             // The test is messy because we are using a circular table.
   597             int r = hash(item, len);
   598             if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
   599                 tab[d] = item;
   600                 tab[d + 1] = tab[i + 1];
   601                 tab[i] = null;
   602                 tab[i + 1] = null;
   603                 d = i;
   604             }
   605         }
   606     }
   607 
   608     /**
   609      * Removes all of the mappings from this map.
   610      * The map will be empty after this call returns.
   611      */
   612     public void clear() {
   613         modCount++;
   614         Object[] tab = table;
   615         for (int i = 0; i < tab.length; i++)
   616             tab[i] = null;
   617         size = 0;
   618     }
   619 
   620     /**
   621      * Compares the specified object with this map for equality.  Returns
   622      * <tt>true</tt> if the given object is also a map and the two maps
   623      * represent identical object-reference mappings.  More formally, this
   624      * map is equal to another map <tt>m</tt> if and only if
   625      * <tt>this.entrySet().equals(m.entrySet())</tt>.
   626      *
   627      * <p><b>Owing to the reference-equality-based semantics of this map it is
   628      * possible that the symmetry and transitivity requirements of the
   629      * <tt>Object.equals</tt> contract may be violated if this map is compared
   630      * to a normal map.  However, the <tt>Object.equals</tt> contract is
   631      * guaranteed to hold among <tt>IdentityHashMap</tt> instances.</b>
   632      *
   633      * @param  o object to be compared for equality with this map
   634      * @return <tt>true</tt> if the specified object is equal to this map
   635      * @see Object#equals(Object)
   636      */
   637     public boolean equals(Object o) {
   638         if (o == this) {
   639             return true;
   640         } else if (o instanceof IdentityHashMap) {
   641             IdentityHashMap m = (IdentityHashMap) o;
   642             if (m.size() != size)
   643                 return false;
   644 
   645             Object[] tab = m.table;
   646             for (int i = 0; i < tab.length; i+=2) {
   647                 Object k = tab[i];
   648                 if (k != null && !containsMapping(k, tab[i + 1]))
   649                     return false;
   650             }
   651             return true;
   652         } else if (o instanceof Map) {
   653             Map m = (Map)o;
   654             return entrySet().equals(m.entrySet());
   655         } else {
   656             return false;  // o is not a Map
   657         }
   658     }
   659 
   660     /**
   661      * Returns the hash code value for this map.  The hash code of a map is
   662      * defined to be the sum of the hash codes of each entry in the map's
   663      * <tt>entrySet()</tt> view.  This ensures that <tt>m1.equals(m2)</tt>
   664      * implies that <tt>m1.hashCode()==m2.hashCode()</tt> for any two
   665      * <tt>IdentityHashMap</tt> instances <tt>m1</tt> and <tt>m2</tt>, as
   666      * required by the general contract of {@link Object#hashCode}.
   667      *
   668      * <p><b>Owing to the reference-equality-based semantics of the
   669      * <tt>Map.Entry</tt> instances in the set returned by this map's
   670      * <tt>entrySet</tt> method, it is possible that the contractual
   671      * requirement of <tt>Object.hashCode</tt> mentioned in the previous
   672      * paragraph will be violated if one of the two objects being compared is
   673      * an <tt>IdentityHashMap</tt> instance and the other is a normal map.</b>
   674      *
   675      * @return the hash code value for this map
   676      * @see Object#equals(Object)
   677      * @see #equals(Object)
   678      */
   679     public int hashCode() {
   680         int result = 0;
   681         Object[] tab = table;
   682         for (int i = 0; i < tab.length; i +=2) {
   683             Object key = tab[i];
   684             if (key != null) {
   685                 Object k = unmaskNull(key);
   686                 result += System.identityHashCode(k) ^
   687                           System.identityHashCode(tab[i + 1]);
   688             }
   689         }
   690         return result;
   691     }
   692 
   693     /**
   694      * Returns a shallow copy of this identity hash map: the keys and values
   695      * themselves are not cloned.
   696      *
   697      * @return a shallow copy of this map
   698      */
   699     public Object clone() {
   700         try {
   701             IdentityHashMap<K,V> m = (IdentityHashMap<K,V>) super.clone();
   702             m.entrySet = null;
   703             m.table = table.clone();
   704             return m;
   705         } catch (CloneNotSupportedException e) {
   706             throw new InternalError();
   707         }
   708     }
   709 
   710     private abstract class IdentityHashMapIterator<T> implements Iterator<T> {
   711         int index = (size != 0 ? 0 : table.length); // current slot.
   712         int expectedModCount = modCount; // to support fast-fail
   713         int lastReturnedIndex = -1;      // to allow remove()
   714         boolean indexValid; // To avoid unnecessary next computation
   715         Object[] traversalTable = table; // reference to main table or copy
   716 
   717         public boolean hasNext() {
   718             Object[] tab = traversalTable;
   719             for (int i = index; i < tab.length; i+=2) {
   720                 Object key = tab[i];
   721                 if (key != null) {
   722                     index = i;
   723                     return indexValid = true;
   724                 }
   725             }
   726             index = tab.length;
   727             return false;
   728         }
   729 
   730         protected int nextIndex() {
   731             if (modCount != expectedModCount)
   732                 throw new ConcurrentModificationException();
   733             if (!indexValid && !hasNext())
   734                 throw new NoSuchElementException();
   735 
   736             indexValid = false;
   737             lastReturnedIndex = index;
   738             index += 2;
   739             return lastReturnedIndex;
   740         }
   741 
   742         public void remove() {
   743             if (lastReturnedIndex == -1)
   744                 throw new IllegalStateException();
   745             if (modCount != expectedModCount)
   746                 throw new ConcurrentModificationException();
   747 
   748             expectedModCount = ++modCount;
   749             int deletedSlot = lastReturnedIndex;
   750             lastReturnedIndex = -1;
   751             // back up index to revisit new contents after deletion
   752             index = deletedSlot;
   753             indexValid = false;
   754 
   755             // Removal code proceeds as in closeDeletion except that
   756             // it must catch the rare case where an element already
   757             // seen is swapped into a vacant slot that will be later
   758             // traversed by this iterator. We cannot allow future
   759             // next() calls to return it again.  The likelihood of
   760             // this occurring under 2/3 load factor is very slim, but
   761             // when it does happen, we must make a copy of the rest of
   762             // the table to use for the rest of the traversal. Since
   763             // this can only happen when we are near the end of the table,
   764             // even in these rare cases, this is not very expensive in
   765             // time or space.
   766 
   767             Object[] tab = traversalTable;
   768             int len = tab.length;
   769 
   770             int d = deletedSlot;
   771             K key = (K) tab[d];
   772             tab[d] = null;        // vacate the slot
   773             tab[d + 1] = null;
   774 
   775             // If traversing a copy, remove in real table.
   776             // We can skip gap-closure on copy.
   777             if (tab != IdentityHashMap.this.table) {
   778                 IdentityHashMap.this.remove(key);
   779                 expectedModCount = modCount;
   780                 return;
   781             }
   782 
   783             size--;
   784 
   785             Object item;
   786             for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
   787                  i = nextKeyIndex(i, len)) {
   788                 int r = hash(item, len);
   789                 // See closeDeletion for explanation of this conditional
   790                 if ((i < r && (r <= d || d <= i)) ||
   791                     (r <= d && d <= i)) {
   792 
   793                     // If we are about to swap an already-seen element
   794                     // into a slot that may later be returned by next(),
   795                     // then clone the rest of table for use in future
   796                     // next() calls. It is OK that our copy will have
   797                     // a gap in the "wrong" place, since it will never
   798                     // be used for searching anyway.
   799 
   800                     if (i < deletedSlot && d >= deletedSlot &&
   801                         traversalTable == IdentityHashMap.this.table) {
   802                         int remaining = len - deletedSlot;
   803                         Object[] newTable = new Object[remaining];
   804                         System.arraycopy(tab, deletedSlot,
   805                                          newTable, 0, remaining);
   806                         traversalTable = newTable;
   807                         index = 0;
   808                     }
   809 
   810                     tab[d] = item;
   811                     tab[d + 1] = tab[i + 1];
   812                     tab[i] = null;
   813                     tab[i + 1] = null;
   814                     d = i;
   815                 }
   816             }
   817         }
   818     }
   819 
   820     private class KeyIterator extends IdentityHashMapIterator<K> {
   821         public K next() {
   822             return (K) unmaskNull(traversalTable[nextIndex()]);
   823         }
   824     }
   825 
   826     private class ValueIterator extends IdentityHashMapIterator<V> {
   827         public V next() {
   828             return (V) traversalTable[nextIndex() + 1];
   829         }
   830     }
   831 
   832     private class EntryIterator
   833         extends IdentityHashMapIterator<Map.Entry<K,V>>
   834     {
   835         private Entry lastReturnedEntry = null;
   836 
   837         public Map.Entry<K,V> next() {
   838             lastReturnedEntry = new Entry(nextIndex());
   839             return lastReturnedEntry;
   840         }
   841 
   842         public void remove() {
   843             lastReturnedIndex =
   844                 ((null == lastReturnedEntry) ? -1 : lastReturnedEntry.index);
   845             super.remove();
   846             lastReturnedEntry.index = lastReturnedIndex;
   847             lastReturnedEntry = null;
   848         }
   849 
   850         private class Entry implements Map.Entry<K,V> {
   851             private int index;
   852 
   853             private Entry(int index) {
   854                 this.index = index;
   855             }
   856 
   857             public K getKey() {
   858                 checkIndexForEntryUse();
   859                 return (K) unmaskNull(traversalTable[index]);
   860             }
   861 
   862             public V getValue() {
   863                 checkIndexForEntryUse();
   864                 return (V) traversalTable[index+1];
   865             }
   866 
   867             public V setValue(V value) {
   868                 checkIndexForEntryUse();
   869                 V oldValue = (V) traversalTable[index+1];
   870                 traversalTable[index+1] = value;
   871                 // if shadowing, force into main table
   872                 if (traversalTable != IdentityHashMap.this.table)
   873                     put((K) traversalTable[index], value);
   874                 return oldValue;
   875             }
   876 
   877             public boolean equals(Object o) {
   878                 if (index < 0)
   879                     return super.equals(o);
   880 
   881                 if (!(o instanceof Map.Entry))
   882                     return false;
   883                 Map.Entry e = (Map.Entry)o;
   884                 return (e.getKey() == unmaskNull(traversalTable[index]) &&
   885                        e.getValue() == traversalTable[index+1]);
   886             }
   887 
   888             public int hashCode() {
   889                 if (lastReturnedIndex < 0)
   890                     return super.hashCode();
   891 
   892                 return (System.identityHashCode(unmaskNull(traversalTable[index])) ^
   893                        System.identityHashCode(traversalTable[index+1]));
   894             }
   895 
   896             public String toString() {
   897                 if (index < 0)
   898                     return super.toString();
   899 
   900                 return (unmaskNull(traversalTable[index]) + "="
   901                         + traversalTable[index+1]);
   902             }
   903 
   904             private void checkIndexForEntryUse() {
   905                 if (index < 0)
   906                     throw new IllegalStateException("Entry was removed");
   907             }
   908         }
   909     }
   910 
   911     // Views
   912 
   913     /**
   914      * This field is initialized to contain an instance of the entry set
   915      * view the first time this view is requested.  The view is stateless,
   916      * so there's no reason to create more than one.
   917      */
   918     private transient Set<Map.Entry<K,V>> entrySet = null;
   919 
   920     /**
   921      * Returns an identity-based set view of the keys contained in this map.
   922      * The set is backed by the map, so changes to the map are reflected in
   923      * the set, and vice-versa.  If the map is modified while an iteration
   924      * over the set is in progress, the results of the iteration are
   925      * undefined.  The set supports element removal, which removes the
   926      * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
   927      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
   928      * <tt>clear</tt> methods.  It does not support the <tt>add</tt> or
   929      * <tt>addAll</tt> methods.
   930      *
   931      * <p><b>While the object returned by this method implements the
   932      * <tt>Set</tt> interface, it does <i>not</i> obey <tt>Set's</tt> general
   933      * contract.  Like its backing map, the set returned by this method
   934      * defines element equality as reference-equality rather than
   935      * object-equality.  This affects the behavior of its <tt>contains</tt>,
   936      * <tt>remove</tt>, <tt>containsAll</tt>, <tt>equals</tt>, and
   937      * <tt>hashCode</tt> methods.</b>
   938      *
   939      * <p><b>The <tt>equals</tt> method of the returned set returns <tt>true</tt>
   940      * only if the specified object is a set containing exactly the same
   941      * object references as the returned set.  The symmetry and transitivity
   942      * requirements of the <tt>Object.equals</tt> contract may be violated if
   943      * the set returned by this method is compared to a normal set.  However,
   944      * the <tt>Object.equals</tt> contract is guaranteed to hold among sets
   945      * returned by this method.</b>
   946      *
   947      * <p>The <tt>hashCode</tt> method of the returned set returns the sum of
   948      * the <i>identity hashcodes</i> of the elements in the set, rather than
   949      * the sum of their hashcodes.  This is mandated by the change in the
   950      * semantics of the <tt>equals</tt> method, in order to enforce the
   951      * general contract of the <tt>Object.hashCode</tt> method among sets
   952      * returned by this method.
   953      *
   954      * @return an identity-based set view of the keys contained in this map
   955      * @see Object#equals(Object)
   956      * @see System#identityHashCode(Object)
   957      */
   958     public Set<K> keySet() {
   959         Set<K> ks = keySet;
   960         if (ks != null)
   961             return ks;
   962         else
   963             return keySet = new KeySet();
   964     }
   965 
   966     private class KeySet extends AbstractSet<K> {
   967         public Iterator<K> iterator() {
   968             return new KeyIterator();
   969         }
   970         public int size() {
   971             return size;
   972         }
   973         public boolean contains(Object o) {
   974             return containsKey(o);
   975         }
   976         public boolean remove(Object o) {
   977             int oldSize = size;
   978             IdentityHashMap.this.remove(o);
   979             return size != oldSize;
   980         }
   981         /*
   982          * Must revert from AbstractSet's impl to AbstractCollection's, as
   983          * the former contains an optimization that results in incorrect
   984          * behavior when c is a smaller "normal" (non-identity-based) Set.
   985          */
   986         public boolean removeAll(Collection<?> c) {
   987             boolean modified = false;
   988             for (Iterator<K> i = iterator(); i.hasNext(); ) {
   989                 if (c.contains(i.next())) {
   990                     i.remove();
   991                     modified = true;
   992                 }
   993             }
   994             return modified;
   995         }
   996         public void clear() {
   997             IdentityHashMap.this.clear();
   998         }
   999         public int hashCode() {
  1000             int result = 0;
  1001             for (K key : this)
  1002                 result += System.identityHashCode(key);
  1003             return result;
  1004         }
  1005     }
  1006 
  1007     /**
  1008      * Returns a {@link Collection} view of the values contained in this map.
  1009      * The collection is backed by the map, so changes to the map are
  1010      * reflected in the collection, and vice-versa.  If the map is
  1011      * modified while an iteration over the collection is in progress,
  1012      * the results of the iteration are undefined.  The collection
  1013      * supports element removal, which removes the corresponding
  1014      * mapping from the map, via the <tt>Iterator.remove</tt>,
  1015      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
  1016      * <tt>retainAll</tt> and <tt>clear</tt> methods.  It does not
  1017      * support the <tt>add</tt> or <tt>addAll</tt> methods.
  1018      *
  1019      * <p><b>While the object returned by this method implements the
  1020      * <tt>Collection</tt> interface, it does <i>not</i> obey
  1021      * <tt>Collection's</tt> general contract.  Like its backing map,
  1022      * the collection returned by this method defines element equality as
  1023      * reference-equality rather than object-equality.  This affects the
  1024      * behavior of its <tt>contains</tt>, <tt>remove</tt> and
  1025      * <tt>containsAll</tt> methods.</b>
  1026      */
  1027     public Collection<V> values() {
  1028         Collection<V> vs = values;
  1029         if (vs != null)
  1030             return vs;
  1031         else
  1032             return values = new Values();
  1033     }
  1034 
  1035     private class Values extends AbstractCollection<V> {
  1036         public Iterator<V> iterator() {
  1037             return new ValueIterator();
  1038         }
  1039         public int size() {
  1040             return size;
  1041         }
  1042         public boolean contains(Object o) {
  1043             return containsValue(o);
  1044         }
  1045         public boolean remove(Object o) {
  1046             for (Iterator<V> i = iterator(); i.hasNext(); ) {
  1047                 if (i.next() == o) {
  1048                     i.remove();
  1049                     return true;
  1050                 }
  1051             }
  1052             return false;
  1053         }
  1054         public void clear() {
  1055             IdentityHashMap.this.clear();
  1056         }
  1057     }
  1058 
  1059     /**
  1060      * Returns a {@link Set} view of the mappings contained in this map.
  1061      * Each element in the returned set is a reference-equality-based
  1062      * <tt>Map.Entry</tt>.  The set is backed by the map, so changes
  1063      * to the map are reflected in the set, and vice-versa.  If the
  1064      * map is modified while an iteration over the set is in progress,
  1065      * the results of the iteration are undefined.  The set supports
  1066      * element removal, which removes the corresponding mapping from
  1067      * the map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
  1068      * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
  1069      * methods.  It does not support the <tt>add</tt> or
  1070      * <tt>addAll</tt> methods.
  1071      *
  1072      * <p>Like the backing map, the <tt>Map.Entry</tt> objects in the set
  1073      * returned by this method define key and value equality as
  1074      * reference-equality rather than object-equality.  This affects the
  1075      * behavior of the <tt>equals</tt> and <tt>hashCode</tt> methods of these
  1076      * <tt>Map.Entry</tt> objects.  A reference-equality based <tt>Map.Entry
  1077      * e</tt> is equal to an object <tt>o</tt> if and only if <tt>o</tt> is a
  1078      * <tt>Map.Entry</tt> and <tt>e.getKey()==o.getKey() &amp;&amp;
  1079      * e.getValue()==o.getValue()</tt>.  To accommodate these equals
  1080      * semantics, the <tt>hashCode</tt> method returns
  1081      * <tt>System.identityHashCode(e.getKey()) ^
  1082      * System.identityHashCode(e.getValue())</tt>.
  1083      *
  1084      * <p><b>Owing to the reference-equality-based semantics of the
  1085      * <tt>Map.Entry</tt> instances in the set returned by this method,
  1086      * it is possible that the symmetry and transitivity requirements of
  1087      * the {@link Object#equals(Object)} contract may be violated if any of
  1088      * the entries in the set is compared to a normal map entry, or if
  1089      * the set returned by this method is compared to a set of normal map
  1090      * entries (such as would be returned by a call to this method on a normal
  1091      * map).  However, the <tt>Object.equals</tt> contract is guaranteed to
  1092      * hold among identity-based map entries, and among sets of such entries.
  1093      * </b>
  1094      *
  1095      * @return a set view of the identity-mappings contained in this map
  1096      */
  1097     public Set<Map.Entry<K,V>> entrySet() {
  1098         Set<Map.Entry<K,V>> es = entrySet;
  1099         if (es != null)
  1100             return es;
  1101         else
  1102             return entrySet = new EntrySet();
  1103     }
  1104 
  1105     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
  1106         public Iterator<Map.Entry<K,V>> iterator() {
  1107             return new EntryIterator();
  1108         }
  1109         public boolean contains(Object o) {
  1110             if (!(o instanceof Map.Entry))
  1111                 return false;
  1112             Map.Entry entry = (Map.Entry)o;
  1113             return containsMapping(entry.getKey(), entry.getValue());
  1114         }
  1115         public boolean remove(Object o) {
  1116             if (!(o instanceof Map.Entry))
  1117                 return false;
  1118             Map.Entry entry = (Map.Entry)o;
  1119             return removeMapping(entry.getKey(), entry.getValue());
  1120         }
  1121         public int size() {
  1122             return size;
  1123         }
  1124         public void clear() {
  1125             IdentityHashMap.this.clear();
  1126         }
  1127         /*
  1128          * Must revert from AbstractSet's impl to AbstractCollection's, as
  1129          * the former contains an optimization that results in incorrect
  1130          * behavior when c is a smaller "normal" (non-identity-based) Set.
  1131          */
  1132         public boolean removeAll(Collection<?> c) {
  1133             boolean modified = false;
  1134             for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) {
  1135                 if (c.contains(i.next())) {
  1136                     i.remove();
  1137                     modified = true;
  1138                 }
  1139             }
  1140             return modified;
  1141         }
  1142 
  1143         public Object[] toArray() {
  1144             int size = size();
  1145             Object[] result = new Object[size];
  1146             Iterator<Map.Entry<K,V>> it = iterator();
  1147             for (int i = 0; i < size; i++)
  1148                 result[i] = new AbstractMap.SimpleEntry<>(it.next());
  1149             return result;
  1150         }
  1151 
  1152         @SuppressWarnings("unchecked")
  1153         public <T> T[] toArray(T[] a) {
  1154             int size = size();
  1155             if (a.length < size)
  1156                 a = (T[])java.lang.reflect.Array
  1157                     .newInstance(a.getClass().getComponentType(), size);
  1158             Iterator<Map.Entry<K,V>> it = iterator();
  1159             for (int i = 0; i < size; i++)
  1160                 a[i] = (T) new AbstractMap.SimpleEntry<>(it.next());
  1161             if (a.length > size)
  1162                 a[size] = null;
  1163             return a;
  1164         }
  1165     }
  1166 
  1167 
  1168     private static final long serialVersionUID = 8188218128353913216L;
  1169 
  1170     /**
  1171      * Save the state of the <tt>IdentityHashMap</tt> instance to a stream
  1172      * (i.e., serialize it).
  1173      *
  1174      * @serialData The <i>size</i> of the HashMap (the number of key-value
  1175      *          mappings) (<tt>int</tt>), followed by the key (Object) and
  1176      *          value (Object) for each key-value mapping represented by the
  1177      *          IdentityHashMap.  The key-value mappings are emitted in no
  1178      *          particular order.
  1179      */
  1180     private void writeObject(java.io.ObjectOutputStream s)
  1181         throws java.io.IOException  {
  1182         // Write out and any hidden stuff
  1183         s.defaultWriteObject();
  1184 
  1185         // Write out size (number of Mappings)
  1186         s.writeInt(size);
  1187 
  1188         // Write out keys and values (alternating)
  1189         Object[] tab = table;
  1190         for (int i = 0; i < tab.length; i += 2) {
  1191             Object key = tab[i];
  1192             if (key != null) {
  1193                 s.writeObject(unmaskNull(key));
  1194                 s.writeObject(tab[i + 1]);
  1195             }
  1196         }
  1197     }
  1198 
  1199     /**
  1200      * Reconstitute the <tt>IdentityHashMap</tt> instance from a stream (i.e.,
  1201      * deserialize it).
  1202      */
  1203     private void readObject(java.io.ObjectInputStream s)
  1204         throws java.io.IOException, ClassNotFoundException  {
  1205         // Read in any hidden stuff
  1206         s.defaultReadObject();
  1207 
  1208         // Read in size (number of Mappings)
  1209         int size = s.readInt();
  1210 
  1211         // Allow for 33% growth (i.e., capacity is >= 2* size()).
  1212         init(capacity((size*4)/3));
  1213 
  1214         // Read the keys and values, and put the mappings in the table
  1215         for (int i=0; i<size; i++) {
  1216             K key = (K) s.readObject();
  1217             V value = (V) s.readObject();
  1218             putForCreate(key, value);
  1219         }
  1220     }
  1221 
  1222     /**
  1223      * The put method for readObject.  It does not resize the table,
  1224      * update modCount, etc.
  1225      */
  1226     private void putForCreate(K key, V value)
  1227         throws IOException
  1228     {
  1229         K k = (K)maskNull(key);
  1230         Object[] tab = table;
  1231         int len = tab.length;
  1232         int i = hash(k, len);
  1233 
  1234         Object item;
  1235         while ( (item = tab[i]) != null) {
  1236             if (item == k)
  1237                 throw new java.io.StreamCorruptedException();
  1238             i = nextKeyIndex(i, len);
  1239         }
  1240         tab[i] = k;
  1241         tab[i + 1] = value;
  1242     }
  1243 }