emul/src/main/java/java/lang/Integer.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Tue, 16 Oct 2012 18:04:11 +0200
changeset 114 a0505844750a
parent 104 1376481f15e7
child 179 469199c2994a
permissions -rw-r--r--
Same basic operations with Number subclasses now work
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import org.apidesign.bck2brwsr.core.JavaScriptBody;
    29 
    30 /**
    31  * The {@code Integer} class wraps a value of the primitive type
    32  * {@code int} in an object. An object of type {@code Integer}
    33  * contains a single field whose type is {@code int}.
    34  *
    35  * <p>In addition, this class provides several methods for converting
    36  * an {@code int} to a {@code String} and a {@code String} to an
    37  * {@code int}, as well as other constants and methods useful when
    38  * dealing with an {@code int}.
    39  *
    40  * <p>Implementation note: The implementations of the "bit twiddling"
    41  * methods (such as {@link #highestOneBit(int) highestOneBit} and
    42  * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
    43  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
    44  * Delight</i>, (Addison Wesley, 2002).
    45  *
    46  * @author  Lee Boynton
    47  * @author  Arthur van Hoff
    48  * @author  Josh Bloch
    49  * @author  Joseph D. Darcy
    50  * @since JDK1.0
    51  */
    52 public final class Integer extends Number implements Comparable<Integer> {
    53     /**
    54      * A constant holding the minimum value an {@code int} can
    55      * have, -2<sup>31</sup>.
    56      */
    57     public static final int   MIN_VALUE = 0x80000000;
    58 
    59     /**
    60      * A constant holding the maximum value an {@code int} can
    61      * have, 2<sup>31</sup>-1.
    62      */
    63     public static final int   MAX_VALUE = 0x7fffffff;
    64 
    65     /**
    66      * The {@code Class} instance representing the primitive type
    67      * {@code int}.
    68      *
    69      * @since   JDK1.1
    70      */
    71     public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");
    72 
    73     /**
    74      * All possible chars for representing a number as a String
    75      */
    76     final static char[] digits = {
    77         '0' , '1' , '2' , '3' , '4' , '5' ,
    78         '6' , '7' , '8' , '9' , 'a' , 'b' ,
    79         'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
    80         'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
    81         'o' , 'p' , 'q' , 'r' , 's' , 't' ,
    82         'u' , 'v' , 'w' , 'x' , 'y' , 'z'
    83     };
    84 
    85     /**
    86      * Returns a string representation of the first argument in the
    87      * radix specified by the second argument.
    88      *
    89      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
    90      * or larger than {@code Character.MAX_RADIX}, then the radix
    91      * {@code 10} is used instead.
    92      *
    93      * <p>If the first argument is negative, the first element of the
    94      * result is the ASCII minus character {@code '-'}
    95      * (<code>'&#92;u002D'</code>). If the first argument is not
    96      * negative, no sign character appears in the result.
    97      *
    98      * <p>The remaining characters of the result represent the magnitude
    99      * of the first argument. If the magnitude is zero, it is
   100      * represented by a single zero character {@code '0'}
   101      * (<code>'&#92;u0030'</code>); otherwise, the first character of
   102      * the representation of the magnitude will not be the zero
   103      * character.  The following ASCII characters are used as digits:
   104      *
   105      * <blockquote>
   106      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
   107      * </blockquote>
   108      *
   109      * These are <code>'&#92;u0030'</code> through
   110      * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through
   111      * <code>'&#92;u007A'</code>. If {@code radix} is
   112      * <var>N</var>, then the first <var>N</var> of these characters
   113      * are used as radix-<var>N</var> digits in the order shown. Thus,
   114      * the digits for hexadecimal (radix 16) are
   115      * {@code 0123456789abcdef}. If uppercase letters are
   116      * desired, the {@link java.lang.String#toUpperCase()} method may
   117      * be called on the result:
   118      *
   119      * <blockquote>
   120      *  {@code Integer.toString(n, 16).toUpperCase()}
   121      * </blockquote>
   122      *
   123      * @param   i       an integer to be converted to a string.
   124      * @param   radix   the radix to use in the string representation.
   125      * @return  a string representation of the argument in the specified radix.
   126      * @see     java.lang.Character#MAX_RADIX
   127      * @see     java.lang.Character#MIN_RADIX
   128      */
   129     public static String toString(int i, int radix) {
   130 
   131         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
   132             radix = 10;
   133 
   134         /* Use the faster version */
   135         if (radix == 10) {
   136             return toString(i);
   137         }
   138 
   139         char buf[] = new char[33];
   140         boolean negative = (i < 0);
   141         int charPos = 32;
   142 
   143         if (!negative) {
   144             i = -i;
   145         }
   146 
   147         while (i <= -radix) {
   148             buf[charPos--] = digits[-(i % radix)];
   149             i = i / radix;
   150         }
   151         buf[charPos] = digits[-i];
   152 
   153         if (negative) {
   154             buf[--charPos] = '-';
   155         }
   156 
   157         return new String(buf, charPos, (33 - charPos));
   158     }
   159 
   160     /**
   161      * Returns a string representation of the integer argument as an
   162      * unsigned integer in base&nbsp;16.
   163      *
   164      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
   165      * if the argument is negative; otherwise, it is equal to the
   166      * argument.  This value is converted to a string of ASCII digits
   167      * in hexadecimal (base&nbsp;16) with no extra leading
   168      * {@code 0}s. If the unsigned magnitude is zero, it is
   169      * represented by a single zero character {@code '0'}
   170      * (<code>'&#92;u0030'</code>); otherwise, the first character of
   171      * the representation of the unsigned magnitude will not be the
   172      * zero character. The following characters are used as
   173      * hexadecimal digits:
   174      *
   175      * <blockquote>
   176      *  {@code 0123456789abcdef}
   177      * </blockquote>
   178      *
   179      * These are the characters <code>'&#92;u0030'</code> through
   180      * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through
   181      * <code>'&#92;u0066'</code>. If uppercase letters are
   182      * desired, the {@link java.lang.String#toUpperCase()} method may
   183      * be called on the result:
   184      *
   185      * <blockquote>
   186      *  {@code Integer.toHexString(n).toUpperCase()}
   187      * </blockquote>
   188      *
   189      * @param   i   an integer to be converted to a string.
   190      * @return  the string representation of the unsigned integer value
   191      *          represented by the argument in hexadecimal (base&nbsp;16).
   192      * @since   JDK1.0.2
   193      */
   194     public static String toHexString(int i) {
   195         return toUnsignedString(i, 4);
   196     }
   197 
   198     /**
   199      * Returns a string representation of the integer argument as an
   200      * unsigned integer in base&nbsp;8.
   201      *
   202      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
   203      * if the argument is negative; otherwise, it is equal to the
   204      * argument.  This value is converted to a string of ASCII digits
   205      * in octal (base&nbsp;8) with no extra leading {@code 0}s.
   206      *
   207      * <p>If the unsigned magnitude is zero, it is represented by a
   208      * single zero character {@code '0'}
   209      * (<code>'&#92;u0030'</code>); otherwise, the first character of
   210      * the representation of the unsigned magnitude will not be the
   211      * zero character. The following characters are used as octal
   212      * digits:
   213      *
   214      * <blockquote>
   215      * {@code 01234567}
   216      * </blockquote>
   217      *
   218      * These are the characters <code>'&#92;u0030'</code> through
   219      * <code>'&#92;u0037'</code>.
   220      *
   221      * @param   i   an integer to be converted to a string.
   222      * @return  the string representation of the unsigned integer value
   223      *          represented by the argument in octal (base&nbsp;8).
   224      * @since   JDK1.0.2
   225      */
   226     public static String toOctalString(int i) {
   227         return toUnsignedString(i, 3);
   228     }
   229 
   230     /**
   231      * Returns a string representation of the integer argument as an
   232      * unsigned integer in base&nbsp;2.
   233      *
   234      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
   235      * if the argument is negative; otherwise it is equal to the
   236      * argument.  This value is converted to a string of ASCII digits
   237      * in binary (base&nbsp;2) with no extra leading {@code 0}s.
   238      * If the unsigned magnitude is zero, it is represented by a
   239      * single zero character {@code '0'}
   240      * (<code>'&#92;u0030'</code>); otherwise, the first character of
   241      * the representation of the unsigned magnitude will not be the
   242      * zero character. The characters {@code '0'}
   243      * (<code>'&#92;u0030'</code>) and {@code '1'}
   244      * (<code>'&#92;u0031'</code>) are used as binary digits.
   245      *
   246      * @param   i   an integer to be converted to a string.
   247      * @return  the string representation of the unsigned integer value
   248      *          represented by the argument in binary (base&nbsp;2).
   249      * @since   JDK1.0.2
   250      */
   251     public static String toBinaryString(int i) {
   252         return toUnsignedString(i, 1);
   253     }
   254 
   255     /**
   256      * Convert the integer to an unsigned number.
   257      */
   258     private static String toUnsignedString(int i, int shift) {
   259         char[] buf = new char[32];
   260         int charPos = 32;
   261         int radix = 1 << shift;
   262         int mask = radix - 1;
   263         do {
   264             buf[--charPos] = digits[i & mask];
   265             i >>>= shift;
   266         } while (i != 0);
   267 
   268         return new String(buf, charPos, (32 - charPos));
   269     }
   270 
   271 
   272     final static char [] DigitTens = {
   273         '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
   274         '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
   275         '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
   276         '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
   277         '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
   278         '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
   279         '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
   280         '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
   281         '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
   282         '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
   283         } ;
   284 
   285     final static char [] DigitOnes = {
   286         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   287         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   288         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   289         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   290         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   291         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   292         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   293         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   294         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   295         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
   296         } ;
   297 
   298         // I use the "invariant division by multiplication" trick to
   299         // accelerate Integer.toString.  In particular we want to
   300         // avoid division by 10.
   301         //
   302         // The "trick" has roughly the same performance characteristics
   303         // as the "classic" Integer.toString code on a non-JIT VM.
   304         // The trick avoids .rem and .div calls but has a longer code
   305         // path and is thus dominated by dispatch overhead.  In the
   306         // JIT case the dispatch overhead doesn't exist and the
   307         // "trick" is considerably faster than the classic code.
   308         //
   309         // TODO-FIXME: convert (x * 52429) into the equiv shift-add
   310         // sequence.
   311         //
   312         // RE:  Division by Invariant Integers using Multiplication
   313         //      T Gralund, P Montgomery
   314         //      ACM PLDI 1994
   315         //
   316 
   317     /**
   318      * Returns a {@code String} object representing the
   319      * specified integer. The argument is converted to signed decimal
   320      * representation and returned as a string, exactly as if the
   321      * argument and radix 10 were given as arguments to the {@link
   322      * #toString(int, int)} method.
   323      *
   324      * @param   i   an integer to be converted.
   325      * @return  a string representation of the argument in base&nbsp;10.
   326      */
   327     public static String toString(int i) {
   328         if (i == Integer.MIN_VALUE)
   329             return "-2147483648";
   330         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
   331         char[] buf = new char[size];
   332         getChars(i, size, buf);
   333         return new String(0, size, buf);
   334     }
   335 
   336     /**
   337      * Places characters representing the integer i into the
   338      * character array buf. The characters are placed into
   339      * the buffer backwards starting with the least significant
   340      * digit at the specified index (exclusive), and working
   341      * backwards from there.
   342      *
   343      * Will fail if i == Integer.MIN_VALUE
   344      */
   345     static void getChars(int i, int index, char[] buf) {
   346         int q, r;
   347         int charPos = index;
   348         char sign = 0;
   349 
   350         if (i < 0) {
   351             sign = '-';
   352             i = -i;
   353         }
   354 
   355         // Generate two digits per iteration
   356         while (i >= 65536) {
   357             q = i / 100;
   358         // really: r = i - (q * 100);
   359             r = i - ((q << 6) + (q << 5) + (q << 2));
   360             i = q;
   361             buf [--charPos] = DigitOnes[r];
   362             buf [--charPos] = DigitTens[r];
   363         }
   364 
   365         // Fall thru to fast mode for smaller numbers
   366         // assert(i <= 65536, i);
   367         for (;;) {
   368             q = (i * 52429) >>> (16+3);
   369             r = i - ((q << 3) + (q << 1));  // r = i-(q*10) ...
   370             buf [--charPos] = digits [r];
   371             i = q;
   372             if (i == 0) break;
   373         }
   374         if (sign != 0) {
   375             buf [--charPos] = sign;
   376         }
   377     }
   378 
   379     final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
   380                                       99999999, 999999999, Integer.MAX_VALUE };
   381 
   382     // Requires positive x
   383     static int stringSize(int x) {
   384         for (int i=0; ; i++)
   385             if (x <= sizeTable[i])
   386                 return i+1;
   387     }
   388 
   389     /**
   390      * Parses the string argument as a signed integer in the radix
   391      * specified by the second argument. The characters in the string
   392      * must all be digits of the specified radix (as determined by
   393      * whether {@link java.lang.Character#digit(char, int)} returns a
   394      * nonnegative value), except that the first character may be an
   395      * ASCII minus sign {@code '-'} (<code>'&#92;u002D'</code>) to
   396      * indicate a negative value or an ASCII plus sign {@code '+'}
   397      * (<code>'&#92;u002B'</code>) to indicate a positive value. The
   398      * resulting integer value is returned.
   399      *
   400      * <p>An exception of type {@code NumberFormatException} is
   401      * thrown if any of the following situations occurs:
   402      * <ul>
   403      * <li>The first argument is {@code null} or is a string of
   404      * length zero.
   405      *
   406      * <li>The radix is either smaller than
   407      * {@link java.lang.Character#MIN_RADIX} or
   408      * larger than {@link java.lang.Character#MAX_RADIX}.
   409      *
   410      * <li>Any character of the string is not a digit of the specified
   411      * radix, except that the first character may be a minus sign
   412      * {@code '-'} (<code>'&#92;u002D'</code>) or plus sign
   413      * {@code '+'} (<code>'&#92;u002B'</code>) provided that the
   414      * string is longer than length 1.
   415      *
   416      * <li>The value represented by the string is not a value of type
   417      * {@code int}.
   418      * </ul>
   419      *
   420      * <p>Examples:
   421      * <blockquote><pre>
   422      * parseInt("0", 10) returns 0
   423      * parseInt("473", 10) returns 473
   424      * parseInt("+42", 10) returns 42
   425      * parseInt("-0", 10) returns 0
   426      * parseInt("-FF", 16) returns -255
   427      * parseInt("1100110", 2) returns 102
   428      * parseInt("2147483647", 10) returns 2147483647
   429      * parseInt("-2147483648", 10) returns -2147483648
   430      * parseInt("2147483648", 10) throws a NumberFormatException
   431      * parseInt("99", 8) throws a NumberFormatException
   432      * parseInt("Kona", 10) throws a NumberFormatException
   433      * parseInt("Kona", 27) returns 411787
   434      * </pre></blockquote>
   435      *
   436      * @param      s   the {@code String} containing the integer
   437      *                  representation to be parsed
   438      * @param      radix   the radix to be used while parsing {@code s}.
   439      * @return     the integer represented by the string argument in the
   440      *             specified radix.
   441      * @exception  NumberFormatException if the {@code String}
   442      *             does not contain a parsable {@code int}.
   443      */
   444     @JavaScriptBody(args={"s", "radix"}, body="return parseInt(s,radix);")
   445     public static int parseInt(String s, int radix)
   446                 throws NumberFormatException
   447     {
   448         /*
   449          * WARNING: This method may be invoked early during VM initialization
   450          * before IntegerCache is initialized. Care must be taken to not use
   451          * the valueOf method.
   452          */
   453 
   454         if (s == null) {
   455             throw new NumberFormatException("null");
   456         }
   457 
   458         if (radix < Character.MIN_RADIX) {
   459             throw new NumberFormatException("radix " + radix +
   460                                             " less than Character.MIN_RADIX");
   461         }
   462 
   463         if (radix > Character.MAX_RADIX) {
   464             throw new NumberFormatException("radix " + radix +
   465                                             " greater than Character.MAX_RADIX");
   466         }
   467 
   468         int result = 0;
   469         boolean negative = false;
   470         int i = 0, len = s.length();
   471         int limit = -Integer.MAX_VALUE;
   472         int multmin;
   473         int digit;
   474 
   475         if (len > 0) {
   476             char firstChar = s.charAt(0);
   477             if (firstChar < '0') { // Possible leading "+" or "-"
   478                 if (firstChar == '-') {
   479                     negative = true;
   480                     limit = Integer.MIN_VALUE;
   481                 } else if (firstChar != '+')
   482                     throw NumberFormatException.forInputString(s);
   483 
   484                 if (len == 1) // Cannot have lone "+" or "-"
   485                     throw NumberFormatException.forInputString(s);
   486                 i++;
   487             }
   488             multmin = limit / radix;
   489             while (i < len) {
   490                 // Accumulating negatively avoids surprises near MAX_VALUE
   491                 digit = Character.digit(s.charAt(i++),radix);
   492                 if (digit < 0) {
   493                     throw NumberFormatException.forInputString(s);
   494                 }
   495                 if (result < multmin) {
   496                     throw NumberFormatException.forInputString(s);
   497                 }
   498                 result *= radix;
   499                 if (result < limit + digit) {
   500                     throw NumberFormatException.forInputString(s);
   501                 }
   502                 result -= digit;
   503             }
   504         } else {
   505             throw NumberFormatException.forInputString(s);
   506         }
   507         return negative ? result : -result;
   508     }
   509 
   510     /**
   511      * Parses the string argument as a signed decimal integer. The
   512      * characters in the string must all be decimal digits, except
   513      * that the first character may be an ASCII minus sign {@code '-'}
   514      * (<code>'&#92;u002D'</code>) to indicate a negative value or an
   515      * ASCII plus sign {@code '+'} (<code>'&#92;u002B'</code>) to
   516      * indicate a positive value. The resulting integer value is
   517      * returned, exactly as if the argument and the radix 10 were
   518      * given as arguments to the {@link #parseInt(java.lang.String,
   519      * int)} method.
   520      *
   521      * @param s    a {@code String} containing the {@code int}
   522      *             representation to be parsed
   523      * @return     the integer value represented by the argument in decimal.
   524      * @exception  NumberFormatException  if the string does not contain a
   525      *               parsable integer.
   526      */
   527     public static int parseInt(String s) throws NumberFormatException {
   528         return parseInt(s,10);
   529     }
   530 
   531     /**
   532      * Returns an {@code Integer} object holding the value
   533      * extracted from the specified {@code String} when parsed
   534      * with the radix given by the second argument. The first argument
   535      * is interpreted as representing a signed integer in the radix
   536      * specified by the second argument, exactly as if the arguments
   537      * were given to the {@link #parseInt(java.lang.String, int)}
   538      * method. The result is an {@code Integer} object that
   539      * represents the integer value specified by the string.
   540      *
   541      * <p>In other words, this method returns an {@code Integer}
   542      * object equal to the value of:
   543      *
   544      * <blockquote>
   545      *  {@code new Integer(Integer.parseInt(s, radix))}
   546      * </blockquote>
   547      *
   548      * @param      s   the string to be parsed.
   549      * @param      radix the radix to be used in interpreting {@code s}
   550      * @return     an {@code Integer} object holding the value
   551      *             represented by the string argument in the specified
   552      *             radix.
   553      * @exception NumberFormatException if the {@code String}
   554      *            does not contain a parsable {@code int}.
   555      */
   556     public static Integer valueOf(String s, int radix) throws NumberFormatException {
   557         return Integer.valueOf(parseInt(s,radix));
   558     }
   559 
   560     /**
   561      * Returns an {@code Integer} object holding the
   562      * value of the specified {@code String}. The argument is
   563      * interpreted as representing a signed decimal integer, exactly
   564      * as if the argument were given to the {@link
   565      * #parseInt(java.lang.String)} method. The result is an
   566      * {@code Integer} object that represents the integer value
   567      * specified by the string.
   568      *
   569      * <p>In other words, this method returns an {@code Integer}
   570      * object equal to the value of:
   571      *
   572      * <blockquote>
   573      *  {@code new Integer(Integer.parseInt(s))}
   574      * </blockquote>
   575      *
   576      * @param      s   the string to be parsed.
   577      * @return     an {@code Integer} object holding the value
   578      *             represented by the string argument.
   579      * @exception  NumberFormatException  if the string cannot be parsed
   580      *             as an integer.
   581      */
   582     public static Integer valueOf(String s) throws NumberFormatException {
   583         return Integer.valueOf(parseInt(s, 10));
   584     }
   585 
   586     /**
   587      * Cache to support the object identity semantics of autoboxing for values between
   588      * -128 and 127 (inclusive) as required by JLS.
   589      *
   590      * The cache is initialized on first usage.  The size of the cache
   591      * may be controlled by the -XX:AutoBoxCacheMax=<size> option.
   592      * During VM initialization, java.lang.Integer.IntegerCache.high property
   593      * may be set and saved in the private system properties in the
   594      * sun.misc.VM class.
   595      */
   596 
   597     private static class IntegerCache {
   598         static final int low = -128;
   599         static final int high;
   600         static final Integer cache[];
   601 
   602         static {
   603             // high value may be configured by property
   604             int h = 127;
   605             String integerCacheHighPropValue =
   606                 AbstractStringBuilder.getProperty("java.lang.Integer.IntegerCache.high");
   607             if (integerCacheHighPropValue != null) {
   608                 int i = parseInt(integerCacheHighPropValue);
   609                 i = Math.max(i, 127);
   610                 // Maximum array size is Integer.MAX_VALUE
   611                 h = Math.min(i, Integer.MAX_VALUE - (-low));
   612             }
   613             high = h;
   614 
   615             cache = new Integer[(high - low) + 1];
   616             int j = low;
   617             for(int k = 0; k < cache.length; k++)
   618                 cache[k] = new Integer(j++);
   619         }
   620 
   621         private IntegerCache() {}
   622     }
   623 
   624     /**
   625      * Returns an {@code Integer} instance representing the specified
   626      * {@code int} value.  If a new {@code Integer} instance is not
   627      * required, this method should generally be used in preference to
   628      * the constructor {@link #Integer(int)}, as this method is likely
   629      * to yield significantly better space and time performance by
   630      * caching frequently requested values.
   631      *
   632      * This method will always cache values in the range -128 to 127,
   633      * inclusive, and may cache other values outside of this range.
   634      *
   635      * @param  i an {@code int} value.
   636      * @return an {@code Integer} instance representing {@code i}.
   637      * @since  1.5
   638      */
   639     public static Integer valueOf(int i) {
   640         //assert IntegerCache.high >= 127;
   641         if (i >= IntegerCache.low && i <= IntegerCache.high)
   642             return IntegerCache.cache[i + (-IntegerCache.low)];
   643         return new Integer(i);
   644     }
   645 
   646     /**
   647      * The value of the {@code Integer}.
   648      *
   649      * @serial
   650      */
   651     private final int value;
   652 
   653     /**
   654      * Constructs a newly allocated {@code Integer} object that
   655      * represents the specified {@code int} value.
   656      *
   657      * @param   value   the value to be represented by the
   658      *                  {@code Integer} object.
   659      */
   660     public Integer(int value) {
   661         this.value = value;
   662     }
   663 
   664     /**
   665      * Constructs a newly allocated {@code Integer} object that
   666      * represents the {@code int} value indicated by the
   667      * {@code String} parameter. The string is converted to an
   668      * {@code int} value in exactly the manner used by the
   669      * {@code parseInt} method for radix 10.
   670      *
   671      * @param      s   the {@code String} to be converted to an
   672      *                 {@code Integer}.
   673      * @exception  NumberFormatException  if the {@code String} does not
   674      *               contain a parsable integer.
   675      * @see        java.lang.Integer#parseInt(java.lang.String, int)
   676      */
   677     public Integer(String s) throws NumberFormatException {
   678         this.value = parseInt(s, 10);
   679     }
   680 
   681     /**
   682      * Returns the value of this {@code Integer} as a
   683      * {@code byte}.
   684      */
   685     public byte byteValue() {
   686         return (byte)value;
   687     }
   688 
   689     /**
   690      * Returns the value of this {@code Integer} as a
   691      * {@code short}.
   692      */
   693     public short shortValue() {
   694         return (short)value;
   695     }
   696 
   697     /**
   698      * Returns the value of this {@code Integer} as an
   699      * {@code int}.
   700      */
   701     public int intValue() {
   702         return value;
   703     }
   704 
   705     /**
   706      * Returns the value of this {@code Integer} as a
   707      * {@code long}.
   708      */
   709     public long longValue() {
   710         return (long)value;
   711     }
   712 
   713     /**
   714      * Returns the value of this {@code Integer} as a
   715      * {@code float}.
   716      */
   717     public float floatValue() {
   718         return (float)value;
   719     }
   720 
   721     /**
   722      * Returns the value of this {@code Integer} as a
   723      * {@code double}.
   724      */
   725     public double doubleValue() {
   726         return (double)value;
   727     }
   728 
   729     /**
   730      * Returns a {@code String} object representing this
   731      * {@code Integer}'s value. The value is converted to signed
   732      * decimal representation and returned as a string, exactly as if
   733      * the integer value were given as an argument to the {@link
   734      * java.lang.Integer#toString(int)} method.
   735      *
   736      * @return  a string representation of the value of this object in
   737      *          base&nbsp;10.
   738      */
   739     public String toString() {
   740         return toString(value);
   741     }
   742 
   743     /**
   744      * Returns a hash code for this {@code Integer}.
   745      *
   746      * @return  a hash code value for this object, equal to the
   747      *          primitive {@code int} value represented by this
   748      *          {@code Integer} object.
   749      */
   750     public int hashCode() {
   751         return value;
   752     }
   753 
   754     /**
   755      * Compares this object to the specified object.  The result is
   756      * {@code true} if and only if the argument is not
   757      * {@code null} and is an {@code Integer} object that
   758      * contains the same {@code int} value as this object.
   759      *
   760      * @param   obj   the object to compare with.
   761      * @return  {@code true} if the objects are the same;
   762      *          {@code false} otherwise.
   763      */
   764     public boolean equals(Object obj) {
   765         if (obj instanceof Integer) {
   766             return value == ((Integer)obj).intValue();
   767         }
   768         return false;
   769     }
   770 
   771     /**
   772      * Determines the integer value of the system property with the
   773      * specified name.
   774      *
   775      * <p>The first argument is treated as the name of a system property.
   776      * System properties are accessible through the
   777      * {@link java.lang.System#getProperty(java.lang.String)} method. The
   778      * string value of this property is then interpreted as an integer
   779      * value and an {@code Integer} object representing this value is
   780      * returned. Details of possible numeric formats can be found with
   781      * the definition of {@code getProperty}.
   782      *
   783      * <p>If there is no property with the specified name, if the specified name
   784      * is empty or {@code null}, or if the property does not have
   785      * the correct numeric format, then {@code null} is returned.
   786      *
   787      * <p>In other words, this method returns an {@code Integer}
   788      * object equal to the value of:
   789      *
   790      * <blockquote>
   791      *  {@code getInteger(nm, null)}
   792      * </blockquote>
   793      *
   794      * @param   nm   property name.
   795      * @return  the {@code Integer} value of the property.
   796      * @see     java.lang.System#getProperty(java.lang.String)
   797      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
   798      */
   799     public static Integer getInteger(String nm) {
   800         return getInteger(nm, null);
   801     }
   802 
   803     /**
   804      * Determines the integer value of the system property with the
   805      * specified name.
   806      *
   807      * <p>The first argument is treated as the name of a system property.
   808      * System properties are accessible through the {@link
   809      * java.lang.System#getProperty(java.lang.String)} method. The
   810      * string value of this property is then interpreted as an integer
   811      * value and an {@code Integer} object representing this value is
   812      * returned. Details of possible numeric formats can be found with
   813      * the definition of {@code getProperty}.
   814      *
   815      * <p>The second argument is the default value. An {@code Integer} object
   816      * that represents the value of the second argument is returned if there
   817      * is no property of the specified name, if the property does not have
   818      * the correct numeric format, or if the specified name is empty or
   819      * {@code null}.
   820      *
   821      * <p>In other words, this method returns an {@code Integer} object
   822      * equal to the value of:
   823      *
   824      * <blockquote>
   825      *  {@code getInteger(nm, new Integer(val))}
   826      * </blockquote>
   827      *
   828      * but in practice it may be implemented in a manner such as:
   829      *
   830      * <blockquote><pre>
   831      * Integer result = getInteger(nm, null);
   832      * return (result == null) ? new Integer(val) : result;
   833      * </pre></blockquote>
   834      *
   835      * to avoid the unnecessary allocation of an {@code Integer}
   836      * object when the default value is not needed.
   837      *
   838      * @param   nm   property name.
   839      * @param   val   default value.
   840      * @return  the {@code Integer} value of the property.
   841      * @see     java.lang.System#getProperty(java.lang.String)
   842      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
   843      */
   844     public static Integer getInteger(String nm, int val) {
   845         Integer result = getInteger(nm, null);
   846         return (result == null) ? Integer.valueOf(val) : result;
   847     }
   848 
   849     /**
   850      * Returns the integer value of the system property with the
   851      * specified name.  The first argument is treated as the name of a
   852      * system property.  System properties are accessible through the
   853      * {@link java.lang.System#getProperty(java.lang.String)} method.
   854      * The string value of this property is then interpreted as an
   855      * integer value, as per the {@code Integer.decode} method,
   856      * and an {@code Integer} object representing this value is
   857      * returned.
   858      *
   859      * <ul><li>If the property value begins with the two ASCII characters
   860      *         {@code 0x} or the ASCII character {@code #}, not
   861      *      followed by a minus sign, then the rest of it is parsed as a
   862      *      hexadecimal integer exactly as by the method
   863      *      {@link #valueOf(java.lang.String, int)} with radix 16.
   864      * <li>If the property value begins with the ASCII character
   865      *     {@code 0} followed by another character, it is parsed as an
   866      *     octal integer exactly as by the method
   867      *     {@link #valueOf(java.lang.String, int)} with radix 8.
   868      * <li>Otherwise, the property value is parsed as a decimal integer
   869      * exactly as by the method {@link #valueOf(java.lang.String, int)}
   870      * with radix 10.
   871      * </ul>
   872      *
   873      * <p>The second argument is the default value. The default value is
   874      * returned if there is no property of the specified name, if the
   875      * property does not have the correct numeric format, or if the
   876      * specified name is empty or {@code null}.
   877      *
   878      * @param   nm   property name.
   879      * @param   val   default value.
   880      * @return  the {@code Integer} value of the property.
   881      * @see     java.lang.System#getProperty(java.lang.String)
   882      * @see java.lang.System#getProperty(java.lang.String, java.lang.String)
   883      * @see java.lang.Integer#decode
   884      */
   885     public static Integer getInteger(String nm, Integer val) {
   886         String v = null;
   887         try {
   888             v = AbstractStringBuilder.getProperty(nm);
   889         } catch (IllegalArgumentException e) {
   890         } catch (NullPointerException e) {
   891         }
   892         if (v != null) {
   893             try {
   894                 return Integer.decode(v);
   895             } catch (NumberFormatException e) {
   896             }
   897         }
   898         return val;
   899     }
   900 
   901     /**
   902      * Decodes a {@code String} into an {@code Integer}.
   903      * Accepts decimal, hexadecimal, and octal numbers given
   904      * by the following grammar:
   905      *
   906      * <blockquote>
   907      * <dl>
   908      * <dt><i>DecodableString:</i>
   909      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
   910      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
   911      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
   912      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
   913      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
   914      * <p>
   915      * <dt><i>Sign:</i>
   916      * <dd>{@code -}
   917      * <dd>{@code +}
   918      * </dl>
   919      * </blockquote>
   920      *
   921      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
   922      * are as defined in section 3.10.1 of
   923      * <cite>The Java&trade; Language Specification</cite>,
   924      * except that underscores are not accepted between digits.
   925      *
   926      * <p>The sequence of characters following an optional
   927      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
   928      * "{@code #}", or leading zero) is parsed as by the {@code
   929      * Integer.parseInt} method with the indicated radix (10, 16, or
   930      * 8).  This sequence of characters must represent a positive
   931      * value or a {@link NumberFormatException} will be thrown.  The
   932      * result is negated if first character of the specified {@code
   933      * String} is the minus sign.  No whitespace characters are
   934      * permitted in the {@code String}.
   935      *
   936      * @param     nm the {@code String} to decode.
   937      * @return    an {@code Integer} object holding the {@code int}
   938      *             value represented by {@code nm}
   939      * @exception NumberFormatException  if the {@code String} does not
   940      *            contain a parsable integer.
   941      * @see java.lang.Integer#parseInt(java.lang.String, int)
   942      */
   943     public static Integer decode(String nm) throws NumberFormatException {
   944         int radix = 10;
   945         int index = 0;
   946         boolean negative = false;
   947         Integer result;
   948 
   949         if (nm.length() == 0)
   950             throw new NumberFormatException("Zero length string");
   951         char firstChar = nm.charAt(0);
   952         // Handle sign, if present
   953         if (firstChar == '-') {
   954             negative = true;
   955             index++;
   956         } else if (firstChar == '+')
   957             index++;
   958 
   959         // Handle radix specifier, if present
   960         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
   961             index += 2;
   962             radix = 16;
   963         }
   964         else if (nm.startsWith("#", index)) {
   965             index ++;
   966             radix = 16;
   967         }
   968         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
   969             index ++;
   970             radix = 8;
   971         }
   972 
   973         if (nm.startsWith("-", index) || nm.startsWith("+", index))
   974             throw new NumberFormatException("Sign character in wrong position");
   975 
   976         try {
   977             result = Integer.valueOf(nm.substring(index), radix);
   978             result = negative ? Integer.valueOf(-result.intValue()) : result;
   979         } catch (NumberFormatException e) {
   980             // If number is Integer.MIN_VALUE, we'll end up here. The next line
   981             // handles this case, and causes any genuine format error to be
   982             // rethrown.
   983             String constant = negative ? ("-" + nm.substring(index))
   984                                        : nm.substring(index);
   985             result = Integer.valueOf(constant, radix);
   986         }
   987         return result;
   988     }
   989 
   990     /**
   991      * Compares two {@code Integer} objects numerically.
   992      *
   993      * @param   anotherInteger   the {@code Integer} to be compared.
   994      * @return  the value {@code 0} if this {@code Integer} is
   995      *          equal to the argument {@code Integer}; a value less than
   996      *          {@code 0} if this {@code Integer} is numerically less
   997      *          than the argument {@code Integer}; and a value greater
   998      *          than {@code 0} if this {@code Integer} is numerically
   999      *           greater than the argument {@code Integer} (signed
  1000      *           comparison).
  1001      * @since   1.2
  1002      */
  1003     public int compareTo(Integer anotherInteger) {
  1004         return compare(this.value, anotherInteger.value);
  1005     }
  1006 
  1007     /**
  1008      * Compares two {@code int} values numerically.
  1009      * The value returned is identical to what would be returned by:
  1010      * <pre>
  1011      *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
  1012      * </pre>
  1013      *
  1014      * @param  x the first {@code int} to compare
  1015      * @param  y the second {@code int} to compare
  1016      * @return the value {@code 0} if {@code x == y};
  1017      *         a value less than {@code 0} if {@code x < y}; and
  1018      *         a value greater than {@code 0} if {@code x > y}
  1019      * @since 1.7
  1020      */
  1021     public static int compare(int x, int y) {
  1022         return (x < y) ? -1 : ((x == y) ? 0 : 1);
  1023     }
  1024 
  1025 
  1026     // Bit twiddling
  1027 
  1028     /**
  1029      * The number of bits used to represent an {@code int} value in two's
  1030      * complement binary form.
  1031      *
  1032      * @since 1.5
  1033      */
  1034     public static final int SIZE = 32;
  1035 
  1036     /**
  1037      * Returns an {@code int} value with at most a single one-bit, in the
  1038      * position of the highest-order ("leftmost") one-bit in the specified
  1039      * {@code int} value.  Returns zero if the specified value has no
  1040      * one-bits in its two's complement binary representation, that is, if it
  1041      * is equal to zero.
  1042      *
  1043      * @return an {@code int} value with a single one-bit, in the position
  1044      *     of the highest-order one-bit in the specified value, or zero if
  1045      *     the specified value is itself equal to zero.
  1046      * @since 1.5
  1047      */
  1048     public static int highestOneBit(int i) {
  1049         // HD, Figure 3-1
  1050         i |= (i >>  1);
  1051         i |= (i >>  2);
  1052         i |= (i >>  4);
  1053         i |= (i >>  8);
  1054         i |= (i >> 16);
  1055         return i - (i >>> 1);
  1056     }
  1057 
  1058     /**
  1059      * Returns an {@code int} value with at most a single one-bit, in the
  1060      * position of the lowest-order ("rightmost") one-bit in the specified
  1061      * {@code int} value.  Returns zero if the specified value has no
  1062      * one-bits in its two's complement binary representation, that is, if it
  1063      * is equal to zero.
  1064      *
  1065      * @return an {@code int} value with a single one-bit, in the position
  1066      *     of the lowest-order one-bit in the specified value, or zero if
  1067      *     the specified value is itself equal to zero.
  1068      * @since 1.5
  1069      */
  1070     public static int lowestOneBit(int i) {
  1071         // HD, Section 2-1
  1072         return i & -i;
  1073     }
  1074 
  1075     /**
  1076      * Returns the number of zero bits preceding the highest-order
  1077      * ("leftmost") one-bit in the two's complement binary representation
  1078      * of the specified {@code int} value.  Returns 32 if the
  1079      * specified value has no one-bits in its two's complement representation,
  1080      * in other words if it is equal to zero.
  1081      *
  1082      * <p>Note that this method is closely related to the logarithm base 2.
  1083      * For all positive {@code int} values x:
  1084      * <ul>
  1085      * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
  1086      * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
  1087      * </ul>
  1088      *
  1089      * @return the number of zero bits preceding the highest-order
  1090      *     ("leftmost") one-bit in the two's complement binary representation
  1091      *     of the specified {@code int} value, or 32 if the value
  1092      *     is equal to zero.
  1093      * @since 1.5
  1094      */
  1095     public static int numberOfLeadingZeros(int i) {
  1096         // HD, Figure 5-6
  1097         if (i == 0)
  1098             return 32;
  1099         int n = 1;
  1100         if (i >>> 16 == 0) { n += 16; i <<= 16; }
  1101         if (i >>> 24 == 0) { n +=  8; i <<=  8; }
  1102         if (i >>> 28 == 0) { n +=  4; i <<=  4; }
  1103         if (i >>> 30 == 0) { n +=  2; i <<=  2; }
  1104         n -= i >>> 31;
  1105         return n;
  1106     }
  1107 
  1108     /**
  1109      * Returns the number of zero bits following the lowest-order ("rightmost")
  1110      * one-bit in the two's complement binary representation of the specified
  1111      * {@code int} value.  Returns 32 if the specified value has no
  1112      * one-bits in its two's complement representation, in other words if it is
  1113      * equal to zero.
  1114      *
  1115      * @return the number of zero bits following the lowest-order ("rightmost")
  1116      *     one-bit in the two's complement binary representation of the
  1117      *     specified {@code int} value, or 32 if the value is equal
  1118      *     to zero.
  1119      * @since 1.5
  1120      */
  1121     public static int numberOfTrailingZeros(int i) {
  1122         // HD, Figure 5-14
  1123         int y;
  1124         if (i == 0) return 32;
  1125         int n = 31;
  1126         y = i <<16; if (y != 0) { n = n -16; i = y; }
  1127         y = i << 8; if (y != 0) { n = n - 8; i = y; }
  1128         y = i << 4; if (y != 0) { n = n - 4; i = y; }
  1129         y = i << 2; if (y != 0) { n = n - 2; i = y; }
  1130         return n - ((i << 1) >>> 31);
  1131     }
  1132 
  1133     /**
  1134      * Returns the number of one-bits in the two's complement binary
  1135      * representation of the specified {@code int} value.  This function is
  1136      * sometimes referred to as the <i>population count</i>.
  1137      *
  1138      * @return the number of one-bits in the two's complement binary
  1139      *     representation of the specified {@code int} value.
  1140      * @since 1.5
  1141      */
  1142     public static int bitCount(int i) {
  1143         // HD, Figure 5-2
  1144         i = i - ((i >>> 1) & 0x55555555);
  1145         i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
  1146         i = (i + (i >>> 4)) & 0x0f0f0f0f;
  1147         i = i + (i >>> 8);
  1148         i = i + (i >>> 16);
  1149         return i & 0x3f;
  1150     }
  1151 
  1152     /**
  1153      * Returns the value obtained by rotating the two's complement binary
  1154      * representation of the specified {@code int} value left by the
  1155      * specified number of bits.  (Bits shifted out of the left hand, or
  1156      * high-order, side reenter on the right, or low-order.)
  1157      *
  1158      * <p>Note that left rotation with a negative distance is equivalent to
  1159      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
  1160      * distance)}.  Note also that rotation by any multiple of 32 is a
  1161      * no-op, so all but the last five bits of the rotation distance can be
  1162      * ignored, even if the distance is negative: {@code rotateLeft(val,
  1163      * distance) == rotateLeft(val, distance & 0x1F)}.
  1164      *
  1165      * @return the value obtained by rotating the two's complement binary
  1166      *     representation of the specified {@code int} value left by the
  1167      *     specified number of bits.
  1168      * @since 1.5
  1169      */
  1170     public static int rotateLeft(int i, int distance) {
  1171         return (i << distance) | (i >>> -distance);
  1172     }
  1173 
  1174     /**
  1175      * Returns the value obtained by rotating the two's complement binary
  1176      * representation of the specified {@code int} value right by the
  1177      * specified number of bits.  (Bits shifted out of the right hand, or
  1178      * low-order, side reenter on the left, or high-order.)
  1179      *
  1180      * <p>Note that right rotation with a negative distance is equivalent to
  1181      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
  1182      * distance)}.  Note also that rotation by any multiple of 32 is a
  1183      * no-op, so all but the last five bits of the rotation distance can be
  1184      * ignored, even if the distance is negative: {@code rotateRight(val,
  1185      * distance) == rotateRight(val, distance & 0x1F)}.
  1186      *
  1187      * @return the value obtained by rotating the two's complement binary
  1188      *     representation of the specified {@code int} value right by the
  1189      *     specified number of bits.
  1190      * @since 1.5
  1191      */
  1192     public static int rotateRight(int i, int distance) {
  1193         return (i >>> distance) | (i << -distance);
  1194     }
  1195 
  1196     /**
  1197      * Returns the value obtained by reversing the order of the bits in the
  1198      * two's complement binary representation of the specified {@code int}
  1199      * value.
  1200      *
  1201      * @return the value obtained by reversing order of the bits in the
  1202      *     specified {@code int} value.
  1203      * @since 1.5
  1204      */
  1205     public static int reverse(int i) {
  1206         // HD, Figure 7-1
  1207         i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
  1208         i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
  1209         i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
  1210         i = (i << 24) | ((i & 0xff00) << 8) |
  1211             ((i >>> 8) & 0xff00) | (i >>> 24);
  1212         return i;
  1213     }
  1214 
  1215     /**
  1216      * Returns the signum function of the specified {@code int} value.  (The
  1217      * return value is -1 if the specified value is negative; 0 if the
  1218      * specified value is zero; and 1 if the specified value is positive.)
  1219      *
  1220      * @return the signum function of the specified {@code int} value.
  1221      * @since 1.5
  1222      */
  1223     public static int signum(int i) {
  1224         // HD, Section 2-7
  1225         return (i >> 31) | (-i >>> 31);
  1226     }
  1227 
  1228     /**
  1229      * Returns the value obtained by reversing the order of the bytes in the
  1230      * two's complement representation of the specified {@code int} value.
  1231      *
  1232      * @return the value obtained by reversing the bytes in the specified
  1233      *     {@code int} value.
  1234      * @since 1.5
  1235      */
  1236     public static int reverseBytes(int i) {
  1237         return ((i >>> 24)           ) |
  1238                ((i >>   8) &   0xFF00) |
  1239                ((i <<   8) & 0xFF0000) |
  1240                ((i << 24));
  1241     }
  1242 
  1243     /** use serialVersionUID from JDK 1.0.2 for interoperability */
  1244     private static final long serialVersionUID = 1360826667806852920L;
  1245 }