rt/emul/compact/src/main/java/java/lang/invoke/MethodHandle.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 09 Aug 2014 11:11:13 +0200
branchjdk8-b132
changeset 1646 c880a8a8803b
child 1651 5c990ed353e9
permissions -rw-r--r--
Batch of classes necessary to implement invoke dynamic interfaces. Taken from JDK8 build 132
     1 /*
     2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang.invoke;
    27 
    28 
    29 import java.util.*;
    30 import sun.invoke.util.*;
    31 import sun.misc.Unsafe;
    32 
    33 import static java.lang.invoke.MethodHandleStatics.*;
    34 import java.util.logging.Level;
    35 import java.util.logging.Logger;
    36 
    37 /**
    38  * A method handle is a typed, directly executable reference to an underlying method,
    39  * constructor, field, or similar low-level operation, with optional
    40  * transformations of arguments or return values.
    41  * These transformations are quite general, and include such patterns as
    42  * {@linkplain #asType conversion},
    43  * {@linkplain #bindTo insertion},
    44  * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
    45  * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
    46  *
    47  * <h1>Method handle contents</h1>
    48  * Method handles are dynamically and strongly typed according to their parameter and return types.
    49  * They are not distinguished by the name or the defining class of their underlying methods.
    50  * A method handle must be invoked using a symbolic type descriptor which matches
    51  * the method handle's own {@linkplain #type type descriptor}.
    52  * <p>
    53  * Every method handle reports its type descriptor via the {@link #type type} accessor.
    54  * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
    55  * whose structure is a series of classes, one of which is
    56  * the return type of the method (or {@code void.class} if none).
    57  * <p>
    58  * A method handle's type controls the types of invocations it accepts,
    59  * and the kinds of transformations that apply to it.
    60  * <p>
    61  * A method handle contains a pair of special invoker methods
    62  * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
    63  * Both invoker methods provide direct access to the method handle's
    64  * underlying method, constructor, field, or other operation,
    65  * as modified by transformations of arguments and return values.
    66  * Both invokers accept calls which exactly match the method handle's own type.
    67  * The plain, inexact invoker also accepts a range of other call types.
    68  * <p>
    69  * Method handles are immutable and have no visible state.
    70  * Of course, they can be bound to underlying methods or data which exhibit state.
    71  * With respect to the Java Memory Model, any method handle will behave
    72  * as if all of its (internal) fields are final variables.  This means that any method
    73  * handle made visible to the application will always be fully formed.
    74  * This is true even if the method handle is published through a shared
    75  * variable in a data race.
    76  * <p>
    77  * Method handles cannot be subclassed by the user.
    78  * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
    79  * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
    80  * operation.  The programmer should not draw conclusions about a method handle
    81  * from its specific class, as the method handle class hierarchy (if any)
    82  * may change from time to time or across implementations from different vendors.
    83  *
    84  * <h1>Method handle compilation</h1>
    85  * A Java method call expression naming {@code invokeExact} or {@code invoke}
    86  * can invoke a method handle from Java source code.
    87  * From the viewpoint of source code, these methods can take any arguments
    88  * and their result can be cast to any return type.
    89  * Formally this is accomplished by giving the invoker methods
    90  * {@code Object} return types and variable arity {@code Object} arguments,
    91  * but they have an additional quality called <em>signature polymorphism</em>
    92  * which connects this freedom of invocation directly to the JVM execution stack.
    93  * <p>
    94  * As is usual with virtual methods, source-level calls to {@code invokeExact}
    95  * and {@code invoke} compile to an {@code invokevirtual} instruction.
    96  * More unusually, the compiler must record the actual argument types,
    97  * and may not perform method invocation conversions on the arguments.
    98  * Instead, it must push them on the stack according to their own unconverted types.
    99  * The method handle object itself is pushed on the stack before the arguments.
   100  * The compiler then calls the method handle with a symbolic type descriptor which
   101  * describes the argument and return types.
   102  * <p>
   103  * To issue a complete symbolic type descriptor, the compiler must also determine
   104  * the return type.  This is based on a cast on the method invocation expression,
   105  * if there is one, or else {@code Object} if the invocation is an expression
   106  * or else {@code void} if the invocation is a statement.
   107  * The cast may be to a primitive type (but not {@code void}).
   108  * <p>
   109  * As a corner case, an uncasted {@code null} argument is given
   110  * a symbolic type descriptor of {@code java.lang.Void}.
   111  * The ambiguity with the type {@code Void} is harmless, since there are no references of type
   112  * {@code Void} except the null reference.
   113  *
   114  * <h1>Method handle invocation</h1>
   115  * The first time a {@code invokevirtual} instruction is executed
   116  * it is linked, by symbolically resolving the names in the instruction
   117  * and verifying that the method call is statically legal.
   118  * This is true of calls to {@code invokeExact} and {@code invoke}.
   119  * In this case, the symbolic type descriptor emitted by the compiler is checked for
   120  * correct syntax and names it contains are resolved.
   121  * Thus, an {@code invokevirtual} instruction which invokes
   122  * a method handle will always link, as long
   123  * as the symbolic type descriptor is syntactically well-formed
   124  * and the types exist.
   125  * <p>
   126  * When the {@code invokevirtual} is executed after linking,
   127  * the receiving method handle's type is first checked by the JVM
   128  * to ensure that it matches the symbolic type descriptor.
   129  * If the type match fails, it means that the method which the
   130  * caller is invoking is not present on the individual
   131  * method handle being invoked.
   132  * <p>
   133  * In the case of {@code invokeExact}, the type descriptor of the invocation
   134  * (after resolving symbolic type names) must exactly match the method type
   135  * of the receiving method handle.
   136  * In the case of plain, inexact {@code invoke}, the resolved type descriptor
   137  * must be a valid argument to the receiver's {@link #asType asType} method.
   138  * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
   139  * <p>
   140  * After type matching, a call to {@code invokeExact} directly
   141  * and immediately invoke the method handle's underlying method
   142  * (or other behavior, as the case may be).
   143  * <p>
   144  * A call to plain {@code invoke} works the same as a call to
   145  * {@code invokeExact}, if the symbolic type descriptor specified by the caller
   146  * exactly matches the method handle's own type.
   147  * If there is a type mismatch, {@code invoke} attempts
   148  * to adjust the type of the receiving method handle,
   149  * as if by a call to {@link #asType asType},
   150  * to obtain an exactly invokable method handle {@code M2}.
   151  * This allows a more powerful negotiation of method type
   152  * between caller and callee.
   153  * <p>
   154  * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
   155  * and implementations are therefore not required to materialize it.)
   156  *
   157  * <h1>Invocation checking</h1>
   158  * In typical programs, method handle type matching will usually succeed.
   159  * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
   160  * either directly (in the case of {@code invokeExact}) or indirectly as if
   161  * by a failed call to {@code asType} (in the case of {@code invoke}).
   162  * <p>
   163  * Thus, a method type mismatch which might show up as a linkage error
   164  * in a statically typed program can show up as
   165  * a dynamic {@code WrongMethodTypeException}
   166  * in a program which uses method handles.
   167  * <p>
   168  * Because method types contain "live" {@code Class} objects,
   169  * method type matching takes into account both types names and class loaders.
   170  * Thus, even if a method handle {@code M} is created in one
   171  * class loader {@code L1} and used in another {@code L2},
   172  * method handle calls are type-safe, because the caller's symbolic type
   173  * descriptor, as resolved in {@code L2},
   174  * is matched against the original callee method's symbolic type descriptor,
   175  * as resolved in {@code L1}.
   176  * The resolution in {@code L1} happens when {@code M} is created
   177  * and its type is assigned, while the resolution in {@code L2} happens
   178  * when the {@code invokevirtual} instruction is linked.
   179  * <p>
   180  * Apart from the checking of type descriptors,
   181  * a method handle's capability to call its underlying method is unrestricted.
   182  * If a method handle is formed on a non-public method by a class
   183  * that has access to that method, the resulting handle can be used
   184  * in any place by any caller who receives a reference to it.
   185  * <p>
   186  * Unlike with the Core Reflection API, where access is checked every time
   187  * a reflective method is invoked,
   188  * method handle access checking is performed
   189  * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
   190  * In the case of {@code ldc} (see below), access checking is performed as part of linking
   191  * the constant pool entry underlying the constant method handle.
   192  * <p>
   193  * Thus, handles to non-public methods, or to methods in non-public classes,
   194  * should generally be kept secret.
   195  * They should not be passed to untrusted code unless their use from
   196  * the untrusted code would be harmless.
   197  *
   198  * <h1>Method handle creation</h1>
   199  * Java code can create a method handle that directly accesses
   200  * any method, constructor, or field that is accessible to that code.
   201  * This is done via a reflective, capability-based API called
   202  * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
   203  * For example, a static method handle can be obtained
   204  * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
   205  * There are also conversion methods from Core Reflection API objects,
   206  * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
   207  * <p>
   208  * Like classes and strings, method handles that correspond to accessible
   209  * fields, methods, and constructors can also be represented directly
   210  * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
   211  * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
   212  * refers directly to an associated {@code CONSTANT_Methodref},
   213  * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
   214  * constant pool entry.
   215  * (For full details on method handle constants,
   216  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
   217  * <p>
   218  * Method handles produced by lookups or constant loads from methods or
   219  * constructors with the variable arity modifier bit ({@code 0x0080})
   220  * have a corresponding variable arity, as if they were defined with
   221  * the help of {@link #asVarargsCollector asVarargsCollector}.
   222  * <p>
   223  * A method reference may refer either to a static or non-static method.
   224  * In the non-static case, the method handle type includes an explicit
   225  * receiver argument, prepended before any other arguments.
   226  * In the method handle's type, the initial receiver argument is typed
   227  * according to the class under which the method was initially requested.
   228  * (E.g., if a non-static method handle is obtained via {@code ldc},
   229  * the type of the receiver is the class named in the constant pool entry.)
   230  * <p>
   231  * Method handle constants are subject to the same link-time access checks
   232  * their corresponding bytecode instructions, and the {@code ldc} instruction
   233  * will throw corresponding linkage errors if the bytecode behaviors would
   234  * throw such errors.
   235  * <p>
   236  * As a corollary of this, access to protected members is restricted
   237  * to receivers only of the accessing class, or one of its subclasses,
   238  * and the accessing class must in turn be a subclass (or package sibling)
   239  * of the protected member's defining class.
   240  * If a method reference refers to a protected non-static method or field
   241  * of a class outside the current package, the receiver argument will
   242  * be narrowed to the type of the accessing class.
   243  * <p>
   244  * When a method handle to a virtual method is invoked, the method is
   245  * always looked up in the receiver (that is, the first argument).
   246  * <p>
   247  * A non-virtual method handle to a specific virtual method implementation
   248  * can also be created.  These do not perform virtual lookup based on
   249  * receiver type.  Such a method handle simulates the effect of
   250  * an {@code invokespecial} instruction to the same method.
   251  *
   252  * <h1>Usage examples</h1>
   253  * Here are some examples of usage:
   254  * <blockquote><pre>{@code
   255 Object x, y; String s; int i;
   256 MethodType mt; MethodHandle mh;
   257 MethodHandles.Lookup lookup = MethodHandles.lookup();
   258 // mt is (char,char)String
   259 mt = MethodType.methodType(String.class, char.class, char.class);
   260 mh = lookup.findVirtual(String.class, "replace", mt);
   261 s = (String) mh.invokeExact("daddy",'d','n');
   262 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
   263 assertEquals(s, "nanny");
   264 // weakly typed invocation (using MHs.invoke)
   265 s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
   266 assertEquals(s, "savvy");
   267 // mt is (Object[])List
   268 mt = MethodType.methodType(java.util.List.class, Object[].class);
   269 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
   270 assert(mh.isVarargsCollector());
   271 x = mh.invoke("one", "two");
   272 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
   273 assertEquals(x, java.util.Arrays.asList("one","two"));
   274 // mt is (Object,Object,Object)Object
   275 mt = MethodType.genericMethodType(3);
   276 mh = mh.asType(mt);
   277 x = mh.invokeExact((Object)1, (Object)2, (Object)3);
   278 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
   279 assertEquals(x, java.util.Arrays.asList(1,2,3));
   280 // mt is ()int
   281 mt = MethodType.methodType(int.class);
   282 mh = lookup.findVirtual(java.util.List.class, "size", mt);
   283 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
   284 // invokeExact(Ljava/util/List;)I
   285 assert(i == 3);
   286 mt = MethodType.methodType(void.class, String.class);
   287 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
   288 mh.invokeExact(System.out, "Hello, world.");
   289 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
   290  * }</pre></blockquote>
   291  * Each of the above calls to {@code invokeExact} or plain {@code invoke}
   292  * generates a single invokevirtual instruction with
   293  * the symbolic type descriptor indicated in the following comment.
   294  * In these examples, the helper method {@code assertEquals} is assumed to
   295  * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
   296  * on its arguments, and asserts that the result is true.
   297  *
   298  * <h1>Exceptions</h1>
   299  * The methods {@code invokeExact} and {@code invoke} are declared
   300  * to throw {@link java.lang.Throwable Throwable},
   301  * which is to say that there is no static restriction on what a method handle
   302  * can throw.  Since the JVM does not distinguish between checked
   303  * and unchecked exceptions (other than by their class, of course),
   304  * there is no particular effect on bytecode shape from ascribing
   305  * checked exceptions to method handle invocations.  But in Java source
   306  * code, methods which perform method handle calls must either explicitly
   307  * throw {@code Throwable}, or else must catch all
   308  * throwables locally, rethrowing only those which are legal in the context,
   309  * and wrapping ones which are illegal.
   310  *
   311  * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
   312  * The unusual compilation and linkage behavior of
   313  * {@code invokeExact} and plain {@code invoke}
   314  * is referenced by the term <em>signature polymorphism</em>.
   315  * As defined in the Java Language Specification,
   316  * a signature polymorphic method is one which can operate with
   317  * any of a wide range of call signatures and return types.
   318  * <p>
   319  * In source code, a call to a signature polymorphic method will
   320  * compile, regardless of the requested symbolic type descriptor.
   321  * As usual, the Java compiler emits an {@code invokevirtual}
   322  * instruction with the given symbolic type descriptor against the named method.
   323  * The unusual part is that the symbolic type descriptor is derived from
   324  * the actual argument and return types, not from the method declaration.
   325  * <p>
   326  * When the JVM processes bytecode containing signature polymorphic calls,
   327  * it will successfully link any such call, regardless of its symbolic type descriptor.
   328  * (In order to retain type safety, the JVM will guard such calls with suitable
   329  * dynamic type checks, as described elsewhere.)
   330  * <p>
   331  * Bytecode generators, including the compiler back end, are required to emit
   332  * untransformed symbolic type descriptors for these methods.
   333  * Tools which determine symbolic linkage are required to accept such
   334  * untransformed descriptors, without reporting linkage errors.
   335  *
   336  * <h1>Interoperation between method handles and the Core Reflection API</h1>
   337  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
   338  * any class member represented by a Core Reflection API object
   339  * can be converted to a behaviorally equivalent method handle.
   340  * For example, a reflective {@link java.lang.reflect.Method Method} can
   341  * be converted to a method handle using
   342  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
   343  * The resulting method handles generally provide more direct and efficient
   344  * access to the underlying class members.
   345  * <p>
   346  * As a special case,
   347  * when the Core Reflection API is used to view the signature polymorphic
   348  * methods {@code invokeExact} or plain {@code invoke} in this class,
   349  * they appear as ordinary non-polymorphic methods.
   350  * Their reflective appearance, as viewed by
   351  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
   352  * is unaffected by their special status in this API.
   353  * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
   354  * will report exactly those modifier bits required for any similarly
   355  * declared method, including in this case {@code native} and {@code varargs} bits.
   356  * <p>
   357  * As with any reflected method, these methods (when reflected) may be
   358  * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
   359  * However, such reflective calls do not result in method handle invocations.
   360  * Such a call, if passed the required argument
   361  * (a single one, of type {@code Object[]}), will ignore the argument and
   362  * will throw an {@code UnsupportedOperationException}.
   363  * <p>
   364  * Since {@code invokevirtual} instructions can natively
   365  * invoke method handles under any symbolic type descriptor, this reflective view conflicts
   366  * with the normal presentation of these methods via bytecodes.
   367  * Thus, these two native methods, when reflectively viewed by
   368  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
   369  * <p>
   370  * In order to obtain an invoker method for a particular type descriptor,
   371  * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
   372  * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
   373  * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
   374  * API is also able to return a method handle
   375  * to call {@code invokeExact} or plain {@code invoke},
   376  * for any specified type descriptor .
   377  *
   378  * <h1>Interoperation between method handles and Java generics</h1>
   379  * A method handle can be obtained on a method, constructor, or field
   380  * which is declared with Java generic types.
   381  * As with the Core Reflection API, the type of the method handle
   382  * will constructed from the erasure of the source-level type.
   383  * When a method handle is invoked, the types of its arguments
   384  * or the return value cast type may be generic types or type instances.
   385  * If this occurs, the compiler will replace those
   386  * types by their erasures when it constructs the symbolic type descriptor
   387  * for the {@code invokevirtual} instruction.
   388  * <p>
   389  * Method handles do not represent
   390  * their function-like types in terms of Java parameterized (generic) types,
   391  * because there are three mismatches between function-like types and parameterized
   392  * Java types.
   393  * <ul>
   394  * <li>Method types range over all possible arities,
   395  * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
   396  * Generics are not variadic, and so cannot represent this.</li>
   397  * <li>Method types can specify arguments of primitive types,
   398  * which Java generic types cannot range over.</li>
   399  * <li>Higher order functions over method handles (combinators) are
   400  * often generic across a wide range of function types, including
   401  * those of multiple arities.  It is impossible to represent such
   402  * genericity with a Java type parameter.</li>
   403  * </ul>
   404  *
   405  * <h1><a name="maxarity"></a>Arity limits</h1>
   406  * The JVM imposes on all methods and constructors of any kind an absolute
   407  * limit of 255 stacked arguments.  This limit can appear more restrictive
   408  * in certain cases:
   409  * <ul>
   410  * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
   411  * <li>A non-static method consumes an extra argument for the object on which the method is called.
   412  * <li>A constructor consumes an extra argument for the object which is being constructed.
   413  * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
   414  *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
   415  * </ul>
   416  * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
   417  * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
   418  * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
   419  * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
   420  *
   421  * @see MethodType
   422  * @see MethodHandles
   423  * @author John Rose, JSR 292 EG
   424  */
   425 public abstract class MethodHandle {
   426     static { MethodHandleImpl.initStatics(); }
   427 
   428     /**
   429      * Internal marker interface which distinguishes (to the Java compiler)
   430      * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
   431      */
   432     @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
   433     @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
   434     @interface PolymorphicSignature { }
   435 
   436     private final MethodType type;
   437     /*private*/ final LambdaForm form;
   438     // form is not private so that invokers can easily fetch it
   439     /*private*/ MethodHandle asTypeCache;
   440     // asTypeCache is not private so that invokers can easily fetch it
   441 
   442     /**
   443      * Reports the type of this method handle.
   444      * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
   445      * @return the method handle type
   446      */
   447     public MethodType type() {
   448         return type;
   449     }
   450 
   451     /**
   452      * Package-private constructor for the method handle implementation hierarchy.
   453      * Method handle inheritance will be contained completely within
   454      * the {@code java.lang.invoke} package.
   455      */
   456     // @param type type (permanently assigned) of the new method handle
   457     /*non-public*/ MethodHandle(MethodType type, LambdaForm form) {
   458         type.getClass();  // explicit NPE
   459         form.getClass();  // explicit NPE
   460         this.type = type;
   461         this.form = form;
   462 
   463         form.prepare();  // TO DO:  Try to delay this step until just before invocation.
   464     }
   465 
   466     /**
   467      * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
   468      * The symbolic type descriptor at the call site of {@code invokeExact} must
   469      * exactly match this method handle's {@link #type type}.
   470      * No conversions are allowed on arguments or return values.
   471      * <p>
   472      * When this method is observed via the Core Reflection API,
   473      * it will appear as a single native method, taking an object array and returning an object.
   474      * If this native method is invoked directly via
   475      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
   476      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
   477      * it will throw an {@code UnsupportedOperationException}.
   478      * @param args the signature-polymorphic parameter list, statically represented using varargs
   479      * @return the signature-polymorphic result, statically represented using {@code Object}
   480      * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
   481      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
   482      */
   483     public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
   484 
   485     /**
   486      * Invokes the method handle, allowing any caller type descriptor,
   487      * and optionally performing conversions on arguments and return values.
   488      * <p>
   489      * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
   490      * the call proceeds as if by {@link #invokeExact invokeExact}.
   491      * <p>
   492      * Otherwise, the call proceeds as if this method handle were first
   493      * adjusted by calling {@link #asType asType} to adjust this method handle
   494      * to the required type, and then the call proceeds as if by
   495      * {@link #invokeExact invokeExact} on the adjusted method handle.
   496      * <p>
   497      * There is no guarantee that the {@code asType} call is actually made.
   498      * If the JVM can predict the results of making the call, it may perform
   499      * adaptations directly on the caller's arguments,
   500      * and call the target method handle according to its own exact type.
   501      * <p>
   502      * The resolved type descriptor at the call site of {@code invoke} must
   503      * be a valid argument to the receivers {@code asType} method.
   504      * In particular, the caller must specify the same argument arity
   505      * as the callee's type,
   506      * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
   507      * <p>
   508      * When this method is observed via the Core Reflection API,
   509      * it will appear as a single native method, taking an object array and returning an object.
   510      * If this native method is invoked directly via
   511      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
   512      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
   513      * it will throw an {@code UnsupportedOperationException}.
   514      * @param args the signature-polymorphic parameter list, statically represented using varargs
   515      * @return the signature-polymorphic result, statically represented using {@code Object}
   516      * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
   517      * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
   518      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
   519      */
   520     public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
   521 
   522     /**
   523      * Private method for trusted invocation of a method handle respecting simplified signatures.
   524      * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
   525      * <p>
   526      * The caller signature is restricted to the following basic types:
   527      * Object, int, long, float, double, and void return.
   528      * <p>
   529      * The caller is responsible for maintaining type correctness by ensuring
   530      * that the each outgoing argument value is a member of the range of the corresponding
   531      * callee argument type.
   532      * (The caller should therefore issue appropriate casts and integer narrowing
   533      * operations on outgoing argument values.)
   534      * The caller can assume that the incoming result value is part of the range
   535      * of the callee's return type.
   536      * @param args the signature-polymorphic parameter list, statically represented using varargs
   537      * @return the signature-polymorphic result, statically represented using {@code Object}
   538      */
   539     /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
   540 
   541     /**
   542      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
   543      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   544      * The trailing (not leading) argument must be a MemberName.
   545      * @param args the signature-polymorphic parameter list, statically represented using varargs
   546      * @return the signature-polymorphic result, statically represented using {@code Object}
   547      */
   548     /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
   549 
   550     /**
   551      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
   552      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   553      * The trailing (not leading) argument must be a MemberName.
   554      * @param args the signature-polymorphic parameter list, statically represented using varargs
   555      * @return the signature-polymorphic result, statically represented using {@code Object}
   556      */
   557     /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
   558 
   559     /**
   560      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
   561      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   562      * The trailing (not leading) argument must be a MemberName.
   563      * @param args the signature-polymorphic parameter list, statically represented using varargs
   564      * @return the signature-polymorphic result, statically represented using {@code Object}
   565      */
   566     /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
   567 
   568     /**
   569      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
   570      * The caller signature is restricted to basic types as with {@code invokeBasic}.
   571      * The trailing (not leading) argument must be a MemberName.
   572      * @param args the signature-polymorphic parameter list, statically represented using varargs
   573      * @return the signature-polymorphic result, statically represented using {@code Object}
   574      */
   575     /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
   576 
   577     /**
   578      * Performs a variable arity invocation, passing the arguments in the given list
   579      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
   580      * which mentions only the type {@code Object}, and whose arity is the length
   581      * of the argument list.
   582      * <p>
   583      * Specifically, execution proceeds as if by the following steps,
   584      * although the methods are not guaranteed to be called if the JVM
   585      * can predict their effects.
   586      * <ul>
   587      * <li>Determine the length of the argument array as {@code N}.
   588      *     For a null reference, {@code N=0}. </li>
   589      * <li>Determine the general type {@code TN} of {@code N} arguments as
   590      *     as {@code TN=MethodType.genericMethodType(N)}.</li>
   591      * <li>Force the original target method handle {@code MH0} to the
   592      *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
   593      * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
   594      * <li>Invoke the type-adjusted method handle on the unpacked arguments:
   595      *     MH1.invokeExact(A0, ...). </li>
   596      * <li>Take the return value as an {@code Object} reference. </li>
   597      * </ul>
   598      * <p>
   599      * Because of the action of the {@code asType} step, the following argument
   600      * conversions are applied as necessary:
   601      * <ul>
   602      * <li>reference casting
   603      * <li>unboxing
   604      * <li>widening primitive conversions
   605      * </ul>
   606      * <p>
   607      * The result returned by the call is boxed if it is a primitive,
   608      * or forced to null if the return type is void.
   609      * <p>
   610      * This call is equivalent to the following code:
   611      * <blockquote><pre>{@code
   612      * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
   613      * Object result = invoker.invokeExact(this, arguments);
   614      * }</pre></blockquote>
   615      * <p>
   616      * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
   617      * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
   618      * It can therefore be used as a bridge between native or reflective code and method handles.
   619      *
   620      * @param arguments the arguments to pass to the target
   621      * @return the result returned by the target
   622      * @throws ClassCastException if an argument cannot be converted by reference casting
   623      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
   624      * @throws Throwable anything thrown by the target method invocation
   625      * @see MethodHandles#spreadInvoker
   626      */
   627     public Object invokeWithArguments(Object... arguments) throws Throwable {
   628         int argc = arguments == null ? 0 : arguments.length;
   629         @SuppressWarnings("LocalVariableHidesMemberVariable")
   630         MethodType type = type();
   631         if (type.parameterCount() != argc || isVarargsCollector()) {
   632             // simulate invoke
   633             return asType(MethodType.genericMethodType(argc)).invokeWithArguments(arguments);
   634         }
   635         MethodHandle invoker = type.invokers().varargsInvoker();
   636         return invoker.invokeExact(this, arguments);
   637     }
   638 
   639     /**
   640      * Performs a variable arity invocation, passing the arguments in the given array
   641      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
   642      * which mentions only the type {@code Object}, and whose arity is the length
   643      * of the argument array.
   644      * <p>
   645      * This method is also equivalent to the following code:
   646      * <blockquote><pre>{@code
   647      *   invokeWithArguments(arguments.toArray()
   648      * }</pre></blockquote>
   649      *
   650      * @param arguments the arguments to pass to the target
   651      * @return the result returned by the target
   652      * @throws NullPointerException if {@code arguments} is a null reference
   653      * @throws ClassCastException if an argument cannot be converted by reference casting
   654      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
   655      * @throws Throwable anything thrown by the target method invocation
   656      */
   657     public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
   658         return invokeWithArguments(arguments.toArray());
   659     }
   660 
   661     /**
   662      * Produces an adapter method handle which adapts the type of the
   663      * current method handle to a new type.
   664      * The resulting method handle is guaranteed to report a type
   665      * which is equal to the desired new type.
   666      * <p>
   667      * If the original type and new type are equal, returns {@code this}.
   668      * <p>
   669      * The new method handle, when invoked, will perform the following
   670      * steps:
   671      * <ul>
   672      * <li>Convert the incoming argument list to match the original
   673      *     method handle's argument list.
   674      * <li>Invoke the original method handle on the converted argument list.
   675      * <li>Convert any result returned by the original method handle
   676      *     to the return type of new method handle.
   677      * </ul>
   678      * <p>
   679      * This method provides the crucial behavioral difference between
   680      * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
   681      * The two methods
   682      * perform the same steps when the caller's type descriptor exactly m atches
   683      * the callee's, but when the types differ, plain {@link #invoke invoke}
   684      * also calls {@code asType} (or some internal equivalent) in order
   685      * to match up the caller's and callee's types.
   686      * <p>
   687      * If the current method is a variable arity method handle
   688      * argument list conversion may involve the conversion and collection
   689      * of several arguments into an array, as
   690      * {@linkplain #asVarargsCollector described elsewhere}.
   691      * In every other case, all conversions are applied <em>pairwise</em>,
   692      * which means that each argument or return value is converted to
   693      * exactly one argument or return value (or no return value).
   694      * The applied conversions are defined by consulting the
   695      * the corresponding component types of the old and new
   696      * method handle types.
   697      * <p>
   698      * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
   699      * or old and new return types.  Specifically, for some valid index {@code i}, let
   700      * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
   701      * Or else, going the other way for return values, let
   702      * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
   703      * If the types are the same, the new method handle makes no change
   704      * to the corresponding argument or return value (if any).
   705      * Otherwise, one of the following conversions is applied
   706      * if possible:
   707      * <ul>
   708      * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
   709      *     (The types do not need to be related in any particular way.
   710      *     This is because a dynamic value of null can convert to any reference type.)
   711      * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
   712      *     conversion (JLS 5.3) is applied, if one exists.
   713      *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
   714      * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
   715      *     a Java casting conversion (JLS 5.5) is applied if one exists.
   716      *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
   717      *     which is then widened as needed to <em>T1</em>.)
   718      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
   719      *     conversion will be applied at runtime, possibly followed
   720      *     by a Java method invocation conversion (JLS 5.3)
   721      *     on the primitive value.  (These are the primitive widening conversions.)
   722      *     <em>T0</em> must be a wrapper class or a supertype of one.
   723      *     (In the case where <em>T0</em> is Object, these are the conversions
   724      *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
   725      *     The unboxing conversion must have a possibility of success, which means that
   726      *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
   727      *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
   728      *     primitive value can be widened to <em>T1</em>.
   729      * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
   730      * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
   731      * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
   732      *     a zero value is introduced.
   733      * </ul>
   734     * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
   735      * because neither corresponds specifically to the <em>dynamic type</em> of any
   736      * actual argument or return value.)
   737      * <p>
   738      * The method handle conversion cannot be made if any one of the required
   739      * pairwise conversions cannot be made.
   740      * <p>
   741      * At runtime, the conversions applied to reference arguments
   742      * or return values may require additional runtime checks which can fail.
   743      * An unboxing operation may fail because the original reference is null,
   744      * causing a {@link java.lang.NullPointerException NullPointerException}.
   745      * An unboxing operation or a reference cast may also fail on a reference
   746      * to an object of the wrong type,
   747      * causing a {@link java.lang.ClassCastException ClassCastException}.
   748      * Although an unboxing operation may accept several kinds of wrappers,
   749      * if none are available, a {@code ClassCastException} will be thrown.
   750      *
   751      * @param newType the expected type of the new method handle
   752      * @return a method handle which delegates to {@code this} after performing
   753      *           any necessary argument conversions, and arranges for any
   754      *           necessary return value conversions
   755      * @throws NullPointerException if {@code newType} is a null reference
   756      * @throws WrongMethodTypeException if the conversion cannot be made
   757      * @see MethodHandles#explicitCastArguments
   758      */
   759     public MethodHandle asType(MethodType newType) {
   760         // Fast path alternative to a heavyweight {@code asType} call.
   761         // Return 'this' if the conversion will be a no-op.
   762         if (newType == type) {
   763             return this;
   764         }
   765         // Return 'this.asTypeCache' if the conversion is already memoized.
   766         MethodHandle atc = asTypeCache;
   767         if (atc != null && newType == atc.type) {
   768             return atc;
   769         }
   770         return asTypeUncached(newType);
   771     }
   772 
   773     /** Override this to change asType behavior. */
   774     /*non-public*/ MethodHandle asTypeUncached(MethodType newType) {
   775         if (!type.isConvertibleTo(newType))
   776             throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
   777         return asTypeCache = convertArguments(newType);
   778     }
   779 
   780     /**
   781      * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
   782      * and spreads its elements as positional arguments.
   783      * The new method handle adapts, as its <i>target</i>,
   784      * the current method handle.  The type of the adapter will be
   785      * the same as the type of the target, except that the final
   786      * {@code arrayLength} parameters of the target's type are replaced
   787      * by a single array parameter of type {@code arrayType}.
   788      * <p>
   789      * If the array element type differs from any of the corresponding
   790      * argument types on the original target,
   791      * the original target is adapted to take the array elements directly,
   792      * as if by a call to {@link #asType asType}.
   793      * <p>
   794      * When called, the adapter replaces a trailing array argument
   795      * by the array's elements, each as its own argument to the target.
   796      * (The order of the arguments is preserved.)
   797      * They are converted pairwise by casting and/or unboxing
   798      * to the types of the trailing parameters of the target.
   799      * Finally the target is called.
   800      * What the target eventually returns is returned unchanged by the adapter.
   801      * <p>
   802      * Before calling the target, the adapter verifies that the array
   803      * contains exactly enough elements to provide a correct argument count
   804      * to the target method handle.
   805      * (The array may also be null when zero elements are required.)
   806      * <p>
   807      * If, when the adapter is called, the supplied array argument does
   808      * not have the correct number of elements, the adapter will throw
   809      * an {@link IllegalArgumentException} instead of invoking the target.
   810      * <p>
   811      * Here are some simple examples of array-spreading method handles:
   812      * <blockquote><pre>{@code
   813 MethodHandle equals = publicLookup()
   814   .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
   815 assert( (boolean) equals.invokeExact("me", (Object)"me"));
   816 assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
   817 // spread both arguments from a 2-array:
   818 MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
   819 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
   820 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
   821 // try to spread from anything but a 2-array:
   822 for (int n = 0; n <= 10; n++) {
   823   Object[] badArityArgs = (n == 2 ? null : new Object[n]);
   824   try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
   825   catch (IllegalArgumentException ex) { } // OK
   826 }
   827 // spread both arguments from a String array:
   828 MethodHandle eq2s = equals.asSpreader(String[].class, 2);
   829 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
   830 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
   831 // spread second arguments from a 1-array:
   832 MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
   833 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
   834 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
   835 // spread no arguments from a 0-array or null:
   836 MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
   837 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
   838 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
   839 // asSpreader and asCollector are approximate inverses:
   840 for (int n = 0; n <= 2; n++) {
   841     for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
   842         MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
   843         assert( (boolean) equals2.invokeWithArguments("me", "me"));
   844         assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
   845     }
   846 }
   847 MethodHandle caToString = publicLookup()
   848   .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
   849 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
   850 MethodHandle caString3 = caToString.asCollector(char[].class, 3);
   851 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
   852 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
   853 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
   854      * }</pre></blockquote>
   855      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
   856      * @param arrayLength the number of arguments to spread from an incoming array argument
   857      * @return a new method handle which spreads its final array argument,
   858      *         before calling the original method handle
   859      * @throws NullPointerException if {@code arrayType} is a null reference
   860      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
   861      *         or if target does not have at least
   862      *         {@code arrayLength} parameter types,
   863      *         or if {@code arrayLength} is negative,
   864      *         or if the resulting method handle's type would have
   865      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
   866      * @throws WrongMethodTypeException if the implied {@code asType} call fails
   867      * @see #asCollector
   868      */
   869     public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
   870         asSpreaderChecks(arrayType, arrayLength);
   871         int spreadArgPos = type.parameterCount() - arrayLength;
   872         return MethodHandleImpl.makeSpreadArguments(this, arrayType, spreadArgPos, arrayLength);
   873     }
   874 
   875     private void asSpreaderChecks(Class<?> arrayType, int arrayLength) {
   876         spreadArrayChecks(arrayType, arrayLength);
   877         int nargs = type().parameterCount();
   878         if (nargs < arrayLength || arrayLength < 0)
   879             throw newIllegalArgumentException("bad spread array length");
   880         if (arrayType != Object[].class && arrayLength != 0) {
   881             boolean sawProblem = false;
   882             Class<?> arrayElement = arrayType.getComponentType();
   883             for (int i = nargs - arrayLength; i < nargs; i++) {
   884                 if (!MethodType.canConvert(arrayElement, type().parameterType(i))) {
   885                     sawProblem = true;
   886                     break;
   887                 }
   888             }
   889             if (sawProblem) {
   890                 ArrayList<Class<?>> ptypes = new ArrayList<>(type().parameterList());
   891                 for (int i = nargs - arrayLength; i < nargs; i++) {
   892                     ptypes.set(i, arrayElement);
   893                 }
   894                 // elicit an error:
   895                 this.asType(MethodType.methodType(type().returnType(), ptypes));
   896             }
   897         }
   898     }
   899 
   900     private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
   901         Class<?> arrayElement = arrayType.getComponentType();
   902         if (arrayElement == null)
   903             throw newIllegalArgumentException("not an array type", arrayType);
   904         if ((arrayLength & 0x7F) != arrayLength) {
   905             if ((arrayLength & 0xFF) != arrayLength)
   906                 throw newIllegalArgumentException("array length is not legal", arrayLength);
   907             assert(arrayLength >= 128);
   908             if (arrayElement == long.class ||
   909                 arrayElement == double.class)
   910                 throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
   911         }
   912     }
   913 
   914     /**
   915      * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
   916      * positional arguments and collects them into an array argument.
   917      * The new method handle adapts, as its <i>target</i>,
   918      * the current method handle.  The type of the adapter will be
   919      * the same as the type of the target, except that a single trailing
   920      * parameter (usually of type {@code arrayType}) is replaced by
   921      * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
   922      * <p>
   923      * If the array type differs from the final argument type on the original target,
   924      * the original target is adapted to take the array type directly,
   925      * as if by a call to {@link #asType asType}.
   926      * <p>
   927      * When called, the adapter replaces its trailing {@code arrayLength}
   928      * arguments by a single new array of type {@code arrayType}, whose elements
   929      * comprise (in order) the replaced arguments.
   930      * Finally the target is called.
   931      * What the target eventually returns is returned unchanged by the adapter.
   932      * <p>
   933      * (The array may also be a shared constant when {@code arrayLength} is zero.)
   934      * <p>
   935      * (<em>Note:</em> The {@code arrayType} is often identical to the last
   936      * parameter type of the original target.
   937      * It is an explicit argument for symmetry with {@code asSpreader}, and also
   938      * to allow the target to use a simple {@code Object} as its last parameter type.)
   939      * <p>
   940      * In order to create a collecting adapter which is not restricted to a particular
   941      * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
   942      * <p>
   943      * Here are some examples of array-collecting method handles:
   944      * <blockquote><pre>{@code
   945 MethodHandle deepToString = publicLookup()
   946   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
   947 assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
   948 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
   949 assertEquals(methodType(String.class, Object.class), ts1.type());
   950 //assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
   951 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
   952 // arrayType can be a subtype of Object[]
   953 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
   954 assertEquals(methodType(String.class, String.class, String.class), ts2.type());
   955 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
   956 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
   957 assertEquals("[]", (String) ts0.invokeExact());
   958 // collectors can be nested, Lisp-style
   959 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
   960 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
   961 // arrayType can be any primitive array type
   962 MethodHandle bytesToString = publicLookup()
   963   .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
   964   .asCollector(byte[].class, 3);
   965 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
   966 MethodHandle longsToString = publicLookup()
   967   .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
   968   .asCollector(long[].class, 1);
   969 assertEquals("[123]", (String) longsToString.invokeExact((long)123));
   970      * }</pre></blockquote>
   971      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
   972      * @param arrayLength the number of arguments to collect into a new array argument
   973      * @return a new method handle which collects some trailing argument
   974      *         into an array, before calling the original method handle
   975      * @throws NullPointerException if {@code arrayType} is a null reference
   976      * @throws IllegalArgumentException if {@code arrayType} is not an array type
   977      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
   978      *         or {@code arrayLength} is not a legal array size,
   979      *         or the resulting method handle's type would have
   980      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
   981      * @throws WrongMethodTypeException if the implied {@code asType} call fails
   982      * @see #asSpreader
   983      * @see #asVarargsCollector
   984      */
   985     public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
   986         asCollectorChecks(arrayType, arrayLength);
   987         int collectArgPos = type().parameterCount()-1;
   988         MethodHandle target = this;
   989         if (arrayType != type().parameterType(collectArgPos))
   990             target = convertArguments(type().changeParameterType(collectArgPos, arrayType));
   991         MethodHandle collector = ValueConversions.varargsArray(arrayType, arrayLength);
   992         return MethodHandles.collectArguments(target, collectArgPos, collector);
   993     }
   994 
   995     // private API: return true if last param exactly matches arrayType
   996     private boolean asCollectorChecks(Class<?> arrayType, int arrayLength) {
   997         spreadArrayChecks(arrayType, arrayLength);
   998         int nargs = type().parameterCount();
   999         if (nargs != 0) {
  1000             Class<?> lastParam = type().parameterType(nargs-1);
  1001             if (lastParam == arrayType)  return true;
  1002             if (lastParam.isAssignableFrom(arrayType))  return false;
  1003         }
  1004         throw newIllegalArgumentException("array type not assignable to trailing argument", this, arrayType);
  1005     }
  1006 
  1007     /**
  1008      * Makes a <em>variable arity</em> adapter which is able to accept
  1009      * any number of trailing positional arguments and collect them
  1010      * into an array argument.
  1011      * <p>
  1012      * The type and behavior of the adapter will be the same as
  1013      * the type and behavior of the target, except that certain
  1014      * {@code invoke} and {@code asType} requests can lead to
  1015      * trailing positional arguments being collected into target's
  1016      * trailing parameter.
  1017      * Also, the last parameter type of the adapter will be
  1018      * {@code arrayType}, even if the target has a different
  1019      * last parameter type.
  1020      * <p>
  1021      * This transformation may return {@code this} if the method handle is
  1022      * already of variable arity and its trailing parameter type
  1023      * is identical to {@code arrayType}.
  1024      * <p>
  1025      * When called with {@link #invokeExact invokeExact}, the adapter invokes
  1026      * the target with no argument changes.
  1027      * (<em>Note:</em> This behavior is different from a
  1028      * {@linkplain #asCollector fixed arity collector},
  1029      * since it accepts a whole array of indeterminate length,
  1030      * rather than a fixed number of arguments.)
  1031      * <p>
  1032      * When called with plain, inexact {@link #invoke invoke}, if the caller
  1033      * type is the same as the adapter, the adapter invokes the target as with
  1034      * {@code invokeExact}.
  1035      * (This is the normal behavior for {@code invoke} when types match.)
  1036      * <p>
  1037      * Otherwise, if the caller and adapter arity are the same, and the
  1038      * trailing parameter type of the caller is a reference type identical to
  1039      * or assignable to the trailing parameter type of the adapter,
  1040      * the arguments and return values are converted pairwise,
  1041      * as if by {@link #asType asType} on a fixed arity
  1042      * method handle.
  1043      * <p>
  1044      * Otherwise, the arities differ, or the adapter's trailing parameter
  1045      * type is not assignable from the corresponding caller type.
  1046      * In this case, the adapter replaces all trailing arguments from
  1047      * the original trailing argument position onward, by
  1048      * a new array of type {@code arrayType}, whose elements
  1049      * comprise (in order) the replaced arguments.
  1050      * <p>
  1051      * The caller type must provides as least enough arguments,
  1052      * and of the correct type, to satisfy the target's requirement for
  1053      * positional arguments before the trailing array argument.
  1054      * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
  1055      * where {@code N} is the arity of the target.
  1056      * Also, there must exist conversions from the incoming arguments
  1057      * to the target's arguments.
  1058      * As with other uses of plain {@code invoke}, if these basic
  1059      * requirements are not fulfilled, a {@code WrongMethodTypeException}
  1060      * may be thrown.
  1061      * <p>
  1062      * In all cases, what the target eventually returns is returned unchanged by the adapter.
  1063      * <p>
  1064      * In the final case, it is exactly as if the target method handle were
  1065      * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
  1066      * to the arity required by the caller type.
  1067      * (As with {@code asCollector}, if the array length is zero,
  1068      * a shared constant may be used instead of a new array.
  1069      * If the implied call to {@code asCollector} would throw
  1070      * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
  1071      * the call to the variable arity adapter must throw
  1072      * {@code WrongMethodTypeException}.)
  1073      * <p>
  1074      * The behavior of {@link #asType asType} is also specialized for
  1075      * variable arity adapters, to maintain the invariant that
  1076      * plain, inexact {@code invoke} is always equivalent to an {@code asType}
  1077      * call to adjust the target type, followed by {@code invokeExact}.
  1078      * Therefore, a variable arity adapter responds
  1079      * to an {@code asType} request by building a fixed arity collector,
  1080      * if and only if the adapter and requested type differ either
  1081      * in arity or trailing argument type.
  1082      * The resulting fixed arity collector has its type further adjusted
  1083      * (if necessary) to the requested type by pairwise conversion,
  1084      * as if by another application of {@code asType}.
  1085      * <p>
  1086      * When a method handle is obtained by executing an {@code ldc} instruction
  1087      * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
  1088      * as a variable arity method (with the modifier bit {@code 0x0080}),
  1089      * the method handle will accept multiple arities, as if the method handle
  1090      * constant were created by means of a call to {@code asVarargsCollector}.
  1091      * <p>
  1092      * In order to create a collecting adapter which collects a predetermined
  1093      * number of arguments, and whose type reflects this predetermined number,
  1094      * use {@link #asCollector asCollector} instead.
  1095      * <p>
  1096      * No method handle transformations produce new method handles with
  1097      * variable arity, unless they are documented as doing so.
  1098      * Therefore, besides {@code asVarargsCollector},
  1099      * all methods in {@code MethodHandle} and {@code MethodHandles}
  1100      * will return a method handle with fixed arity,
  1101      * except in the cases where they are specified to return their original
  1102      * operand (e.g., {@code asType} of the method handle's own type).
  1103      * <p>
  1104      * Calling {@code asVarargsCollector} on a method handle which is already
  1105      * of variable arity will produce a method handle with the same type and behavior.
  1106      * It may (or may not) return the original variable arity method handle.
  1107      * <p>
  1108      * Here is an example, of a list-making variable arity method handle:
  1109      * <blockquote><pre>{@code
  1110 MethodHandle deepToString = publicLookup()
  1111   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
  1112 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
  1113 assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
  1114 assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
  1115 assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
  1116 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
  1117 // findStatic of Arrays.asList(...) produces a variable arity method handle:
  1118 MethodHandle asList = publicLookup()
  1119   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
  1120 assertEquals(methodType(List.class, Object[].class), asList.type());
  1121 assert(asList.isVarargsCollector());
  1122 assertEquals("[]", asList.invoke().toString());
  1123 assertEquals("[1]", asList.invoke(1).toString());
  1124 assertEquals("[two, too]", asList.invoke("two", "too").toString());
  1125 String[] argv = { "three", "thee", "tee" };
  1126 assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
  1127 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
  1128 List ls = (List) asList.invoke((Object)argv);
  1129 assertEquals(1, ls.size());
  1130 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
  1131      * }</pre></blockquote>
  1132      * <p style="font-size:smaller;">
  1133      * <em>Discussion:</em>
  1134      * These rules are designed as a dynamically-typed variation
  1135      * of the Java rules for variable arity methods.
  1136      * In both cases, callers to a variable arity method or method handle
  1137      * can either pass zero or more positional arguments, or else pass
  1138      * pre-collected arrays of any length.  Users should be aware of the
  1139      * special role of the final argument, and of the effect of a
  1140      * type match on that final argument, which determines whether
  1141      * or not a single trailing argument is interpreted as a whole
  1142      * array or a single element of an array to be collected.
  1143      * Note that the dynamic type of the trailing argument has no
  1144      * effect on this decision, only a comparison between the symbolic
  1145      * type descriptor of the call site and the type descriptor of the method handle.)
  1146      *
  1147      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
  1148      * @return a new method handle which can collect any number of trailing arguments
  1149      *         into an array, before calling the original method handle
  1150      * @throws NullPointerException if {@code arrayType} is a null reference
  1151      * @throws IllegalArgumentException if {@code arrayType} is not an array type
  1152      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
  1153      * @see #asCollector
  1154      * @see #isVarargsCollector
  1155      * @see #asFixedArity
  1156      */
  1157     public MethodHandle asVarargsCollector(Class<?> arrayType) {
  1158         Class<?> arrayElement = arrayType.getComponentType();
  1159         boolean lastMatch = asCollectorChecks(arrayType, 0);
  1160         if (isVarargsCollector() && lastMatch)
  1161             return this;
  1162         return MethodHandleImpl.makeVarargsCollector(this, arrayType);
  1163     }
  1164 
  1165     /**
  1166      * Determines if this method handle
  1167      * supports {@linkplain #asVarargsCollector variable arity} calls.
  1168      * Such method handles arise from the following sources:
  1169      * <ul>
  1170      * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
  1171      * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
  1172      *     which resolves to a variable arity Java method or constructor
  1173      * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
  1174      *     which resolves to a variable arity Java method or constructor
  1175      * </ul>
  1176      * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
  1177      * @see #asVarargsCollector
  1178      * @see #asFixedArity
  1179      */
  1180     public boolean isVarargsCollector() {
  1181         return false;
  1182     }
  1183 
  1184     /**
  1185      * Makes a <em>fixed arity</em> method handle which is otherwise
  1186      * equivalent to the current method handle.
  1187      * <p>
  1188      * If the current method handle is not of
  1189      * {@linkplain #asVarargsCollector variable arity},
  1190      * the current method handle is returned.
  1191      * This is true even if the current method handle
  1192      * could not be a valid input to {@code asVarargsCollector}.
  1193      * <p>
  1194      * Otherwise, the resulting fixed-arity method handle has the same
  1195      * type and behavior of the current method handle,
  1196      * except that {@link #isVarargsCollector isVarargsCollector}
  1197      * will be false.
  1198      * The fixed-arity method handle may (or may not) be the
  1199      * a previous argument to {@code asVarargsCollector}.
  1200      * <p>
  1201      * Here is an example, of a list-making variable arity method handle:
  1202      * <blockquote><pre>{@code
  1203 MethodHandle asListVar = publicLookup()
  1204   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
  1205   .asVarargsCollector(Object[].class);
  1206 MethodHandle asListFix = asListVar.asFixedArity();
  1207 assertEquals("[1]", asListVar.invoke(1).toString());
  1208 Exception caught = null;
  1209 try { asListFix.invoke((Object)1); }
  1210 catch (Exception ex) { caught = ex; }
  1211 assert(caught instanceof ClassCastException);
  1212 assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
  1213 try { asListFix.invoke("two", "too"); }
  1214 catch (Exception ex) { caught = ex; }
  1215 assert(caught instanceof WrongMethodTypeException);
  1216 Object[] argv = { "three", "thee", "tee" };
  1217 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
  1218 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
  1219 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
  1220 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
  1221      * }</pre></blockquote>
  1222      *
  1223      * @return a new method handle which accepts only a fixed number of arguments
  1224      * @see #asVarargsCollector
  1225      * @see #isVarargsCollector
  1226      */
  1227     public MethodHandle asFixedArity() {
  1228         assert(!isVarargsCollector());
  1229         return this;
  1230     }
  1231 
  1232     /**
  1233      * Binds a value {@code x} to the first argument of a method handle, without invoking it.
  1234      * The new method handle adapts, as its <i>target</i>,
  1235      * the current method handle by binding it to the given argument.
  1236      * The type of the bound handle will be
  1237      * the same as the type of the target, except that a single leading
  1238      * reference parameter will be omitted.
  1239      * <p>
  1240      * When called, the bound handle inserts the given value {@code x}
  1241      * as a new leading argument to the target.  The other arguments are
  1242      * also passed unchanged.
  1243      * What the target eventually returns is returned unchanged by the bound handle.
  1244      * <p>
  1245      * The reference {@code x} must be convertible to the first parameter
  1246      * type of the target.
  1247      * <p>
  1248      * (<em>Note:</em>  Because method handles are immutable, the target method handle
  1249      * retains its original type and behavior.)
  1250      * @param x  the value to bind to the first argument of the target
  1251      * @return a new method handle which prepends the given value to the incoming
  1252      *         argument list, before calling the original method handle
  1253      * @throws IllegalArgumentException if the target does not have a
  1254      *         leading parameter type that is a reference type
  1255      * @throws ClassCastException if {@code x} cannot be converted
  1256      *         to the leading parameter type of the target
  1257      * @see MethodHandles#insertArguments
  1258      */
  1259     public MethodHandle bindTo(Object x) {
  1260         Class<?> ptype;
  1261         @SuppressWarnings("LocalVariableHidesMemberVariable")
  1262         MethodType type = type();
  1263         if (type.parameterCount() == 0 ||
  1264             (ptype = type.parameterType(0)).isPrimitive())
  1265             throw newIllegalArgumentException("no leading reference parameter", x);
  1266         x = ptype.cast(x);  // throw CCE if needed
  1267         return bindReceiver(x);
  1268     }
  1269 
  1270     /**
  1271      * Returns a string representation of the method handle,
  1272      * starting with the string {@code "MethodHandle"} and
  1273      * ending with the string representation of the method handle's type.
  1274      * In other words, this method returns a string equal to the value of:
  1275      * <blockquote><pre>{@code
  1276      * "MethodHandle" + type().toString()
  1277      * }</pre></blockquote>
  1278      * <p>
  1279      * (<em>Note:</em>  Future releases of this API may add further information
  1280      * to the string representation.
  1281      * Therefore, the present syntax should not be parsed by applications.)
  1282      *
  1283      * @return a string representation of the method handle
  1284      */
  1285     @Override
  1286     public String toString() {
  1287         if (DEBUG_METHOD_HANDLE_NAMES)  return debugString();
  1288         return standardString();
  1289     }
  1290     String standardString() {
  1291         return "MethodHandle"+type;
  1292     }
  1293     String debugString() {
  1294         return standardString()+"/LF="+internalForm()+internalProperties();
  1295     }
  1296 
  1297     //// Implementation methods.
  1298     //// Sub-classes can override these default implementations.
  1299     //// All these methods assume arguments are already validated.
  1300 
  1301     // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
  1302 
  1303     /*non-public*/
  1304     MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
  1305         if (!member.isVarargs())  return this;
  1306         int argc = type().parameterCount();
  1307         if (argc != 0) {
  1308             Class<?> arrayType = type().parameterType(argc-1);
  1309             if (arrayType.isArray()) {
  1310                 return MethodHandleImpl.makeVarargsCollector(this, arrayType);
  1311             }
  1312         }
  1313         throw member.makeAccessException("cannot make variable arity", null);
  1314     }
  1315     /*non-public*/
  1316     MethodHandle viewAsType(MethodType newType) {
  1317         // No actual conversions, just a new view of the same method.
  1318         return MethodHandleImpl.makePairwiseConvert(this, newType, 0);
  1319     }
  1320 
  1321     // Decoding
  1322 
  1323     /*non-public*/
  1324     LambdaForm internalForm() {
  1325         return form;
  1326     }
  1327 
  1328     /*non-public*/
  1329     MemberName internalMemberName() {
  1330         return null;  // DMH returns DMH.member
  1331     }
  1332 
  1333     /*non-public*/
  1334     Class<?> internalCallerClass() {
  1335         return null;  // caller-bound MH for @CallerSensitive method returns caller
  1336     }
  1337 
  1338     /*non-public*/
  1339     MethodHandle withInternalMemberName(MemberName member) {
  1340         if (member != null) {
  1341             return MethodHandleImpl.makeWrappedMember(this, member);
  1342         } else if (internalMemberName() == null) {
  1343             // The required internaMemberName is null, and this MH (like most) doesn't have one.
  1344             return this;
  1345         } else {
  1346             // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
  1347             MethodHandle result = rebind();
  1348             assert (result.internalMemberName() == null);
  1349             return result;
  1350         }
  1351     }
  1352 
  1353     /*non-public*/
  1354     boolean isInvokeSpecial() {
  1355         return false;  // DMH.Special returns true
  1356     }
  1357 
  1358     /*non-public*/
  1359     Object internalValues() {
  1360         return null;
  1361     }
  1362 
  1363     /*non-public*/
  1364     Object internalProperties() {
  1365         // Override to something like "/FOO=bar"
  1366         return "";
  1367     }
  1368 
  1369     //// Method handle implementation methods.
  1370     //// Sub-classes can override these default implementations.
  1371     //// All these methods assume arguments are already validated.
  1372 
  1373     /*non-public*/ MethodHandle convertArguments(MethodType newType) {
  1374         // Override this if it can be improved.
  1375         return MethodHandleImpl.makePairwiseConvert(this, newType, 1);
  1376     }
  1377 
  1378     /*non-public*/
  1379     MethodHandle bindArgument(int pos, char basicType, Object value) {
  1380         // Override this if it can be improved.
  1381         return rebind().bindArgument(pos, basicType, value);
  1382     }
  1383 
  1384     /*non-public*/
  1385     MethodHandle bindReceiver(Object receiver) {
  1386         // Override this if it can be improved.
  1387         return bindArgument(0, 'L', receiver);
  1388     }
  1389 
  1390     /*non-public*/
  1391     MethodHandle bindImmediate(int pos, char basicType, Object value) {
  1392         // Bind an immediate value to a position in the arguments.
  1393         // This means, elide the respective argument,
  1394         // and replace all references to it in NamedFunction args with the specified value.
  1395 
  1396         // CURRENT RESTRICTIONS
  1397         // * only for pos 0 and UNSAFE (position is adjusted in MHImpl to make API usable for others)
  1398         assert pos == 0 && basicType == 'L' && value instanceof Unsafe;
  1399         MethodType type2 = type.dropParameterTypes(pos, pos + 1); // adjustment: ignore receiver!
  1400         LambdaForm form2 = form.bindImmediate(pos + 1, basicType, value); // adjust pos to form-relative pos
  1401         return copyWith(type2, form2);
  1402     }
  1403 
  1404     /*non-public*/
  1405     MethodHandle copyWith(MethodType mt, LambdaForm lf) {
  1406         throw new InternalError("copyWith: " + this.getClass());
  1407     }
  1408 
  1409     /*non-public*/
  1410     MethodHandle dropArguments(MethodType srcType, int pos, int drops) {
  1411         // Override this if it can be improved.
  1412         return rebind().dropArguments(srcType, pos, drops);
  1413     }
  1414 
  1415     /*non-public*/
  1416     MethodHandle permuteArguments(MethodType newType, int[] reorder) {
  1417         // Override this if it can be improved.
  1418         return rebind().permuteArguments(newType, reorder);
  1419     }
  1420 
  1421     /*non-public*/
  1422     MethodHandle rebind() {
  1423         // Bind 'this' into a new invoker, of the known class BMH.
  1424         MethodType type2 = type();
  1425         LambdaForm form2 = reinvokerForm(this);
  1426         // form2 = lambda (bmh, arg*) { thismh = bmh[0]; invokeBasic(thismh, arg*) }
  1427         return BoundMethodHandle.bindSingle(type2, form2, this);
  1428     }
  1429 
  1430     /*non-public*/
  1431     MethodHandle reinvokerTarget() {
  1432         throw new InternalError("not a reinvoker MH: "+this.getClass().getName()+": "+this);
  1433     }
  1434 
  1435     /** Create a LF which simply reinvokes a target of the given basic type.
  1436      *  The target MH must override {@link #reinvokerTarget} to provide the target.
  1437      */
  1438     static LambdaForm reinvokerForm(MethodHandle target) {
  1439         MethodType mtype = target.type().basicType();
  1440         LambdaForm reinvoker = mtype.form().cachedLambdaForm(MethodTypeForm.LF_REINVOKE);
  1441         if (reinvoker != null)  return reinvoker;
  1442         if (mtype.parameterSlotCount() >= MethodType.MAX_MH_ARITY)
  1443             return makeReinvokerForm(target.type(), target);  // cannot cache this
  1444         reinvoker = makeReinvokerForm(mtype, null);
  1445         return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_REINVOKE, reinvoker);
  1446     }
  1447     private static LambdaForm makeReinvokerForm(MethodType mtype, MethodHandle customTargetOrNull) {
  1448         boolean customized = (customTargetOrNull != null);
  1449         MethodHandle MH_invokeBasic = customized ? null : MethodHandles.basicInvoker(mtype);
  1450         final int THIS_BMH    = 0;
  1451         final int ARG_BASE    = 1;
  1452         final int ARG_LIMIT   = ARG_BASE + mtype.parameterCount();
  1453         int nameCursor = ARG_LIMIT;
  1454         final int NEXT_MH     = customized ? -1 : nameCursor++;
  1455         final int REINVOKE    = nameCursor++;
  1456         LambdaForm.Name[] names = LambdaForm.arguments(nameCursor - ARG_LIMIT, mtype.invokerType());
  1457         Object[] targetArgs;
  1458         MethodHandle targetMH;
  1459         if (customized) {
  1460             targetArgs = Arrays.copyOfRange(names, ARG_BASE, ARG_LIMIT, Object[].class);
  1461             targetMH = customTargetOrNull;
  1462         } else {
  1463             names[NEXT_MH] = new LambdaForm.Name(NF_reinvokerTarget, names[THIS_BMH]);
  1464             targetArgs = Arrays.copyOfRange(names, THIS_BMH, ARG_LIMIT, Object[].class);
  1465             targetArgs[0] = names[NEXT_MH];  // overwrite this MH with next MH
  1466             targetMH = MethodHandles.basicInvoker(mtype);
  1467         }
  1468         names[REINVOKE] = new LambdaForm.Name(targetMH, targetArgs);
  1469         return new LambdaForm("BMH.reinvoke", ARG_LIMIT, names);
  1470     }
  1471 
  1472     private static final LambdaForm.NamedFunction NF_reinvokerTarget;
  1473     static {
  1474         try {
  1475             NF_reinvokerTarget = new LambdaForm.NamedFunction(MethodHandle.class
  1476                 .getDeclaredMethod("reinvokerTarget"));
  1477         } catch (ReflectiveOperationException ex) {
  1478             throw newInternalError(ex);
  1479         }
  1480     }
  1481 
  1482     /**
  1483      * Replace the old lambda form of this method handle with a new one.
  1484      * The new one must be functionally equivalent to the old one.
  1485      * Threads may continue running the old form indefinitely,
  1486      * but it is likely that the new one will be preferred for new executions.
  1487      * Use with discretion.
  1488      */
  1489     /*non-public*/
  1490     void updateForm(LambdaForm newForm) {
  1491         if (form == newForm)  return;
  1492         // ISSUE: Should we have a memory fence here?
  1493         UNSAFE.putObject(this, FORM_OFFSET, newForm);
  1494         this.form.prepare();  // as in MethodHandle.<init>
  1495     }
  1496 
  1497     private static final long FORM_OFFSET;
  1498     static {
  1499         try {
  1500             FORM_OFFSET = UNSAFE.objectFieldOffset(MethodHandle.class.getDeclaredField("form"));
  1501         } catch (ReflectiveOperationException ex) {
  1502             throw newInternalError(ex);
  1503         }
  1504     }
  1505 }