emul/src/main/java/java/lang/Math.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 29 Sep 2012 10:56:23 +0200
branchjdk7-b147
changeset 67 cc0d42d2110a
child 84 d65b3a2fbfaf
permissions -rw-r--r--
Bringing in math & numbers
     1 /*
     2  * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 import java.util.Random;
    28 
    29 
    30 /**
    31  * The class {@code Math} contains methods for performing basic
    32  * numeric operations such as the elementary exponential, logarithm,
    33  * square root, and trigonometric functions.
    34  *
    35  * <p>Unlike some of the numeric methods of class
    36  * {@code StrictMath}, all implementations of the equivalent
    37  * functions of class {@code Math} are not defined to return the
    38  * bit-for-bit same results.  This relaxation permits
    39  * better-performing implementations where strict reproducibility is
    40  * not required.
    41  *
    42  * <p>By default many of the {@code Math} methods simply call
    43  * the equivalent method in {@code StrictMath} for their
    44  * implementation.  Code generators are encouraged to use
    45  * platform-specific native libraries or microprocessor instructions,
    46  * where available, to provide higher-performance implementations of
    47  * {@code Math} methods.  Such higher-performance
    48  * implementations still must conform to the specification for
    49  * {@code Math}.
    50  *
    51  * <p>The quality of implementation specifications concern two
    52  * properties, accuracy of the returned result and monotonicity of the
    53  * method.  Accuracy of the floating-point {@code Math} methods
    54  * is measured in terms of <i>ulps</i>, units in the last place.  For
    55  * a given floating-point format, an ulp of a specific real number
    56  * value is the distance between the two floating-point values
    57  * bracketing that numerical value.  When discussing the accuracy of a
    58  * method as a whole rather than at a specific argument, the number of
    59  * ulps cited is for the worst-case error at any argument.  If a
    60  * method always has an error less than 0.5 ulps, the method always
    61  * returns the floating-point number nearest the exact result; such a
    62  * method is <i>correctly rounded</i>.  A correctly rounded method is
    63  * generally the best a floating-point approximation can be; however,
    64  * it is impractical for many floating-point methods to be correctly
    65  * rounded.  Instead, for the {@code Math} class, a larger error
    66  * bound of 1 or 2 ulps is allowed for certain methods.  Informally,
    67  * with a 1 ulp error bound, when the exact result is a representable
    68  * number, the exact result should be returned as the computed result;
    69  * otherwise, either of the two floating-point values which bracket
    70  * the exact result may be returned.  For exact results large in
    71  * magnitude, one of the endpoints of the bracket may be infinite.
    72  * Besides accuracy at individual arguments, maintaining proper
    73  * relations between the method at different arguments is also
    74  * important.  Therefore, most methods with more than 0.5 ulp errors
    75  * are required to be <i>semi-monotonic</i>: whenever the mathematical
    76  * function is non-decreasing, so is the floating-point approximation,
    77  * likewise, whenever the mathematical function is non-increasing, so
    78  * is the floating-point approximation.  Not all approximations that
    79  * have 1 ulp accuracy will automatically meet the monotonicity
    80  * requirements.
    81  *
    82  * @author  unascribed
    83  * @author  Joseph D. Darcy
    84  * @since   JDK1.0
    85  */
    86 
    87 public final class Math {
    88 
    89     /**
    90      * Don't let anyone instantiate this class.
    91      */
    92     private Math() {}
    93 
    94     /**
    95      * The {@code double} value that is closer than any other to
    96      * <i>e</i>, the base of the natural logarithms.
    97      */
    98     public static final double E = 2.7182818284590452354;
    99 
   100     /**
   101      * The {@code double} value that is closer than any other to
   102      * <i>pi</i>, the ratio of the circumference of a circle to its
   103      * diameter.
   104      */
   105     public static final double PI = 3.14159265358979323846;
   106 
   107     /**
   108      * Returns the trigonometric sine of an angle.  Special cases:
   109      * <ul><li>If the argument is NaN or an infinity, then the
   110      * result is NaN.
   111      * <li>If the argument is zero, then the result is a zero with the
   112      * same sign as the argument.</ul>
   113      *
   114      * <p>The computed result must be within 1 ulp of the exact result.
   115      * Results must be semi-monotonic.
   116      *
   117      * @param   a   an angle, in radians.
   118      * @return  the sine of the argument.
   119      */
   120     public static double sin(double a) {
   121         return StrictMath.sin(a); // default impl. delegates to StrictMath
   122     }
   123 
   124     /**
   125      * Returns the trigonometric cosine of an angle. Special cases:
   126      * <ul><li>If the argument is NaN or an infinity, then the
   127      * result is NaN.</ul>
   128      *
   129      * <p>The computed result must be within 1 ulp of the exact result.
   130      * Results must be semi-monotonic.
   131      *
   132      * @param   a   an angle, in radians.
   133      * @return  the cosine of the argument.
   134      */
   135     public static double cos(double a) {
   136         return StrictMath.cos(a); // default impl. delegates to StrictMath
   137     }
   138 
   139     /**
   140      * Returns the trigonometric tangent of an angle.  Special cases:
   141      * <ul><li>If the argument is NaN or an infinity, then the result
   142      * is NaN.
   143      * <li>If the argument is zero, then the result is a zero with the
   144      * same sign as the argument.</ul>
   145      *
   146      * <p>The computed result must be within 1 ulp of the exact result.
   147      * Results must be semi-monotonic.
   148      *
   149      * @param   a   an angle, in radians.
   150      * @return  the tangent of the argument.
   151      */
   152     public static double tan(double a) {
   153         return StrictMath.tan(a); // default impl. delegates to StrictMath
   154     }
   155 
   156     /**
   157      * Returns the arc sine of a value; the returned angle is in the
   158      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
   159      * <ul><li>If the argument is NaN or its absolute value is greater
   160      * than 1, then the result is NaN.
   161      * <li>If the argument is zero, then the result is a zero with the
   162      * same sign as the argument.</ul>
   163      *
   164      * <p>The computed result must be within 1 ulp of the exact result.
   165      * Results must be semi-monotonic.
   166      *
   167      * @param   a   the value whose arc sine is to be returned.
   168      * @return  the arc sine of the argument.
   169      */
   170     public static double asin(double a) {
   171         return StrictMath.asin(a); // default impl. delegates to StrictMath
   172     }
   173 
   174     /**
   175      * Returns the arc cosine of a value; the returned angle is in the
   176      * range 0.0 through <i>pi</i>.  Special case:
   177      * <ul><li>If the argument is NaN or its absolute value is greater
   178      * than 1, then the result is NaN.</ul>
   179      *
   180      * <p>The computed result must be within 1 ulp of the exact result.
   181      * Results must be semi-monotonic.
   182      *
   183      * @param   a   the value whose arc cosine is to be returned.
   184      * @return  the arc cosine of the argument.
   185      */
   186     public static double acos(double a) {
   187         return StrictMath.acos(a); // default impl. delegates to StrictMath
   188     }
   189 
   190     /**
   191      * Returns the arc tangent of a value; the returned angle is in the
   192      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
   193      * <ul><li>If the argument is NaN, then the result is NaN.
   194      * <li>If the argument is zero, then the result is a zero with the
   195      * same sign as the argument.</ul>
   196      *
   197      * <p>The computed result must be within 1 ulp of the exact result.
   198      * Results must be semi-monotonic.
   199      *
   200      * @param   a   the value whose arc tangent is to be returned.
   201      * @return  the arc tangent of the argument.
   202      */
   203     public static double atan(double a) {
   204         return StrictMath.atan(a); // default impl. delegates to StrictMath
   205     }
   206 
   207     /**
   208      * Converts an angle measured in degrees to an approximately
   209      * equivalent angle measured in radians.  The conversion from
   210      * degrees to radians is generally inexact.
   211      *
   212      * @param   angdeg   an angle, in degrees
   213      * @return  the measurement of the angle {@code angdeg}
   214      *          in radians.
   215      * @since   1.2
   216      */
   217     public static double toRadians(double angdeg) {
   218         return angdeg / 180.0 * PI;
   219     }
   220 
   221     /**
   222      * Converts an angle measured in radians to an approximately
   223      * equivalent angle measured in degrees.  The conversion from
   224      * radians to degrees is generally inexact; users should
   225      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
   226      * equal {@code 0.0}.
   227      *
   228      * @param   angrad   an angle, in radians
   229      * @return  the measurement of the angle {@code angrad}
   230      *          in degrees.
   231      * @since   1.2
   232      */
   233     public static double toDegrees(double angrad) {
   234         return angrad * 180.0 / PI;
   235     }
   236 
   237     /**
   238      * Returns Euler's number <i>e</i> raised to the power of a
   239      * {@code double} value.  Special cases:
   240      * <ul><li>If the argument is NaN, the result is NaN.
   241      * <li>If the argument is positive infinity, then the result is
   242      * positive infinity.
   243      * <li>If the argument is negative infinity, then the result is
   244      * positive zero.</ul>
   245      *
   246      * <p>The computed result must be within 1 ulp of the exact result.
   247      * Results must be semi-monotonic.
   248      *
   249      * @param   a   the exponent to raise <i>e</i> to.
   250      * @return  the value <i>e</i><sup>{@code a}</sup>,
   251      *          where <i>e</i> is the base of the natural logarithms.
   252      */
   253     public static double exp(double a) {
   254         return StrictMath.exp(a); // default impl. delegates to StrictMath
   255     }
   256 
   257     /**
   258      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
   259      * value.  Special cases:
   260      * <ul><li>If the argument is NaN or less than zero, then the result
   261      * is NaN.
   262      * <li>If the argument is positive infinity, then the result is
   263      * positive infinity.
   264      * <li>If the argument is positive zero or negative zero, then the
   265      * result is negative infinity.</ul>
   266      *
   267      * <p>The computed result must be within 1 ulp of the exact result.
   268      * Results must be semi-monotonic.
   269      *
   270      * @param   a   a value
   271      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
   272      *          {@code a}.
   273      */
   274     public static double log(double a) {
   275         return StrictMath.log(a); // default impl. delegates to StrictMath
   276     }
   277 
   278     /**
   279      * Returns the base 10 logarithm of a {@code double} value.
   280      * Special cases:
   281      *
   282      * <ul><li>If the argument is NaN or less than zero, then the result
   283      * is NaN.
   284      * <li>If the argument is positive infinity, then the result is
   285      * positive infinity.
   286      * <li>If the argument is positive zero or negative zero, then the
   287      * result is negative infinity.
   288      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
   289      * integer <i>n</i>, then the result is <i>n</i>.
   290      * </ul>
   291      *
   292      * <p>The computed result must be within 1 ulp of the exact result.
   293      * Results must be semi-monotonic.
   294      *
   295      * @param   a   a value
   296      * @return  the base 10 logarithm of  {@code a}.
   297      * @since 1.5
   298      */
   299     public static double log10(double a) {
   300         return StrictMath.log10(a); // default impl. delegates to StrictMath
   301     }
   302 
   303     /**
   304      * Returns the correctly rounded positive square root of a
   305      * {@code double} value.
   306      * Special cases:
   307      * <ul><li>If the argument is NaN or less than zero, then the result
   308      * is NaN.
   309      * <li>If the argument is positive infinity, then the result is positive
   310      * infinity.
   311      * <li>If the argument is positive zero or negative zero, then the
   312      * result is the same as the argument.</ul>
   313      * Otherwise, the result is the {@code double} value closest to
   314      * the true mathematical square root of the argument value.
   315      *
   316      * @param   a   a value.
   317      * @return  the positive square root of {@code a}.
   318      *          If the argument is NaN or less than zero, the result is NaN.
   319      */
   320     public static double sqrt(double a) {
   321         return StrictMath.sqrt(a); // default impl. delegates to StrictMath
   322                                    // Note that hardware sqrt instructions
   323                                    // frequently can be directly used by JITs
   324                                    // and should be much faster than doing
   325                                    // Math.sqrt in software.
   326     }
   327 
   328 
   329     /**
   330      * Returns the cube root of a {@code double} value.  For
   331      * positive finite {@code x}, {@code cbrt(-x) ==
   332      * -cbrt(x)}; that is, the cube root of a negative value is
   333      * the negative of the cube root of that value's magnitude.
   334      *
   335      * Special cases:
   336      *
   337      * <ul>
   338      *
   339      * <li>If the argument is NaN, then the result is NaN.
   340      *
   341      * <li>If the argument is infinite, then the result is an infinity
   342      * with the same sign as the argument.
   343      *
   344      * <li>If the argument is zero, then the result is a zero with the
   345      * same sign as the argument.
   346      *
   347      * </ul>
   348      *
   349      * <p>The computed result must be within 1 ulp of the exact result.
   350      *
   351      * @param   a   a value.
   352      * @return  the cube root of {@code a}.
   353      * @since 1.5
   354      */
   355     public static double cbrt(double a) {
   356         return StrictMath.cbrt(a);
   357     }
   358 
   359     /**
   360      * Computes the remainder operation on two arguments as prescribed
   361      * by the IEEE 754 standard.
   362      * The remainder value is mathematically equal to
   363      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
   364      * where <i>n</i> is the mathematical integer closest to the exact
   365      * mathematical value of the quotient {@code f1/f2}, and if two
   366      * mathematical integers are equally close to {@code f1/f2},
   367      * then <i>n</i> is the integer that is even. If the remainder is
   368      * zero, its sign is the same as the sign of the first argument.
   369      * Special cases:
   370      * <ul><li>If either argument is NaN, or the first argument is infinite,
   371      * or the second argument is positive zero or negative zero, then the
   372      * result is NaN.
   373      * <li>If the first argument is finite and the second argument is
   374      * infinite, then the result is the same as the first argument.</ul>
   375      *
   376      * @param   f1   the dividend.
   377      * @param   f2   the divisor.
   378      * @return  the remainder when {@code f1} is divided by
   379      *          {@code f2}.
   380      */
   381     public static double IEEEremainder(double f1, double f2) {
   382         return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
   383     }
   384 
   385     /**
   386      * Returns the smallest (closest to negative infinity)
   387      * {@code double} value that is greater than or equal to the
   388      * argument and is equal to a mathematical integer. Special cases:
   389      * <ul><li>If the argument value is already equal to a
   390      * mathematical integer, then the result is the same as the
   391      * argument.  <li>If the argument is NaN or an infinity or
   392      * positive zero or negative zero, then the result is the same as
   393      * the argument.  <li>If the argument value is less than zero but
   394      * greater than -1.0, then the result is negative zero.</ul> Note
   395      * that the value of {@code Math.ceil(x)} is exactly the
   396      * value of {@code -Math.floor(-x)}.
   397      *
   398      *
   399      * @param   a   a value.
   400      * @return  the smallest (closest to negative infinity)
   401      *          floating-point value that is greater than or equal to
   402      *          the argument and is equal to a mathematical integer.
   403      */
   404     public static double ceil(double a) {
   405         return StrictMath.ceil(a); // default impl. delegates to StrictMath
   406     }
   407 
   408     /**
   409      * Returns the largest (closest to positive infinity)
   410      * {@code double} value that is less than or equal to the
   411      * argument and is equal to a mathematical integer. Special cases:
   412      * <ul><li>If the argument value is already equal to a
   413      * mathematical integer, then the result is the same as the
   414      * argument.  <li>If the argument is NaN or an infinity or
   415      * positive zero or negative zero, then the result is the same as
   416      * the argument.</ul>
   417      *
   418      * @param   a   a value.
   419      * @return  the largest (closest to positive infinity)
   420      *          floating-point value that less than or equal to the argument
   421      *          and is equal to a mathematical integer.
   422      */
   423     public static double floor(double a) {
   424         return StrictMath.floor(a); // default impl. delegates to StrictMath
   425     }
   426 
   427     /**
   428      * Returns the {@code double} value that is closest in value
   429      * to the argument and is equal to a mathematical integer. If two
   430      * {@code double} values that are mathematical integers are
   431      * equally close, the result is the integer value that is
   432      * even. Special cases:
   433      * <ul><li>If the argument value is already equal to a mathematical
   434      * integer, then the result is the same as the argument.
   435      * <li>If the argument is NaN or an infinity or positive zero or negative
   436      * zero, then the result is the same as the argument.</ul>
   437      *
   438      * @param   a   a {@code double} value.
   439      * @return  the closest floating-point value to {@code a} that is
   440      *          equal to a mathematical integer.
   441      */
   442     public static double rint(double a) {
   443         return StrictMath.rint(a); // default impl. delegates to StrictMath
   444     }
   445 
   446     /**
   447      * Returns the angle <i>theta</i> from the conversion of rectangular
   448      * coordinates ({@code x},&nbsp;{@code y}) to polar
   449      * coordinates (r,&nbsp;<i>theta</i>).
   450      * This method computes the phase <i>theta</i> by computing an arc tangent
   451      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
   452      * cases:
   453      * <ul><li>If either argument is NaN, then the result is NaN.
   454      * <li>If the first argument is positive zero and the second argument
   455      * is positive, or the first argument is positive and finite and the
   456      * second argument is positive infinity, then the result is positive
   457      * zero.
   458      * <li>If the first argument is negative zero and the second argument
   459      * is positive, or the first argument is negative and finite and the
   460      * second argument is positive infinity, then the result is negative zero.
   461      * <li>If the first argument is positive zero and the second argument
   462      * is negative, or the first argument is positive and finite and the
   463      * second argument is negative infinity, then the result is the
   464      * {@code double} value closest to <i>pi</i>.
   465      * <li>If the first argument is negative zero and the second argument
   466      * is negative, or the first argument is negative and finite and the
   467      * second argument is negative infinity, then the result is the
   468      * {@code double} value closest to -<i>pi</i>.
   469      * <li>If the first argument is positive and the second argument is
   470      * positive zero or negative zero, or the first argument is positive
   471      * infinity and the second argument is finite, then the result is the
   472      * {@code double} value closest to <i>pi</i>/2.
   473      * <li>If the first argument is negative and the second argument is
   474      * positive zero or negative zero, or the first argument is negative
   475      * infinity and the second argument is finite, then the result is the
   476      * {@code double} value closest to -<i>pi</i>/2.
   477      * <li>If both arguments are positive infinity, then the result is the
   478      * {@code double} value closest to <i>pi</i>/4.
   479      * <li>If the first argument is positive infinity and the second argument
   480      * is negative infinity, then the result is the {@code double}
   481      * value closest to 3*<i>pi</i>/4.
   482      * <li>If the first argument is negative infinity and the second argument
   483      * is positive infinity, then the result is the {@code double} value
   484      * closest to -<i>pi</i>/4.
   485      * <li>If both arguments are negative infinity, then the result is the
   486      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
   487      *
   488      * <p>The computed result must be within 2 ulps of the exact result.
   489      * Results must be semi-monotonic.
   490      *
   491      * @param   y   the ordinate coordinate
   492      * @param   x   the abscissa coordinate
   493      * @return  the <i>theta</i> component of the point
   494      *          (<i>r</i>,&nbsp;<i>theta</i>)
   495      *          in polar coordinates that corresponds to the point
   496      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
   497      */
   498     public static double atan2(double y, double x) {
   499         return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
   500     }
   501 
   502     /**
   503      * Returns the value of the first argument raised to the power of the
   504      * second argument. Special cases:
   505      *
   506      * <ul><li>If the second argument is positive or negative zero, then the
   507      * result is 1.0.
   508      * <li>If the second argument is 1.0, then the result is the same as the
   509      * first argument.
   510      * <li>If the second argument is NaN, then the result is NaN.
   511      * <li>If the first argument is NaN and the second argument is nonzero,
   512      * then the result is NaN.
   513      *
   514      * <li>If
   515      * <ul>
   516      * <li>the absolute value of the first argument is greater than 1
   517      * and the second argument is positive infinity, or
   518      * <li>the absolute value of the first argument is less than 1 and
   519      * the second argument is negative infinity,
   520      * </ul>
   521      * then the result is positive infinity.
   522      *
   523      * <li>If
   524      * <ul>
   525      * <li>the absolute value of the first argument is greater than 1 and
   526      * the second argument is negative infinity, or
   527      * <li>the absolute value of the
   528      * first argument is less than 1 and the second argument is positive
   529      * infinity,
   530      * </ul>
   531      * then the result is positive zero.
   532      *
   533      * <li>If the absolute value of the first argument equals 1 and the
   534      * second argument is infinite, then the result is NaN.
   535      *
   536      * <li>If
   537      * <ul>
   538      * <li>the first argument is positive zero and the second argument
   539      * is greater than zero, or
   540      * <li>the first argument is positive infinity and the second
   541      * argument is less than zero,
   542      * </ul>
   543      * then the result is positive zero.
   544      *
   545      * <li>If
   546      * <ul>
   547      * <li>the first argument is positive zero and the second argument
   548      * is less than zero, or
   549      * <li>the first argument is positive infinity and the second
   550      * argument is greater than zero,
   551      * </ul>
   552      * then the result is positive infinity.
   553      *
   554      * <li>If
   555      * <ul>
   556      * <li>the first argument is negative zero and the second argument
   557      * is greater than zero but not a finite odd integer, or
   558      * <li>the first argument is negative infinity and the second
   559      * argument is less than zero but not a finite odd integer,
   560      * </ul>
   561      * then the result is positive zero.
   562      *
   563      * <li>If
   564      * <ul>
   565      * <li>the first argument is negative zero and the second argument
   566      * is a positive finite odd integer, or
   567      * <li>the first argument is negative infinity and the second
   568      * argument is a negative finite odd integer,
   569      * </ul>
   570      * then the result is negative zero.
   571      *
   572      * <li>If
   573      * <ul>
   574      * <li>the first argument is negative zero and the second argument
   575      * is less than zero but not a finite odd integer, or
   576      * <li>the first argument is negative infinity and the second
   577      * argument is greater than zero but not a finite odd integer,
   578      * </ul>
   579      * then the result is positive infinity.
   580      *
   581      * <li>If
   582      * <ul>
   583      * <li>the first argument is negative zero and the second argument
   584      * is a negative finite odd integer, or
   585      * <li>the first argument is negative infinity and the second
   586      * argument is a positive finite odd integer,
   587      * </ul>
   588      * then the result is negative infinity.
   589      *
   590      * <li>If the first argument is finite and less than zero
   591      * <ul>
   592      * <li> if the second argument is a finite even integer, the
   593      * result is equal to the result of raising the absolute value of
   594      * the first argument to the power of the second argument
   595      *
   596      * <li>if the second argument is a finite odd integer, the result
   597      * is equal to the negative of the result of raising the absolute
   598      * value of the first argument to the power of the second
   599      * argument
   600      *
   601      * <li>if the second argument is finite and not an integer, then
   602      * the result is NaN.
   603      * </ul>
   604      *
   605      * <li>If both arguments are integers, then the result is exactly equal
   606      * to the mathematical result of raising the first argument to the power
   607      * of the second argument if that result can in fact be represented
   608      * exactly as a {@code double} value.</ul>
   609      *
   610      * <p>(In the foregoing descriptions, a floating-point value is
   611      * considered to be an integer if and only if it is finite and a
   612      * fixed point of the method {@link #ceil ceil} or,
   613      * equivalently, a fixed point of the method {@link #floor
   614      * floor}. A value is a fixed point of a one-argument
   615      * method if and only if the result of applying the method to the
   616      * value is equal to the value.)
   617      *
   618      * <p>The computed result must be within 1 ulp of the exact result.
   619      * Results must be semi-monotonic.
   620      *
   621      * @param   a   the base.
   622      * @param   b   the exponent.
   623      * @return  the value {@code a}<sup>{@code b}</sup>.
   624      */
   625     public static double pow(double a, double b) {
   626         return StrictMath.pow(a, b); // default impl. delegates to StrictMath
   627     }
   628 
   629     /**
   630      * Returns the closest {@code int} to the argument, with ties
   631      * rounding up.
   632      *
   633      * <p>
   634      * Special cases:
   635      * <ul><li>If the argument is NaN, the result is 0.
   636      * <li>If the argument is negative infinity or any value less than or
   637      * equal to the value of {@code Integer.MIN_VALUE}, the result is
   638      * equal to the value of {@code Integer.MIN_VALUE}.
   639      * <li>If the argument is positive infinity or any value greater than or
   640      * equal to the value of {@code Integer.MAX_VALUE}, the result is
   641      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
   642      *
   643      * @param   a   a floating-point value to be rounded to an integer.
   644      * @return  the value of the argument rounded to the nearest
   645      *          {@code int} value.
   646      * @see     java.lang.Integer#MAX_VALUE
   647      * @see     java.lang.Integer#MIN_VALUE
   648      */
   649     public static int round(float a) {
   650         if (a != 0x1.fffffep-2f) // greatest float value less than 0.5
   651             return (int)floor(a + 0.5f);
   652         else
   653             return 0;
   654     }
   655 
   656     /**
   657      * Returns the closest {@code long} to the argument, with ties
   658      * rounding up.
   659      *
   660      * <p>Special cases:
   661      * <ul><li>If the argument is NaN, the result is 0.
   662      * <li>If the argument is negative infinity or any value less than or
   663      * equal to the value of {@code Long.MIN_VALUE}, the result is
   664      * equal to the value of {@code Long.MIN_VALUE}.
   665      * <li>If the argument is positive infinity or any value greater than or
   666      * equal to the value of {@code Long.MAX_VALUE}, the result is
   667      * equal to the value of {@code Long.MAX_VALUE}.</ul>
   668      *
   669      * @param   a   a floating-point value to be rounded to a
   670      *          {@code long}.
   671      * @return  the value of the argument rounded to the nearest
   672      *          {@code long} value.
   673      * @see     java.lang.Long#MAX_VALUE
   674      * @see     java.lang.Long#MIN_VALUE
   675      */
   676     public static long round(double a) {
   677         if (a != 0x1.fffffffffffffp-2) // greatest double value less than 0.5
   678             return (long)floor(a + 0.5d);
   679         else
   680             return 0;
   681     }
   682 
   683     private static Random randomNumberGenerator;
   684 
   685     private static synchronized Random initRNG() {
   686         Random rnd = randomNumberGenerator;
   687         return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
   688     }
   689 
   690     /**
   691      * Returns a {@code double} value with a positive sign, greater
   692      * than or equal to {@code 0.0} and less than {@code 1.0}.
   693      * Returned values are chosen pseudorandomly with (approximately)
   694      * uniform distribution from that range.
   695      *
   696      * <p>When this method is first called, it creates a single new
   697      * pseudorandom-number generator, exactly as if by the expression
   698      *
   699      * <blockquote>{@code new java.util.Random()}</blockquote>
   700      *
   701      * This new pseudorandom-number generator is used thereafter for
   702      * all calls to this method and is used nowhere else.
   703      *
   704      * <p>This method is properly synchronized to allow correct use by
   705      * more than one thread. However, if many threads need to generate
   706      * pseudorandom numbers at a great rate, it may reduce contention
   707      * for each thread to have its own pseudorandom-number generator.
   708      *
   709      * @return  a pseudorandom {@code double} greater than or equal
   710      * to {@code 0.0} and less than {@code 1.0}.
   711      * @see Random#nextDouble()
   712      */
   713     public static double random() {
   714         Random rnd = randomNumberGenerator;
   715         if (rnd == null) rnd = initRNG();
   716         return rnd.nextDouble();
   717     }
   718 
   719     /**
   720      * Returns the absolute value of an {@code int} value.
   721      * If the argument is not negative, the argument is returned.
   722      * If the argument is negative, the negation of the argument is returned.
   723      *
   724      * <p>Note that if the argument is equal to the value of
   725      * {@link Integer#MIN_VALUE}, the most negative representable
   726      * {@code int} value, the result is that same value, which is
   727      * negative.
   728      *
   729      * @param   a   the argument whose absolute value is to be determined
   730      * @return  the absolute value of the argument.
   731      */
   732     public static int abs(int a) {
   733         return (a < 0) ? -a : a;
   734     }
   735 
   736     /**
   737      * Returns the absolute value of a {@code long} value.
   738      * If the argument is not negative, the argument is returned.
   739      * If the argument is negative, the negation of the argument is returned.
   740      *
   741      * <p>Note that if the argument is equal to the value of
   742      * {@link Long#MIN_VALUE}, the most negative representable
   743      * {@code long} value, the result is that same value, which
   744      * is negative.
   745      *
   746      * @param   a   the argument whose absolute value is to be determined
   747      * @return  the absolute value of the argument.
   748      */
   749     public static long abs(long a) {
   750         return (a < 0) ? -a : a;
   751     }
   752 
   753     /**
   754      * Returns the absolute value of a {@code float} value.
   755      * If the argument is not negative, the argument is returned.
   756      * If the argument is negative, the negation of the argument is returned.
   757      * Special cases:
   758      * <ul><li>If the argument is positive zero or negative zero, the
   759      * result is positive zero.
   760      * <li>If the argument is infinite, the result is positive infinity.
   761      * <li>If the argument is NaN, the result is NaN.</ul>
   762      * In other words, the result is the same as the value of the expression:
   763      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
   764      *
   765      * @param   a   the argument whose absolute value is to be determined
   766      * @return  the absolute value of the argument.
   767      */
   768     public static float abs(float a) {
   769         return (a <= 0.0F) ? 0.0F - a : a;
   770     }
   771 
   772     /**
   773      * Returns the absolute value of a {@code double} value.
   774      * If the argument is not negative, the argument is returned.
   775      * If the argument is negative, the negation of the argument is returned.
   776      * Special cases:
   777      * <ul><li>If the argument is positive zero or negative zero, the result
   778      * is positive zero.
   779      * <li>If the argument is infinite, the result is positive infinity.
   780      * <li>If the argument is NaN, the result is NaN.</ul>
   781      * In other words, the result is the same as the value of the expression:
   782      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
   783      *
   784      * @param   a   the argument whose absolute value is to be determined
   785      * @return  the absolute value of the argument.
   786      */
   787     public static double abs(double a) {
   788         return (a <= 0.0D) ? 0.0D - a : a;
   789     }
   790 
   791     /**
   792      * Returns the greater of two {@code int} values. That is, the
   793      * result is the argument closer to the value of
   794      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
   795      * the result is that same value.
   796      *
   797      * @param   a   an argument.
   798      * @param   b   another argument.
   799      * @return  the larger of {@code a} and {@code b}.
   800      */
   801     public static int max(int a, int b) {
   802         return (a >= b) ? a : b;
   803     }
   804 
   805     /**
   806      * Returns the greater of two {@code long} values. That is, the
   807      * result is the argument closer to the value of
   808      * {@link Long#MAX_VALUE}. If the arguments have the same value,
   809      * the result is that same value.
   810      *
   811      * @param   a   an argument.
   812      * @param   b   another argument.
   813      * @return  the larger of {@code a} and {@code b}.
   814      */
   815     public static long max(long a, long b) {
   816         return (a >= b) ? a : b;
   817     }
   818 
   819     private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
   820     private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
   821 
   822     /**
   823      * Returns the greater of two {@code float} values.  That is,
   824      * the result is the argument closer to positive infinity. If the
   825      * arguments have the same value, the result is that same
   826      * value. If either value is NaN, then the result is NaN.  Unlike
   827      * the numerical comparison operators, this method considers
   828      * negative zero to be strictly smaller than positive zero. If one
   829      * argument is positive zero and the other negative zero, the
   830      * result is positive zero.
   831      *
   832      * @param   a   an argument.
   833      * @param   b   another argument.
   834      * @return  the larger of {@code a} and {@code b}.
   835      */
   836     public static float max(float a, float b) {
   837         if (a != a) return a;   // a is NaN
   838         if ((a == 0.0f) && (b == 0.0f)
   839             && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
   840             return b;
   841         }
   842         return (a >= b) ? a : b;
   843     }
   844 
   845     /**
   846      * Returns the greater of two {@code double} values.  That
   847      * is, the result is the argument closer to positive infinity. If
   848      * the arguments have the same value, the result is that same
   849      * value. If either value is NaN, then the result is NaN.  Unlike
   850      * the numerical comparison operators, this method considers
   851      * negative zero to be strictly smaller than positive zero. If one
   852      * argument is positive zero and the other negative zero, the
   853      * result is positive zero.
   854      *
   855      * @param   a   an argument.
   856      * @param   b   another argument.
   857      * @return  the larger of {@code a} and {@code b}.
   858      */
   859     public static double max(double a, double b) {
   860         if (a != a) return a;   // a is NaN
   861         if ((a == 0.0d) && (b == 0.0d)
   862             && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
   863             return b;
   864         }
   865         return (a >= b) ? a : b;
   866     }
   867 
   868     /**
   869      * Returns the smaller of two {@code int} values. That is,
   870      * the result the argument closer to the value of
   871      * {@link Integer#MIN_VALUE}.  If the arguments have the same
   872      * value, the result is that same value.
   873      *
   874      * @param   a   an argument.
   875      * @param   b   another argument.
   876      * @return  the smaller of {@code a} and {@code b}.
   877      */
   878     public static int min(int a, int b) {
   879         return (a <= b) ? a : b;
   880     }
   881 
   882     /**
   883      * Returns the smaller of two {@code long} values. That is,
   884      * the result is the argument closer to the value of
   885      * {@link Long#MIN_VALUE}. If the arguments have the same
   886      * value, the result is that same value.
   887      *
   888      * @param   a   an argument.
   889      * @param   b   another argument.
   890      * @return  the smaller of {@code a} and {@code b}.
   891      */
   892     public static long min(long a, long b) {
   893         return (a <= b) ? a : b;
   894     }
   895 
   896     /**
   897      * Returns the smaller of two {@code float} values.  That is,
   898      * the result is the value closer to negative infinity. If the
   899      * arguments have the same value, the result is that same
   900      * value. If either value is NaN, then the result is NaN.  Unlike
   901      * the numerical comparison operators, this method considers
   902      * negative zero to be strictly smaller than positive zero.  If
   903      * one argument is positive zero and the other is negative zero,
   904      * the result is negative zero.
   905      *
   906      * @param   a   an argument.
   907      * @param   b   another argument.
   908      * @return  the smaller of {@code a} and {@code b}.
   909      */
   910     public static float min(float a, float b) {
   911         if (a != a) return a;   // a is NaN
   912         if ((a == 0.0f) && (b == 0.0f)
   913             && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
   914             return b;
   915         }
   916         return (a <= b) ? a : b;
   917     }
   918 
   919     /**
   920      * Returns the smaller of two {@code double} values.  That
   921      * is, the result is the value closer to negative infinity. If the
   922      * arguments have the same value, the result is that same
   923      * value. If either value is NaN, then the result is NaN.  Unlike
   924      * the numerical comparison operators, this method considers
   925      * negative zero to be strictly smaller than positive zero. If one
   926      * argument is positive zero and the other is negative zero, the
   927      * result is negative zero.
   928      *
   929      * @param   a   an argument.
   930      * @param   b   another argument.
   931      * @return  the smaller of {@code a} and {@code b}.
   932      */
   933     public static double min(double a, double b) {
   934         if (a != a) return a;   // a is NaN
   935         if ((a == 0.0d) && (b == 0.0d)
   936             && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
   937             return b;
   938         }
   939         return (a <= b) ? a : b;
   940     }
   941 
   942     /**
   943      * Returns the size of an ulp of the argument.  An ulp of a
   944      * {@code double} value is the positive distance between this
   945      * floating-point value and the {@code double} value next
   946      * larger in magnitude.  Note that for non-NaN <i>x</i>,
   947      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
   948      *
   949      * <p>Special Cases:
   950      * <ul>
   951      * <li> If the argument is NaN, then the result is NaN.
   952      * <li> If the argument is positive or negative infinity, then the
   953      * result is positive infinity.
   954      * <li> If the argument is positive or negative zero, then the result is
   955      * {@code Double.MIN_VALUE}.
   956      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
   957      * the result is equal to 2<sup>971</sup>.
   958      * </ul>
   959      *
   960      * @param d the floating-point value whose ulp is to be returned
   961      * @return the size of an ulp of the argument
   962      * @author Joseph D. Darcy
   963      * @since 1.5
   964      */
   965     public static double ulp(double d) {
   966         return sun.misc.FpUtils.ulp(d);
   967     }
   968 
   969     /**
   970      * Returns the size of an ulp of the argument.  An ulp of a
   971      * {@code float} value is the positive distance between this
   972      * floating-point value and the {@code float} value next
   973      * larger in magnitude.  Note that for non-NaN <i>x</i>,
   974      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
   975      *
   976      * <p>Special Cases:
   977      * <ul>
   978      * <li> If the argument is NaN, then the result is NaN.
   979      * <li> If the argument is positive or negative infinity, then the
   980      * result is positive infinity.
   981      * <li> If the argument is positive or negative zero, then the result is
   982      * {@code Float.MIN_VALUE}.
   983      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
   984      * the result is equal to 2<sup>104</sup>.
   985      * </ul>
   986      *
   987      * @param f the floating-point value whose ulp is to be returned
   988      * @return the size of an ulp of the argument
   989      * @author Joseph D. Darcy
   990      * @since 1.5
   991      */
   992     public static float ulp(float f) {
   993         return sun.misc.FpUtils.ulp(f);
   994     }
   995 
   996     /**
   997      * Returns the signum function of the argument; zero if the argument
   998      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
   999      * argument is less than zero.
  1000      *
  1001      * <p>Special Cases:
  1002      * <ul>
  1003      * <li> If the argument is NaN, then the result is NaN.
  1004      * <li> If the argument is positive zero or negative zero, then the
  1005      *      result is the same as the argument.
  1006      * </ul>
  1007      *
  1008      * @param d the floating-point value whose signum is to be returned
  1009      * @return the signum function of the argument
  1010      * @author Joseph D. Darcy
  1011      * @since 1.5
  1012      */
  1013     public static double signum(double d) {
  1014         return sun.misc.FpUtils.signum(d);
  1015     }
  1016 
  1017     /**
  1018      * Returns the signum function of the argument; zero if the argument
  1019      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
  1020      * argument is less than zero.
  1021      *
  1022      * <p>Special Cases:
  1023      * <ul>
  1024      * <li> If the argument is NaN, then the result is NaN.
  1025      * <li> If the argument is positive zero or negative zero, then the
  1026      *      result is the same as the argument.
  1027      * </ul>
  1028      *
  1029      * @param f the floating-point value whose signum is to be returned
  1030      * @return the signum function of the argument
  1031      * @author Joseph D. Darcy
  1032      * @since 1.5
  1033      */
  1034     public static float signum(float f) {
  1035         return sun.misc.FpUtils.signum(f);
  1036     }
  1037 
  1038     /**
  1039      * Returns the hyperbolic sine of a {@code double} value.
  1040      * The hyperbolic sine of <i>x</i> is defined to be
  1041      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
  1042      * where <i>e</i> is {@linkplain Math#E Euler's number}.
  1043      *
  1044      * <p>Special cases:
  1045      * <ul>
  1046      *
  1047      * <li>If the argument is NaN, then the result is NaN.
  1048      *
  1049      * <li>If the argument is infinite, then the result is an infinity
  1050      * with the same sign as the argument.
  1051      *
  1052      * <li>If the argument is zero, then the result is a zero with the
  1053      * same sign as the argument.
  1054      *
  1055      * </ul>
  1056      *
  1057      * <p>The computed result must be within 2.5 ulps of the exact result.
  1058      *
  1059      * @param   x The number whose hyperbolic sine is to be returned.
  1060      * @return  The hyperbolic sine of {@code x}.
  1061      * @since 1.5
  1062      */
  1063     public static double sinh(double x) {
  1064         return StrictMath.sinh(x);
  1065     }
  1066 
  1067     /**
  1068      * Returns the hyperbolic cosine of a {@code double} value.
  1069      * The hyperbolic cosine of <i>x</i> is defined to be
  1070      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
  1071      * where <i>e</i> is {@linkplain Math#E Euler's number}.
  1072      *
  1073      * <p>Special cases:
  1074      * <ul>
  1075      *
  1076      * <li>If the argument is NaN, then the result is NaN.
  1077      *
  1078      * <li>If the argument is infinite, then the result is positive
  1079      * infinity.
  1080      *
  1081      * <li>If the argument is zero, then the result is {@code 1.0}.
  1082      *
  1083      * </ul>
  1084      *
  1085      * <p>The computed result must be within 2.5 ulps of the exact result.
  1086      *
  1087      * @param   x The number whose hyperbolic cosine is to be returned.
  1088      * @return  The hyperbolic cosine of {@code x}.
  1089      * @since 1.5
  1090      */
  1091     public static double cosh(double x) {
  1092         return StrictMath.cosh(x);
  1093     }
  1094 
  1095     /**
  1096      * Returns the hyperbolic tangent of a {@code double} value.
  1097      * The hyperbolic tangent of <i>x</i> is defined to be
  1098      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
  1099      * in other words, {@linkplain Math#sinh
  1100      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
  1101      * that the absolute value of the exact tanh is always less than
  1102      * 1.
  1103      *
  1104      * <p>Special cases:
  1105      * <ul>
  1106      *
  1107      * <li>If the argument is NaN, then the result is NaN.
  1108      *
  1109      * <li>If the argument is zero, then the result is a zero with the
  1110      * same sign as the argument.
  1111      *
  1112      * <li>If the argument is positive infinity, then the result is
  1113      * {@code +1.0}.
  1114      *
  1115      * <li>If the argument is negative infinity, then the result is
  1116      * {@code -1.0}.
  1117      *
  1118      * </ul>
  1119      *
  1120      * <p>The computed result must be within 2.5 ulps of the exact result.
  1121      * The result of {@code tanh} for any finite input must have
  1122      * an absolute value less than or equal to 1.  Note that once the
  1123      * exact result of tanh is within 1/2 of an ulp of the limit value
  1124      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
  1125      * be returned.
  1126      *
  1127      * @param   x The number whose hyperbolic tangent is to be returned.
  1128      * @return  The hyperbolic tangent of {@code x}.
  1129      * @since 1.5
  1130      */
  1131     public static double tanh(double x) {
  1132         return StrictMath.tanh(x);
  1133     }
  1134 
  1135     /**
  1136      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
  1137      * without intermediate overflow or underflow.
  1138      *
  1139      * <p>Special cases:
  1140      * <ul>
  1141      *
  1142      * <li> If either argument is infinite, then the result
  1143      * is positive infinity.
  1144      *
  1145      * <li> If either argument is NaN and neither argument is infinite,
  1146      * then the result is NaN.
  1147      *
  1148      * </ul>
  1149      *
  1150      * <p>The computed result must be within 1 ulp of the exact
  1151      * result.  If one parameter is held constant, the results must be
  1152      * semi-monotonic in the other parameter.
  1153      *
  1154      * @param x a value
  1155      * @param y a value
  1156      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
  1157      * without intermediate overflow or underflow
  1158      * @since 1.5
  1159      */
  1160     public static double hypot(double x, double y) {
  1161         return StrictMath.hypot(x, y);
  1162     }
  1163 
  1164     /**
  1165      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
  1166      * <i>x</i> near 0, the exact sum of
  1167      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
  1168      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
  1169      *
  1170      * <p>Special cases:
  1171      * <ul>
  1172      * <li>If the argument is NaN, the result is NaN.
  1173      *
  1174      * <li>If the argument is positive infinity, then the result is
  1175      * positive infinity.
  1176      *
  1177      * <li>If the argument is negative infinity, then the result is
  1178      * -1.0.
  1179      *
  1180      * <li>If the argument is zero, then the result is a zero with the
  1181      * same sign as the argument.
  1182      *
  1183      * </ul>
  1184      *
  1185      * <p>The computed result must be within 1 ulp of the exact result.
  1186      * Results must be semi-monotonic.  The result of
  1187      * {@code expm1} for any finite input must be greater than or
  1188      * equal to {@code -1.0}.  Note that once the exact result of
  1189      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
  1190      * ulp of the limit value -1, {@code -1.0} should be
  1191      * returned.
  1192      *
  1193      * @param   x   the exponent to raise <i>e</i> to in the computation of
  1194      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
  1195      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
  1196      * @since 1.5
  1197      */
  1198     public static double expm1(double x) {
  1199         return StrictMath.expm1(x);
  1200     }
  1201 
  1202     /**
  1203      * Returns the natural logarithm of the sum of the argument and 1.
  1204      * Note that for small values {@code x}, the result of
  1205      * {@code log1p(x)} is much closer to the true result of ln(1
  1206      * + {@code x}) than the floating-point evaluation of
  1207      * {@code log(1.0+x)}.
  1208      *
  1209      * <p>Special cases:
  1210      *
  1211      * <ul>
  1212      *
  1213      * <li>If the argument is NaN or less than -1, then the result is
  1214      * NaN.
  1215      *
  1216      * <li>If the argument is positive infinity, then the result is
  1217      * positive infinity.
  1218      *
  1219      * <li>If the argument is negative one, then the result is
  1220      * negative infinity.
  1221      *
  1222      * <li>If the argument is zero, then the result is a zero with the
  1223      * same sign as the argument.
  1224      *
  1225      * </ul>
  1226      *
  1227      * <p>The computed result must be within 1 ulp of the exact result.
  1228      * Results must be semi-monotonic.
  1229      *
  1230      * @param   x   a value
  1231      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
  1232      * log of {@code x}&nbsp;+&nbsp;1
  1233      * @since 1.5
  1234      */
  1235     public static double log1p(double x) {
  1236         return StrictMath.log1p(x);
  1237     }
  1238 
  1239     /**
  1240      * Returns the first floating-point argument with the sign of the
  1241      * second floating-point argument.  Note that unlike the {@link
  1242      * StrictMath#copySign(double, double) StrictMath.copySign}
  1243      * method, this method does not require NaN {@code sign}
  1244      * arguments to be treated as positive values; implementations are
  1245      * permitted to treat some NaN arguments as positive and other NaN
  1246      * arguments as negative to allow greater performance.
  1247      *
  1248      * @param magnitude  the parameter providing the magnitude of the result
  1249      * @param sign   the parameter providing the sign of the result
  1250      * @return a value with the magnitude of {@code magnitude}
  1251      * and the sign of {@code sign}.
  1252      * @since 1.6
  1253      */
  1254     public static double copySign(double magnitude, double sign) {
  1255         return sun.misc.FpUtils.rawCopySign(magnitude, sign);
  1256     }
  1257 
  1258     /**
  1259      * Returns the first floating-point argument with the sign of the
  1260      * second floating-point argument.  Note that unlike the {@link
  1261      * StrictMath#copySign(float, float) StrictMath.copySign}
  1262      * method, this method does not require NaN {@code sign}
  1263      * arguments to be treated as positive values; implementations are
  1264      * permitted to treat some NaN arguments as positive and other NaN
  1265      * arguments as negative to allow greater performance.
  1266      *
  1267      * @param magnitude  the parameter providing the magnitude of the result
  1268      * @param sign   the parameter providing the sign of the result
  1269      * @return a value with the magnitude of {@code magnitude}
  1270      * and the sign of {@code sign}.
  1271      * @since 1.6
  1272      */
  1273     public static float copySign(float magnitude, float sign) {
  1274         return sun.misc.FpUtils.rawCopySign(magnitude, sign);
  1275     }
  1276 
  1277     /**
  1278      * Returns the unbiased exponent used in the representation of a
  1279      * {@code float}.  Special cases:
  1280      *
  1281      * <ul>
  1282      * <li>If the argument is NaN or infinite, then the result is
  1283      * {@link Float#MAX_EXPONENT} + 1.
  1284      * <li>If the argument is zero or subnormal, then the result is
  1285      * {@link Float#MIN_EXPONENT} -1.
  1286      * </ul>
  1287      * @param f a {@code float} value
  1288      * @return the unbiased exponent of the argument
  1289      * @since 1.6
  1290      */
  1291     public static int getExponent(float f) {
  1292         return sun.misc.FpUtils.getExponent(f);
  1293     }
  1294 
  1295     /**
  1296      * Returns the unbiased exponent used in the representation of a
  1297      * {@code double}.  Special cases:
  1298      *
  1299      * <ul>
  1300      * <li>If the argument is NaN or infinite, then the result is
  1301      * {@link Double#MAX_EXPONENT} + 1.
  1302      * <li>If the argument is zero or subnormal, then the result is
  1303      * {@link Double#MIN_EXPONENT} -1.
  1304      * </ul>
  1305      * @param d a {@code double} value
  1306      * @return the unbiased exponent of the argument
  1307      * @since 1.6
  1308      */
  1309     public static int getExponent(double d) {
  1310         return sun.misc.FpUtils.getExponent(d);
  1311     }
  1312 
  1313     /**
  1314      * Returns the floating-point number adjacent to the first
  1315      * argument in the direction of the second argument.  If both
  1316      * arguments compare as equal the second argument is returned.
  1317      *
  1318      * <p>
  1319      * Special cases:
  1320      * <ul>
  1321      * <li> If either argument is a NaN, then NaN is returned.
  1322      *
  1323      * <li> If both arguments are signed zeros, {@code direction}
  1324      * is returned unchanged (as implied by the requirement of
  1325      * returning the second argument if the arguments compare as
  1326      * equal).
  1327      *
  1328      * <li> If {@code start} is
  1329      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
  1330      * has a value such that the result should have a smaller
  1331      * magnitude, then a zero with the same sign as {@code start}
  1332      * is returned.
  1333      *
  1334      * <li> If {@code start} is infinite and
  1335      * {@code direction} has a value such that the result should
  1336      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
  1337      * same sign as {@code start} is returned.
  1338      *
  1339      * <li> If {@code start} is equal to &plusmn;
  1340      * {@link Double#MAX_VALUE} and {@code direction} has a
  1341      * value such that the result should have a larger magnitude, an
  1342      * infinity with same sign as {@code start} is returned.
  1343      * </ul>
  1344      *
  1345      * @param start  starting floating-point value
  1346      * @param direction value indicating which of
  1347      * {@code start}'s neighbors or {@code start} should
  1348      * be returned
  1349      * @return The floating-point number adjacent to {@code start} in the
  1350      * direction of {@code direction}.
  1351      * @since 1.6
  1352      */
  1353     public static double nextAfter(double start, double direction) {
  1354         return sun.misc.FpUtils.nextAfter(start, direction);
  1355     }
  1356 
  1357     /**
  1358      * Returns the floating-point number adjacent to the first
  1359      * argument in the direction of the second argument.  If both
  1360      * arguments compare as equal a value equivalent to the second argument
  1361      * is returned.
  1362      *
  1363      * <p>
  1364      * Special cases:
  1365      * <ul>
  1366      * <li> If either argument is a NaN, then NaN is returned.
  1367      *
  1368      * <li> If both arguments are signed zeros, a value equivalent
  1369      * to {@code direction} is returned.
  1370      *
  1371      * <li> If {@code start} is
  1372      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
  1373      * has a value such that the result should have a smaller
  1374      * magnitude, then a zero with the same sign as {@code start}
  1375      * is returned.
  1376      *
  1377      * <li> If {@code start} is infinite and
  1378      * {@code direction} has a value such that the result should
  1379      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
  1380      * same sign as {@code start} is returned.
  1381      *
  1382      * <li> If {@code start} is equal to &plusmn;
  1383      * {@link Float#MAX_VALUE} and {@code direction} has a
  1384      * value such that the result should have a larger magnitude, an
  1385      * infinity with same sign as {@code start} is returned.
  1386      * </ul>
  1387      *
  1388      * @param start  starting floating-point value
  1389      * @param direction value indicating which of
  1390      * {@code start}'s neighbors or {@code start} should
  1391      * be returned
  1392      * @return The floating-point number adjacent to {@code start} in the
  1393      * direction of {@code direction}.
  1394      * @since 1.6
  1395      */
  1396     public static float nextAfter(float start, double direction) {
  1397         return sun.misc.FpUtils.nextAfter(start, direction);
  1398     }
  1399 
  1400     /**
  1401      * Returns the floating-point value adjacent to {@code d} in
  1402      * the direction of positive infinity.  This method is
  1403      * semantically equivalent to {@code nextAfter(d,
  1404      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
  1405      * implementation may run faster than its equivalent
  1406      * {@code nextAfter} call.
  1407      *
  1408      * <p>Special Cases:
  1409      * <ul>
  1410      * <li> If the argument is NaN, the result is NaN.
  1411      *
  1412      * <li> If the argument is positive infinity, the result is
  1413      * positive infinity.
  1414      *
  1415      * <li> If the argument is zero, the result is
  1416      * {@link Double#MIN_VALUE}
  1417      *
  1418      * </ul>
  1419      *
  1420      * @param d starting floating-point value
  1421      * @return The adjacent floating-point value closer to positive
  1422      * infinity.
  1423      * @since 1.6
  1424      */
  1425     public static double nextUp(double d) {
  1426         return sun.misc.FpUtils.nextUp(d);
  1427     }
  1428 
  1429     /**
  1430      * Returns the floating-point value adjacent to {@code f} in
  1431      * the direction of positive infinity.  This method is
  1432      * semantically equivalent to {@code nextAfter(f,
  1433      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
  1434      * implementation may run faster than its equivalent
  1435      * {@code nextAfter} call.
  1436      *
  1437      * <p>Special Cases:
  1438      * <ul>
  1439      * <li> If the argument is NaN, the result is NaN.
  1440      *
  1441      * <li> If the argument is positive infinity, the result is
  1442      * positive infinity.
  1443      *
  1444      * <li> If the argument is zero, the result is
  1445      * {@link Float#MIN_VALUE}
  1446      *
  1447      * </ul>
  1448      *
  1449      * @param f starting floating-point value
  1450      * @return The adjacent floating-point value closer to positive
  1451      * infinity.
  1452      * @since 1.6
  1453      */
  1454     public static float nextUp(float f) {
  1455         return sun.misc.FpUtils.nextUp(f);
  1456     }
  1457 
  1458 
  1459     /**
  1460      * Return {@code d} &times;
  1461      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
  1462      * by a single correctly rounded floating-point multiply to a
  1463      * member of the double value set.  See the Java
  1464      * Language Specification for a discussion of floating-point
  1465      * value sets.  If the exponent of the result is between {@link
  1466      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
  1467      * answer is calculated exactly.  If the exponent of the result
  1468      * would be larger than {@code Double.MAX_EXPONENT}, an
  1469      * infinity is returned.  Note that if the result is subnormal,
  1470      * precision may be lost; that is, when {@code scalb(x, n)}
  1471      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
  1472      * <i>x</i>.  When the result is non-NaN, the result has the same
  1473      * sign as {@code d}.
  1474      *
  1475      * <p>Special cases:
  1476      * <ul>
  1477      * <li> If the first argument is NaN, NaN is returned.
  1478      * <li> If the first argument is infinite, then an infinity of the
  1479      * same sign is returned.
  1480      * <li> If the first argument is zero, then a zero of the same
  1481      * sign is returned.
  1482      * </ul>
  1483      *
  1484      * @param d number to be scaled by a power of two.
  1485      * @param scaleFactor power of 2 used to scale {@code d}
  1486      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
  1487      * @since 1.6
  1488      */
  1489     public static double scalb(double d, int scaleFactor) {
  1490         return sun.misc.FpUtils.scalb(d, scaleFactor);
  1491     }
  1492 
  1493     /**
  1494      * Return {@code f} &times;
  1495      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
  1496      * by a single correctly rounded floating-point multiply to a
  1497      * member of the float value set.  See the Java
  1498      * Language Specification for a discussion of floating-point
  1499      * value sets.  If the exponent of the result is between {@link
  1500      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
  1501      * answer is calculated exactly.  If the exponent of the result
  1502      * would be larger than {@code Float.MAX_EXPONENT}, an
  1503      * infinity is returned.  Note that if the result is subnormal,
  1504      * precision may be lost; that is, when {@code scalb(x, n)}
  1505      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
  1506      * <i>x</i>.  When the result is non-NaN, the result has the same
  1507      * sign as {@code f}.
  1508      *
  1509      * <p>Special cases:
  1510      * <ul>
  1511      * <li> If the first argument is NaN, NaN is returned.
  1512      * <li> If the first argument is infinite, then an infinity of the
  1513      * same sign is returned.
  1514      * <li> If the first argument is zero, then a zero of the same
  1515      * sign is returned.
  1516      * </ul>
  1517      *
  1518      * @param f number to be scaled by a power of two.
  1519      * @param scaleFactor power of 2 used to scale {@code f}
  1520      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
  1521      * @since 1.6
  1522      */
  1523     public static float scalb(float f, int scaleFactor) {
  1524         return sun.misc.FpUtils.scalb(f, scaleFactor);
  1525     }
  1526 }