emul/src/main/java/java/lang/Float.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sun, 30 Sep 2012 18:29:37 -0700
branchemul
changeset 84 d65b3a2fbfaf
parent 67 cc0d42d2110a
child 116 033d51e026b0
permissions -rw-r--r--
Almost compilable
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 /**
    29  * The {@code Float} class wraps a value of primitive type
    30  * {@code float} in an object. An object of type
    31  * {@code Float} contains a single field whose type is
    32  * {@code float}.
    33  *
    34  * <p>In addition, this class provides several methods for converting a
    35  * {@code float} to a {@code String} and a
    36  * {@code String} to a {@code float}, as well as other
    37  * constants and methods useful when dealing with a
    38  * {@code float}.
    39  *
    40  * @author  Lee Boynton
    41  * @author  Arthur van Hoff
    42  * @author  Joseph D. Darcy
    43  * @since JDK1.0
    44  */
    45 public final class Float extends Number implements Comparable<Float> {
    46     /**
    47      * A constant holding the positive infinity of type
    48      * {@code float}. It is equal to the value returned by
    49      * {@code Float.intBitsToFloat(0x7f800000)}.
    50      */
    51     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
    52 
    53     /**
    54      * A constant holding the negative infinity of type
    55      * {@code float}. It is equal to the value returned by
    56      * {@code Float.intBitsToFloat(0xff800000)}.
    57      */
    58     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
    59 
    60     /**
    61      * A constant holding a Not-a-Number (NaN) value of type
    62      * {@code float}.  It is equivalent to the value returned by
    63      * {@code Float.intBitsToFloat(0x7fc00000)}.
    64      */
    65     public static final float NaN = 0.0f / 0.0f;
    66 
    67     /**
    68      * A constant holding the largest positive finite value of type
    69      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
    70      * It is equal to the hexadecimal floating-point literal
    71      * {@code 0x1.fffffeP+127f} and also equal to
    72      * {@code Float.intBitsToFloat(0x7f7fffff)}.
    73      */
    74     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
    75 
    76     /**
    77      * A constant holding the smallest positive normal value of type
    78      * {@code float}, 2<sup>-126</sup>.  It is equal to the
    79      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
    80      * equal to {@code Float.intBitsToFloat(0x00800000)}.
    81      *
    82      * @since 1.6
    83      */
    84     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
    85 
    86     /**
    87      * A constant holding the smallest positive nonzero value of type
    88      * {@code float}, 2<sup>-149</sup>. It is equal to the
    89      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
    90      * and also equal to {@code Float.intBitsToFloat(0x1)}.
    91      */
    92     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
    93 
    94     /**
    95      * Maximum exponent a finite {@code float} variable may have.  It
    96      * is equal to the value returned by {@code
    97      * Math.getExponent(Float.MAX_VALUE)}.
    98      *
    99      * @since 1.6
   100      */
   101     public static final int MAX_EXPONENT = 127;
   102 
   103     /**
   104      * Minimum exponent a normalized {@code float} variable may have.
   105      * It is equal to the value returned by {@code
   106      * Math.getExponent(Float.MIN_NORMAL)}.
   107      *
   108      * @since 1.6
   109      */
   110     public static final int MIN_EXPONENT = -126;
   111 
   112     /**
   113      * The number of bits used to represent a {@code float} value.
   114      *
   115      * @since 1.5
   116      */
   117     public static final int SIZE = 32;
   118 
   119     /**
   120      * The {@code Class} instance representing the primitive type
   121      * {@code float}.
   122      *
   123      * @since JDK1.1
   124      */
   125     public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
   126 
   127     /**
   128      * Returns a string representation of the {@code float}
   129      * argument. All characters mentioned below are ASCII characters.
   130      * <ul>
   131      * <li>If the argument is NaN, the result is the string
   132      * "{@code NaN}".
   133      * <li>Otherwise, the result is a string that represents the sign and
   134      *     magnitude (absolute value) of the argument. If the sign is
   135      *     negative, the first character of the result is
   136      *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
   137      *     positive, no sign character appears in the result. As for
   138      *     the magnitude <i>m</i>:
   139      * <ul>
   140      * <li>If <i>m</i> is infinity, it is represented by the characters
   141      *     {@code "Infinity"}; thus, positive infinity produces
   142      *     the result {@code "Infinity"} and negative infinity
   143      *     produces the result {@code "-Infinity"}.
   144      * <li>If <i>m</i> is zero, it is represented by the characters
   145      *     {@code "0.0"}; thus, negative zero produces the result
   146      *     {@code "-0.0"} and positive zero produces the result
   147      *     {@code "0.0"}.
   148      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
   149      *      less than 10<sup>7</sup>, then it is represented as the
   150      *      integer part of <i>m</i>, in decimal form with no leading
   151      *      zeroes, followed by '{@code .}'
   152      *      (<code>'&#92;u002E'</code>), followed by one or more
   153      *      decimal digits representing the fractional part of
   154      *      <i>m</i>.
   155      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
   156      *      equal to 10<sup>7</sup>, then it is represented in
   157      *      so-called "computerized scientific notation." Let <i>n</i>
   158      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
   159      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
   160      *      be the mathematically exact quotient of <i>m</i> and
   161      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
   162      *      The magnitude is then represented as the integer part of
   163      *      <i>a</i>, as a single decimal digit, followed by
   164      *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
   165      *      decimal digits representing the fractional part of
   166      *      <i>a</i>, followed by the letter '{@code E}'
   167      *      (<code>'&#92;u0045'</code>), followed by a representation
   168      *      of <i>n</i> as a decimal integer, as produced by the
   169      *      method {@link java.lang.Integer#toString(int)}.
   170      *
   171      * </ul>
   172      * </ul>
   173      * How many digits must be printed for the fractional part of
   174      * <i>m</i> or <i>a</i>? There must be at least one digit
   175      * to represent the fractional part, and beyond that as many, but
   176      * only as many, more digits as are needed to uniquely distinguish
   177      * the argument value from adjacent values of type
   178      * {@code float}. That is, suppose that <i>x</i> is the
   179      * exact mathematical value represented by the decimal
   180      * representation produced by this method for a finite nonzero
   181      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
   182      * value nearest to <i>x</i>; or, if two {@code float} values are
   183      * equally close to <i>x</i>, then <i>f</i> must be one of
   184      * them and the least significant bit of the significand of
   185      * <i>f</i> must be {@code 0}.
   186      *
   187      * <p>To create localized string representations of a floating-point
   188      * value, use subclasses of {@link java.text.NumberFormat}.
   189      *
   190      * @param   f   the float to be converted.
   191      * @return a string representation of the argument.
   192      */
   193     public static String toString(float f) {
   194         throw new UnsupportedOperationException();
   195 //        return new FloatingDecimal(f).toJavaFormatString();
   196     }
   197 
   198     /**
   199      * Returns a hexadecimal string representation of the
   200      * {@code float} argument. All characters mentioned below are
   201      * ASCII characters.
   202      *
   203      * <ul>
   204      * <li>If the argument is NaN, the result is the string
   205      *     "{@code NaN}".
   206      * <li>Otherwise, the result is a string that represents the sign and
   207      * magnitude (absolute value) of the argument. If the sign is negative,
   208      * the first character of the result is '{@code -}'
   209      * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
   210      * appears in the result. As for the magnitude <i>m</i>:
   211      *
   212      * <ul>
   213      * <li>If <i>m</i> is infinity, it is represented by the string
   214      * {@code "Infinity"}; thus, positive infinity produces the
   215      * result {@code "Infinity"} and negative infinity produces
   216      * the result {@code "-Infinity"}.
   217      *
   218      * <li>If <i>m</i> is zero, it is represented by the string
   219      * {@code "0x0.0p0"}; thus, negative zero produces the result
   220      * {@code "-0x0.0p0"} and positive zero produces the result
   221      * {@code "0x0.0p0"}.
   222      *
   223      * <li>If <i>m</i> is a {@code float} value with a
   224      * normalized representation, substrings are used to represent the
   225      * significand and exponent fields.  The significand is
   226      * represented by the characters {@code "0x1."}
   227      * followed by a lowercase hexadecimal representation of the rest
   228      * of the significand as a fraction.  Trailing zeros in the
   229      * hexadecimal representation are removed unless all the digits
   230      * are zero, in which case a single zero is used. Next, the
   231      * exponent is represented by {@code "p"} followed
   232      * by a decimal string of the unbiased exponent as if produced by
   233      * a call to {@link Integer#toString(int) Integer.toString} on the
   234      * exponent value.
   235      *
   236      * <li>If <i>m</i> is a {@code float} value with a subnormal
   237      * representation, the significand is represented by the
   238      * characters {@code "0x0."} followed by a
   239      * hexadecimal representation of the rest of the significand as a
   240      * fraction.  Trailing zeros in the hexadecimal representation are
   241      * removed. Next, the exponent is represented by
   242      * {@code "p-126"}.  Note that there must be at
   243      * least one nonzero digit in a subnormal significand.
   244      *
   245      * </ul>
   246      *
   247      * </ul>
   248      *
   249      * <table border>
   250      * <caption><h3>Examples</h3></caption>
   251      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
   252      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
   253      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
   254      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
   255      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
   256      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
   257      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
   258      * <tr><td>{@code Float.MAX_VALUE}</td>
   259      *     <td>{@code 0x1.fffffep127}</td>
   260      * <tr><td>{@code Minimum Normal Value}</td>
   261      *     <td>{@code 0x1.0p-126}</td>
   262      * <tr><td>{@code Maximum Subnormal Value}</td>
   263      *     <td>{@code 0x0.fffffep-126}</td>
   264      * <tr><td>{@code Float.MIN_VALUE}</td>
   265      *     <td>{@code 0x0.000002p-126}</td>
   266      * </table>
   267      * @param   f   the {@code float} to be converted.
   268      * @return a hex string representation of the argument.
   269      * @since 1.5
   270      * @author Joseph D. Darcy
   271      */
   272     public static String toHexString(float f) {
   273         throw new UnsupportedOperationException();
   274 //        if (Math.abs(f) < FloatConsts.MIN_NORMAL
   275 //            &&  f != 0.0f ) {// float subnormal
   276 //            // Adjust exponent to create subnormal double, then
   277 //            // replace subnormal double exponent with subnormal float
   278 //            // exponent
   279 //            String s = Double.toHexString(FpUtils.scalb((double)f,
   280 //                                                        /* -1022+126 */
   281 //                                                        DoubleConsts.MIN_EXPONENT-
   282 //                                                        FloatConsts.MIN_EXPONENT));
   283 //            return s.replaceFirst("p-1022$", "p-126");
   284 //        }
   285 //        else // double string will be the same as float string
   286 //            return Double.toHexString(f);
   287     }
   288 
   289     /**
   290      * Returns a {@code Float} object holding the
   291      * {@code float} value represented by the argument string
   292      * {@code s}.
   293      *
   294      * <p>If {@code s} is {@code null}, then a
   295      * {@code NullPointerException} is thrown.
   296      *
   297      * <p>Leading and trailing whitespace characters in {@code s}
   298      * are ignored.  Whitespace is removed as if by the {@link
   299      * String#trim} method; that is, both ASCII space and control
   300      * characters are removed. The rest of {@code s} should
   301      * constitute a <i>FloatValue</i> as described by the lexical
   302      * syntax rules:
   303      *
   304      * <blockquote>
   305      * <dl>
   306      * <dt><i>FloatValue:</i>
   307      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
   308      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
   309      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
   310      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
   311      * <dd><i>SignedInteger</i>
   312      * </dl>
   313      *
   314      * <p>
   315      *
   316      * <dl>
   317      * <dt><i>HexFloatingPointLiteral</i>:
   318      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
   319      * </dl>
   320      *
   321      * <p>
   322      *
   323      * <dl>
   324      * <dt><i>HexSignificand:</i>
   325      * <dd><i>HexNumeral</i>
   326      * <dd><i>HexNumeral</i> {@code .}
   327      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
   328      *     </i>{@code .}<i> HexDigits</i>
   329      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
   330      *     </i>{@code .} <i>HexDigits</i>
   331      * </dl>
   332      *
   333      * <p>
   334      *
   335      * <dl>
   336      * <dt><i>BinaryExponent:</i>
   337      * <dd><i>BinaryExponentIndicator SignedInteger</i>
   338      * </dl>
   339      *
   340      * <p>
   341      *
   342      * <dl>
   343      * <dt><i>BinaryExponentIndicator:</i>
   344      * <dd>{@code p}
   345      * <dd>{@code P}
   346      * </dl>
   347      *
   348      * </blockquote>
   349      *
   350      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
   351      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
   352      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
   353      * sections of
   354      * <cite>The Java&trade; Language Specification</cite>,
   355      * except that underscores are not accepted between digits.
   356      * If {@code s} does not have the form of
   357      * a <i>FloatValue</i>, then a {@code NumberFormatException}
   358      * is thrown. Otherwise, {@code s} is regarded as
   359      * representing an exact decimal value in the usual
   360      * "computerized scientific notation" or as an exact
   361      * hexadecimal value; this exact numerical value is then
   362      * conceptually converted to an "infinitely precise"
   363      * binary value that is then rounded to type {@code float}
   364      * by the usual round-to-nearest rule of IEEE 754 floating-point
   365      * arithmetic, which includes preserving the sign of a zero
   366      * value.
   367      *
   368      * Note that the round-to-nearest rule also implies overflow and
   369      * underflow behaviour; if the exact value of {@code s} is large
   370      * enough in magnitude (greater than or equal to ({@link
   371      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
   372      * rounding to {@code float} will result in an infinity and if the
   373      * exact value of {@code s} is small enough in magnitude (less
   374      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
   375      * result in a zero.
   376      *
   377      * Finally, after rounding a {@code Float} object representing
   378      * this {@code float} value is returned.
   379      *
   380      * <p>To interpret localized string representations of a
   381      * floating-point value, use subclasses of {@link
   382      * java.text.NumberFormat}.
   383      *
   384      * <p>Note that trailing format specifiers, specifiers that
   385      * determine the type of a floating-point literal
   386      * ({@code 1.0f} is a {@code float} value;
   387      * {@code 1.0d} is a {@code double} value), do
   388      * <em>not</em> influence the results of this method.  In other
   389      * words, the numerical value of the input string is converted
   390      * directly to the target floating-point type.  In general, the
   391      * two-step sequence of conversions, string to {@code double}
   392      * followed by {@code double} to {@code float}, is
   393      * <em>not</em> equivalent to converting a string directly to
   394      * {@code float}.  For example, if first converted to an
   395      * intermediate {@code double} and then to
   396      * {@code float}, the string<br>
   397      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
   398      * results in the {@code float} value
   399      * {@code 1.0000002f}; if the string is converted directly to
   400      * {@code float}, <code>1.000000<b>1</b>f</code> results.
   401      *
   402      * <p>To avoid calling this method on an invalid string and having
   403      * a {@code NumberFormatException} be thrown, the documentation
   404      * for {@link Double#valueOf Double.valueOf} lists a regular
   405      * expression which can be used to screen the input.
   406      *
   407      * @param   s   the string to be parsed.
   408      * @return  a {@code Float} object holding the value
   409      *          represented by the {@code String} argument.
   410      * @throws  NumberFormatException  if the string does not contain a
   411      *          parsable number.
   412      */
   413     public static Float valueOf(String s) throws NumberFormatException {
   414         throw new UnsupportedOperationException();
   415 //        return new Float(FloatingDecimal.readJavaFormatString(s).floatValue());
   416     }
   417 
   418     /**
   419      * Returns a {@code Float} instance representing the specified
   420      * {@code float} value.
   421      * If a new {@code Float} instance is not required, this method
   422      * should generally be used in preference to the constructor
   423      * {@link #Float(float)}, as this method is likely to yield
   424      * significantly better space and time performance by caching
   425      * frequently requested values.
   426      *
   427      * @param  f a float value.
   428      * @return a {@code Float} instance representing {@code f}.
   429      * @since  1.5
   430      */
   431     public static Float valueOf(float f) {
   432         return new Float(f);
   433     }
   434 
   435     /**
   436      * Returns a new {@code float} initialized to the value
   437      * represented by the specified {@code String}, as performed
   438      * by the {@code valueOf} method of class {@code Float}.
   439      *
   440      * @param  s the string to be parsed.
   441      * @return the {@code float} value represented by the string
   442      *         argument.
   443      * @throws NullPointerException  if the string is null
   444      * @throws NumberFormatException if the string does not contain a
   445      *               parsable {@code float}.
   446      * @see    java.lang.Float#valueOf(String)
   447      * @since 1.2
   448      */
   449     public static float parseFloat(String s) throws NumberFormatException {
   450         throw new UnsupportedOperationException();
   451 //        return FloatingDecimal.readJavaFormatString(s).floatValue();
   452     }
   453 
   454     /**
   455      * Returns {@code true} if the specified number is a
   456      * Not-a-Number (NaN) value, {@code false} otherwise.
   457      *
   458      * @param   v   the value to be tested.
   459      * @return  {@code true} if the argument is NaN;
   460      *          {@code false} otherwise.
   461      */
   462     static public boolean isNaN(float v) {
   463         return (v != v);
   464     }
   465 
   466     /**
   467      * Returns {@code true} if the specified number is infinitely
   468      * large in magnitude, {@code false} otherwise.
   469      *
   470      * @param   v   the value to be tested.
   471      * @return  {@code true} if the argument is positive infinity or
   472      *          negative infinity; {@code false} otherwise.
   473      */
   474     static public boolean isInfinite(float v) {
   475         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
   476     }
   477 
   478     /**
   479      * The value of the Float.
   480      *
   481      * @serial
   482      */
   483     private final float value;
   484 
   485     /**
   486      * Constructs a newly allocated {@code Float} object that
   487      * represents the primitive {@code float} argument.
   488      *
   489      * @param   value   the value to be represented by the {@code Float}.
   490      */
   491     public Float(float value) {
   492         this.value = value;
   493     }
   494 
   495     /**
   496      * Constructs a newly allocated {@code Float} object that
   497      * represents the argument converted to type {@code float}.
   498      *
   499      * @param   value   the value to be represented by the {@code Float}.
   500      */
   501     public Float(double value) {
   502         this.value = (float)value;
   503     }
   504 
   505     /**
   506      * Constructs a newly allocated {@code Float} object that
   507      * represents the floating-point value of type {@code float}
   508      * represented by the string. The string is converted to a
   509      * {@code float} value as if by the {@code valueOf} method.
   510      *
   511      * @param      s   a string to be converted to a {@code Float}.
   512      * @throws  NumberFormatException  if the string does not contain a
   513      *               parsable number.
   514      * @see        java.lang.Float#valueOf(java.lang.String)
   515      */
   516     public Float(String s) throws NumberFormatException {
   517         // REMIND: this is inefficient
   518         this(valueOf(s).floatValue());
   519     }
   520 
   521     /**
   522      * Returns {@code true} if this {@code Float} value is a
   523      * Not-a-Number (NaN), {@code false} otherwise.
   524      *
   525      * @return  {@code true} if the value represented by this object is
   526      *          NaN; {@code false} otherwise.
   527      */
   528     public boolean isNaN() {
   529         return isNaN(value);
   530     }
   531 
   532     /**
   533      * Returns {@code true} if this {@code Float} value is
   534      * infinitely large in magnitude, {@code false} otherwise.
   535      *
   536      * @return  {@code true} if the value represented by this object is
   537      *          positive infinity or negative infinity;
   538      *          {@code false} otherwise.
   539      */
   540     public boolean isInfinite() {
   541         return isInfinite(value);
   542     }
   543 
   544     /**
   545      * Returns a string representation of this {@code Float} object.
   546      * The primitive {@code float} value represented by this object
   547      * is converted to a {@code String} exactly as if by the method
   548      * {@code toString} of one argument.
   549      *
   550      * @return  a {@code String} representation of this object.
   551      * @see java.lang.Float#toString(float)
   552      */
   553     public String toString() {
   554         return Float.toString(value);
   555     }
   556 
   557     /**
   558      * Returns the value of this {@code Float} as a {@code byte} (by
   559      * casting to a {@code byte}).
   560      *
   561      * @return  the {@code float} value represented by this object
   562      *          converted to type {@code byte}
   563      */
   564     public byte byteValue() {
   565         return (byte)value;
   566     }
   567 
   568     /**
   569      * Returns the value of this {@code Float} as a {@code short} (by
   570      * casting to a {@code short}).
   571      *
   572      * @return  the {@code float} value represented by this object
   573      *          converted to type {@code short}
   574      * @since JDK1.1
   575      */
   576     public short shortValue() {
   577         return (short)value;
   578     }
   579 
   580     /**
   581      * Returns the value of this {@code Float} as an {@code int} (by
   582      * casting to type {@code int}).
   583      *
   584      * @return  the {@code float} value represented by this object
   585      *          converted to type {@code int}
   586      */
   587     public int intValue() {
   588         return (int)value;
   589     }
   590 
   591     /**
   592      * Returns value of this {@code Float} as a {@code long} (by
   593      * casting to type {@code long}).
   594      *
   595      * @return  the {@code float} value represented by this object
   596      *          converted to type {@code long}
   597      */
   598     public long longValue() {
   599         return (long)value;
   600     }
   601 
   602     /**
   603      * Returns the {@code float} value of this {@code Float} object.
   604      *
   605      * @return the {@code float} value represented by this object
   606      */
   607     public float floatValue() {
   608         return value;
   609     }
   610 
   611     /**
   612      * Returns the {@code double} value of this {@code Float} object.
   613      *
   614      * @return the {@code float} value represented by this
   615      *         object is converted to type {@code double} and the
   616      *         result of the conversion is returned.
   617      */
   618     public double doubleValue() {
   619         return (double)value;
   620     }
   621 
   622     /**
   623      * Returns a hash code for this {@code Float} object. The
   624      * result is the integer bit representation, exactly as produced
   625      * by the method {@link #floatToIntBits(float)}, of the primitive
   626      * {@code float} value represented by this {@code Float}
   627      * object.
   628      *
   629      * @return a hash code value for this object.
   630      */
   631     public int hashCode() {
   632         return floatToIntBits(value);
   633     }
   634 
   635     /**
   636 
   637      * Compares this object against the specified object.  The result
   638      * is {@code true} if and only if the argument is not
   639      * {@code null} and is a {@code Float} object that
   640      * represents a {@code float} with the same value as the
   641      * {@code float} represented by this object. For this
   642      * purpose, two {@code float} values are considered to be the
   643      * same if and only if the method {@link #floatToIntBits(float)}
   644      * returns the identical {@code int} value when applied to
   645      * each.
   646      *
   647      * <p>Note that in most cases, for two instances of class
   648      * {@code Float}, {@code f1} and {@code f2}, the value
   649      * of {@code f1.equals(f2)} is {@code true} if and only if
   650      *
   651      * <blockquote><pre>
   652      *   f1.floatValue() == f2.floatValue()
   653      * </pre></blockquote>
   654      *
   655      * <p>also has the value {@code true}. However, there are two exceptions:
   656      * <ul>
   657      * <li>If {@code f1} and {@code f2} both represent
   658      *     {@code Float.NaN}, then the {@code equals} method returns
   659      *     {@code true}, even though {@code Float.NaN==Float.NaN}
   660      *     has the value {@code false}.
   661      * <li>If {@code f1} represents {@code +0.0f} while
   662      *     {@code f2} represents {@code -0.0f}, or vice
   663      *     versa, the {@code equal} test has the value
   664      *     {@code false}, even though {@code 0.0f==-0.0f}
   665      *     has the value {@code true}.
   666      * </ul>
   667      *
   668      * This definition allows hash tables to operate properly.
   669      *
   670      * @param obj the object to be compared
   671      * @return  {@code true} if the objects are the same;
   672      *          {@code false} otherwise.
   673      * @see java.lang.Float#floatToIntBits(float)
   674      */
   675     public boolean equals(Object obj) {
   676         return (obj instanceof Float)
   677                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
   678     }
   679 
   680     /**
   681      * Returns a representation of the specified floating-point value
   682      * according to the IEEE 754 floating-point "single format" bit
   683      * layout.
   684      *
   685      * <p>Bit 31 (the bit that is selected by the mask
   686      * {@code 0x80000000}) represents the sign of the floating-point
   687      * number.
   688      * Bits 30-23 (the bits that are selected by the mask
   689      * {@code 0x7f800000}) represent the exponent.
   690      * Bits 22-0 (the bits that are selected by the mask
   691      * {@code 0x007fffff}) represent the significand (sometimes called
   692      * the mantissa) of the floating-point number.
   693      *
   694      * <p>If the argument is positive infinity, the result is
   695      * {@code 0x7f800000}.
   696      *
   697      * <p>If the argument is negative infinity, the result is
   698      * {@code 0xff800000}.
   699      *
   700      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
   701      *
   702      * <p>In all cases, the result is an integer that, when given to the
   703      * {@link #intBitsToFloat(int)} method, will produce a floating-point
   704      * value the same as the argument to {@code floatToIntBits}
   705      * (except all NaN values are collapsed to a single
   706      * "canonical" NaN value).
   707      *
   708      * @param   value   a floating-point number.
   709      * @return the bits that represent the floating-point number.
   710      */
   711     public static int floatToIntBits(float value) {
   712         throw new UnsupportedOperationException();
   713 //        int result = floatToRawIntBits(value);
   714 //        // Check for NaN based on values of bit fields, maximum
   715 //        // exponent and nonzero significand.
   716 //        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
   717 //              FloatConsts.EXP_BIT_MASK) &&
   718 //             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
   719 //            result = 0x7fc00000;
   720 //        return result;
   721     }
   722 
   723     /**
   724      * Returns a representation of the specified floating-point value
   725      * according to the IEEE 754 floating-point "single format" bit
   726      * layout, preserving Not-a-Number (NaN) values.
   727      *
   728      * <p>Bit 31 (the bit that is selected by the mask
   729      * {@code 0x80000000}) represents the sign of the floating-point
   730      * number.
   731      * Bits 30-23 (the bits that are selected by the mask
   732      * {@code 0x7f800000}) represent the exponent.
   733      * Bits 22-0 (the bits that are selected by the mask
   734      * {@code 0x007fffff}) represent the significand (sometimes called
   735      * the mantissa) of the floating-point number.
   736      *
   737      * <p>If the argument is positive infinity, the result is
   738      * {@code 0x7f800000}.
   739      *
   740      * <p>If the argument is negative infinity, the result is
   741      * {@code 0xff800000}.
   742      *
   743      * <p>If the argument is NaN, the result is the integer representing
   744      * the actual NaN value.  Unlike the {@code floatToIntBits}
   745      * method, {@code floatToRawIntBits} does not collapse all the
   746      * bit patterns encoding a NaN to a single "canonical"
   747      * NaN value.
   748      *
   749      * <p>In all cases, the result is an integer that, when given to the
   750      * {@link #intBitsToFloat(int)} method, will produce a
   751      * floating-point value the same as the argument to
   752      * {@code floatToRawIntBits}.
   753      *
   754      * @param   value   a floating-point number.
   755      * @return the bits that represent the floating-point number.
   756      * @since 1.3
   757      */
   758     public static native int floatToRawIntBits(float value);
   759 
   760     /**
   761      * Returns the {@code float} value corresponding to a given
   762      * bit representation.
   763      * The argument is considered to be a representation of a
   764      * floating-point value according to the IEEE 754 floating-point
   765      * "single format" bit layout.
   766      *
   767      * <p>If the argument is {@code 0x7f800000}, the result is positive
   768      * infinity.
   769      *
   770      * <p>If the argument is {@code 0xff800000}, the result is negative
   771      * infinity.
   772      *
   773      * <p>If the argument is any value in the range
   774      * {@code 0x7f800001} through {@code 0x7fffffff} or in
   775      * the range {@code 0xff800001} through
   776      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
   777      * floating-point operation provided by Java can distinguish
   778      * between two NaN values of the same type with different bit
   779      * patterns.  Distinct values of NaN are only distinguishable by
   780      * use of the {@code Float.floatToRawIntBits} method.
   781      *
   782      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
   783      * values that can be computed from the argument:
   784      *
   785      * <blockquote><pre>
   786      * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
   787      * int e = ((bits &gt;&gt; 23) & 0xff);
   788      * int m = (e == 0) ?
   789      *                 (bits & 0x7fffff) &lt;&lt; 1 :
   790      *                 (bits & 0x7fffff) | 0x800000;
   791      * </pre></blockquote>
   792      *
   793      * Then the floating-point result equals the value of the mathematical
   794      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
   795      *
   796      * <p>Note that this method may not be able to return a
   797      * {@code float} NaN with exactly same bit pattern as the
   798      * {@code int} argument.  IEEE 754 distinguishes between two
   799      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
   800      * differences between the two kinds of NaN are generally not
   801      * visible in Java.  Arithmetic operations on signaling NaNs turn
   802      * them into quiet NaNs with a different, but often similar, bit
   803      * pattern.  However, on some processors merely copying a
   804      * signaling NaN also performs that conversion.  In particular,
   805      * copying a signaling NaN to return it to the calling method may
   806      * perform this conversion.  So {@code intBitsToFloat} may
   807      * not be able to return a {@code float} with a signaling NaN
   808      * bit pattern.  Consequently, for some {@code int} values,
   809      * {@code floatToRawIntBits(intBitsToFloat(start))} may
   810      * <i>not</i> equal {@code start}.  Moreover, which
   811      * particular bit patterns represent signaling NaNs is platform
   812      * dependent; although all NaN bit patterns, quiet or signaling,
   813      * must be in the NaN range identified above.
   814      *
   815      * @param   bits   an integer.
   816      * @return  the {@code float} floating-point value with the same bit
   817      *          pattern.
   818      */
   819     public static native float intBitsToFloat(int bits);
   820 
   821     /**
   822      * Compares two {@code Float} objects numerically.  There are
   823      * two ways in which comparisons performed by this method differ
   824      * from those performed by the Java language numerical comparison
   825      * operators ({@code <, <=, ==, >=, >}) when
   826      * applied to primitive {@code float} values:
   827      *
   828      * <ul><li>
   829      *          {@code Float.NaN} is considered by this method to
   830      *          be equal to itself and greater than all other
   831      *          {@code float} values
   832      *          (including {@code Float.POSITIVE_INFINITY}).
   833      * <li>
   834      *          {@code 0.0f} is considered by this method to be greater
   835      *          than {@code -0.0f}.
   836      * </ul>
   837      *
   838      * This ensures that the <i>natural ordering</i> of {@code Float}
   839      * objects imposed by this method is <i>consistent with equals</i>.
   840      *
   841      * @param   anotherFloat   the {@code Float} to be compared.
   842      * @return  the value {@code 0} if {@code anotherFloat} is
   843      *          numerically equal to this {@code Float}; a value
   844      *          less than {@code 0} if this {@code Float}
   845      *          is numerically less than {@code anotherFloat};
   846      *          and a value greater than {@code 0} if this
   847      *          {@code Float} is numerically greater than
   848      *          {@code anotherFloat}.
   849      *
   850      * @since   1.2
   851      * @see Comparable#compareTo(Object)
   852      */
   853     public int compareTo(Float anotherFloat) {
   854         return Float.compare(value, anotherFloat.value);
   855     }
   856 
   857     /**
   858      * Compares the two specified {@code float} values. The sign
   859      * of the integer value returned is the same as that of the
   860      * integer that would be returned by the call:
   861      * <pre>
   862      *    new Float(f1).compareTo(new Float(f2))
   863      * </pre>
   864      *
   865      * @param   f1        the first {@code float} to compare.
   866      * @param   f2        the second {@code float} to compare.
   867      * @return  the value {@code 0} if {@code f1} is
   868      *          numerically equal to {@code f2}; a value less than
   869      *          {@code 0} if {@code f1} is numerically less than
   870      *          {@code f2}; and a value greater than {@code 0}
   871      *          if {@code f1} is numerically greater than
   872      *          {@code f2}.
   873      * @since 1.4
   874      */
   875     public static int compare(float f1, float f2) {
   876         if (f1 < f2)
   877             return -1;           // Neither val is NaN, thisVal is smaller
   878         if (f1 > f2)
   879             return 1;            // Neither val is NaN, thisVal is larger
   880 
   881         // Cannot use floatToRawIntBits because of possibility of NaNs.
   882         int thisBits    = Float.floatToIntBits(f1);
   883         int anotherBits = Float.floatToIntBits(f2);
   884 
   885         return (thisBits == anotherBits ?  0 : // Values are equal
   886                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
   887                  1));                          // (0.0, -0.0) or (NaN, !NaN)
   888     }
   889 
   890     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   891     private static final long serialVersionUID = -2671257302660747028L;
   892 }