emul/src/main/java/java/lang/StrictMath.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sat, 29 Sep 2012 11:37:46 +0200
branchjdk7-b147
changeset 69 e4d7540b796a
child 84 d65b3a2fbfaf
permissions -rw-r--r--
Adding also strict math
     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 import java.util.Random;
    28 import sun.misc.FpUtils;
    29 import sun.misc.DoubleConsts;
    30 
    31 /**
    32  * The class {@code StrictMath} contains methods for performing basic
    33  * numeric operations such as the elementary exponential, logarithm,
    34  * square root, and trigonometric functions.
    35  *
    36  * <p>To help ensure portability of Java programs, the definitions of
    37  * some of the numeric functions in this package require that they
    38  * produce the same results as certain published algorithms. These
    39  * algorithms are available from the well-known network library
    40  * {@code netlib} as the package "Freely Distributable Math
    41  * Library," <a
    42  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
    43  * algorithms, which are written in the C programming language, are
    44  * then to be understood as executed with all floating-point
    45  * operations following the rules of Java floating-point arithmetic.
    46  *
    47  * <p>The Java math library is defined with respect to
    48  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
    49  * more than one definition for a function (such as
    50  * {@code acos}), use the "IEEE 754 core function" version
    51  * (residing in a file whose name begins with the letter
    52  * {@code e}).  The methods which require {@code fdlibm}
    53  * semantics are {@code sin}, {@code cos}, {@code tan},
    54  * {@code asin}, {@code acos}, {@code atan},
    55  * {@code exp}, {@code log}, {@code log10},
    56  * {@code cbrt}, {@code atan2}, {@code pow},
    57  * {@code sinh}, {@code cosh}, {@code tanh},
    58  * {@code hypot}, {@code expm1}, and {@code log1p}.
    59  *
    60  * @author  unascribed
    61  * @author  Joseph D. Darcy
    62  * @since   1.3
    63  */
    64 
    65 public final class StrictMath {
    66 
    67     /**
    68      * Don't let anyone instantiate this class.
    69      */
    70     private StrictMath() {}
    71 
    72     /**
    73      * The {@code double} value that is closer than any other to
    74      * <i>e</i>, the base of the natural logarithms.
    75      */
    76     public static final double E = 2.7182818284590452354;
    77 
    78     /**
    79      * The {@code double} value that is closer than any other to
    80      * <i>pi</i>, the ratio of the circumference of a circle to its
    81      * diameter.
    82      */
    83     public static final double PI = 3.14159265358979323846;
    84 
    85     /**
    86      * Returns the trigonometric sine of an angle. Special cases:
    87      * <ul><li>If the argument is NaN or an infinity, then the
    88      * result is NaN.
    89      * <li>If the argument is zero, then the result is a zero with the
    90      * same sign as the argument.</ul>
    91      *
    92      * @param   a   an angle, in radians.
    93      * @return  the sine of the argument.
    94      */
    95     public static native double sin(double a);
    96 
    97     /**
    98      * Returns the trigonometric cosine of an angle. Special cases:
    99      * <ul><li>If the argument is NaN or an infinity, then the
   100      * result is NaN.</ul>
   101      *
   102      * @param   a   an angle, in radians.
   103      * @return  the cosine of the argument.
   104      */
   105     public static native double cos(double a);
   106 
   107     /**
   108      * Returns the trigonometric tangent of an angle. Special cases:
   109      * <ul><li>If the argument is NaN or an infinity, then the result
   110      * is NaN.
   111      * <li>If the argument is zero, then the result is a zero with the
   112      * same sign as the argument.</ul>
   113      *
   114      * @param   a   an angle, in radians.
   115      * @return  the tangent of the argument.
   116      */
   117     public static native double tan(double a);
   118 
   119     /**
   120      * Returns the arc sine of a value; the returned angle is in the
   121      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
   122      * <ul><li>If the argument is NaN or its absolute value is greater
   123      * than 1, then the result is NaN.
   124      * <li>If the argument is zero, then the result is a zero with the
   125      * same sign as the argument.</ul>
   126      *
   127      * @param   a   the value whose arc sine is to be returned.
   128      * @return  the arc sine of the argument.
   129      */
   130     public static native double asin(double a);
   131 
   132     /**
   133      * Returns the arc cosine of a value; the returned angle is in the
   134      * range 0.0 through <i>pi</i>.  Special case:
   135      * <ul><li>If the argument is NaN or its absolute value is greater
   136      * than 1, then the result is NaN.</ul>
   137      *
   138      * @param   a   the value whose arc cosine is to be returned.
   139      * @return  the arc cosine of the argument.
   140      */
   141     public static native double acos(double a);
   142 
   143     /**
   144      * Returns the arc tangent of a value; the returned angle is in the
   145      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
   146      * <ul><li>If the argument is NaN, then the result is NaN.
   147      * <li>If the argument is zero, then the result is a zero with the
   148      * same sign as the argument.</ul>
   149      *
   150      * @param   a   the value whose arc tangent is to be returned.
   151      * @return  the arc tangent of the argument.
   152      */
   153     public static native double atan(double a);
   154 
   155     /**
   156      * Converts an angle measured in degrees to an approximately
   157      * equivalent angle measured in radians.  The conversion from
   158      * degrees to radians is generally inexact.
   159      *
   160      * @param   angdeg   an angle, in degrees
   161      * @return  the measurement of the angle {@code angdeg}
   162      *          in radians.
   163      */
   164     public static strictfp double toRadians(double angdeg) {
   165         return angdeg / 180.0 * PI;
   166     }
   167 
   168     /**
   169      * Converts an angle measured in radians to an approximately
   170      * equivalent angle measured in degrees.  The conversion from
   171      * radians to degrees is generally inexact; users should
   172      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
   173      * equal {@code 0.0}.
   174      *
   175      * @param   angrad   an angle, in radians
   176      * @return  the measurement of the angle {@code angrad}
   177      *          in degrees.
   178      */
   179     public static strictfp double toDegrees(double angrad) {
   180         return angrad * 180.0 / PI;
   181     }
   182 
   183     /**
   184      * Returns Euler's number <i>e</i> raised to the power of a
   185      * {@code double} value. Special cases:
   186      * <ul><li>If the argument is NaN, the result is NaN.
   187      * <li>If the argument is positive infinity, then the result is
   188      * positive infinity.
   189      * <li>If the argument is negative infinity, then the result is
   190      * positive zero.</ul>
   191      *
   192      * @param   a   the exponent to raise <i>e</i> to.
   193      * @return  the value <i>e</i><sup>{@code a}</sup>,
   194      *          where <i>e</i> is the base of the natural logarithms.
   195      */
   196     public static native double exp(double a);
   197 
   198     /**
   199      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
   200      * value. Special cases:
   201      * <ul><li>If the argument is NaN or less than zero, then the result
   202      * is NaN.
   203      * <li>If the argument is positive infinity, then the result is
   204      * positive infinity.
   205      * <li>If the argument is positive zero or negative zero, then the
   206      * result is negative infinity.</ul>
   207      *
   208      * @param   a   a value
   209      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
   210      *          {@code a}.
   211      */
   212     public static native double log(double a);
   213 
   214 
   215     /**
   216      * Returns the base 10 logarithm of a {@code double} value.
   217      * Special cases:
   218      *
   219      * <ul><li>If the argument is NaN or less than zero, then the result
   220      * is NaN.
   221      * <li>If the argument is positive infinity, then the result is
   222      * positive infinity.
   223      * <li>If the argument is positive zero or negative zero, then the
   224      * result is negative infinity.
   225      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
   226      * integer <i>n</i>, then the result is <i>n</i>.
   227      * </ul>
   228      *
   229      * @param   a   a value
   230      * @return  the base 10 logarithm of  {@code a}.
   231      * @since 1.5
   232      */
   233     public static native double log10(double a);
   234 
   235     /**
   236      * Returns the correctly rounded positive square root of a
   237      * {@code double} value.
   238      * Special cases:
   239      * <ul><li>If the argument is NaN or less than zero, then the result
   240      * is NaN.
   241      * <li>If the argument is positive infinity, then the result is positive
   242      * infinity.
   243      * <li>If the argument is positive zero or negative zero, then the
   244      * result is the same as the argument.</ul>
   245      * Otherwise, the result is the {@code double} value closest to
   246      * the true mathematical square root of the argument value.
   247      *
   248      * @param   a   a value.
   249      * @return  the positive square root of {@code a}.
   250      */
   251     public static native double sqrt(double a);
   252 
   253     /**
   254      * Returns the cube root of a {@code double} value.  For
   255      * positive finite {@code x}, {@code cbrt(-x) ==
   256      * -cbrt(x)}; that is, the cube root of a negative value is
   257      * the negative of the cube root of that value's magnitude.
   258      * Special cases:
   259      *
   260      * <ul>
   261      *
   262      * <li>If the argument is NaN, then the result is NaN.
   263      *
   264      * <li>If the argument is infinite, then the result is an infinity
   265      * with the same sign as the argument.
   266      *
   267      * <li>If the argument is zero, then the result is a zero with the
   268      * same sign as the argument.
   269      *
   270      * </ul>
   271      *
   272      * @param   a   a value.
   273      * @return  the cube root of {@code a}.
   274      * @since 1.5
   275      */
   276     public static native double cbrt(double a);
   277 
   278     /**
   279      * Computes the remainder operation on two arguments as prescribed
   280      * by the IEEE 754 standard.
   281      * The remainder value is mathematically equal to
   282      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
   283      * where <i>n</i> is the mathematical integer closest to the exact
   284      * mathematical value of the quotient {@code f1/f2}, and if two
   285      * mathematical integers are equally close to {@code f1/f2},
   286      * then <i>n</i> is the integer that is even. If the remainder is
   287      * zero, its sign is the same as the sign of the first argument.
   288      * Special cases:
   289      * <ul><li>If either argument is NaN, or the first argument is infinite,
   290      * or the second argument is positive zero or negative zero, then the
   291      * result is NaN.
   292      * <li>If the first argument is finite and the second argument is
   293      * infinite, then the result is the same as the first argument.</ul>
   294      *
   295      * @param   f1   the dividend.
   296      * @param   f2   the divisor.
   297      * @return  the remainder when {@code f1} is divided by
   298      *          {@code f2}.
   299      */
   300     public static native double IEEEremainder(double f1, double f2);
   301 
   302     /**
   303      * Returns the smallest (closest to negative infinity)
   304      * {@code double} value that is greater than or equal to the
   305      * argument and is equal to a mathematical integer. Special cases:
   306      * <ul><li>If the argument value is already equal to a
   307      * mathematical integer, then the result is the same as the
   308      * argument.  <li>If the argument is NaN or an infinity or
   309      * positive zero or negative zero, then the result is the same as
   310      * the argument.  <li>If the argument value is less than zero but
   311      * greater than -1.0, then the result is negative zero.</ul> Note
   312      * that the value of {@code StrictMath.ceil(x)} is exactly the
   313      * value of {@code -StrictMath.floor(-x)}.
   314      *
   315      * @param   a   a value.
   316      * @return  the smallest (closest to negative infinity)
   317      *          floating-point value that is greater than or equal to
   318      *          the argument and is equal to a mathematical integer.
   319      */
   320     public static double ceil(double a) {
   321         return floorOrCeil(a, -0.0, 1.0, 1.0);
   322     }
   323 
   324     /**
   325      * Returns the largest (closest to positive infinity)
   326      * {@code double} value that is less than or equal to the
   327      * argument and is equal to a mathematical integer. Special cases:
   328      * <ul><li>If the argument value is already equal to a
   329      * mathematical integer, then the result is the same as the
   330      * argument.  <li>If the argument is NaN or an infinity or
   331      * positive zero or negative zero, then the result is the same as
   332      * the argument.</ul>
   333      *
   334      * @param   a   a value.
   335      * @return  the largest (closest to positive infinity)
   336      *          floating-point value that less than or equal to the argument
   337      *          and is equal to a mathematical integer.
   338      */
   339     public static double floor(double a) {
   340         return floorOrCeil(a, -1.0, 0.0, -1.0);
   341     }
   342 
   343     /**
   344      * Internal method to share logic between floor and ceil.
   345      *
   346      * @param a the value to be floored or ceiled
   347      * @param negativeBoundary result for values in (-1, 0)
   348      * @param positiveBoundary result for values in (0, 1)
   349      * @param increment value to add when the argument is non-integral
   350      */
   351     private static double floorOrCeil(double a,
   352                                       double negativeBoundary,
   353                                       double positiveBoundary,
   354                                       double sign) {
   355         int exponent = Math.getExponent(a);
   356 
   357         if (exponent < 0) {
   358             /*
   359              * Absolute value of argument is less than 1.
   360              * floorOrceil(-0.0) => -0.0
   361              * floorOrceil(+0.0) => +0.0
   362              */
   363             return ((a == 0.0) ? a :
   364                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
   365         } else if (exponent >= 52) {
   366             /*
   367              * Infinity, NaN, or a value so large it must be integral.
   368              */
   369             return a;
   370         }
   371         // Else the argument is either an integral value already XOR it
   372         // has to be rounded to one.
   373         assert exponent >= 0 && exponent <= 51;
   374 
   375         long doppel = Double.doubleToRawLongBits(a);
   376         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
   377 
   378         if ( (mask & doppel) == 0L )
   379             return a; // integral value
   380         else {
   381             double result = Double.longBitsToDouble(doppel & (~mask));
   382             if (sign*a > 0.0)
   383                 result = result + sign;
   384             return result;
   385         }
   386     }
   387 
   388     /**
   389      * Returns the {@code double} value that is closest in value
   390      * to the argument and is equal to a mathematical integer. If two
   391      * {@code double} values that are mathematical integers are
   392      * equally close to the value of the argument, the result is the
   393      * integer value that is even. Special cases:
   394      * <ul><li>If the argument value is already equal to a mathematical
   395      * integer, then the result is the same as the argument.
   396      * <li>If the argument is NaN or an infinity or positive zero or negative
   397      * zero, then the result is the same as the argument.</ul>
   398      *
   399      * @param   a   a value.
   400      * @return  the closest floating-point value to {@code a} that is
   401      *          equal to a mathematical integer.
   402      * @author Joseph D. Darcy
   403      */
   404     public static double rint(double a) {
   405         /*
   406          * If the absolute value of a is not less than 2^52, it
   407          * is either a finite integer (the double format does not have
   408          * enough significand bits for a number that large to have any
   409          * fractional portion), an infinity, or a NaN.  In any of
   410          * these cases, rint of the argument is the argument.
   411          *
   412          * Otherwise, the sum (twoToThe52 + a ) will properly round
   413          * away any fractional portion of a since ulp(twoToThe52) ==
   414          * 1.0; subtracting out twoToThe52 from this sum will then be
   415          * exact and leave the rounded integer portion of a.
   416          *
   417          * This method does *not* need to be declared strictfp to get
   418          * fully reproducible results.  Whether or not a method is
   419          * declared strictfp can only make a difference in the
   420          * returned result if some operation would overflow or
   421          * underflow with strictfp semantics.  The operation
   422          * (twoToThe52 + a ) cannot overflow since large values of a
   423          * are screened out; the add cannot underflow since twoToThe52
   424          * is too large.  The subtraction ((twoToThe52 + a ) -
   425          * twoToThe52) will be exact as discussed above and thus
   426          * cannot overflow or meaningfully underflow.  Finally, the
   427          * last multiply in the return statement is by plus or minus
   428          * 1.0, which is exact too.
   429          */
   430         double twoToThe52 = (double)(1L << 52); // 2^52
   431         double sign = FpUtils.rawCopySign(1.0, a); // preserve sign info
   432         a = Math.abs(a);
   433 
   434         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
   435             a = ((twoToThe52 + a ) - twoToThe52);
   436         }
   437 
   438         return sign * a; // restore original sign
   439     }
   440 
   441     /**
   442      * Returns the angle <i>theta</i> from the conversion of rectangular
   443      * coordinates ({@code x},&nbsp;{@code y}) to polar
   444      * coordinates (r,&nbsp;<i>theta</i>).
   445      * This method computes the phase <i>theta</i> by computing an arc tangent
   446      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
   447      * cases:
   448      * <ul><li>If either argument is NaN, then the result is NaN.
   449      * <li>If the first argument is positive zero and the second argument
   450      * is positive, or the first argument is positive and finite and the
   451      * second argument is positive infinity, then the result is positive
   452      * zero.
   453      * <li>If the first argument is negative zero and the second argument
   454      * is positive, or the first argument is negative and finite and the
   455      * second argument is positive infinity, then the result is negative zero.
   456      * <li>If the first argument is positive zero and the second argument
   457      * is negative, or the first argument is positive and finite and the
   458      * second argument is negative infinity, then the result is the
   459      * {@code double} value closest to <i>pi</i>.
   460      * <li>If the first argument is negative zero and the second argument
   461      * is negative, or the first argument is negative and finite and the
   462      * second argument is negative infinity, then the result is the
   463      * {@code double} value closest to -<i>pi</i>.
   464      * <li>If the first argument is positive and the second argument is
   465      * positive zero or negative zero, or the first argument is positive
   466      * infinity and the second argument is finite, then the result is the
   467      * {@code double} value closest to <i>pi</i>/2.
   468      * <li>If the first argument is negative and the second argument is
   469      * positive zero or negative zero, or the first argument is negative
   470      * infinity and the second argument is finite, then the result is the
   471      * {@code double} value closest to -<i>pi</i>/2.
   472      * <li>If both arguments are positive infinity, then the result is the
   473      * {@code double} value closest to <i>pi</i>/4.
   474      * <li>If the first argument is positive infinity and the second argument
   475      * is negative infinity, then the result is the {@code double}
   476      * value closest to 3*<i>pi</i>/4.
   477      * <li>If the first argument is negative infinity and the second argument
   478      * is positive infinity, then the result is the {@code double} value
   479      * closest to -<i>pi</i>/4.
   480      * <li>If both arguments are negative infinity, then the result is the
   481      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
   482      *
   483      * @param   y   the ordinate coordinate
   484      * @param   x   the abscissa coordinate
   485      * @return  the <i>theta</i> component of the point
   486      *          (<i>r</i>,&nbsp;<i>theta</i>)
   487      *          in polar coordinates that corresponds to the point
   488      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
   489      */
   490     public static native double atan2(double y, double x);
   491 
   492 
   493     /**
   494      * Returns the value of the first argument raised to the power of the
   495      * second argument. Special cases:
   496      *
   497      * <ul><li>If the second argument is positive or negative zero, then the
   498      * result is 1.0.
   499      * <li>If the second argument is 1.0, then the result is the same as the
   500      * first argument.
   501      * <li>If the second argument is NaN, then the result is NaN.
   502      * <li>If the first argument is NaN and the second argument is nonzero,
   503      * then the result is NaN.
   504      *
   505      * <li>If
   506      * <ul>
   507      * <li>the absolute value of the first argument is greater than 1
   508      * and the second argument is positive infinity, or
   509      * <li>the absolute value of the first argument is less than 1 and
   510      * the second argument is negative infinity,
   511      * </ul>
   512      * then the result is positive infinity.
   513      *
   514      * <li>If
   515      * <ul>
   516      * <li>the absolute value of the first argument is greater than 1 and
   517      * the second argument is negative infinity, or
   518      * <li>the absolute value of the
   519      * first argument is less than 1 and the second argument is positive
   520      * infinity,
   521      * </ul>
   522      * then the result is positive zero.
   523      *
   524      * <li>If the absolute value of the first argument equals 1 and the
   525      * second argument is infinite, then the result is NaN.
   526      *
   527      * <li>If
   528      * <ul>
   529      * <li>the first argument is positive zero and the second argument
   530      * is greater than zero, or
   531      * <li>the first argument is positive infinity and the second
   532      * argument is less than zero,
   533      * </ul>
   534      * then the result is positive zero.
   535      *
   536      * <li>If
   537      * <ul>
   538      * <li>the first argument is positive zero and the second argument
   539      * is less than zero, or
   540      * <li>the first argument is positive infinity and the second
   541      * argument is greater than zero,
   542      * </ul>
   543      * then the result is positive infinity.
   544      *
   545      * <li>If
   546      * <ul>
   547      * <li>the first argument is negative zero and the second argument
   548      * is greater than zero but not a finite odd integer, or
   549      * <li>the first argument is negative infinity and the second
   550      * argument is less than zero but not a finite odd integer,
   551      * </ul>
   552      * then the result is positive zero.
   553      *
   554      * <li>If
   555      * <ul>
   556      * <li>the first argument is negative zero and the second argument
   557      * is a positive finite odd integer, or
   558      * <li>the first argument is negative infinity and the second
   559      * argument is a negative finite odd integer,
   560      * </ul>
   561      * then the result is negative zero.
   562      *
   563      * <li>If
   564      * <ul>
   565      * <li>the first argument is negative zero and the second argument
   566      * is less than zero but not a finite odd integer, or
   567      * <li>the first argument is negative infinity and the second
   568      * argument is greater than zero but not a finite odd integer,
   569      * </ul>
   570      * then the result is positive infinity.
   571      *
   572      * <li>If
   573      * <ul>
   574      * <li>the first argument is negative zero and the second argument
   575      * is a negative finite odd integer, or
   576      * <li>the first argument is negative infinity and the second
   577      * argument is a positive finite odd integer,
   578      * </ul>
   579      * then the result is negative infinity.
   580      *
   581      * <li>If the first argument is finite and less than zero
   582      * <ul>
   583      * <li> if the second argument is a finite even integer, the
   584      * result is equal to the result of raising the absolute value of
   585      * the first argument to the power of the second argument
   586      *
   587      * <li>if the second argument is a finite odd integer, the result
   588      * is equal to the negative of the result of raising the absolute
   589      * value of the first argument to the power of the second
   590      * argument
   591      *
   592      * <li>if the second argument is finite and not an integer, then
   593      * the result is NaN.
   594      * </ul>
   595      *
   596      * <li>If both arguments are integers, then the result is exactly equal
   597      * to the mathematical result of raising the first argument to the power
   598      * of the second argument if that result can in fact be represented
   599      * exactly as a {@code double} value.</ul>
   600      *
   601      * <p>(In the foregoing descriptions, a floating-point value is
   602      * considered to be an integer if and only if it is finite and a
   603      * fixed point of the method {@link #ceil ceil} or,
   604      * equivalently, a fixed point of the method {@link #floor
   605      * floor}. A value is a fixed point of a one-argument
   606      * method if and only if the result of applying the method to the
   607      * value is equal to the value.)
   608      *
   609      * @param   a   base.
   610      * @param   b   the exponent.
   611      * @return  the value {@code a}<sup>{@code b}</sup>.
   612      */
   613     public static native double pow(double a, double b);
   614 
   615     /**
   616      * Returns the closest {@code int} to the argument, with ties
   617      * rounding up.
   618      *
   619      * <p>Special cases:
   620      * <ul><li>If the argument is NaN, the result is 0.
   621      * <li>If the argument is negative infinity or any value less than or
   622      * equal to the value of {@code Integer.MIN_VALUE}, the result is
   623      * equal to the value of {@code Integer.MIN_VALUE}.
   624      * <li>If the argument is positive infinity or any value greater than or
   625      * equal to the value of {@code Integer.MAX_VALUE}, the result is
   626      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
   627      *
   628      * @param   a   a floating-point value to be rounded to an integer.
   629      * @return  the value of the argument rounded to the nearest
   630      *          {@code int} value.
   631      * @see     java.lang.Integer#MAX_VALUE
   632      * @see     java.lang.Integer#MIN_VALUE
   633      */
   634     public static int round(float a) {
   635         return Math.round(a);
   636     }
   637 
   638     /**
   639      * Returns the closest {@code long} to the argument, with ties
   640      * rounding up.
   641      *
   642      * <p>Special cases:
   643      * <ul><li>If the argument is NaN, the result is 0.
   644      * <li>If the argument is negative infinity or any value less than or
   645      * equal to the value of {@code Long.MIN_VALUE}, the result is
   646      * equal to the value of {@code Long.MIN_VALUE}.
   647      * <li>If the argument is positive infinity or any value greater than or
   648      * equal to the value of {@code Long.MAX_VALUE}, the result is
   649      * equal to the value of {@code Long.MAX_VALUE}.</ul>
   650      *
   651      * @param   a  a floating-point value to be rounded to a
   652      *          {@code long}.
   653      * @return  the value of the argument rounded to the nearest
   654      *          {@code long} value.
   655      * @see     java.lang.Long#MAX_VALUE
   656      * @see     java.lang.Long#MIN_VALUE
   657      */
   658     public static long round(double a) {
   659         return Math.round(a);
   660     }
   661 
   662     private static Random randomNumberGenerator;
   663 
   664     private static synchronized Random initRNG() {
   665         Random rnd = randomNumberGenerator;
   666         return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd;
   667     }
   668 
   669     /**
   670      * Returns a {@code double} value with a positive sign, greater
   671      * than or equal to {@code 0.0} and less than {@code 1.0}.
   672      * Returned values are chosen pseudorandomly with (approximately)
   673      * uniform distribution from that range.
   674      *
   675      * <p>When this method is first called, it creates a single new
   676      * pseudorandom-number generator, exactly as if by the expression
   677      *
   678      * <blockquote>{@code new java.util.Random()}</blockquote>
   679      *
   680      * This new pseudorandom-number generator is used thereafter for
   681      * all calls to this method and is used nowhere else.
   682      *
   683      * <p>This method is properly synchronized to allow correct use by
   684      * more than one thread. However, if many threads need to generate
   685      * pseudorandom numbers at a great rate, it may reduce contention
   686      * for each thread to have its own pseudorandom number generator.
   687      *
   688      * @return  a pseudorandom {@code double} greater than or equal
   689      * to {@code 0.0} and less than {@code 1.0}.
   690      * @see Random#nextDouble()
   691      */
   692     public static double random() {
   693         Random rnd = randomNumberGenerator;
   694         if (rnd == null) rnd = initRNG();
   695         return rnd.nextDouble();
   696     }
   697 
   698     /**
   699      * Returns the absolute value of an {@code int} value..
   700      * If the argument is not negative, the argument is returned.
   701      * If the argument is negative, the negation of the argument is returned.
   702      *
   703      * <p>Note that if the argument is equal to the value of
   704      * {@link Integer#MIN_VALUE}, the most negative representable
   705      * {@code int} value, the result is that same value, which is
   706      * negative.
   707      *
   708      * @param   a   the  argument whose absolute value is to be determined.
   709      * @return  the absolute value of the argument.
   710      */
   711     public static int abs(int a) {
   712         return (a < 0) ? -a : a;
   713     }
   714 
   715     /**
   716      * Returns the absolute value of a {@code long} value.
   717      * If the argument is not negative, the argument is returned.
   718      * If the argument is negative, the negation of the argument is returned.
   719      *
   720      * <p>Note that if the argument is equal to the value of
   721      * {@link Long#MIN_VALUE}, the most negative representable
   722      * {@code long} value, the result is that same value, which
   723      * is negative.
   724      *
   725      * @param   a   the  argument whose absolute value is to be determined.
   726      * @return  the absolute value of the argument.
   727      */
   728     public static long abs(long a) {
   729         return (a < 0) ? -a : a;
   730     }
   731 
   732     /**
   733      * Returns the absolute value of a {@code float} value.
   734      * If the argument is not negative, the argument is returned.
   735      * If the argument is negative, the negation of the argument is returned.
   736      * Special cases:
   737      * <ul><li>If the argument is positive zero or negative zero, the
   738      * result is positive zero.
   739      * <li>If the argument is infinite, the result is positive infinity.
   740      * <li>If the argument is NaN, the result is NaN.</ul>
   741      * In other words, the result is the same as the value of the expression:
   742      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
   743      *
   744      * @param   a   the argument whose absolute value is to be determined
   745      * @return  the absolute value of the argument.
   746      */
   747     public static float abs(float a) {
   748         return (a <= 0.0F) ? 0.0F - a : a;
   749     }
   750 
   751     /**
   752      * Returns the absolute value of a {@code double} value.
   753      * If the argument is not negative, the argument is returned.
   754      * If the argument is negative, the negation of the argument is returned.
   755      * Special cases:
   756      * <ul><li>If the argument is positive zero or negative zero, the result
   757      * is positive zero.
   758      * <li>If the argument is infinite, the result is positive infinity.
   759      * <li>If the argument is NaN, the result is NaN.</ul>
   760      * In other words, the result is the same as the value of the expression:
   761      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
   762      *
   763      * @param   a   the argument whose absolute value is to be determined
   764      * @return  the absolute value of the argument.
   765      */
   766     public static double abs(double a) {
   767         return (a <= 0.0D) ? 0.0D - a : a;
   768     }
   769 
   770     /**
   771      * Returns the greater of two {@code int} values. That is, the
   772      * result is the argument closer to the value of
   773      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
   774      * the result is that same value.
   775      *
   776      * @param   a   an argument.
   777      * @param   b   another argument.
   778      * @return  the larger of {@code a} and {@code b}.
   779      */
   780     public static int max(int a, int b) {
   781         return (a >= b) ? a : b;
   782     }
   783 
   784     /**
   785      * Returns the greater of two {@code long} values. That is, the
   786      * result is the argument closer to the value of
   787      * {@link Long#MAX_VALUE}. If the arguments have the same value,
   788      * the result is that same value.
   789      *
   790      * @param   a   an argument.
   791      * @param   b   another argument.
   792      * @return  the larger of {@code a} and {@code b}.
   793         */
   794     public static long max(long a, long b) {
   795         return (a >= b) ? a : b;
   796     }
   797 
   798     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
   799     private static long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
   800     private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
   801 
   802     /**
   803      * Returns the greater of two {@code float} values.  That is,
   804      * the result is the argument closer to positive infinity. If the
   805      * arguments have the same value, the result is that same
   806      * value. If either value is NaN, then the result is NaN.  Unlike
   807      * the numerical comparison operators, this method considers
   808      * negative zero to be strictly smaller than positive zero. If one
   809      * argument is positive zero and the other negative zero, the
   810      * result is positive zero.
   811      *
   812      * @param   a   an argument.
   813      * @param   b   another argument.
   814      * @return  the larger of {@code a} and {@code b}.
   815      */
   816     public static float max(float a, float b) {
   817         if (a != a)
   818             return a;   // a is NaN
   819         if ((a == 0.0f) &&
   820             (b == 0.0f) &&
   821             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
   822             // Raw conversion ok since NaN can't map to -0.0.
   823             return b;
   824         }
   825         return (a >= b) ? a : b;
   826     }
   827 
   828     /**
   829      * Returns the greater of two {@code double} values.  That
   830      * is, the result is the argument closer to positive infinity. If
   831      * the arguments have the same value, the result is that same
   832      * value. If either value is NaN, then the result is NaN.  Unlike
   833      * the numerical comparison operators, this method considers
   834      * negative zero to be strictly smaller than positive zero. If one
   835      * argument is positive zero and the other negative zero, the
   836      * result is positive zero.
   837      *
   838      * @param   a   an argument.
   839      * @param   b   another argument.
   840      * @return  the larger of {@code a} and {@code b}.
   841      */
   842     public static double max(double a, double b) {
   843         if (a != a)
   844             return a;   // a is NaN
   845         if ((a == 0.0d) &&
   846             (b == 0.0d) &&
   847             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
   848             // Raw conversion ok since NaN can't map to -0.0.
   849             return b;
   850         }
   851         return (a >= b) ? a : b;
   852     }
   853 
   854     /**
   855      * Returns the smaller of two {@code int} values. That is,
   856      * the result the argument closer to the value of
   857      * {@link Integer#MIN_VALUE}.  If the arguments have the same
   858      * value, the result is that same value.
   859      *
   860      * @param   a   an argument.
   861      * @param   b   another argument.
   862      * @return  the smaller of {@code a} and {@code b}.
   863      */
   864     public static int min(int a, int b) {
   865         return (a <= b) ? a : b;
   866     }
   867 
   868     /**
   869      * Returns the smaller of two {@code long} values. That is,
   870      * the result is the argument closer to the value of
   871      * {@link Long#MIN_VALUE}. If the arguments have the same
   872      * value, the result is that same value.
   873      *
   874      * @param   a   an argument.
   875      * @param   b   another argument.
   876      * @return  the smaller of {@code a} and {@code b}.
   877      */
   878     public static long min(long a, long b) {
   879         return (a <= b) ? a : b;
   880     }
   881 
   882     /**
   883      * Returns the smaller of two {@code float} values.  That is,
   884      * the result is the value closer to negative infinity. If the
   885      * arguments have the same value, the result is that same
   886      * value. If either value is NaN, then the result is NaN.  Unlike
   887      * the numerical comparison operators, this method considers
   888      * negative zero to be strictly smaller than positive zero.  If
   889      * one argument is positive zero and the other is negative zero,
   890      * the result is negative zero.
   891      *
   892      * @param   a   an argument.
   893      * @param   b   another argument.
   894      * @return  the smaller of {@code a} and {@code b.}
   895      */
   896     public static float min(float a, float b) {
   897         if (a != a)
   898             return a;   // a is NaN
   899         if ((a == 0.0f) &&
   900             (b == 0.0f) &&
   901             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
   902             // Raw conversion ok since NaN can't map to -0.0.
   903             return b;
   904         }
   905         return (a <= b) ? a : b;
   906     }
   907 
   908     /**
   909      * Returns the smaller of two {@code double} values.  That
   910      * is, the result is the value closer to negative infinity. If the
   911      * arguments have the same value, the result is that same
   912      * value. If either value is NaN, then the result is NaN.  Unlike
   913      * the numerical comparison operators, this method considers
   914      * negative zero to be strictly smaller than positive zero. If one
   915      * argument is positive zero and the other is negative zero, the
   916      * result is negative zero.
   917      *
   918      * @param   a   an argument.
   919      * @param   b   another argument.
   920      * @return  the smaller of {@code a} and {@code b}.
   921      */
   922     public static double min(double a, double b) {
   923         if (a != a)
   924             return a;   // a is NaN
   925         if ((a == 0.0d) &&
   926             (b == 0.0d) &&
   927             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
   928             // Raw conversion ok since NaN can't map to -0.0.
   929             return b;
   930         }
   931         return (a <= b) ? a : b;
   932     }
   933 
   934     /**
   935      * Returns the size of an ulp of the argument.  An ulp of a
   936      * {@code double} value is the positive distance between this
   937      * floating-point value and the {@code double} value next
   938      * larger in magnitude.  Note that for non-NaN <i>x</i>,
   939      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
   940      *
   941      * <p>Special Cases:
   942      * <ul>
   943      * <li> If the argument is NaN, then the result is NaN.
   944      * <li> If the argument is positive or negative infinity, then the
   945      * result is positive infinity.
   946      * <li> If the argument is positive or negative zero, then the result is
   947      * {@code Double.MIN_VALUE}.
   948      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
   949      * the result is equal to 2<sup>971</sup>.
   950      * </ul>
   951      *
   952      * @param d the floating-point value whose ulp is to be returned
   953      * @return the size of an ulp of the argument
   954      * @author Joseph D. Darcy
   955      * @since 1.5
   956      */
   957     public static double ulp(double d) {
   958         return sun.misc.FpUtils.ulp(d);
   959     }
   960 
   961     /**
   962      * Returns the size of an ulp of the argument.  An ulp of a
   963      * {@code float} value is the positive distance between this
   964      * floating-point value and the {@code float} value next
   965      * larger in magnitude.  Note that for non-NaN <i>x</i>,
   966      * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
   967      *
   968      * <p>Special Cases:
   969      * <ul>
   970      * <li> If the argument is NaN, then the result is NaN.
   971      * <li> If the argument is positive or negative infinity, then the
   972      * result is positive infinity.
   973      * <li> If the argument is positive or negative zero, then the result is
   974      * {@code Float.MIN_VALUE}.
   975      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
   976      * the result is equal to 2<sup>104</sup>.
   977      * </ul>
   978      *
   979      * @param f the floating-point value whose ulp is to be returned
   980      * @return the size of an ulp of the argument
   981      * @author Joseph D. Darcy
   982      * @since 1.5
   983      */
   984     public static float ulp(float f) {
   985         return sun.misc.FpUtils.ulp(f);
   986     }
   987 
   988     /**
   989      * Returns the signum function of the argument; zero if the argument
   990      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
   991      * argument is less than zero.
   992      *
   993      * <p>Special Cases:
   994      * <ul>
   995      * <li> If the argument is NaN, then the result is NaN.
   996      * <li> If the argument is positive zero or negative zero, then the
   997      *      result is the same as the argument.
   998      * </ul>
   999      *
  1000      * @param d the floating-point value whose signum is to be returned
  1001      * @return the signum function of the argument
  1002      * @author Joseph D. Darcy
  1003      * @since 1.5
  1004      */
  1005     public static double signum(double d) {
  1006         return sun.misc.FpUtils.signum(d);
  1007     }
  1008 
  1009     /**
  1010      * Returns the signum function of the argument; zero if the argument
  1011      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
  1012      * argument is less than zero.
  1013      *
  1014      * <p>Special Cases:
  1015      * <ul>
  1016      * <li> If the argument is NaN, then the result is NaN.
  1017      * <li> If the argument is positive zero or negative zero, then the
  1018      *      result is the same as the argument.
  1019      * </ul>
  1020      *
  1021      * @param f the floating-point value whose signum is to be returned
  1022      * @return the signum function of the argument
  1023      * @author Joseph D. Darcy
  1024      * @since 1.5
  1025      */
  1026     public static float signum(float f) {
  1027         return sun.misc.FpUtils.signum(f);
  1028     }
  1029 
  1030     /**
  1031      * Returns the hyperbolic sine of a {@code double} value.
  1032      * The hyperbolic sine of <i>x</i> is defined to be
  1033      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
  1034      * where <i>e</i> is {@linkplain Math#E Euler's number}.
  1035      *
  1036      * <p>Special cases:
  1037      * <ul>
  1038      *
  1039      * <li>If the argument is NaN, then the result is NaN.
  1040      *
  1041      * <li>If the argument is infinite, then the result is an infinity
  1042      * with the same sign as the argument.
  1043      *
  1044      * <li>If the argument is zero, then the result is a zero with the
  1045      * same sign as the argument.
  1046      *
  1047      * </ul>
  1048      *
  1049      * @param   x The number whose hyperbolic sine is to be returned.
  1050      * @return  The hyperbolic sine of {@code x}.
  1051      * @since 1.5
  1052      */
  1053     public static native double sinh(double x);
  1054 
  1055     /**
  1056      * Returns the hyperbolic cosine of a {@code double} value.
  1057      * The hyperbolic cosine of <i>x</i> is defined to be
  1058      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
  1059      * where <i>e</i> is {@linkplain Math#E Euler's number}.
  1060      *
  1061      * <p>Special cases:
  1062      * <ul>
  1063      *
  1064      * <li>If the argument is NaN, then the result is NaN.
  1065      *
  1066      * <li>If the argument is infinite, then the result is positive
  1067      * infinity.
  1068      *
  1069      * <li>If the argument is zero, then the result is {@code 1.0}.
  1070      *
  1071      * </ul>
  1072      *
  1073      * @param   x The number whose hyperbolic cosine is to be returned.
  1074      * @return  The hyperbolic cosine of {@code x}.
  1075      * @since 1.5
  1076      */
  1077     public static native double cosh(double x);
  1078 
  1079     /**
  1080      * Returns the hyperbolic tangent of a {@code double} value.
  1081      * The hyperbolic tangent of <i>x</i> is defined to be
  1082      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
  1083      * in other words, {@linkplain Math#sinh
  1084      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
  1085      * that the absolute value of the exact tanh is always less than
  1086      * 1.
  1087      *
  1088      * <p>Special cases:
  1089      * <ul>
  1090      *
  1091      * <li>If the argument is NaN, then the result is NaN.
  1092      *
  1093      * <li>If the argument is zero, then the result is a zero with the
  1094      * same sign as the argument.
  1095      *
  1096      * <li>If the argument is positive infinity, then the result is
  1097      * {@code +1.0}.
  1098      *
  1099      * <li>If the argument is negative infinity, then the result is
  1100      * {@code -1.0}.
  1101      *
  1102      * </ul>
  1103      *
  1104      * @param   x The number whose hyperbolic tangent is to be returned.
  1105      * @return  The hyperbolic tangent of {@code x}.
  1106      * @since 1.5
  1107      */
  1108     public static native double tanh(double x);
  1109 
  1110     /**
  1111      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
  1112      * without intermediate overflow or underflow.
  1113      *
  1114      * <p>Special cases:
  1115      * <ul>
  1116      *
  1117      * <li> If either argument is infinite, then the result
  1118      * is positive infinity.
  1119      *
  1120      * <li> If either argument is NaN and neither argument is infinite,
  1121      * then the result is NaN.
  1122      *
  1123      * </ul>
  1124      *
  1125      * @param x a value
  1126      * @param y a value
  1127      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
  1128      * without intermediate overflow or underflow
  1129      * @since 1.5
  1130      */
  1131     public static native double hypot(double x, double y);
  1132 
  1133     /**
  1134      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
  1135      * <i>x</i> near 0, the exact sum of
  1136      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
  1137      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
  1138      *
  1139      * <p>Special cases:
  1140      * <ul>
  1141      * <li>If the argument is NaN, the result is NaN.
  1142      *
  1143      * <li>If the argument is positive infinity, then the result is
  1144      * positive infinity.
  1145      *
  1146      * <li>If the argument is negative infinity, then the result is
  1147      * -1.0.
  1148      *
  1149      * <li>If the argument is zero, then the result is a zero with the
  1150      * same sign as the argument.
  1151      *
  1152      * </ul>
  1153      *
  1154      * @param   x   the exponent to raise <i>e</i> to in the computation of
  1155      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
  1156      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
  1157      * @since 1.5
  1158      */
  1159     public static native double expm1(double x);
  1160 
  1161     /**
  1162      * Returns the natural logarithm of the sum of the argument and 1.
  1163      * Note that for small values {@code x}, the result of
  1164      * {@code log1p(x)} is much closer to the true result of ln(1
  1165      * + {@code x}) than the floating-point evaluation of
  1166      * {@code log(1.0+x)}.
  1167      *
  1168      * <p>Special cases:
  1169      * <ul>
  1170      *
  1171      * <li>If the argument is NaN or less than -1, then the result is
  1172      * NaN.
  1173      *
  1174      * <li>If the argument is positive infinity, then the result is
  1175      * positive infinity.
  1176      *
  1177      * <li>If the argument is negative one, then the result is
  1178      * negative infinity.
  1179      *
  1180      * <li>If the argument is zero, then the result is a zero with the
  1181      * same sign as the argument.
  1182      *
  1183      * </ul>
  1184      *
  1185      * @param   x   a value
  1186      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
  1187      * log of {@code x}&nbsp;+&nbsp;1
  1188      * @since 1.5
  1189      */
  1190     public static native double log1p(double x);
  1191 
  1192     /**
  1193      * Returns the first floating-point argument with the sign of the
  1194      * second floating-point argument.  For this method, a NaN
  1195      * {@code sign} argument is always treated as if it were
  1196      * positive.
  1197      *
  1198      * @param magnitude  the parameter providing the magnitude of the result
  1199      * @param sign   the parameter providing the sign of the result
  1200      * @return a value with the magnitude of {@code magnitude}
  1201      * and the sign of {@code sign}.
  1202      * @since 1.6
  1203      */
  1204     public static double copySign(double magnitude, double sign) {
  1205         return sun.misc.FpUtils.copySign(magnitude, sign);
  1206     }
  1207 
  1208     /**
  1209      * Returns the first floating-point argument with the sign of the
  1210      * second floating-point argument.  For this method, a NaN
  1211      * {@code sign} argument is always treated as if it were
  1212      * positive.
  1213      *
  1214      * @param magnitude  the parameter providing the magnitude of the result
  1215      * @param sign   the parameter providing the sign of the result
  1216      * @return a value with the magnitude of {@code magnitude}
  1217      * and the sign of {@code sign}.
  1218      * @since 1.6
  1219      */
  1220     public static float copySign(float magnitude, float sign) {
  1221         return sun.misc.FpUtils.copySign(magnitude, sign);
  1222     }
  1223     /**
  1224      * Returns the unbiased exponent used in the representation of a
  1225      * {@code float}.  Special cases:
  1226      *
  1227      * <ul>
  1228      * <li>If the argument is NaN or infinite, then the result is
  1229      * {@link Float#MAX_EXPONENT} + 1.
  1230      * <li>If the argument is zero or subnormal, then the result is
  1231      * {@link Float#MIN_EXPONENT} -1.
  1232      * </ul>
  1233      * @param f a {@code float} value
  1234      * @since 1.6
  1235      */
  1236     public static int getExponent(float f) {
  1237         return sun.misc.FpUtils.getExponent(f);
  1238     }
  1239 
  1240     /**
  1241      * Returns the unbiased exponent used in the representation of a
  1242      * {@code double}.  Special cases:
  1243      *
  1244      * <ul>
  1245      * <li>If the argument is NaN or infinite, then the result is
  1246      * {@link Double#MAX_EXPONENT} + 1.
  1247      * <li>If the argument is zero or subnormal, then the result is
  1248      * {@link Double#MIN_EXPONENT} -1.
  1249      * </ul>
  1250      * @param d a {@code double} value
  1251      * @since 1.6
  1252      */
  1253     public static int getExponent(double d) {
  1254         return sun.misc.FpUtils.getExponent(d);
  1255     }
  1256 
  1257     /**
  1258      * Returns the floating-point number adjacent to the first
  1259      * argument in the direction of the second argument.  If both
  1260      * arguments compare as equal the second argument is returned.
  1261      *
  1262      * <p>Special cases:
  1263      * <ul>
  1264      * <li> If either argument is a NaN, then NaN is returned.
  1265      *
  1266      * <li> If both arguments are signed zeros, {@code direction}
  1267      * is returned unchanged (as implied by the requirement of
  1268      * returning the second argument if the arguments compare as
  1269      * equal).
  1270      *
  1271      * <li> If {@code start} is
  1272      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
  1273      * has a value such that the result should have a smaller
  1274      * magnitude, then a zero with the same sign as {@code start}
  1275      * is returned.
  1276      *
  1277      * <li> If {@code start} is infinite and
  1278      * {@code direction} has a value such that the result should
  1279      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
  1280      * same sign as {@code start} is returned.
  1281      *
  1282      * <li> If {@code start} is equal to &plusmn;
  1283      * {@link Double#MAX_VALUE} and {@code direction} has a
  1284      * value such that the result should have a larger magnitude, an
  1285      * infinity with same sign as {@code start} is returned.
  1286      * </ul>
  1287      *
  1288      * @param start  starting floating-point value
  1289      * @param direction value indicating which of
  1290      * {@code start}'s neighbors or {@code start} should
  1291      * be returned
  1292      * @return The floating-point number adjacent to {@code start} in the
  1293      * direction of {@code direction}.
  1294      * @since 1.6
  1295      */
  1296     public static double nextAfter(double start, double direction) {
  1297         return sun.misc.FpUtils.nextAfter(start, direction);
  1298     }
  1299 
  1300     /**
  1301      * Returns the floating-point number adjacent to the first
  1302      * argument in the direction of the second argument.  If both
  1303      * arguments compare as equal a value equivalent to the second argument
  1304      * is returned.
  1305      *
  1306      * <p>Special cases:
  1307      * <ul>
  1308      * <li> If either argument is a NaN, then NaN is returned.
  1309      *
  1310      * <li> If both arguments are signed zeros, a value equivalent
  1311      * to {@code direction} is returned.
  1312      *
  1313      * <li> If {@code start} is
  1314      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
  1315      * has a value such that the result should have a smaller
  1316      * magnitude, then a zero with the same sign as {@code start}
  1317      * is returned.
  1318      *
  1319      * <li> If {@code start} is infinite and
  1320      * {@code direction} has a value such that the result should
  1321      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
  1322      * same sign as {@code start} is returned.
  1323      *
  1324      * <li> If {@code start} is equal to &plusmn;
  1325      * {@link Float#MAX_VALUE} and {@code direction} has a
  1326      * value such that the result should have a larger magnitude, an
  1327      * infinity with same sign as {@code start} is returned.
  1328      * </ul>
  1329      *
  1330      * @param start  starting floating-point value
  1331      * @param direction value indicating which of
  1332      * {@code start}'s neighbors or {@code start} should
  1333      * be returned
  1334      * @return The floating-point number adjacent to {@code start} in the
  1335      * direction of {@code direction}.
  1336      * @since 1.6
  1337      */
  1338     public static float nextAfter(float start, double direction) {
  1339         return sun.misc.FpUtils.nextAfter(start, direction);
  1340     }
  1341 
  1342     /**
  1343      * Returns the floating-point value adjacent to {@code d} in
  1344      * the direction of positive infinity.  This method is
  1345      * semantically equivalent to {@code nextAfter(d,
  1346      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
  1347      * implementation may run faster than its equivalent
  1348      * {@code nextAfter} call.
  1349      *
  1350      * <p>Special Cases:
  1351      * <ul>
  1352      * <li> If the argument is NaN, the result is NaN.
  1353      *
  1354      * <li> If the argument is positive infinity, the result is
  1355      * positive infinity.
  1356      *
  1357      * <li> If the argument is zero, the result is
  1358      * {@link Double#MIN_VALUE}
  1359      *
  1360      * </ul>
  1361      *
  1362      * @param d starting floating-point value
  1363      * @return The adjacent floating-point value closer to positive
  1364      * infinity.
  1365      * @since 1.6
  1366      */
  1367     public static double nextUp(double d) {
  1368         return sun.misc.FpUtils.nextUp(d);
  1369     }
  1370 
  1371     /**
  1372      * Returns the floating-point value adjacent to {@code f} in
  1373      * the direction of positive infinity.  This method is
  1374      * semantically equivalent to {@code nextAfter(f,
  1375      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
  1376      * implementation may run faster than its equivalent
  1377      * {@code nextAfter} call.
  1378      *
  1379      * <p>Special Cases:
  1380      * <ul>
  1381      * <li> If the argument is NaN, the result is NaN.
  1382      *
  1383      * <li> If the argument is positive infinity, the result is
  1384      * positive infinity.
  1385      *
  1386      * <li> If the argument is zero, the result is
  1387      * {@link Float#MIN_VALUE}
  1388      *
  1389      * </ul>
  1390      *
  1391      * @param f starting floating-point value
  1392      * @return The adjacent floating-point value closer to positive
  1393      * infinity.
  1394      * @since 1.6
  1395      */
  1396     public static float nextUp(float f) {
  1397         return sun.misc.FpUtils.nextUp(f);
  1398     }
  1399 
  1400 
  1401     /**
  1402      * Return {@code d} &times;
  1403      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
  1404      * by a single correctly rounded floating-point multiply to a
  1405      * member of the double value set.  See the Java
  1406      * Language Specification for a discussion of floating-point
  1407      * value sets.  If the exponent of the result is between {@link
  1408      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
  1409      * answer is calculated exactly.  If the exponent of the result
  1410      * would be larger than {@code Double.MAX_EXPONENT}, an
  1411      * infinity is returned.  Note that if the result is subnormal,
  1412      * precision may be lost; that is, when {@code scalb(x, n)}
  1413      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
  1414      * <i>x</i>.  When the result is non-NaN, the result has the same
  1415      * sign as {@code d}.
  1416      *
  1417      * <p>Special cases:
  1418      * <ul>
  1419      * <li> If the first argument is NaN, NaN is returned.
  1420      * <li> If the first argument is infinite, then an infinity of the
  1421      * same sign is returned.
  1422      * <li> If the first argument is zero, then a zero of the same
  1423      * sign is returned.
  1424      * </ul>
  1425      *
  1426      * @param d number to be scaled by a power of two.
  1427      * @param scaleFactor power of 2 used to scale {@code d}
  1428      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
  1429      * @since 1.6
  1430      */
  1431     public static double scalb(double d, int scaleFactor) {
  1432         return sun.misc.FpUtils.scalb(d, scaleFactor);
  1433     }
  1434 
  1435     /**
  1436      * Return {@code f} &times;
  1437      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
  1438      * by a single correctly rounded floating-point multiply to a
  1439      * member of the float value set.  See the Java
  1440      * Language Specification for a discussion of floating-point
  1441      * value sets.  If the exponent of the result is between {@link
  1442      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
  1443      * answer is calculated exactly.  If the exponent of the result
  1444      * would be larger than {@code Float.MAX_EXPONENT}, an
  1445      * infinity is returned.  Note that if the result is subnormal,
  1446      * precision may be lost; that is, when {@code scalb(x, n)}
  1447      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
  1448      * <i>x</i>.  When the result is non-NaN, the result has the same
  1449      * sign as {@code f}.
  1450      *
  1451      * <p>Special cases:
  1452      * <ul>
  1453      * <li> If the first argument is NaN, NaN is returned.
  1454      * <li> If the first argument is infinite, then an infinity of the
  1455      * same sign is returned.
  1456      * <li> If the first argument is zero, then a zero of the same
  1457      * sign is returned.
  1458      * </ul>
  1459      *
  1460      * @param f number to be scaled by a power of two.
  1461      * @param scaleFactor power of 2 used to scale {@code f}
  1462      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
  1463      * @since 1.6
  1464      */
  1465     public static float scalb(float f, int scaleFactor) {
  1466         return sun.misc.FpUtils.scalb(f, scaleFactor);
  1467     }
  1468 }