emul/src/main/java/java/lang/Float.java
author Jaroslav Tulach <jaroslav.tulach@apidesign.org>
Sun, 18 Nov 2012 10:00:23 +0100
branchjavap
changeset 181 f426de5dc7f6
parent 116 033d51e026b0
child 187 391a5d25c0e1
permissions -rw-r--r--
Can deserialize float
     1 /*
     2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 
    26 package java.lang;
    27 
    28 import org.apidesign.bck2brwsr.core.JavaScriptBody;
    29 
    30 /**
    31  * The {@code Float} class wraps a value of primitive type
    32  * {@code float} in an object. An object of type
    33  * {@code Float} contains a single field whose type is
    34  * {@code float}.
    35  *
    36  * <p>In addition, this class provides several methods for converting a
    37  * {@code float} to a {@code String} and a
    38  * {@code String} to a {@code float}, as well as other
    39  * constants and methods useful when dealing with a
    40  * {@code float}.
    41  *
    42  * @author  Lee Boynton
    43  * @author  Arthur van Hoff
    44  * @author  Joseph D. Darcy
    45  * @since JDK1.0
    46  */
    47 public final class Float extends Number implements Comparable<Float> {
    48     /**
    49      * A constant holding the positive infinity of type
    50      * {@code float}. It is equal to the value returned by
    51      * {@code Float.intBitsToFloat(0x7f800000)}.
    52      */
    53     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
    54 
    55     /**
    56      * A constant holding the negative infinity of type
    57      * {@code float}. It is equal to the value returned by
    58      * {@code Float.intBitsToFloat(0xff800000)}.
    59      */
    60     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
    61 
    62     /**
    63      * A constant holding a Not-a-Number (NaN) value of type
    64      * {@code float}.  It is equivalent to the value returned by
    65      * {@code Float.intBitsToFloat(0x7fc00000)}.
    66      */
    67     public static final float NaN = 0.0f / 0.0f;
    68 
    69     /**
    70      * A constant holding the largest positive finite value of type
    71      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
    72      * It is equal to the hexadecimal floating-point literal
    73      * {@code 0x1.fffffeP+127f} and also equal to
    74      * {@code Float.intBitsToFloat(0x7f7fffff)}.
    75      */
    76     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
    77 
    78     /**
    79      * A constant holding the smallest positive normal value of type
    80      * {@code float}, 2<sup>-126</sup>.  It is equal to the
    81      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
    82      * equal to {@code Float.intBitsToFloat(0x00800000)}.
    83      *
    84      * @since 1.6
    85      */
    86     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
    87 
    88     /**
    89      * A constant holding the smallest positive nonzero value of type
    90      * {@code float}, 2<sup>-149</sup>. It is equal to the
    91      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
    92      * and also equal to {@code Float.intBitsToFloat(0x1)}.
    93      */
    94     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
    95 
    96     /**
    97      * Maximum exponent a finite {@code float} variable may have.  It
    98      * is equal to the value returned by {@code
    99      * Math.getExponent(Float.MAX_VALUE)}.
   100      *
   101      * @since 1.6
   102      */
   103     public static final int MAX_EXPONENT = 127;
   104 
   105     /**
   106      * Minimum exponent a normalized {@code float} variable may have.
   107      * It is equal to the value returned by {@code
   108      * Math.getExponent(Float.MIN_NORMAL)}.
   109      *
   110      * @since 1.6
   111      */
   112     public static final int MIN_EXPONENT = -126;
   113 
   114     /**
   115      * The number of bits used to represent a {@code float} value.
   116      *
   117      * @since 1.5
   118      */
   119     public static final int SIZE = 32;
   120 
   121     /**
   122      * The {@code Class} instance representing the primitive type
   123      * {@code float}.
   124      *
   125      * @since JDK1.1
   126      */
   127     public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
   128 
   129     /**
   130      * Returns a string representation of the {@code float}
   131      * argument. All characters mentioned below are ASCII characters.
   132      * <ul>
   133      * <li>If the argument is NaN, the result is the string
   134      * "{@code NaN}".
   135      * <li>Otherwise, the result is a string that represents the sign and
   136      *     magnitude (absolute value) of the argument. If the sign is
   137      *     negative, the first character of the result is
   138      *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
   139      *     positive, no sign character appears in the result. As for
   140      *     the magnitude <i>m</i>:
   141      * <ul>
   142      * <li>If <i>m</i> is infinity, it is represented by the characters
   143      *     {@code "Infinity"}; thus, positive infinity produces
   144      *     the result {@code "Infinity"} and negative infinity
   145      *     produces the result {@code "-Infinity"}.
   146      * <li>If <i>m</i> is zero, it is represented by the characters
   147      *     {@code "0.0"}; thus, negative zero produces the result
   148      *     {@code "-0.0"} and positive zero produces the result
   149      *     {@code "0.0"}.
   150      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
   151      *      less than 10<sup>7</sup>, then it is represented as the
   152      *      integer part of <i>m</i>, in decimal form with no leading
   153      *      zeroes, followed by '{@code .}'
   154      *      (<code>'&#92;u002E'</code>), followed by one or more
   155      *      decimal digits representing the fractional part of
   156      *      <i>m</i>.
   157      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
   158      *      equal to 10<sup>7</sup>, then it is represented in
   159      *      so-called "computerized scientific notation." Let <i>n</i>
   160      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
   161      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
   162      *      be the mathematically exact quotient of <i>m</i> and
   163      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
   164      *      The magnitude is then represented as the integer part of
   165      *      <i>a</i>, as a single decimal digit, followed by
   166      *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
   167      *      decimal digits representing the fractional part of
   168      *      <i>a</i>, followed by the letter '{@code E}'
   169      *      (<code>'&#92;u0045'</code>), followed by a representation
   170      *      of <i>n</i> as a decimal integer, as produced by the
   171      *      method {@link java.lang.Integer#toString(int)}.
   172      *
   173      * </ul>
   174      * </ul>
   175      * How many digits must be printed for the fractional part of
   176      * <i>m</i> or <i>a</i>? There must be at least one digit
   177      * to represent the fractional part, and beyond that as many, but
   178      * only as many, more digits as are needed to uniquely distinguish
   179      * the argument value from adjacent values of type
   180      * {@code float}. That is, suppose that <i>x</i> is the
   181      * exact mathematical value represented by the decimal
   182      * representation produced by this method for a finite nonzero
   183      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
   184      * value nearest to <i>x</i>; or, if two {@code float} values are
   185      * equally close to <i>x</i>, then <i>f</i> must be one of
   186      * them and the least significant bit of the significand of
   187      * <i>f</i> must be {@code 0}.
   188      *
   189      * <p>To create localized string representations of a floating-point
   190      * value, use subclasses of {@link java.text.NumberFormat}.
   191      *
   192      * @param   f   the float to be converted.
   193      * @return a string representation of the argument.
   194      */
   195     @JavaScriptBody(args="d", body="return d.toString();")
   196     public static String toString(float f) {
   197         throw new UnsupportedOperationException();
   198 //        return new FloatingDecimal(f).toJavaFormatString();
   199     }
   200 
   201     /**
   202      * Returns a hexadecimal string representation of the
   203      * {@code float} argument. All characters mentioned below are
   204      * ASCII characters.
   205      *
   206      * <ul>
   207      * <li>If the argument is NaN, the result is the string
   208      *     "{@code NaN}".
   209      * <li>Otherwise, the result is a string that represents the sign and
   210      * magnitude (absolute value) of the argument. If the sign is negative,
   211      * the first character of the result is '{@code -}'
   212      * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
   213      * appears in the result. As for the magnitude <i>m</i>:
   214      *
   215      * <ul>
   216      * <li>If <i>m</i> is infinity, it is represented by the string
   217      * {@code "Infinity"}; thus, positive infinity produces the
   218      * result {@code "Infinity"} and negative infinity produces
   219      * the result {@code "-Infinity"}.
   220      *
   221      * <li>If <i>m</i> is zero, it is represented by the string
   222      * {@code "0x0.0p0"}; thus, negative zero produces the result
   223      * {@code "-0x0.0p0"} and positive zero produces the result
   224      * {@code "0x0.0p0"}.
   225      *
   226      * <li>If <i>m</i> is a {@code float} value with a
   227      * normalized representation, substrings are used to represent the
   228      * significand and exponent fields.  The significand is
   229      * represented by the characters {@code "0x1."}
   230      * followed by a lowercase hexadecimal representation of the rest
   231      * of the significand as a fraction.  Trailing zeros in the
   232      * hexadecimal representation are removed unless all the digits
   233      * are zero, in which case a single zero is used. Next, the
   234      * exponent is represented by {@code "p"} followed
   235      * by a decimal string of the unbiased exponent as if produced by
   236      * a call to {@link Integer#toString(int) Integer.toString} on the
   237      * exponent value.
   238      *
   239      * <li>If <i>m</i> is a {@code float} value with a subnormal
   240      * representation, the significand is represented by the
   241      * characters {@code "0x0."} followed by a
   242      * hexadecimal representation of the rest of the significand as a
   243      * fraction.  Trailing zeros in the hexadecimal representation are
   244      * removed. Next, the exponent is represented by
   245      * {@code "p-126"}.  Note that there must be at
   246      * least one nonzero digit in a subnormal significand.
   247      *
   248      * </ul>
   249      *
   250      * </ul>
   251      *
   252      * <table border>
   253      * <caption><h3>Examples</h3></caption>
   254      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
   255      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
   256      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
   257      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
   258      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
   259      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
   260      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
   261      * <tr><td>{@code Float.MAX_VALUE}</td>
   262      *     <td>{@code 0x1.fffffep127}</td>
   263      * <tr><td>{@code Minimum Normal Value}</td>
   264      *     <td>{@code 0x1.0p-126}</td>
   265      * <tr><td>{@code Maximum Subnormal Value}</td>
   266      *     <td>{@code 0x0.fffffep-126}</td>
   267      * <tr><td>{@code Float.MIN_VALUE}</td>
   268      *     <td>{@code 0x0.000002p-126}</td>
   269      * </table>
   270      * @param   f   the {@code float} to be converted.
   271      * @return a hex string representation of the argument.
   272      * @since 1.5
   273      * @author Joseph D. Darcy
   274      */
   275     public static String toHexString(float f) {
   276         throw new UnsupportedOperationException();
   277 //        if (Math.abs(f) < FloatConsts.MIN_NORMAL
   278 //            &&  f != 0.0f ) {// float subnormal
   279 //            // Adjust exponent to create subnormal double, then
   280 //            // replace subnormal double exponent with subnormal float
   281 //            // exponent
   282 //            String s = Double.toHexString(FpUtils.scalb((double)f,
   283 //                                                        /* -1022+126 */
   284 //                                                        DoubleConsts.MIN_EXPONENT-
   285 //                                                        FloatConsts.MIN_EXPONENT));
   286 //            return s.replaceFirst("p-1022$", "p-126");
   287 //        }
   288 //        else // double string will be the same as float string
   289 //            return Double.toHexString(f);
   290     }
   291 
   292     /**
   293      * Returns a {@code Float} object holding the
   294      * {@code float} value represented by the argument string
   295      * {@code s}.
   296      *
   297      * <p>If {@code s} is {@code null}, then a
   298      * {@code NullPointerException} is thrown.
   299      *
   300      * <p>Leading and trailing whitespace characters in {@code s}
   301      * are ignored.  Whitespace is removed as if by the {@link
   302      * String#trim} method; that is, both ASCII space and control
   303      * characters are removed. The rest of {@code s} should
   304      * constitute a <i>FloatValue</i> as described by the lexical
   305      * syntax rules:
   306      *
   307      * <blockquote>
   308      * <dl>
   309      * <dt><i>FloatValue:</i>
   310      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
   311      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
   312      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
   313      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
   314      * <dd><i>SignedInteger</i>
   315      * </dl>
   316      *
   317      * <p>
   318      *
   319      * <dl>
   320      * <dt><i>HexFloatingPointLiteral</i>:
   321      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
   322      * </dl>
   323      *
   324      * <p>
   325      *
   326      * <dl>
   327      * <dt><i>HexSignificand:</i>
   328      * <dd><i>HexNumeral</i>
   329      * <dd><i>HexNumeral</i> {@code .}
   330      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
   331      *     </i>{@code .}<i> HexDigits</i>
   332      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
   333      *     </i>{@code .} <i>HexDigits</i>
   334      * </dl>
   335      *
   336      * <p>
   337      *
   338      * <dl>
   339      * <dt><i>BinaryExponent:</i>
   340      * <dd><i>BinaryExponentIndicator SignedInteger</i>
   341      * </dl>
   342      *
   343      * <p>
   344      *
   345      * <dl>
   346      * <dt><i>BinaryExponentIndicator:</i>
   347      * <dd>{@code p}
   348      * <dd>{@code P}
   349      * </dl>
   350      *
   351      * </blockquote>
   352      *
   353      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
   354      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
   355      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
   356      * sections of
   357      * <cite>The Java&trade; Language Specification</cite>,
   358      * except that underscores are not accepted between digits.
   359      * If {@code s} does not have the form of
   360      * a <i>FloatValue</i>, then a {@code NumberFormatException}
   361      * is thrown. Otherwise, {@code s} is regarded as
   362      * representing an exact decimal value in the usual
   363      * "computerized scientific notation" or as an exact
   364      * hexadecimal value; this exact numerical value is then
   365      * conceptually converted to an "infinitely precise"
   366      * binary value that is then rounded to type {@code float}
   367      * by the usual round-to-nearest rule of IEEE 754 floating-point
   368      * arithmetic, which includes preserving the sign of a zero
   369      * value.
   370      *
   371      * Note that the round-to-nearest rule also implies overflow and
   372      * underflow behaviour; if the exact value of {@code s} is large
   373      * enough in magnitude (greater than or equal to ({@link
   374      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
   375      * rounding to {@code float} will result in an infinity and if the
   376      * exact value of {@code s} is small enough in magnitude (less
   377      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
   378      * result in a zero.
   379      *
   380      * Finally, after rounding a {@code Float} object representing
   381      * this {@code float} value is returned.
   382      *
   383      * <p>To interpret localized string representations of a
   384      * floating-point value, use subclasses of {@link
   385      * java.text.NumberFormat}.
   386      *
   387      * <p>Note that trailing format specifiers, specifiers that
   388      * determine the type of a floating-point literal
   389      * ({@code 1.0f} is a {@code float} value;
   390      * {@code 1.0d} is a {@code double} value), do
   391      * <em>not</em> influence the results of this method.  In other
   392      * words, the numerical value of the input string is converted
   393      * directly to the target floating-point type.  In general, the
   394      * two-step sequence of conversions, string to {@code double}
   395      * followed by {@code double} to {@code float}, is
   396      * <em>not</em> equivalent to converting a string directly to
   397      * {@code float}.  For example, if first converted to an
   398      * intermediate {@code double} and then to
   399      * {@code float}, the string<br>
   400      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
   401      * results in the {@code float} value
   402      * {@code 1.0000002f}; if the string is converted directly to
   403      * {@code float}, <code>1.000000<b>1</b>f</code> results.
   404      *
   405      * <p>To avoid calling this method on an invalid string and having
   406      * a {@code NumberFormatException} be thrown, the documentation
   407      * for {@link Double#valueOf Double.valueOf} lists a regular
   408      * expression which can be used to screen the input.
   409      *
   410      * @param   s   the string to be parsed.
   411      * @return  a {@code Float} object holding the value
   412      *          represented by the {@code String} argument.
   413      * @throws  NumberFormatException  if the string does not contain a
   414      *          parsable number.
   415      */
   416     public static Float valueOf(String s) throws NumberFormatException {
   417         throw new UnsupportedOperationException();
   418 //        return new Float(FloatingDecimal.readJavaFormatString(s).floatValue());
   419     }
   420 
   421     /**
   422      * Returns a {@code Float} instance representing the specified
   423      * {@code float} value.
   424      * If a new {@code Float} instance is not required, this method
   425      * should generally be used in preference to the constructor
   426      * {@link #Float(float)}, as this method is likely to yield
   427      * significantly better space and time performance by caching
   428      * frequently requested values.
   429      *
   430      * @param  f a float value.
   431      * @return a {@code Float} instance representing {@code f}.
   432      * @since  1.5
   433      */
   434     public static Float valueOf(float f) {
   435         return new Float(f);
   436     }
   437 
   438     /**
   439      * Returns a new {@code float} initialized to the value
   440      * represented by the specified {@code String}, as performed
   441      * by the {@code valueOf} method of class {@code Float}.
   442      *
   443      * @param  s the string to be parsed.
   444      * @return the {@code float} value represented by the string
   445      *         argument.
   446      * @throws NullPointerException  if the string is null
   447      * @throws NumberFormatException if the string does not contain a
   448      *               parsable {@code float}.
   449      * @see    java.lang.Float#valueOf(String)
   450      * @since 1.2
   451      */
   452     public static float parseFloat(String s) throws NumberFormatException {
   453         throw new UnsupportedOperationException();
   454 //        return FloatingDecimal.readJavaFormatString(s).floatValue();
   455     }
   456 
   457     /**
   458      * Returns {@code true} if the specified number is a
   459      * Not-a-Number (NaN) value, {@code false} otherwise.
   460      *
   461      * @param   v   the value to be tested.
   462      * @return  {@code true} if the argument is NaN;
   463      *          {@code false} otherwise.
   464      */
   465     static public boolean isNaN(float v) {
   466         return (v != v);
   467     }
   468 
   469     /**
   470      * Returns {@code true} if the specified number is infinitely
   471      * large in magnitude, {@code false} otherwise.
   472      *
   473      * @param   v   the value to be tested.
   474      * @return  {@code true} if the argument is positive infinity or
   475      *          negative infinity; {@code false} otherwise.
   476      */
   477     static public boolean isInfinite(float v) {
   478         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
   479     }
   480 
   481     /**
   482      * The value of the Float.
   483      *
   484      * @serial
   485      */
   486     private final float value;
   487 
   488     /**
   489      * Constructs a newly allocated {@code Float} object that
   490      * represents the primitive {@code float} argument.
   491      *
   492      * @param   value   the value to be represented by the {@code Float}.
   493      */
   494     public Float(float value) {
   495         this.value = value;
   496     }
   497 
   498     /**
   499      * Constructs a newly allocated {@code Float} object that
   500      * represents the argument converted to type {@code float}.
   501      *
   502      * @param   value   the value to be represented by the {@code Float}.
   503      */
   504     public Float(double value) {
   505         this.value = (float)value;
   506     }
   507 
   508     /**
   509      * Constructs a newly allocated {@code Float} object that
   510      * represents the floating-point value of type {@code float}
   511      * represented by the string. The string is converted to a
   512      * {@code float} value as if by the {@code valueOf} method.
   513      *
   514      * @param      s   a string to be converted to a {@code Float}.
   515      * @throws  NumberFormatException  if the string does not contain a
   516      *               parsable number.
   517      * @see        java.lang.Float#valueOf(java.lang.String)
   518      */
   519     public Float(String s) throws NumberFormatException {
   520         // REMIND: this is inefficient
   521         this(valueOf(s).floatValue());
   522     }
   523 
   524     /**
   525      * Returns {@code true} if this {@code Float} value is a
   526      * Not-a-Number (NaN), {@code false} otherwise.
   527      *
   528      * @return  {@code true} if the value represented by this object is
   529      *          NaN; {@code false} otherwise.
   530      */
   531     public boolean isNaN() {
   532         return isNaN(value);
   533     }
   534 
   535     /**
   536      * Returns {@code true} if this {@code Float} value is
   537      * infinitely large in magnitude, {@code false} otherwise.
   538      *
   539      * @return  {@code true} if the value represented by this object is
   540      *          positive infinity or negative infinity;
   541      *          {@code false} otherwise.
   542      */
   543     public boolean isInfinite() {
   544         return isInfinite(value);
   545     }
   546 
   547     /**
   548      * Returns a string representation of this {@code Float} object.
   549      * The primitive {@code float} value represented by this object
   550      * is converted to a {@code String} exactly as if by the method
   551      * {@code toString} of one argument.
   552      *
   553      * @return  a {@code String} representation of this object.
   554      * @see java.lang.Float#toString(float)
   555      */
   556     public String toString() {
   557         return Float.toString(value);
   558     }
   559 
   560     /**
   561      * Returns the value of this {@code Float} as a {@code byte} (by
   562      * casting to a {@code byte}).
   563      *
   564      * @return  the {@code float} value represented by this object
   565      *          converted to type {@code byte}
   566      */
   567     public byte byteValue() {
   568         return (byte)value;
   569     }
   570 
   571     /**
   572      * Returns the value of this {@code Float} as a {@code short} (by
   573      * casting to a {@code short}).
   574      *
   575      * @return  the {@code float} value represented by this object
   576      *          converted to type {@code short}
   577      * @since JDK1.1
   578      */
   579     public short shortValue() {
   580         return (short)value;
   581     }
   582 
   583     /**
   584      * Returns the value of this {@code Float} as an {@code int} (by
   585      * casting to type {@code int}).
   586      *
   587      * @return  the {@code float} value represented by this object
   588      *          converted to type {@code int}
   589      */
   590     public int intValue() {
   591         return (int)value;
   592     }
   593 
   594     /**
   595      * Returns value of this {@code Float} as a {@code long} (by
   596      * casting to type {@code long}).
   597      *
   598      * @return  the {@code float} value represented by this object
   599      *          converted to type {@code long}
   600      */
   601     public long longValue() {
   602         return (long)value;
   603     }
   604 
   605     /**
   606      * Returns the {@code float} value of this {@code Float} object.
   607      *
   608      * @return the {@code float} value represented by this object
   609      */
   610     public float floatValue() {
   611         return value;
   612     }
   613 
   614     /**
   615      * Returns the {@code double} value of this {@code Float} object.
   616      *
   617      * @return the {@code float} value represented by this
   618      *         object is converted to type {@code double} and the
   619      *         result of the conversion is returned.
   620      */
   621     public double doubleValue() {
   622         return (double)value;
   623     }
   624 
   625     /**
   626      * Returns a hash code for this {@code Float} object. The
   627      * result is the integer bit representation, exactly as produced
   628      * by the method {@link #floatToIntBits(float)}, of the primitive
   629      * {@code float} value represented by this {@code Float}
   630      * object.
   631      *
   632      * @return a hash code value for this object.
   633      */
   634     public int hashCode() {
   635         return floatToIntBits(value);
   636     }
   637 
   638     /**
   639 
   640      * Compares this object against the specified object.  The result
   641      * is {@code true} if and only if the argument is not
   642      * {@code null} and is a {@code Float} object that
   643      * represents a {@code float} with the same value as the
   644      * {@code float} represented by this object. For this
   645      * purpose, two {@code float} values are considered to be the
   646      * same if and only if the method {@link #floatToIntBits(float)}
   647      * returns the identical {@code int} value when applied to
   648      * each.
   649      *
   650      * <p>Note that in most cases, for two instances of class
   651      * {@code Float}, {@code f1} and {@code f2}, the value
   652      * of {@code f1.equals(f2)} is {@code true} if and only if
   653      *
   654      * <blockquote><pre>
   655      *   f1.floatValue() == f2.floatValue()
   656      * </pre></blockquote>
   657      *
   658      * <p>also has the value {@code true}. However, there are two exceptions:
   659      * <ul>
   660      * <li>If {@code f1} and {@code f2} both represent
   661      *     {@code Float.NaN}, then the {@code equals} method returns
   662      *     {@code true}, even though {@code Float.NaN==Float.NaN}
   663      *     has the value {@code false}.
   664      * <li>If {@code f1} represents {@code +0.0f} while
   665      *     {@code f2} represents {@code -0.0f}, or vice
   666      *     versa, the {@code equal} test has the value
   667      *     {@code false}, even though {@code 0.0f==-0.0f}
   668      *     has the value {@code true}.
   669      * </ul>
   670      *
   671      * This definition allows hash tables to operate properly.
   672      *
   673      * @param obj the object to be compared
   674      * @return  {@code true} if the objects are the same;
   675      *          {@code false} otherwise.
   676      * @see java.lang.Float#floatToIntBits(float)
   677      */
   678     public boolean equals(Object obj) {
   679         return (obj instanceof Float)
   680                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
   681     }
   682 
   683     /**
   684      * Returns a representation of the specified floating-point value
   685      * according to the IEEE 754 floating-point "single format" bit
   686      * layout.
   687      *
   688      * <p>Bit 31 (the bit that is selected by the mask
   689      * {@code 0x80000000}) represents the sign of the floating-point
   690      * number.
   691      * Bits 30-23 (the bits that are selected by the mask
   692      * {@code 0x7f800000}) represent the exponent.
   693      * Bits 22-0 (the bits that are selected by the mask
   694      * {@code 0x007fffff}) represent the significand (sometimes called
   695      * the mantissa) of the floating-point number.
   696      *
   697      * <p>If the argument is positive infinity, the result is
   698      * {@code 0x7f800000}.
   699      *
   700      * <p>If the argument is negative infinity, the result is
   701      * {@code 0xff800000}.
   702      *
   703      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
   704      *
   705      * <p>In all cases, the result is an integer that, when given to the
   706      * {@link #intBitsToFloat(int)} method, will produce a floating-point
   707      * value the same as the argument to {@code floatToIntBits}
   708      * (except all NaN values are collapsed to a single
   709      * "canonical" NaN value).
   710      *
   711      * @param   value   a floating-point number.
   712      * @return the bits that represent the floating-point number.
   713      */
   714     public static int floatToIntBits(float value) {
   715         throw new UnsupportedOperationException();
   716 //        int result = floatToRawIntBits(value);
   717 //        // Check for NaN based on values of bit fields, maximum
   718 //        // exponent and nonzero significand.
   719 //        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
   720 //              FloatConsts.EXP_BIT_MASK) &&
   721 //             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
   722 //            result = 0x7fc00000;
   723 //        return result;
   724     }
   725 
   726     /**
   727      * Returns a representation of the specified floating-point value
   728      * according to the IEEE 754 floating-point "single format" bit
   729      * layout, preserving Not-a-Number (NaN) values.
   730      *
   731      * <p>Bit 31 (the bit that is selected by the mask
   732      * {@code 0x80000000}) represents the sign of the floating-point
   733      * number.
   734      * Bits 30-23 (the bits that are selected by the mask
   735      * {@code 0x7f800000}) represent the exponent.
   736      * Bits 22-0 (the bits that are selected by the mask
   737      * {@code 0x007fffff}) represent the significand (sometimes called
   738      * the mantissa) of the floating-point number.
   739      *
   740      * <p>If the argument is positive infinity, the result is
   741      * {@code 0x7f800000}.
   742      *
   743      * <p>If the argument is negative infinity, the result is
   744      * {@code 0xff800000}.
   745      *
   746      * <p>If the argument is NaN, the result is the integer representing
   747      * the actual NaN value.  Unlike the {@code floatToIntBits}
   748      * method, {@code floatToRawIntBits} does not collapse all the
   749      * bit patterns encoding a NaN to a single "canonical"
   750      * NaN value.
   751      *
   752      * <p>In all cases, the result is an integer that, when given to the
   753      * {@link #intBitsToFloat(int)} method, will produce a
   754      * floating-point value the same as the argument to
   755      * {@code floatToRawIntBits}.
   756      *
   757      * @param   value   a floating-point number.
   758      * @return the bits that represent the floating-point number.
   759      * @since 1.3
   760      */
   761     public static native int floatToRawIntBits(float value);
   762 
   763     /**
   764      * Returns the {@code float} value corresponding to a given
   765      * bit representation.
   766      * The argument is considered to be a representation of a
   767      * floating-point value according to the IEEE 754 floating-point
   768      * "single format" bit layout.
   769      *
   770      * <p>If the argument is {@code 0x7f800000}, the result is positive
   771      * infinity.
   772      *
   773      * <p>If the argument is {@code 0xff800000}, the result is negative
   774      * infinity.
   775      *
   776      * <p>If the argument is any value in the range
   777      * {@code 0x7f800001} through {@code 0x7fffffff} or in
   778      * the range {@code 0xff800001} through
   779      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
   780      * floating-point operation provided by Java can distinguish
   781      * between two NaN values of the same type with different bit
   782      * patterns.  Distinct values of NaN are only distinguishable by
   783      * use of the {@code Float.floatToRawIntBits} method.
   784      *
   785      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
   786      * values that can be computed from the argument:
   787      *
   788      * <blockquote><pre>
   789      * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
   790      * int e = ((bits &gt;&gt; 23) & 0xff);
   791      * int m = (e == 0) ?
   792      *                 (bits & 0x7fffff) &lt;&lt; 1 :
   793      *                 (bits & 0x7fffff) | 0x800000;
   794      * </pre></blockquote>
   795      *
   796      * Then the floating-point result equals the value of the mathematical
   797      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
   798      *
   799      * <p>Note that this method may not be able to return a
   800      * {@code float} NaN with exactly same bit pattern as the
   801      * {@code int} argument.  IEEE 754 distinguishes between two
   802      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
   803      * differences between the two kinds of NaN are generally not
   804      * visible in Java.  Arithmetic operations on signaling NaNs turn
   805      * them into quiet NaNs with a different, but often similar, bit
   806      * pattern.  However, on some processors merely copying a
   807      * signaling NaN also performs that conversion.  In particular,
   808      * copying a signaling NaN to return it to the calling method may
   809      * perform this conversion.  So {@code intBitsToFloat} may
   810      * not be able to return a {@code float} with a signaling NaN
   811      * bit pattern.  Consequently, for some {@code int} values,
   812      * {@code floatToRawIntBits(intBitsToFloat(start))} may
   813      * <i>not</i> equal {@code start}.  Moreover, which
   814      * particular bit patterns represent signaling NaNs is platform
   815      * dependent; although all NaN bit patterns, quiet or signaling,
   816      * must be in the NaN range identified above.
   817      *
   818      * @param   bits   an integer.
   819      * @return  the {@code float} floating-point value with the same bit
   820      *          pattern.
   821      */
   822     @JavaScriptBody(args = "bits",
   823         body = 
   824           "if (bits === 0x7f800000) return Number.POSITIVE_INFINITY;\n"
   825         + "if (bits === 0xff800000) return Number.NEGATIVE_INFINITY;\n"
   826         + "if (bits >= 0x7f800001 && bits <= 0xffffffff) return Number.NaN;\n"
   827         + "var s = ((bits >> 31) == 0) ? 1 : -1;\n"
   828         + "var e = ((bits >> 23) & 0xff);\n"
   829         + "var m = (e == 0) ?\n"
   830         + "  (bits & 0x7fffff) << 1 :\n"
   831         + "  (bits & 0x7fffff) | 0x800000;\n"
   832         + "return s * m * Math.pow(2.0, e - 150);\n"
   833     )
   834     public static native float intBitsToFloat(int bits);
   835 
   836     /**
   837      * Compares two {@code Float} objects numerically.  There are
   838      * two ways in which comparisons performed by this method differ
   839      * from those performed by the Java language numerical comparison
   840      * operators ({@code <, <=, ==, >=, >}) when
   841      * applied to primitive {@code float} values:
   842      *
   843      * <ul><li>
   844      *          {@code Float.NaN} is considered by this method to
   845      *          be equal to itself and greater than all other
   846      *          {@code float} values
   847      *          (including {@code Float.POSITIVE_INFINITY}).
   848      * <li>
   849      *          {@code 0.0f} is considered by this method to be greater
   850      *          than {@code -0.0f}.
   851      * </ul>
   852      *
   853      * This ensures that the <i>natural ordering</i> of {@code Float}
   854      * objects imposed by this method is <i>consistent with equals</i>.
   855      *
   856      * @param   anotherFloat   the {@code Float} to be compared.
   857      * @return  the value {@code 0} if {@code anotherFloat} is
   858      *          numerically equal to this {@code Float}; a value
   859      *          less than {@code 0} if this {@code Float}
   860      *          is numerically less than {@code anotherFloat};
   861      *          and a value greater than {@code 0} if this
   862      *          {@code Float} is numerically greater than
   863      *          {@code anotherFloat}.
   864      *
   865      * @since   1.2
   866      * @see Comparable#compareTo(Object)
   867      */
   868     public int compareTo(Float anotherFloat) {
   869         return Float.compare(value, anotherFloat.value);
   870     }
   871 
   872     /**
   873      * Compares the two specified {@code float} values. The sign
   874      * of the integer value returned is the same as that of the
   875      * integer that would be returned by the call:
   876      * <pre>
   877      *    new Float(f1).compareTo(new Float(f2))
   878      * </pre>
   879      *
   880      * @param   f1        the first {@code float} to compare.
   881      * @param   f2        the second {@code float} to compare.
   882      * @return  the value {@code 0} if {@code f1} is
   883      *          numerically equal to {@code f2}; a value less than
   884      *          {@code 0} if {@code f1} is numerically less than
   885      *          {@code f2}; and a value greater than {@code 0}
   886      *          if {@code f1} is numerically greater than
   887      *          {@code f2}.
   888      * @since 1.4
   889      */
   890     public static int compare(float f1, float f2) {
   891         if (f1 < f2)
   892             return -1;           // Neither val is NaN, thisVal is smaller
   893         if (f1 > f2)
   894             return 1;            // Neither val is NaN, thisVal is larger
   895 
   896         // Cannot use floatToRawIntBits because of possibility of NaNs.
   897         int thisBits    = Float.floatToIntBits(f1);
   898         int anotherBits = Float.floatToIntBits(f2);
   899 
   900         return (thisBits == anotherBits ?  0 : // Values are equal
   901                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
   902                  1));                          // (0.0, -0.0) or (NaN, !NaN)
   903     }
   904 
   905     /** use serialVersionUID from JDK 1.0.2 for interoperability */
   906     private static final long serialVersionUID = -2671257302660747028L;
   907 }