jaroslav@67: /* jaroslav@67: * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. jaroslav@67: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. jaroslav@67: * jaroslav@67: * This code is free software; you can redistribute it and/or modify it jaroslav@67: * under the terms of the GNU General Public License version 2 only, as jaroslav@67: * published by the Free Software Foundation. Oracle designates this jaroslav@67: * particular file as subject to the "Classpath" exception as provided jaroslav@67: * by Oracle in the LICENSE file that accompanied this code. jaroslav@67: * jaroslav@67: * This code is distributed in the hope that it will be useful, but WITHOUT jaroslav@67: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or jaroslav@67: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License jaroslav@67: * version 2 for more details (a copy is included in the LICENSE file that jaroslav@67: * accompanied this code). jaroslav@67: * jaroslav@67: * You should have received a copy of the GNU General Public License version jaroslav@67: * 2 along with this work; if not, write to the Free Software Foundation, jaroslav@67: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. jaroslav@67: * jaroslav@67: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA jaroslav@67: * or visit www.oracle.com if you need additional information or have any jaroslav@67: * questions. jaroslav@67: */ jaroslav@67: jaroslav@67: package java.lang; jaroslav@67: jaroslav@114: import org.apidesign.bck2brwsr.core.JavaScriptBody; jaroslav@114: jaroslav@67: /** jaroslav@67: * The {@code Double} class wraps a value of the primitive type jaroslav@67: * {@code double} in an object. An object of type jaroslav@67: * {@code Double} contains a single field whose type is jaroslav@67: * {@code double}. jaroslav@67: * jaroslav@67: *

In addition, this class provides several methods for converting a jaroslav@67: * {@code double} to a {@code String} and a jaroslav@67: * {@code String} to a {@code double}, as well as other jaroslav@67: * constants and methods useful when dealing with a jaroslav@67: * {@code double}. jaroslav@67: * jaroslav@67: * @author Lee Boynton jaroslav@67: * @author Arthur van Hoff jaroslav@67: * @author Joseph D. Darcy jaroslav@67: * @since JDK1.0 jaroslav@67: */ jaroslav@67: public final class Double extends Number implements Comparable { jaroslav@67: /** jaroslav@67: * A constant holding the positive infinity of type jaroslav@67: * {@code double}. It is equal to the value returned by jaroslav@67: * {@code Double.longBitsToDouble(0x7ff0000000000000L)}. jaroslav@67: */ jaroslav@67: public static final double POSITIVE_INFINITY = 1.0 / 0.0; jaroslav@67: jaroslav@67: /** jaroslav@67: * A constant holding the negative infinity of type jaroslav@67: * {@code double}. It is equal to the value returned by jaroslav@67: * {@code Double.longBitsToDouble(0xfff0000000000000L)}. jaroslav@67: */ jaroslav@67: public static final double NEGATIVE_INFINITY = -1.0 / 0.0; jaroslav@67: jaroslav@67: /** jaroslav@67: * A constant holding a Not-a-Number (NaN) value of type jaroslav@67: * {@code double}. It is equivalent to the value returned by jaroslav@67: * {@code Double.longBitsToDouble(0x7ff8000000000000L)}. jaroslav@67: */ jaroslav@67: public static final double NaN = 0.0d / 0.0; jaroslav@67: jaroslav@67: /** jaroslav@67: * A constant holding the largest positive finite value of type jaroslav@67: * {@code double}, jaroslav@67: * (2-2-52)·21023. It is equal to jaroslav@67: * the hexadecimal floating-point literal jaroslav@67: * {@code 0x1.fffffffffffffP+1023} and also equal to jaroslav@67: * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}. jaroslav@67: */ jaroslav@67: public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308 jaroslav@67: jaroslav@67: /** jaroslav@67: * A constant holding the smallest positive normal value of type jaroslav@67: * {@code double}, 2-1022. It is equal to the jaroslav@67: * hexadecimal floating-point literal {@code 0x1.0p-1022} and also jaroslav@67: * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}. jaroslav@67: * jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@67: public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308 jaroslav@67: jaroslav@67: /** jaroslav@67: * A constant holding the smallest positive nonzero value of type jaroslav@67: * {@code double}, 2-1074. It is equal to the jaroslav@67: * hexadecimal floating-point literal jaroslav@67: * {@code 0x0.0000000000001P-1022} and also equal to jaroslav@67: * {@code Double.longBitsToDouble(0x1L)}. jaroslav@67: */ jaroslav@67: public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324 jaroslav@67: jaroslav@67: /** jaroslav@67: * Maximum exponent a finite {@code double} variable may have. jaroslav@67: * It is equal to the value returned by jaroslav@67: * {@code Math.getExponent(Double.MAX_VALUE)}. jaroslav@67: * jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@67: public static final int MAX_EXPONENT = 1023; jaroslav@67: jaroslav@67: /** jaroslav@67: * Minimum exponent a normalized {@code double} variable may jaroslav@67: * have. It is equal to the value returned by jaroslav@67: * {@code Math.getExponent(Double.MIN_NORMAL)}. jaroslav@67: * jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@67: public static final int MIN_EXPONENT = -1022; jaroslav@67: jaroslav@67: /** jaroslav@67: * The number of bits used to represent a {@code double} value. jaroslav@67: * jaroslav@67: * @since 1.5 jaroslav@67: */ jaroslav@67: public static final int SIZE = 64; jaroslav@67: jaroslav@67: /** jaroslav@67: * The {@code Class} instance representing the primitive type jaroslav@67: * {@code double}. jaroslav@67: * jaroslav@67: * @since JDK1.1 jaroslav@67: */ jaroslav@67: public static final Class TYPE = (Class) Class.getPrimitiveClass("double"); jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a string representation of the {@code double} jaroslav@67: * argument. All characters mentioned below are ASCII characters. jaroslav@67: *

jaroslav@67: * How many digits must be printed for the fractional part of jaroslav@67: * m or a? There must be at least one digit to represent jaroslav@67: * the fractional part, and beyond that as many, but only as many, more jaroslav@67: * digits as are needed to uniquely distinguish the argument value from jaroslav@67: * adjacent values of type {@code double}. That is, suppose that jaroslav@67: * x is the exact mathematical value represented by the decimal jaroslav@67: * representation produced by this method for a finite nonzero argument jaroslav@67: * d. Then d must be the {@code double} value nearest jaroslav@67: * to x; or if two {@code double} values are equally close jaroslav@67: * to x, then d must be one of them and the least jaroslav@67: * significant bit of the significand of d must be {@code 0}. jaroslav@67: * jaroslav@67: *

To create localized string representations of a floating-point jaroslav@67: * value, use subclasses of {@link java.text.NumberFormat}. jaroslav@67: * jaroslav@67: * @param d the {@code double} to be converted. jaroslav@67: * @return a string representation of the argument. jaroslav@67: */ jaroslav@187: @JavaScriptBody(args="d", body="var r = d.toString();" jaroslav@187: + "if (r.indexOf('.') === -1) r = r + '.0';" jaroslav@187: + "return r;") jaroslav@67: public static String toString(double d) { jaroslav@84: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a hexadecimal string representation of the jaroslav@67: * {@code double} argument. All characters mentioned below jaroslav@67: * are ASCII characters. jaroslav@67: * jaroslav@67: *

jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: * jaroslav@67: *

Examples

Floating-point ValueHexadecimal String
{@code 1.0} {@code 0x1.0p0}
{@code -1.0} {@code -0x1.0p0}
{@code 2.0} {@code 0x1.0p1}
{@code 3.0} {@code 0x1.8p1}
{@code 0.5} {@code 0x1.0p-1}
{@code 0.25} {@code 0x1.0p-2}
{@code Double.MAX_VALUE}{@code 0x1.fffffffffffffp1023}
{@code Minimum Normal Value}{@code 0x1.0p-1022}
{@code Maximum Subnormal Value}{@code 0x0.fffffffffffffp-1022}
{@code Double.MIN_VALUE}{@code 0x0.0000000000001p-1022}
jaroslav@67: * @param d the {@code double} to be converted. jaroslav@67: * @return a hex string representation of the argument. jaroslav@67: * @since 1.5 jaroslav@67: * @author Joseph D. Darcy jaroslav@67: */ jaroslav@67: public static String toHexString(double d) { jaroslav@84: throw new UnsupportedOperationException(); jaroslav@84: // /* jaroslav@84: // * Modeled after the "a" conversion specifier in C99, section jaroslav@84: // * 7.19.6.1; however, the output of this method is more jaroslav@84: // * tightly specified. jaroslav@84: // */ jaroslav@84: // if (!FpUtils.isFinite(d) ) jaroslav@84: // // For infinity and NaN, use the decimal output. jaroslav@84: // return Double.toString(d); jaroslav@84: // else { jaroslav@84: // // Initialized to maximum size of output. jaroslav@84: // StringBuffer answer = new StringBuffer(24); jaroslav@84: // jaroslav@84: // if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative, jaroslav@84: // answer.append("-"); // so append sign info jaroslav@84: // jaroslav@84: // answer.append("0x"); jaroslav@84: // jaroslav@84: // d = Math.abs(d); jaroslav@84: // jaroslav@84: // if(d == 0.0) { jaroslav@84: // answer.append("0.0p0"); jaroslav@84: // } jaroslav@84: // else { jaroslav@84: // boolean subnormal = (d < DoubleConsts.MIN_NORMAL); jaroslav@84: // jaroslav@84: // // Isolate significand bits and OR in a high-order bit jaroslav@84: // // so that the string representation has a known jaroslav@84: // // length. jaroslav@84: // long signifBits = (Double.doubleToLongBits(d) jaroslav@84: // & DoubleConsts.SIGNIF_BIT_MASK) | jaroslav@84: // 0x1000000000000000L; jaroslav@84: // jaroslav@84: // // Subnormal values have a 0 implicit bit; normal jaroslav@84: // // values have a 1 implicit bit. jaroslav@84: // answer.append(subnormal ? "0." : "1."); jaroslav@84: // jaroslav@84: // // Isolate the low-order 13 digits of the hex jaroslav@84: // // representation. If all the digits are zero, jaroslav@84: // // replace with a single 0; otherwise, remove all jaroslav@84: // // trailing zeros. jaroslav@84: // String signif = Long.toHexString(signifBits).substring(3,16); jaroslav@84: // answer.append(signif.equals("0000000000000") ? // 13 zeros jaroslav@84: // "0": jaroslav@84: // signif.replaceFirst("0{1,12}$", "")); jaroslav@84: // jaroslav@84: // // If the value is subnormal, use the E_min exponent jaroslav@84: // // value for double; otherwise, extract and report d's jaroslav@84: // // exponent (the representation of a subnormal uses jaroslav@84: // // E_min -1). jaroslav@84: // answer.append("p" + (subnormal ? jaroslav@84: // DoubleConsts.MIN_EXPONENT: jaroslav@84: // FpUtils.getExponent(d) )); jaroslav@84: // } jaroslav@84: // return answer.toString(); jaroslav@84: // } jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a {@code Double} object holding the jaroslav@67: * {@code double} value represented by the argument string jaroslav@67: * {@code s}. jaroslav@67: * jaroslav@67: *

If {@code s} is {@code null}, then a jaroslav@67: * {@code NullPointerException} is thrown. jaroslav@67: * jaroslav@67: *

Leading and trailing whitespace characters in {@code s} jaroslav@67: * are ignored. Whitespace is removed as if by the {@link jaroslav@67: * String#trim} method; that is, both ASCII space and control jaroslav@67: * characters are removed. The rest of {@code s} should jaroslav@67: * constitute a FloatValue as described by the lexical jaroslav@67: * syntax rules: jaroslav@67: * jaroslav@67: *

jaroslav@67: *
jaroslav@67: *
FloatValue: jaroslav@67: *
Signopt {@code NaN} jaroslav@67: *
Signopt {@code Infinity} jaroslav@67: *
Signopt FloatingPointLiteral jaroslav@67: *
Signopt HexFloatingPointLiteral jaroslav@67: *
SignedInteger jaroslav@67: *
jaroslav@67: * jaroslav@67: *

jaroslav@67: * jaroslav@67: *

jaroslav@67: *
HexFloatingPointLiteral: jaroslav@67: *
HexSignificand BinaryExponent FloatTypeSuffixopt jaroslav@67: *
jaroslav@67: * jaroslav@67: *

jaroslav@67: * jaroslav@67: *

jaroslav@67: *
HexSignificand: jaroslav@67: *
HexNumeral jaroslav@67: *
HexNumeral {@code .} jaroslav@67: *
{@code 0x} HexDigitsopt jaroslav@67: * {@code .} HexDigits jaroslav@67: *
{@code 0X} HexDigitsopt jaroslav@67: * {@code .} HexDigits jaroslav@67: *
jaroslav@67: * jaroslav@67: *

jaroslav@67: * jaroslav@67: *

jaroslav@67: *
BinaryExponent: jaroslav@67: *
BinaryExponentIndicator SignedInteger jaroslav@67: *
jaroslav@67: * jaroslav@67: *

jaroslav@67: * jaroslav@67: *

jaroslav@67: *
BinaryExponentIndicator: jaroslav@67: *
{@code p} jaroslav@67: *
{@code P} jaroslav@67: *
jaroslav@67: * jaroslav@67: *
jaroslav@67: * jaroslav@67: * where Sign, FloatingPointLiteral, jaroslav@67: * HexNumeral, HexDigits, SignedInteger and jaroslav@67: * FloatTypeSuffix are as defined in the lexical structure jaroslav@67: * sections of jaroslav@67: * The Java™ Language Specification, jaroslav@67: * except that underscores are not accepted between digits. jaroslav@67: * If {@code s} does not have the form of jaroslav@67: * a FloatValue, then a {@code NumberFormatException} jaroslav@67: * is thrown. Otherwise, {@code s} is regarded as jaroslav@67: * representing an exact decimal value in the usual jaroslav@67: * "computerized scientific notation" or as an exact jaroslav@67: * hexadecimal value; this exact numerical value is then jaroslav@67: * conceptually converted to an "infinitely precise" jaroslav@67: * binary value that is then rounded to type {@code double} jaroslav@67: * by the usual round-to-nearest rule of IEEE 754 floating-point jaroslav@67: * arithmetic, which includes preserving the sign of a zero jaroslav@67: * value. jaroslav@67: * jaroslav@67: * Note that the round-to-nearest rule also implies overflow and jaroslav@67: * underflow behaviour; if the exact value of {@code s} is large jaroslav@67: * enough in magnitude (greater than or equal to ({@link jaroslav@67: * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2), jaroslav@67: * rounding to {@code double} will result in an infinity and if the jaroslav@67: * exact value of {@code s} is small enough in magnitude (less jaroslav@67: * than or equal to {@link #MIN_VALUE}/2), rounding to float will jaroslav@67: * result in a zero. jaroslav@67: * jaroslav@67: * Finally, after rounding a {@code Double} object representing jaroslav@67: * this {@code double} value is returned. jaroslav@67: * jaroslav@67: *

To interpret localized string representations of a jaroslav@67: * floating-point value, use subclasses of {@link jaroslav@67: * java.text.NumberFormat}. jaroslav@67: * jaroslav@67: *

Note that trailing format specifiers, specifiers that jaroslav@67: * determine the type of a floating-point literal jaroslav@67: * ({@code 1.0f} is a {@code float} value; jaroslav@67: * {@code 1.0d} is a {@code double} value), do jaroslav@67: * not influence the results of this method. In other jaroslav@67: * words, the numerical value of the input string is converted jaroslav@67: * directly to the target floating-point type. The two-step jaroslav@67: * sequence of conversions, string to {@code float} followed jaroslav@67: * by {@code float} to {@code double}, is not jaroslav@67: * equivalent to converting a string directly to jaroslav@67: * {@code double}. For example, the {@code float} jaroslav@67: * literal {@code 0.1f} is equal to the {@code double} jaroslav@67: * value {@code 0.10000000149011612}; the {@code float} jaroslav@67: * literal {@code 0.1f} represents a different numerical jaroslav@67: * value than the {@code double} literal jaroslav@67: * {@code 0.1}. (The numerical value 0.1 cannot be exactly jaroslav@67: * represented in a binary floating-point number.) jaroslav@67: * jaroslav@67: *

To avoid calling this method on an invalid string and having jaroslav@67: * a {@code NumberFormatException} be thrown, the regular jaroslav@67: * expression below can be used to screen the input string: jaroslav@67: * jaroslav@67: * jaroslav@67: *

jaroslav@67:      *  final String Digits     = "(\\p{Digit}+)";
jaroslav@67:      *  final String HexDigits  = "(\\p{XDigit}+)";
jaroslav@67:      *  // an exponent is 'e' or 'E' followed by an optionally
jaroslav@67:      *  // signed decimal integer.
jaroslav@67:      *  final String Exp        = "[eE][+-]?"+Digits;
jaroslav@67:      *  final String fpRegex    =
jaroslav@67:      *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
jaroslav@67:      *       "[+-]?(" + // Optional sign character
jaroslav@67:      *       "NaN|" +           // "NaN" string
jaroslav@67:      *       "Infinity|" +      // "Infinity" string
jaroslav@67:      *
jaroslav@67:      *       // A decimal floating-point string representing a finite positive
jaroslav@67:      *       // number without a leading sign has at most five basic pieces:
jaroslav@67:      *       // Digits . Digits ExponentPart FloatTypeSuffix
jaroslav@67:      *       //
jaroslav@67:      *       // Since this method allows integer-only strings as input
jaroslav@67:      *       // in addition to strings of floating-point literals, the
jaroslav@67:      *       // two sub-patterns below are simplifications of the grammar
jaroslav@67:      *       // productions from section 3.10.2 of
jaroslav@67:      *       // The Java™ Language Specification.
jaroslav@67:      *
jaroslav@67:      *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
jaroslav@67:      *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
jaroslav@67:      *
jaroslav@67:      *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
jaroslav@67:      *       "(\\.("+Digits+")("+Exp+")?)|"+
jaroslav@67:      *
jaroslav@67:      *       // Hexadecimal strings
jaroslav@67:      *       "((" +
jaroslav@67:      *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
jaroslav@67:      *        "(0[xX]" + HexDigits + "(\\.)?)|" +
jaroslav@67:      *
jaroslav@67:      *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
jaroslav@67:      *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
jaroslav@67:      *
jaroslav@67:      *        ")[pP][+-]?" + Digits + "))" +
jaroslav@67:      *       "[fFdD]?))" +
jaroslav@67:      *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
jaroslav@67:      *
jaroslav@67:      *  if (Pattern.matches(fpRegex, myString))
jaroslav@67:      *      Double.valueOf(myString); // Will not throw NumberFormatException
jaroslav@67:      *  else {
jaroslav@67:      *      // Perform suitable alternative action
jaroslav@67:      *  }
jaroslav@67:      * 
jaroslav@67: * jaroslav@67: * jaroslav@67: * @param s the string to be parsed. jaroslav@67: * @return a {@code Double} object holding the value jaroslav@67: * represented by the {@code String} argument. jaroslav@67: * @throws NumberFormatException if the string does not contain a jaroslav@67: * parsable number. jaroslav@67: */ jaroslav@114: @JavaScriptBody(args="s", body="return parseFloat(s);") jaroslav@67: public static Double valueOf(String s) throws NumberFormatException { jaroslav@84: throw new UnsupportedOperationException(); jaroslav@84: // return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue()); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a {@code Double} instance representing the specified jaroslav@67: * {@code double} value. jaroslav@67: * If a new {@code Double} instance is not required, this method jaroslav@67: * should generally be used in preference to the constructor jaroslav@67: * {@link #Double(double)}, as this method is likely to yield jaroslav@67: * significantly better space and time performance by caching jaroslav@67: * frequently requested values. jaroslav@67: * jaroslav@67: * @param d a double value. jaroslav@67: * @return a {@code Double} instance representing {@code d}. jaroslav@67: * @since 1.5 jaroslav@67: */ jaroslav@67: public static Double valueOf(double d) { jaroslav@67: return new Double(d); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a new {@code double} initialized to the value jaroslav@67: * represented by the specified {@code String}, as performed jaroslav@67: * by the {@code valueOf} method of class jaroslav@67: * {@code Double}. jaroslav@67: * jaroslav@67: * @param s the string to be parsed. jaroslav@67: * @return the {@code double} value represented by the string jaroslav@67: * argument. jaroslav@67: * @throws NullPointerException if the string is null jaroslav@67: * @throws NumberFormatException if the string does not contain jaroslav@67: * a parsable {@code double}. jaroslav@67: * @see java.lang.Double#valueOf(String) jaroslav@67: * @since 1.2 jaroslav@67: */ jaroslav@114: @JavaScriptBody(args="s", body="return parseFloat(s);") jaroslav@67: public static double parseDouble(String s) throws NumberFormatException { jaroslav@84: throw new UnsupportedOperationException(); jaroslav@84: // return FloatingDecimal.readJavaFormatString(s).doubleValue(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns {@code true} if the specified number is a jaroslav@67: * Not-a-Number (NaN) value, {@code false} otherwise. jaroslav@67: * jaroslav@67: * @param v the value to be tested. jaroslav@67: * @return {@code true} if the value of the argument is NaN; jaroslav@67: * {@code false} otherwise. jaroslav@67: */ jaroslav@67: static public boolean isNaN(double v) { jaroslav@67: return (v != v); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns {@code true} if the specified number is infinitely jaroslav@67: * large in magnitude, {@code false} otherwise. jaroslav@67: * jaroslav@67: * @param v the value to be tested. jaroslav@67: * @return {@code true} if the value of the argument is positive jaroslav@67: * infinity or negative infinity; {@code false} otherwise. jaroslav@67: */ jaroslav@67: static public boolean isInfinite(double v) { jaroslav@67: return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * The value of the Double. jaroslav@67: * jaroslav@67: * @serial jaroslav@67: */ jaroslav@67: private final double value; jaroslav@67: jaroslav@67: /** jaroslav@67: * Constructs a newly allocated {@code Double} object that jaroslav@67: * represents the primitive {@code double} argument. jaroslav@67: * jaroslav@67: * @param value the value to be represented by the {@code Double}. jaroslav@67: */ jaroslav@67: public Double(double value) { jaroslav@67: this.value = value; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Constructs a newly allocated {@code Double} object that jaroslav@67: * represents the floating-point value of type {@code double} jaroslav@67: * represented by the string. The string is converted to a jaroslav@67: * {@code double} value as if by the {@code valueOf} method. jaroslav@67: * jaroslav@67: * @param s a string to be converted to a {@code Double}. jaroslav@67: * @throws NumberFormatException if the string does not contain a jaroslav@67: * parsable number. jaroslav@67: * @see java.lang.Double#valueOf(java.lang.String) jaroslav@67: */ jaroslav@67: public Double(String s) throws NumberFormatException { jaroslav@67: // REMIND: this is inefficient jaroslav@67: this(valueOf(s).doubleValue()); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns {@code true} if this {@code Double} value is jaroslav@67: * a Not-a-Number (NaN), {@code false} otherwise. jaroslav@67: * jaroslav@67: * @return {@code true} if the value represented by this object is jaroslav@67: * NaN; {@code false} otherwise. jaroslav@67: */ jaroslav@67: public boolean isNaN() { jaroslav@67: return isNaN(value); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns {@code true} if this {@code Double} value is jaroslav@67: * infinitely large in magnitude, {@code false} otherwise. jaroslav@67: * jaroslav@67: * @return {@code true} if the value represented by this object is jaroslav@67: * positive infinity or negative infinity; jaroslav@67: * {@code false} otherwise. jaroslav@67: */ jaroslav@67: public boolean isInfinite() { jaroslav@67: return isInfinite(value); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a string representation of this {@code Double} object. jaroslav@67: * The primitive {@code double} value represented by this jaroslav@67: * object is converted to a string exactly as if by the method jaroslav@67: * {@code toString} of one argument. jaroslav@67: * jaroslav@67: * @return a {@code String} representation of this object. jaroslav@67: * @see java.lang.Double#toString(double) jaroslav@67: */ jaroslav@67: public String toString() { jaroslav@67: return toString(value); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the value of this {@code Double} as a {@code byte} (by jaroslav@67: * casting to a {@code byte}). jaroslav@67: * jaroslav@67: * @return the {@code double} value represented by this object jaroslav@67: * converted to type {@code byte} jaroslav@67: * @since JDK1.1 jaroslav@67: */ jaroslav@67: public byte byteValue() { jaroslav@67: return (byte)value; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the value of this {@code Double} as a jaroslav@67: * {@code short} (by casting to a {@code short}). jaroslav@67: * jaroslav@67: * @return the {@code double} value represented by this object jaroslav@67: * converted to type {@code short} jaroslav@67: * @since JDK1.1 jaroslav@67: */ jaroslav@67: public short shortValue() { jaroslav@67: return (short)value; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the value of this {@code Double} as an jaroslav@67: * {@code int} (by casting to type {@code int}). jaroslav@67: * jaroslav@67: * @return the {@code double} value represented by this object jaroslav@67: * converted to type {@code int} jaroslav@67: */ jaroslav@67: public int intValue() { jaroslav@67: return (int)value; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the value of this {@code Double} as a jaroslav@67: * {@code long} (by casting to type {@code long}). jaroslav@67: * jaroslav@67: * @return the {@code double} value represented by this object jaroslav@67: * converted to type {@code long} jaroslav@67: */ jaroslav@67: public long longValue() { jaroslav@67: return (long)value; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the {@code float} value of this jaroslav@67: * {@code Double} object. jaroslav@67: * jaroslav@67: * @return the {@code double} value represented by this object jaroslav@67: * converted to type {@code float} jaroslav@67: * @since JDK1.0 jaroslav@67: */ jaroslav@67: public float floatValue() { jaroslav@67: return (float)value; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the {@code double} value of this jaroslav@67: * {@code Double} object. jaroslav@67: * jaroslav@67: * @return the {@code double} value represented by this object jaroslav@67: */ jaroslav@67: public double doubleValue() { jaroslav@67: return (double)value; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a hash code for this {@code Double} object. The jaroslav@67: * result is the exclusive OR of the two halves of the jaroslav@67: * {@code long} integer bit representation, exactly as jaroslav@67: * produced by the method {@link #doubleToLongBits(double)}, of jaroslav@67: * the primitive {@code double} value represented by this jaroslav@67: * {@code Double} object. That is, the hash code is the value jaroslav@67: * of the expression: jaroslav@67: * jaroslav@67: *
jaroslav@67: * {@code (int)(v^(v>>>32))} jaroslav@67: *
jaroslav@67: * jaroslav@67: * where {@code v} is defined by: jaroslav@67: * jaroslav@67: *
jaroslav@67: * {@code long v = Double.doubleToLongBits(this.doubleValue());} jaroslav@67: *
jaroslav@67: * jaroslav@67: * @return a {@code hash code} value for this object. jaroslav@67: */ jaroslav@67: public int hashCode() { jaroslav@67: long bits = doubleToLongBits(value); jaroslav@67: return (int)(bits ^ (bits >>> 32)); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Compares this object against the specified object. The result jaroslav@67: * is {@code true} if and only if the argument is not jaroslav@67: * {@code null} and is a {@code Double} object that jaroslav@67: * represents a {@code double} that has the same value as the jaroslav@67: * {@code double} represented by this object. For this jaroslav@67: * purpose, two {@code double} values are considered to be jaroslav@67: * the same if and only if the method {@link jaroslav@67: * #doubleToLongBits(double)} returns the identical jaroslav@67: * {@code long} value when applied to each. jaroslav@67: * jaroslav@67: *

Note that in most cases, for two instances of class jaroslav@67: * {@code Double}, {@code d1} and {@code d2}, the jaroslav@67: * value of {@code d1.equals(d2)} is {@code true} if and jaroslav@67: * only if jaroslav@67: * jaroslav@67: *

jaroslav@67: * {@code d1.doubleValue() == d2.doubleValue()} jaroslav@67: *
jaroslav@67: * jaroslav@67: *

also has the value {@code true}. However, there are two jaroslav@67: * exceptions: jaroslav@67: *

jaroslav@67: * This definition allows hash tables to operate properly. jaroslav@67: * @param obj the object to compare with. jaroslav@67: * @return {@code true} if the objects are the same; jaroslav@67: * {@code false} otherwise. jaroslav@67: * @see java.lang.Double#doubleToLongBits(double) jaroslav@67: */ jaroslav@67: public boolean equals(Object obj) { jaroslav@67: return (obj instanceof Double) jaroslav@67: && (doubleToLongBits(((Double)obj).value) == jaroslav@67: doubleToLongBits(value)); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a representation of the specified floating-point value jaroslav@67: * according to the IEEE 754 floating-point "double jaroslav@67: * format" bit layout. jaroslav@67: * jaroslav@67: *

Bit 63 (the bit that is selected by the mask jaroslav@67: * {@code 0x8000000000000000L}) represents the sign of the jaroslav@67: * floating-point number. Bits jaroslav@67: * 62-52 (the bits that are selected by the mask jaroslav@67: * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0 jaroslav@67: * (the bits that are selected by the mask jaroslav@67: * {@code 0x000fffffffffffffL}) represent the significand jaroslav@67: * (sometimes called the mantissa) of the floating-point number. jaroslav@67: * jaroslav@67: *

If the argument is positive infinity, the result is jaroslav@67: * {@code 0x7ff0000000000000L}. jaroslav@67: * jaroslav@67: *

If the argument is negative infinity, the result is jaroslav@67: * {@code 0xfff0000000000000L}. jaroslav@67: * jaroslav@67: *

If the argument is NaN, the result is jaroslav@67: * {@code 0x7ff8000000000000L}. jaroslav@67: * jaroslav@67: *

In all cases, the result is a {@code long} integer that, when jaroslav@67: * given to the {@link #longBitsToDouble(long)} method, will produce a jaroslav@67: * floating-point value the same as the argument to jaroslav@67: * {@code doubleToLongBits} (except all NaN values are jaroslav@67: * collapsed to a single "canonical" NaN value). jaroslav@67: * jaroslav@67: * @param value a {@code double} precision floating-point number. jaroslav@67: * @return the bits that represent the floating-point number. jaroslav@67: */ jaroslav@67: public static long doubleToLongBits(double value) { jaroslav@84: throw new UnsupportedOperationException(); jaroslav@84: // long result = doubleToRawLongBits(value); jaroslav@84: // // Check for NaN based on values of bit fields, maximum jaroslav@84: // // exponent and nonzero significand. jaroslav@84: // if ( ((result & DoubleConsts.EXP_BIT_MASK) == jaroslav@84: // DoubleConsts.EXP_BIT_MASK) && jaroslav@84: // (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L) jaroslav@84: // result = 0x7ff8000000000000L; jaroslav@84: // return result; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a representation of the specified floating-point value jaroslav@67: * according to the IEEE 754 floating-point "double jaroslav@67: * format" bit layout, preserving Not-a-Number (NaN) values. jaroslav@67: * jaroslav@67: *

Bit 63 (the bit that is selected by the mask jaroslav@67: * {@code 0x8000000000000000L}) represents the sign of the jaroslav@67: * floating-point number. Bits jaroslav@67: * 62-52 (the bits that are selected by the mask jaroslav@67: * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0 jaroslav@67: * (the bits that are selected by the mask jaroslav@67: * {@code 0x000fffffffffffffL}) represent the significand jaroslav@67: * (sometimes called the mantissa) of the floating-point number. jaroslav@67: * jaroslav@67: *

If the argument is positive infinity, the result is jaroslav@67: * {@code 0x7ff0000000000000L}. jaroslav@67: * jaroslav@67: *

If the argument is negative infinity, the result is jaroslav@67: * {@code 0xfff0000000000000L}. jaroslav@67: * jaroslav@67: *

If the argument is NaN, the result is the {@code long} jaroslav@67: * integer representing the actual NaN value. Unlike the jaroslav@67: * {@code doubleToLongBits} method, jaroslav@67: * {@code doubleToRawLongBits} does not collapse all the bit jaroslav@67: * patterns encoding a NaN to a single "canonical" NaN jaroslav@67: * value. jaroslav@67: * jaroslav@67: *

In all cases, the result is a {@code long} integer that, jaroslav@67: * when given to the {@link #longBitsToDouble(long)} method, will jaroslav@67: * produce a floating-point value the same as the argument to jaroslav@67: * {@code doubleToRawLongBits}. jaroslav@67: * jaroslav@67: * @param value a {@code double} precision floating-point number. jaroslav@67: * @return the bits that represent the floating-point number. jaroslav@67: * @since 1.3 jaroslav@67: */ jaroslav@67: public static native long doubleToRawLongBits(double value); jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the {@code double} value corresponding to a given jaroslav@67: * bit representation. jaroslav@67: * The argument is considered to be a representation of a jaroslav@67: * floating-point value according to the IEEE 754 floating-point jaroslav@67: * "double format" bit layout. jaroslav@67: * jaroslav@67: *

If the argument is {@code 0x7ff0000000000000L}, the result jaroslav@67: * is positive infinity. jaroslav@67: * jaroslav@67: *

If the argument is {@code 0xfff0000000000000L}, the result jaroslav@67: * is negative infinity. jaroslav@67: * jaroslav@67: *

If the argument is any value in the range jaroslav@67: * {@code 0x7ff0000000000001L} through jaroslav@67: * {@code 0x7fffffffffffffffL} or in the range jaroslav@67: * {@code 0xfff0000000000001L} through jaroslav@67: * {@code 0xffffffffffffffffL}, the result is a NaN. No IEEE jaroslav@67: * 754 floating-point operation provided by Java can distinguish jaroslav@67: * between two NaN values of the same type with different bit jaroslav@67: * patterns. Distinct values of NaN are only distinguishable by jaroslav@67: * use of the {@code Double.doubleToRawLongBits} method. jaroslav@67: * jaroslav@67: *

In all other cases, let s, e, and m be three jaroslav@67: * values that can be computed from the argument: jaroslav@67: * jaroslav@67: *

jaroslav@67:      * int s = ((bits >> 63) == 0) ? 1 : -1;
jaroslav@67:      * int e = (int)((bits >> 52) & 0x7ffL);
jaroslav@67:      * long m = (e == 0) ?
jaroslav@67:      *                 (bits & 0xfffffffffffffL) << 1 :
jaroslav@67:      *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
jaroslav@67:      * 
jaroslav@67: * jaroslav@67: * Then the floating-point result equals the value of the mathematical jaroslav@67: * expression s·m·2e-1075. jaroslav@67: * jaroslav@67: *

Note that this method may not be able to return a jaroslav@67: * {@code double} NaN with exactly same bit pattern as the jaroslav@67: * {@code long} argument. IEEE 754 distinguishes between two jaroslav@67: * kinds of NaNs, quiet NaNs and signaling NaNs. The jaroslav@67: * differences between the two kinds of NaN are generally not jaroslav@67: * visible in Java. Arithmetic operations on signaling NaNs turn jaroslav@67: * them into quiet NaNs with a different, but often similar, bit jaroslav@67: * pattern. However, on some processors merely copying a jaroslav@67: * signaling NaN also performs that conversion. In particular, jaroslav@67: * copying a signaling NaN to return it to the calling method jaroslav@67: * may perform this conversion. So {@code longBitsToDouble} jaroslav@67: * may not be able to return a {@code double} with a jaroslav@67: * signaling NaN bit pattern. Consequently, for some jaroslav@67: * {@code long} values, jaroslav@67: * {@code doubleToRawLongBits(longBitsToDouble(start))} may jaroslav@67: * not equal {@code start}. Moreover, which jaroslav@67: * particular bit patterns represent signaling NaNs is platform jaroslav@67: * dependent; although all NaN bit patterns, quiet or signaling, jaroslav@67: * must be in the NaN range identified above. jaroslav@67: * jaroslav@67: * @param bits any {@code long} integer. jaroslav@67: * @return the {@code double} floating-point value with the same jaroslav@67: * bit pattern. jaroslav@67: */ jaroslav@67: public static native double longBitsToDouble(long bits); jaroslav@67: jaroslav@67: /** jaroslav@67: * Compares two {@code Double} objects numerically. There jaroslav@67: * are two ways in which comparisons performed by this method jaroslav@67: * differ from those performed by the Java language numerical jaroslav@67: * comparison operators ({@code <, <=, ==, >=, >}) jaroslav@67: * when applied to primitive {@code double} values: jaroslav@67: *

jaroslav@67: * This ensures that the natural ordering of jaroslav@67: * {@code Double} objects imposed by this method is consistent jaroslav@67: * with equals. jaroslav@67: * jaroslav@67: * @param anotherDouble the {@code Double} to be compared. jaroslav@67: * @return the value {@code 0} if {@code anotherDouble} is jaroslav@67: * numerically equal to this {@code Double}; a value jaroslav@67: * less than {@code 0} if this {@code Double} jaroslav@67: * is numerically less than {@code anotherDouble}; jaroslav@67: * and a value greater than {@code 0} if this jaroslav@67: * {@code Double} is numerically greater than jaroslav@67: * {@code anotherDouble}. jaroslav@67: * jaroslav@67: * @since 1.2 jaroslav@67: */ jaroslav@67: public int compareTo(Double anotherDouble) { jaroslav@67: return Double.compare(value, anotherDouble.value); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Compares the two specified {@code double} values. The sign jaroslav@67: * of the integer value returned is the same as that of the jaroslav@67: * integer that would be returned by the call: jaroslav@67: *
jaroslav@67:      *    new Double(d1).compareTo(new Double(d2))
jaroslav@67:      * 
jaroslav@67: * jaroslav@67: * @param d1 the first {@code double} to compare jaroslav@67: * @param d2 the second {@code double} to compare jaroslav@67: * @return the value {@code 0} if {@code d1} is jaroslav@67: * numerically equal to {@code d2}; a value less than jaroslav@67: * {@code 0} if {@code d1} is numerically less than jaroslav@67: * {@code d2}; and a value greater than {@code 0} jaroslav@67: * if {@code d1} is numerically greater than jaroslav@67: * {@code d2}. jaroslav@67: * @since 1.4 jaroslav@67: */ jaroslav@67: public static int compare(double d1, double d2) { jaroslav@67: if (d1 < d2) jaroslav@67: return -1; // Neither val is NaN, thisVal is smaller jaroslav@67: if (d1 > d2) jaroslav@67: return 1; // Neither val is NaN, thisVal is larger jaroslav@67: jaroslav@67: // Cannot use doubleToRawLongBits because of possibility of NaNs. jaroslav@67: long thisBits = Double.doubleToLongBits(d1); jaroslav@67: long anotherBits = Double.doubleToLongBits(d2); jaroslav@67: jaroslav@67: return (thisBits == anotherBits ? 0 : // Values are equal jaroslav@67: (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) jaroslav@67: 1)); // (0.0, -0.0) or (NaN, !NaN) jaroslav@67: } jaroslav@67: jaroslav@67: /** use serialVersionUID from JDK 1.0.2 for interoperability */ jaroslav@67: private static final long serialVersionUID = -9172774392245257468L; jaroslav@67: }