jaroslav@1258: /* jaroslav@1258: * Copyright (c) 1996, 2007, Oracle and/or its affiliates. All rights reserved. jaroslav@1258: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. jaroslav@1258: * jaroslav@1258: * This code is free software; you can redistribute it and/or modify it jaroslav@1258: * under the terms of the GNU General Public License version 2 only, as jaroslav@1258: * published by the Free Software Foundation. Oracle designates this jaroslav@1258: * particular file as subject to the "Classpath" exception as provided jaroslav@1258: * by Oracle in the LICENSE file that accompanied this code. jaroslav@1258: * jaroslav@1258: * This code is distributed in the hope that it will be useful, but WITHOUT jaroslav@1258: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or jaroslav@1258: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License jaroslav@1258: * version 2 for more details (a copy is included in the LICENSE file that jaroslav@1258: * accompanied this code). jaroslav@1258: * jaroslav@1258: * You should have received a copy of the GNU General Public License version jaroslav@1258: * 2 along with this work; if not, write to the Free Software Foundation, jaroslav@1258: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. jaroslav@1258: * jaroslav@1258: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA jaroslav@1258: * or visit www.oracle.com if you need additional information or have any jaroslav@1258: * questions. jaroslav@1258: */ jaroslav@1258: jaroslav@1258: /* jaroslav@1258: * Portions Copyright (c) 1995 Colin Plumb. All rights reserved. jaroslav@1258: */ jaroslav@1258: jaroslav@1258: package java.math; jaroslav@1258: jaroslav@1258: import java.util.Random; jaroslav@1258: import java.io.*; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Immutable arbitrary-precision integers. All operations behave as if jaroslav@1258: * BigIntegers were represented in two's-complement notation (like Java's jaroslav@1258: * primitive integer types). BigInteger provides analogues to all of Java's jaroslav@1258: * primitive integer operators, and all relevant methods from java.lang.Math. jaroslav@1258: * Additionally, BigInteger provides operations for modular arithmetic, GCD jaroslav@1258: * calculation, primality testing, prime generation, bit manipulation, jaroslav@1258: * and a few other miscellaneous operations. jaroslav@1258: * jaroslav@1258: *

Semantics of arithmetic operations exactly mimic those of Java's integer jaroslav@1258: * arithmetic operators, as defined in The Java Language Specification. jaroslav@1258: * For example, division by zero throws an {@code ArithmeticException}, and jaroslav@1258: * division of a negative by a positive yields a negative (or zero) remainder. jaroslav@1258: * All of the details in the Spec concerning overflow are ignored, as jaroslav@1258: * BigIntegers are made as large as necessary to accommodate the results of an jaroslav@1258: * operation. jaroslav@1258: * jaroslav@1258: *

Semantics of shift operations extend those of Java's shift operators jaroslav@1258: * to allow for negative shift distances. A right-shift with a negative jaroslav@1258: * shift distance results in a left shift, and vice-versa. The unsigned jaroslav@1258: * right shift operator ({@code >>>}) is omitted, as this operation makes jaroslav@1258: * little sense in combination with the "infinite word size" abstraction jaroslav@1258: * provided by this class. jaroslav@1258: * jaroslav@1258: *

Semantics of bitwise logical operations exactly mimic those of Java's jaroslav@1258: * bitwise integer operators. The binary operators ({@code and}, jaroslav@1258: * {@code or}, {@code xor}) implicitly perform sign extension on the shorter jaroslav@1258: * of the two operands prior to performing the operation. jaroslav@1258: * jaroslav@1258: *

Comparison operations perform signed integer comparisons, analogous to jaroslav@1258: * those performed by Java's relational and equality operators. jaroslav@1258: * jaroslav@1258: *

Modular arithmetic operations are provided to compute residues, perform jaroslav@1258: * exponentiation, and compute multiplicative inverses. These methods always jaroslav@1258: * return a non-negative result, between {@code 0} and {@code (modulus - 1)}, jaroslav@1258: * inclusive. jaroslav@1258: * jaroslav@1258: *

Bit operations operate on a single bit of the two's-complement jaroslav@1258: * representation of their operand. If necessary, the operand is sign- jaroslav@1258: * extended so that it contains the designated bit. None of the single-bit jaroslav@1258: * operations can produce a BigInteger with a different sign from the jaroslav@1258: * BigInteger being operated on, as they affect only a single bit, and the jaroslav@1258: * "infinite word size" abstraction provided by this class ensures that there jaroslav@1258: * are infinitely many "virtual sign bits" preceding each BigInteger. jaroslav@1258: * jaroslav@1258: *

For the sake of brevity and clarity, pseudo-code is used throughout the jaroslav@1258: * descriptions of BigInteger methods. The pseudo-code expression jaroslav@1258: * {@code (i + j)} is shorthand for "a BigInteger whose value is jaroslav@1258: * that of the BigInteger {@code i} plus that of the BigInteger {@code j}." jaroslav@1258: * The pseudo-code expression {@code (i == j)} is shorthand for jaroslav@1258: * "{@code true} if and only if the BigInteger {@code i} represents the same jaroslav@1258: * value as the BigInteger {@code j}." Other pseudo-code expressions are jaroslav@1258: * interpreted similarly. jaroslav@1258: * jaroslav@1258: *

All methods and constructors in this class throw jaroslav@1258: * {@code NullPointerException} when passed jaroslav@1258: * a null object reference for any input parameter. jaroslav@1258: * jaroslav@1258: * @see BigDecimal jaroslav@1258: * @author Josh Bloch jaroslav@1258: * @author Michael McCloskey jaroslav@1258: * @since JDK1.1 jaroslav@1258: */ jaroslav@1258: jaroslav@1258: public class BigInteger extends Number implements Comparable { jaroslav@1258: /** jaroslav@1258: * The signum of this BigInteger: -1 for negative, 0 for zero, or jaroslav@1258: * 1 for positive. Note that the BigInteger zero must have jaroslav@1258: * a signum of 0. This is necessary to ensures that there is exactly one jaroslav@1258: * representation for each BigInteger value. jaroslav@1258: * jaroslav@1258: * @serial jaroslav@1258: */ jaroslav@1258: final int signum; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * The magnitude of this BigInteger, in big-endian order: the jaroslav@1258: * zeroth element of this array is the most-significant int of the jaroslav@1258: * magnitude. The magnitude must be "minimal" in that the most-significant jaroslav@1258: * int ({@code mag[0]}) must be non-zero. This is necessary to jaroslav@1258: * ensure that there is exactly one representation for each BigInteger jaroslav@1258: * value. Note that this implies that the BigInteger zero has a jaroslav@1258: * zero-length mag array. jaroslav@1258: */ jaroslav@1258: final int[] mag; jaroslav@1258: jaroslav@1258: // These "redundant fields" are initialized with recognizable nonsense jaroslav@1258: // values, and cached the first time they are needed (or never, if they jaroslav@1258: // aren't needed). jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * One plus the bitCount of this BigInteger. Zeros means unitialized. jaroslav@1258: * jaroslav@1258: * @serial jaroslav@1258: * @see #bitCount jaroslav@1258: * @deprecated Deprecated since logical value is offset from stored jaroslav@1258: * value and correction factor is applied in accessor method. jaroslav@1258: */ jaroslav@1258: @Deprecated jaroslav@1258: private int bitCount; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * One plus the bitLength of this BigInteger. Zeros means unitialized. jaroslav@1258: * (either value is acceptable). jaroslav@1258: * jaroslav@1258: * @serial jaroslav@1258: * @see #bitLength() jaroslav@1258: * @deprecated Deprecated since logical value is offset from stored jaroslav@1258: * value and correction factor is applied in accessor method. jaroslav@1258: */ jaroslav@1258: @Deprecated jaroslav@1258: private int bitLength; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Two plus the lowest set bit of this BigInteger, as returned by jaroslav@1258: * getLowestSetBit(). jaroslav@1258: * jaroslav@1258: * @serial jaroslav@1258: * @see #getLowestSetBit jaroslav@1258: * @deprecated Deprecated since logical value is offset from stored jaroslav@1258: * value and correction factor is applied in accessor method. jaroslav@1258: */ jaroslav@1258: @Deprecated jaroslav@1258: private int lowestSetBit; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Two plus the index of the lowest-order int in the magnitude of this jaroslav@1258: * BigInteger that contains a nonzero int, or -2 (either value is acceptable). jaroslav@1258: * The least significant int has int-number 0, the next int in order of jaroslav@1258: * increasing significance has int-number 1, and so forth. jaroslav@1258: * @deprecated Deprecated since logical value is offset from stored jaroslav@1258: * value and correction factor is applied in accessor method. jaroslav@1258: */ jaroslav@1258: @Deprecated jaroslav@1258: private int firstNonzeroIntNum; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * This mask is used to obtain the value of an int as if it were unsigned. jaroslav@1258: */ jaroslav@1258: final static long LONG_MASK = 0xffffffffL; jaroslav@1258: jaroslav@1258: //Constructors jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Translates a byte array containing the two's-complement binary jaroslav@1258: * representation of a BigInteger into a BigInteger. The input array is jaroslav@1258: * assumed to be in big-endian byte-order: the most significant jaroslav@1258: * byte is in the zeroth element. jaroslav@1258: * jaroslav@1258: * @param val big-endian two's-complement binary representation of jaroslav@1258: * BigInteger. jaroslav@1258: * @throws NumberFormatException {@code val} is zero bytes long. jaroslav@1258: */ jaroslav@1258: public BigInteger(byte[] val) { jaroslav@1258: if (val.length == 0) jaroslav@1258: throw new NumberFormatException("Zero length BigInteger"); jaroslav@1258: jaroslav@1258: if (val[0] < 0) { jaroslav@1258: mag = makePositive(val); jaroslav@1258: signum = -1; jaroslav@1258: } else { jaroslav@1258: mag = stripLeadingZeroBytes(val); jaroslav@1258: signum = (mag.length == 0 ? 0 : 1); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * This private constructor translates an int array containing the jaroslav@1258: * two's-complement binary representation of a BigInteger into a jaroslav@1258: * BigInteger. The input array is assumed to be in big-endian jaroslav@1258: * int-order: the most significant int is in the zeroth element. jaroslav@1258: */ jaroslav@1258: private BigInteger(int[] val) { jaroslav@1258: if (val.length == 0) jaroslav@1258: throw new NumberFormatException("Zero length BigInteger"); jaroslav@1258: jaroslav@1258: if (val[0] < 0) { jaroslav@1258: mag = makePositive(val); jaroslav@1258: signum = -1; jaroslav@1258: } else { jaroslav@1258: mag = trustedStripLeadingZeroInts(val); jaroslav@1258: signum = (mag.length == 0 ? 0 : 1); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Translates the sign-magnitude representation of a BigInteger into a jaroslav@1258: * BigInteger. The sign is represented as an integer signum value: -1 for jaroslav@1258: * negative, 0 for zero, or 1 for positive. The magnitude is a byte array jaroslav@1258: * in big-endian byte-order: the most significant byte is in the jaroslav@1258: * zeroth element. A zero-length magnitude array is permissible, and will jaroslav@1258: * result in a BigInteger value of 0, whether signum is -1, 0 or 1. jaroslav@1258: * jaroslav@1258: * @param signum signum of the number (-1 for negative, 0 for zero, 1 jaroslav@1258: * for positive). jaroslav@1258: * @param magnitude big-endian binary representation of the magnitude of jaroslav@1258: * the number. jaroslav@1258: * @throws NumberFormatException {@code signum} is not one of the three jaroslav@1258: * legal values (-1, 0, and 1), or {@code signum} is 0 and jaroslav@1258: * {@code magnitude} contains one or more non-zero bytes. jaroslav@1258: */ jaroslav@1258: public BigInteger(int signum, byte[] magnitude) { jaroslav@1258: this.mag = stripLeadingZeroBytes(magnitude); jaroslav@1258: jaroslav@1258: if (signum < -1 || signum > 1) jaroslav@1258: throw(new NumberFormatException("Invalid signum value")); jaroslav@1258: jaroslav@1258: if (this.mag.length==0) { jaroslav@1258: this.signum = 0; jaroslav@1258: } else { jaroslav@1258: if (signum == 0) jaroslav@1258: throw(new NumberFormatException("signum-magnitude mismatch")); jaroslav@1258: this.signum = signum; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * A constructor for internal use that translates the sign-magnitude jaroslav@1258: * representation of a BigInteger into a BigInteger. It checks the jaroslav@1258: * arguments and copies the magnitude so this constructor would be jaroslav@1258: * safe for external use. jaroslav@1258: */ jaroslav@1258: private BigInteger(int signum, int[] magnitude) { jaroslav@1258: this.mag = stripLeadingZeroInts(magnitude); jaroslav@1258: jaroslav@1258: if (signum < -1 || signum > 1) jaroslav@1258: throw(new NumberFormatException("Invalid signum value")); jaroslav@1258: jaroslav@1258: if (this.mag.length==0) { jaroslav@1258: this.signum = 0; jaroslav@1258: } else { jaroslav@1258: if (signum == 0) jaroslav@1258: throw(new NumberFormatException("signum-magnitude mismatch")); jaroslav@1258: this.signum = signum; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Translates the String representation of a BigInteger in the jaroslav@1258: * specified radix into a BigInteger. The String representation jaroslav@1258: * consists of an optional minus or plus sign followed by a jaroslav@1258: * sequence of one or more digits in the specified radix. The jaroslav@1258: * character-to-digit mapping is provided by {@code jaroslav@1258: * Character.digit}. The String may not contain any extraneous jaroslav@1258: * characters (whitespace, for example). jaroslav@1258: * jaroslav@1258: * @param val String representation of BigInteger. jaroslav@1258: * @param radix radix to be used in interpreting {@code val}. jaroslav@1258: * @throws NumberFormatException {@code val} is not a valid representation jaroslav@1258: * of a BigInteger in the specified radix, or {@code radix} is jaroslav@1258: * outside the range from {@link Character#MIN_RADIX} to jaroslav@1258: * {@link Character#MAX_RADIX}, inclusive. jaroslav@1258: * @see Character#digit jaroslav@1258: */ jaroslav@1258: public BigInteger(String val, int radix) { jaroslav@1258: int cursor = 0, numDigits; jaroslav@1258: final int len = val.length(); jaroslav@1258: jaroslav@1258: if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) jaroslav@1258: throw new NumberFormatException("Radix out of range"); jaroslav@1258: if (len == 0) jaroslav@1258: throw new NumberFormatException("Zero length BigInteger"); jaroslav@1258: jaroslav@1258: // Check for at most one leading sign jaroslav@1258: int sign = 1; jaroslav@1258: int index1 = val.lastIndexOf('-'); jaroslav@1258: int index2 = val.lastIndexOf('+'); jaroslav@1258: if ((index1 + index2) <= -1) { jaroslav@1258: // No leading sign character or at most one leading sign character jaroslav@1258: if (index1 == 0 || index2 == 0) { jaroslav@1258: cursor = 1; jaroslav@1258: if (len == 1) jaroslav@1258: throw new NumberFormatException("Zero length BigInteger"); jaroslav@1258: } jaroslav@1258: if (index1 == 0) jaroslav@1258: sign = -1; jaroslav@1258: } else jaroslav@1258: throw new NumberFormatException("Illegal embedded sign character"); jaroslav@1258: jaroslav@1258: // Skip leading zeros and compute number of digits in magnitude jaroslav@1258: while (cursor < len && jaroslav@1258: Character.digit(val.charAt(cursor), radix) == 0) jaroslav@1258: cursor++; jaroslav@1258: if (cursor == len) { jaroslav@1258: signum = 0; jaroslav@1258: mag = ZERO.mag; jaroslav@1258: return; jaroslav@1258: } jaroslav@1258: jaroslav@1258: numDigits = len - cursor; jaroslav@1258: signum = sign; jaroslav@1258: jaroslav@1258: // Pre-allocate array of expected size. May be too large but can jaroslav@1258: // never be too small. Typically exact. jaroslav@1258: int numBits = (int)(((numDigits * bitsPerDigit[radix]) >>> 10) + 1); jaroslav@1258: int numWords = (numBits + 31) >>> 5; jaroslav@1258: int[] magnitude = new int[numWords]; jaroslav@1258: jaroslav@1258: // Process first (potentially short) digit group jaroslav@1258: int firstGroupLen = numDigits % digitsPerInt[radix]; jaroslav@1258: if (firstGroupLen == 0) jaroslav@1258: firstGroupLen = digitsPerInt[radix]; jaroslav@1258: String group = val.substring(cursor, cursor += firstGroupLen); jaroslav@1258: magnitude[numWords - 1] = Integer.parseInt(group, radix); jaroslav@1258: if (magnitude[numWords - 1] < 0) jaroslav@1258: throw new NumberFormatException("Illegal digit"); jaroslav@1258: jaroslav@1258: // Process remaining digit groups jaroslav@1258: int superRadix = intRadix[radix]; jaroslav@1258: int groupVal = 0; jaroslav@1258: while (cursor < len) { jaroslav@1258: group = val.substring(cursor, cursor += digitsPerInt[radix]); jaroslav@1258: groupVal = Integer.parseInt(group, radix); jaroslav@1258: if (groupVal < 0) jaroslav@1258: throw new NumberFormatException("Illegal digit"); jaroslav@1258: destructiveMulAdd(magnitude, superRadix, groupVal); jaroslav@1258: } jaroslav@1258: // Required for cases where the array was overallocated. jaroslav@1258: mag = trustedStripLeadingZeroInts(magnitude); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Constructs a new BigInteger using a char array with radix=10 jaroslav@1258: BigInteger(char[] val) { jaroslav@1258: int cursor = 0, numDigits; jaroslav@1258: int len = val.length; jaroslav@1258: jaroslav@1258: // Check for leading minus sign jaroslav@1258: int sign = 1; jaroslav@1258: if (val[0] == '-') { jaroslav@1258: if (len == 1) jaroslav@1258: throw new NumberFormatException("Zero length BigInteger"); jaroslav@1258: sign = -1; jaroslav@1258: cursor = 1; jaroslav@1258: } else if (val[0] == '+') { jaroslav@1258: if (len == 1) jaroslav@1258: throw new NumberFormatException("Zero length BigInteger"); jaroslav@1258: cursor = 1; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Skip leading zeros and compute number of digits in magnitude jaroslav@1258: while (cursor < len && Character.digit(val[cursor], 10) == 0) jaroslav@1258: cursor++; jaroslav@1258: if (cursor == len) { jaroslav@1258: signum = 0; jaroslav@1258: mag = ZERO.mag; jaroslav@1258: return; jaroslav@1258: } jaroslav@1258: jaroslav@1258: numDigits = len - cursor; jaroslav@1258: signum = sign; jaroslav@1258: jaroslav@1258: // Pre-allocate array of expected size jaroslav@1258: int numWords; jaroslav@1258: if (len < 10) { jaroslav@1258: numWords = 1; jaroslav@1258: } else { jaroslav@1258: int numBits = (int)(((numDigits * bitsPerDigit[10]) >>> 10) + 1); jaroslav@1258: numWords = (numBits + 31) >>> 5; jaroslav@1258: } jaroslav@1258: int[] magnitude = new int[numWords]; jaroslav@1258: jaroslav@1258: // Process first (potentially short) digit group jaroslav@1258: int firstGroupLen = numDigits % digitsPerInt[10]; jaroslav@1258: if (firstGroupLen == 0) jaroslav@1258: firstGroupLen = digitsPerInt[10]; jaroslav@1258: magnitude[numWords - 1] = parseInt(val, cursor, cursor += firstGroupLen); jaroslav@1258: jaroslav@1258: // Process remaining digit groups jaroslav@1258: while (cursor < len) { jaroslav@1258: int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]); jaroslav@1258: destructiveMulAdd(magnitude, intRadix[10], groupVal); jaroslav@1258: } jaroslav@1258: mag = trustedStripLeadingZeroInts(magnitude); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Create an integer with the digits between the two indexes jaroslav@1258: // Assumes start < end. The result may be negative, but it jaroslav@1258: // is to be treated as an unsigned value. jaroslav@1258: private int parseInt(char[] source, int start, int end) { jaroslav@1258: int result = Character.digit(source[start++], 10); jaroslav@1258: if (result == -1) jaroslav@1258: throw new NumberFormatException(new String(source)); jaroslav@1258: jaroslav@1258: for (int index = start; index= 0; i--) { jaroslav@1258: product = ylong * (x[i] & LONG_MASK) + carry; jaroslav@1258: x[i] = (int)product; jaroslav@1258: carry = product >>> 32; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Perform the addition jaroslav@1258: long sum = (x[len-1] & LONG_MASK) + zlong; jaroslav@1258: x[len-1] = (int)sum; jaroslav@1258: carry = sum >>> 32; jaroslav@1258: for (int i = len-2; i >= 0; i--) { jaroslav@1258: sum = (x[i] & LONG_MASK) + carry; jaroslav@1258: x[i] = (int)sum; jaroslav@1258: carry = sum >>> 32; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Translates the decimal String representation of a BigInteger into a jaroslav@1258: * BigInteger. The String representation consists of an optional minus jaroslav@1258: * sign followed by a sequence of one or more decimal digits. The jaroslav@1258: * character-to-digit mapping is provided by {@code Character.digit}. jaroslav@1258: * The String may not contain any extraneous characters (whitespace, for jaroslav@1258: * example). jaroslav@1258: * jaroslav@1258: * @param val decimal String representation of BigInteger. jaroslav@1258: * @throws NumberFormatException {@code val} is not a valid representation jaroslav@1258: * of a BigInteger. jaroslav@1258: * @see Character#digit jaroslav@1258: */ jaroslav@1258: public BigInteger(String val) { jaroslav@1258: this(val, 10); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Constructs a randomly generated BigInteger, uniformly distributed over jaroslav@1258: * the range 0 to (2{@code numBits} - 1), inclusive. jaroslav@1258: * The uniformity of the distribution assumes that a fair source of random jaroslav@1258: * bits is provided in {@code rnd}. Note that this constructor always jaroslav@1258: * constructs a non-negative BigInteger. jaroslav@1258: * jaroslav@1258: * @param numBits maximum bitLength of the new BigInteger. jaroslav@1258: * @param rnd source of randomness to be used in computing the new jaroslav@1258: * BigInteger. jaroslav@1258: * @throws IllegalArgumentException {@code numBits} is negative. jaroslav@1258: * @see #bitLength() jaroslav@1258: */ jaroslav@1258: public BigInteger(int numBits, Random rnd) { jaroslav@1258: this(1, randomBits(numBits, rnd)); jaroslav@1258: } jaroslav@1258: jaroslav@1258: private static byte[] randomBits(int numBits, Random rnd) { jaroslav@1258: if (numBits < 0) jaroslav@1258: throw new IllegalArgumentException("numBits must be non-negative"); jaroslav@1258: int numBytes = (int)(((long)numBits+7)/8); // avoid overflow jaroslav@1258: byte[] randomBits = new byte[numBytes]; jaroslav@1258: jaroslav@1258: // Generate random bytes and mask out any excess bits jaroslav@1258: if (numBytes > 0) { jaroslav@1258: rnd.nextBytes(randomBits); jaroslav@1258: int excessBits = 8*numBytes - numBits; jaroslav@1258: randomBits[0] &= (1 << (8-excessBits)) - 1; jaroslav@1258: } jaroslav@1258: return randomBits; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Constructs a randomly generated positive BigInteger that is probably jaroslav@1258: * prime, with the specified bitLength. jaroslav@1258: * jaroslav@1258: *

It is recommended that the {@link #probablePrime probablePrime} jaroslav@1258: * method be used in preference to this constructor unless there jaroslav@1258: * is a compelling need to specify a certainty. jaroslav@1258: * jaroslav@1258: * @param bitLength bitLength of the returned BigInteger. jaroslav@1258: * @param certainty a measure of the uncertainty that the caller is jaroslav@1258: * willing to tolerate. The probability that the new BigInteger jaroslav@1258: * represents a prime number will exceed jaroslav@1258: * (1 - 1/2{@code certainty}). The execution time of jaroslav@1258: * this constructor is proportional to the value of this parameter. jaroslav@1258: * @param rnd source of random bits used to select candidates to be jaroslav@1258: * tested for primality. jaroslav@1258: * @throws ArithmeticException {@code bitLength < 2}. jaroslav@1258: * @see #bitLength() jaroslav@1258: */ jaroslav@1258: public BigInteger(int bitLength, int certainty, Random rnd) { jaroslav@1258: BigInteger prime; jaroslav@1258: jaroslav@1258: if (bitLength < 2) jaroslav@1258: throw new ArithmeticException("bitLength < 2"); jaroslav@1258: // The cutoff of 95 was chosen empirically for best performance jaroslav@1258: prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd) jaroslav@1258: : largePrime(bitLength, certainty, rnd)); jaroslav@1258: signum = 1; jaroslav@1258: mag = prime.mag; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Minimum size in bits that the requested prime number has jaroslav@1258: // before we use the large prime number generating algorithms jaroslav@1258: private static final int SMALL_PRIME_THRESHOLD = 95; jaroslav@1258: jaroslav@1258: // Certainty required to meet the spec of probablePrime jaroslav@1258: private static final int DEFAULT_PRIME_CERTAINTY = 100; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a positive BigInteger that is probably prime, with the jaroslav@1258: * specified bitLength. The probability that a BigInteger returned jaroslav@1258: * by this method is composite does not exceed 2-100. jaroslav@1258: * jaroslav@1258: * @param bitLength bitLength of the returned BigInteger. jaroslav@1258: * @param rnd source of random bits used to select candidates to be jaroslav@1258: * tested for primality. jaroslav@1258: * @return a BigInteger of {@code bitLength} bits that is probably prime jaroslav@1258: * @throws ArithmeticException {@code bitLength < 2}. jaroslav@1258: * @see #bitLength() jaroslav@1258: * @since 1.4 jaroslav@1258: */ jaroslav@1258: public static BigInteger probablePrime(int bitLength, Random rnd) { jaroslav@1258: if (bitLength < 2) jaroslav@1258: throw new ArithmeticException("bitLength < 2"); jaroslav@1258: jaroslav@1258: // The cutoff of 95 was chosen empirically for best performance jaroslav@1258: return (bitLength < SMALL_PRIME_THRESHOLD ? jaroslav@1258: smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) : jaroslav@1258: largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd)); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Find a random number of the specified bitLength that is probably prime. jaroslav@1258: * This method is used for smaller primes, its performance degrades on jaroslav@1258: * larger bitlengths. jaroslav@1258: * jaroslav@1258: * This method assumes bitLength > 1. jaroslav@1258: */ jaroslav@1258: private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) { jaroslav@1258: int magLen = (bitLength + 31) >>> 5; jaroslav@1258: int temp[] = new int[magLen]; jaroslav@1258: int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int jaroslav@1258: int highMask = (highBit << 1) - 1; // Bits to keep in high int jaroslav@1258: jaroslav@1258: while(true) { jaroslav@1258: // Construct a candidate jaroslav@1258: for (int i=0; i 2) jaroslav@1258: temp[magLen-1] |= 1; // Make odd if bitlen > 2 jaroslav@1258: jaroslav@1258: BigInteger p = new BigInteger(temp, 1); jaroslav@1258: jaroslav@1258: // Do cheap "pre-test" if applicable jaroslav@1258: if (bitLength > 6) { jaroslav@1258: long r = p.remainder(SMALL_PRIME_PRODUCT).longValue(); jaroslav@1258: if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || jaroslav@1258: (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || jaroslav@1258: (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) jaroslav@1258: continue; // Candidate is composite; try another jaroslav@1258: } jaroslav@1258: jaroslav@1258: // All candidates of bitLength 2 and 3 are prime by this point jaroslav@1258: if (bitLength < 4) jaroslav@1258: return p; jaroslav@1258: jaroslav@1258: // Do expensive test if we survive pre-test (or it's inapplicable) jaroslav@1258: if (p.primeToCertainty(certainty, rnd)) jaroslav@1258: return p; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: private static final BigInteger SMALL_PRIME_PRODUCT jaroslav@1258: = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41); jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Find a random number of the specified bitLength that is probably prime. jaroslav@1258: * This method is more appropriate for larger bitlengths since it uses jaroslav@1258: * a sieve to eliminate most composites before using a more expensive jaroslav@1258: * test. jaroslav@1258: */ jaroslav@1258: private static BigInteger largePrime(int bitLength, int certainty, Random rnd) { jaroslav@1258: BigInteger p; jaroslav@1258: p = new BigInteger(bitLength, rnd).setBit(bitLength-1); jaroslav@1258: p.mag[p.mag.length-1] &= 0xfffffffe; jaroslav@1258: jaroslav@1258: // Use a sieve length likely to contain the next prime number jaroslav@1258: int searchLen = (bitLength / 20) * 64; jaroslav@1258: BitSieve searchSieve = new BitSieve(p, searchLen); jaroslav@1258: BigInteger candidate = searchSieve.retrieve(p, certainty, rnd); jaroslav@1258: jaroslav@1258: while ((candidate == null) || (candidate.bitLength() != bitLength)) { jaroslav@1258: p = p.add(BigInteger.valueOf(2*searchLen)); jaroslav@1258: if (p.bitLength() != bitLength) jaroslav@1258: p = new BigInteger(bitLength, rnd).setBit(bitLength-1); jaroslav@1258: p.mag[p.mag.length-1] &= 0xfffffffe; jaroslav@1258: searchSieve = new BitSieve(p, searchLen); jaroslav@1258: candidate = searchSieve.retrieve(p, certainty, rnd); jaroslav@1258: } jaroslav@1258: return candidate; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the first integer greater than this {@code BigInteger} that jaroslav@1258: * is probably prime. The probability that the number returned by this jaroslav@1258: * method is composite does not exceed 2-100. This method will jaroslav@1258: * never skip over a prime when searching: if it returns {@code p}, there jaroslav@1258: * is no prime {@code q} such that {@code this < q < p}. jaroslav@1258: * jaroslav@1258: * @return the first integer greater than this {@code BigInteger} that jaroslav@1258: * is probably prime. jaroslav@1258: * @throws ArithmeticException {@code this < 0}. jaroslav@1258: * @since 1.5 jaroslav@1258: */ jaroslav@1258: public BigInteger nextProbablePrime() { jaroslav@1258: if (this.signum < 0) jaroslav@1258: throw new ArithmeticException("start < 0: " + this); jaroslav@1258: jaroslav@1258: // Handle trivial cases jaroslav@1258: if ((this.signum == 0) || this.equals(ONE)) jaroslav@1258: return TWO; jaroslav@1258: jaroslav@1258: BigInteger result = this.add(ONE); jaroslav@1258: jaroslav@1258: // Fastpath for small numbers jaroslav@1258: if (result.bitLength() < SMALL_PRIME_THRESHOLD) { jaroslav@1258: jaroslav@1258: // Ensure an odd number jaroslav@1258: if (!result.testBit(0)) jaroslav@1258: result = result.add(ONE); jaroslav@1258: jaroslav@1258: while(true) { jaroslav@1258: // Do cheap "pre-test" if applicable jaroslav@1258: if (result.bitLength() > 6) { jaroslav@1258: long r = result.remainder(SMALL_PRIME_PRODUCT).longValue(); jaroslav@1258: if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || jaroslav@1258: (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || jaroslav@1258: (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) { jaroslav@1258: result = result.add(TWO); jaroslav@1258: continue; // Candidate is composite; try another jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: // All candidates of bitLength 2 and 3 are prime by this point jaroslav@1258: if (result.bitLength() < 4) jaroslav@1258: return result; jaroslav@1258: jaroslav@1258: // The expensive test jaroslav@1258: if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null)) jaroslav@1258: return result; jaroslav@1258: jaroslav@1258: result = result.add(TWO); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Start at previous even number jaroslav@1258: if (result.testBit(0)) jaroslav@1258: result = result.subtract(ONE); jaroslav@1258: jaroslav@1258: // Looking for the next large prime jaroslav@1258: int searchLen = (result.bitLength() / 20) * 64; jaroslav@1258: jaroslav@1258: while(true) { jaroslav@1258: BitSieve searchSieve = new BitSieve(result, searchLen); jaroslav@1258: BigInteger candidate = searchSieve.retrieve(result, jaroslav@1258: DEFAULT_PRIME_CERTAINTY, null); jaroslav@1258: if (candidate != null) jaroslav@1258: return candidate; jaroslav@1258: result = result.add(BigInteger.valueOf(2 * searchLen)); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns {@code true} if this BigInteger is probably prime, jaroslav@1258: * {@code false} if it's definitely composite. jaroslav@1258: * jaroslav@1258: * This method assumes bitLength > 2. jaroslav@1258: * jaroslav@1258: * @param certainty a measure of the uncertainty that the caller is jaroslav@1258: * willing to tolerate: if the call returns {@code true} jaroslav@1258: * the probability that this BigInteger is prime exceeds jaroslav@1258: * {@code (1 - 1/2certainty)}. The execution time of jaroslav@1258: * this method is proportional to the value of this parameter. jaroslav@1258: * @return {@code true} if this BigInteger is probably prime, jaroslav@1258: * {@code false} if it's definitely composite. jaroslav@1258: */ jaroslav@1258: boolean primeToCertainty(int certainty, Random random) { jaroslav@1258: int rounds = 0; jaroslav@1258: int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2; jaroslav@1258: jaroslav@1258: // The relationship between the certainty and the number of rounds jaroslav@1258: // we perform is given in the draft standard ANSI X9.80, "PRIME jaroslav@1258: // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES". jaroslav@1258: int sizeInBits = this.bitLength(); jaroslav@1258: if (sizeInBits < 100) { jaroslav@1258: rounds = 50; jaroslav@1258: rounds = n < rounds ? n : rounds; jaroslav@1258: return passesMillerRabin(rounds, random); jaroslav@1258: } jaroslav@1258: jaroslav@1258: if (sizeInBits < 256) { jaroslav@1258: rounds = 27; jaroslav@1258: } else if (sizeInBits < 512) { jaroslav@1258: rounds = 15; jaroslav@1258: } else if (sizeInBits < 768) { jaroslav@1258: rounds = 8; jaroslav@1258: } else if (sizeInBits < 1024) { jaroslav@1258: rounds = 4; jaroslav@1258: } else { jaroslav@1258: rounds = 2; jaroslav@1258: } jaroslav@1258: rounds = n < rounds ? n : rounds; jaroslav@1258: jaroslav@1258: return passesMillerRabin(rounds, random) && passesLucasLehmer(); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns true iff this BigInteger is a Lucas-Lehmer probable prime. jaroslav@1258: * jaroslav@1258: * The following assumptions are made: jaroslav@1258: * This BigInteger is a positive, odd number. jaroslav@1258: */ jaroslav@1258: private boolean passesLucasLehmer() { jaroslav@1258: BigInteger thisPlusOne = this.add(ONE); jaroslav@1258: jaroslav@1258: // Step 1 jaroslav@1258: int d = 5; jaroslav@1258: while (jacobiSymbol(d, this) != -1) { jaroslav@1258: // 5, -7, 9, -11, ... jaroslav@1258: d = (d<0) ? Math.abs(d)+2 : -(d+2); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Step 2 jaroslav@1258: BigInteger u = lucasLehmerSequence(d, thisPlusOne, this); jaroslav@1258: jaroslav@1258: // Step 3 jaroslav@1258: return u.mod(this).equals(ZERO); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Computes Jacobi(p,n). jaroslav@1258: * Assumes n positive, odd, n>=3. jaroslav@1258: */ jaroslav@1258: private static int jacobiSymbol(int p, BigInteger n) { jaroslav@1258: if (p == 0) jaroslav@1258: return 0; jaroslav@1258: jaroslav@1258: // Algorithm and comments adapted from Colin Plumb's C library. jaroslav@1258: int j = 1; jaroslav@1258: int u = n.mag[n.mag.length-1]; jaroslav@1258: jaroslav@1258: // Make p positive jaroslav@1258: if (p < 0) { jaroslav@1258: p = -p; jaroslav@1258: int n8 = u & 7; jaroslav@1258: if ((n8 == 3) || (n8 == 7)) jaroslav@1258: j = -j; // 3 (011) or 7 (111) mod 8 jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Get rid of factors of 2 in p jaroslav@1258: while ((p & 3) == 0) jaroslav@1258: p >>= 2; jaroslav@1258: if ((p & 1) == 0) { jaroslav@1258: p >>= 1; jaroslav@1258: if (((u ^ (u>>1)) & 2) != 0) jaroslav@1258: j = -j; // 3 (011) or 5 (101) mod 8 jaroslav@1258: } jaroslav@1258: if (p == 1) jaroslav@1258: return j; jaroslav@1258: // Then, apply quadratic reciprocity jaroslav@1258: if ((p & u & 2) != 0) // p = u = 3 (mod 4)? jaroslav@1258: j = -j; jaroslav@1258: // And reduce u mod p jaroslav@1258: u = n.mod(BigInteger.valueOf(p)).intValue(); jaroslav@1258: jaroslav@1258: // Now compute Jacobi(u,p), u < p jaroslav@1258: while (u != 0) { jaroslav@1258: while ((u & 3) == 0) jaroslav@1258: u >>= 2; jaroslav@1258: if ((u & 1) == 0) { jaroslav@1258: u >>= 1; jaroslav@1258: if (((p ^ (p>>1)) & 2) != 0) jaroslav@1258: j = -j; // 3 (011) or 5 (101) mod 8 jaroslav@1258: } jaroslav@1258: if (u == 1) jaroslav@1258: return j; jaroslav@1258: // Now both u and p are odd, so use quadratic reciprocity jaroslav@1258: assert (u < p); jaroslav@1258: int t = u; u = p; p = t; jaroslav@1258: if ((u & p & 2) != 0) // u = p = 3 (mod 4)? jaroslav@1258: j = -j; jaroslav@1258: // Now u >= p, so it can be reduced jaroslav@1258: u %= p; jaroslav@1258: } jaroslav@1258: return 0; jaroslav@1258: } jaroslav@1258: jaroslav@1258: private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) { jaroslav@1258: BigInteger d = BigInteger.valueOf(z); jaroslav@1258: BigInteger u = ONE; BigInteger u2; jaroslav@1258: BigInteger v = ONE; BigInteger v2; jaroslav@1258: jaroslav@1258: for (int i=k.bitLength()-2; i>=0; i--) { jaroslav@1258: u2 = u.multiply(v).mod(n); jaroslav@1258: jaroslav@1258: v2 = v.square().add(d.multiply(u.square())).mod(n); jaroslav@1258: if (v2.testBit(0)) jaroslav@1258: v2 = v2.subtract(n); jaroslav@1258: jaroslav@1258: v2 = v2.shiftRight(1); jaroslav@1258: jaroslav@1258: u = u2; v = v2; jaroslav@1258: if (k.testBit(i)) { jaroslav@1258: u2 = u.add(v).mod(n); jaroslav@1258: if (u2.testBit(0)) jaroslav@1258: u2 = u2.subtract(n); jaroslav@1258: jaroslav@1258: u2 = u2.shiftRight(1); jaroslav@1258: v2 = v.add(d.multiply(u)).mod(n); jaroslav@1258: if (v2.testBit(0)) jaroslav@1258: v2 = v2.subtract(n); jaroslav@1258: v2 = v2.shiftRight(1); jaroslav@1258: jaroslav@1258: u = u2; v = v2; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: return u; jaroslav@1258: } jaroslav@1258: jaroslav@1258: private static volatile Random staticRandom; jaroslav@1258: jaroslav@1258: private static Random getSecureRandom() { jaroslav@1258: if (staticRandom == null) { jaroslav@1258: staticRandom = new java.security.SecureRandom(); jaroslav@1258: } jaroslav@1258: return staticRandom; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns true iff this BigInteger passes the specified number of jaroslav@1258: * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS jaroslav@1258: * 186-2). jaroslav@1258: * jaroslav@1258: * The following assumptions are made: jaroslav@1258: * This BigInteger is a positive, odd number greater than 2. jaroslav@1258: * iterations<=50. jaroslav@1258: */ jaroslav@1258: private boolean passesMillerRabin(int iterations, Random rnd) { jaroslav@1258: // Find a and m such that m is odd and this == 1 + 2**a * m jaroslav@1258: BigInteger thisMinusOne = this.subtract(ONE); jaroslav@1258: BigInteger m = thisMinusOne; jaroslav@1258: int a = m.getLowestSetBit(); jaroslav@1258: m = m.shiftRight(a); jaroslav@1258: jaroslav@1258: // Do the tests jaroslav@1258: if (rnd == null) { jaroslav@1258: rnd = getSecureRandom(); jaroslav@1258: } jaroslav@1258: for (int i=0; i= 0); jaroslav@1258: jaroslav@1258: int j = 0; jaroslav@1258: BigInteger z = b.modPow(m, this); jaroslav@1258: while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) { jaroslav@1258: if (j>0 && z.equals(ONE) || ++j==a) jaroslav@1258: return false; jaroslav@1258: z = z.modPow(TWO, this); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: return true; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * This internal constructor differs from its public cousin jaroslav@1258: * with the arguments reversed in two ways: it assumes that its jaroslav@1258: * arguments are correct, and it doesn't copy the magnitude array. jaroslav@1258: */ jaroslav@1258: BigInteger(int[] magnitude, int signum) { jaroslav@1258: this.signum = (magnitude.length==0 ? 0 : signum); jaroslav@1258: this.mag = magnitude; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * This private constructor is for internal use and assumes that its jaroslav@1258: * arguments are correct. jaroslav@1258: */ jaroslav@1258: private BigInteger(byte[] magnitude, int signum) { jaroslav@1258: this.signum = (magnitude.length==0 ? 0 : signum); jaroslav@1258: this.mag = stripLeadingZeroBytes(magnitude); jaroslav@1258: } jaroslav@1258: jaroslav@1258: //Static Factory Methods jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is equal to that of the jaroslav@1258: * specified {@code long}. This "static factory method" is jaroslav@1258: * provided in preference to a ({@code long}) constructor jaroslav@1258: * because it allows for reuse of frequently used BigIntegers. jaroslav@1258: * jaroslav@1258: * @param val value of the BigInteger to return. jaroslav@1258: * @return a BigInteger with the specified value. jaroslav@1258: */ jaroslav@1258: public static BigInteger valueOf(long val) { jaroslav@1258: // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant jaroslav@1258: if (val == 0) jaroslav@1258: return ZERO; jaroslav@1258: if (val > 0 && val <= MAX_CONSTANT) jaroslav@1258: return posConst[(int) val]; jaroslav@1258: else if (val < 0 && val >= -MAX_CONSTANT) jaroslav@1258: return negConst[(int) -val]; jaroslav@1258: jaroslav@1258: return new BigInteger(val); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Constructs a BigInteger with the specified value, which may not be zero. jaroslav@1258: */ jaroslav@1258: private BigInteger(long val) { jaroslav@1258: if (val < 0) { jaroslav@1258: val = -val; jaroslav@1258: signum = -1; jaroslav@1258: } else { jaroslav@1258: signum = 1; jaroslav@1258: } jaroslav@1258: jaroslav@1258: int highWord = (int)(val >>> 32); jaroslav@1258: if (highWord==0) { jaroslav@1258: mag = new int[1]; jaroslav@1258: mag[0] = (int)val; jaroslav@1258: } else { jaroslav@1258: mag = new int[2]; jaroslav@1258: mag[0] = highWord; jaroslav@1258: mag[1] = (int)val; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger with the given two's complement representation. jaroslav@1258: * Assumes that the input array will not be modified (the returned jaroslav@1258: * BigInteger will reference the input array if feasible). jaroslav@1258: */ jaroslav@1258: private static BigInteger valueOf(int val[]) { jaroslav@1258: return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val)); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Constants jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Initialize static constant array when class is loaded. jaroslav@1258: */ jaroslav@1258: private final static int MAX_CONSTANT = 16; jaroslav@1258: private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1]; jaroslav@1258: private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1]; jaroslav@1258: static { jaroslav@1258: for (int i = 1; i <= MAX_CONSTANT; i++) { jaroslav@1258: int[] magnitude = new int[1]; jaroslav@1258: magnitude[0] = i; jaroslav@1258: posConst[i] = new BigInteger(magnitude, 1); jaroslav@1258: negConst[i] = new BigInteger(magnitude, -1); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * The BigInteger constant zero. jaroslav@1258: * jaroslav@1258: * @since 1.2 jaroslav@1258: */ jaroslav@1258: public static final BigInteger ZERO = new BigInteger(new int[0], 0); jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * The BigInteger constant one. jaroslav@1258: * jaroslav@1258: * @since 1.2 jaroslav@1258: */ jaroslav@1258: public static final BigInteger ONE = valueOf(1); jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * The BigInteger constant two. (Not exported.) jaroslav@1258: */ jaroslav@1258: private static final BigInteger TWO = valueOf(2); jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * The BigInteger constant ten. jaroslav@1258: * jaroslav@1258: * @since 1.5 jaroslav@1258: */ jaroslav@1258: public static final BigInteger TEN = valueOf(10); jaroslav@1258: jaroslav@1258: // Arithmetic Operations jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this + val)}. jaroslav@1258: * jaroslav@1258: * @param val value to be added to this BigInteger. jaroslav@1258: * @return {@code this + val} jaroslav@1258: */ jaroslav@1258: public BigInteger add(BigInteger val) { jaroslav@1258: if (val.signum == 0) jaroslav@1258: return this; jaroslav@1258: if (signum == 0) jaroslav@1258: return val; jaroslav@1258: if (val.signum == signum) jaroslav@1258: return new BigInteger(add(mag, val.mag), signum); jaroslav@1258: jaroslav@1258: int cmp = compareMagnitude(val); jaroslav@1258: if (cmp == 0) jaroslav@1258: return ZERO; jaroslav@1258: int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) jaroslav@1258: : subtract(val.mag, mag)); jaroslav@1258: resultMag = trustedStripLeadingZeroInts(resultMag); jaroslav@1258: jaroslav@1258: return new BigInteger(resultMag, cmp == signum ? 1 : -1); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Adds the contents of the int arrays x and y. This method allocates jaroslav@1258: * a new int array to hold the answer and returns a reference to that jaroslav@1258: * array. jaroslav@1258: */ jaroslav@1258: private static int[] add(int[] x, int[] y) { jaroslav@1258: // If x is shorter, swap the two arrays jaroslav@1258: if (x.length < y.length) { jaroslav@1258: int[] tmp = x; jaroslav@1258: x = y; jaroslav@1258: y = tmp; jaroslav@1258: } jaroslav@1258: jaroslav@1258: int xIndex = x.length; jaroslav@1258: int yIndex = y.length; jaroslav@1258: int result[] = new int[xIndex]; jaroslav@1258: long sum = 0; jaroslav@1258: jaroslav@1258: // Add common parts of both numbers jaroslav@1258: while(yIndex > 0) { jaroslav@1258: sum = (x[--xIndex] & LONG_MASK) + jaroslav@1258: (y[--yIndex] & LONG_MASK) + (sum >>> 32); jaroslav@1258: result[xIndex] = (int)sum; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Copy remainder of longer number while carry propagation is required jaroslav@1258: boolean carry = (sum >>> 32 != 0); jaroslav@1258: while (xIndex > 0 && carry) jaroslav@1258: carry = ((result[--xIndex] = x[xIndex] + 1) == 0); jaroslav@1258: jaroslav@1258: // Copy remainder of longer number jaroslav@1258: while (xIndex > 0) jaroslav@1258: result[--xIndex] = x[xIndex]; jaroslav@1258: jaroslav@1258: // Grow result if necessary jaroslav@1258: if (carry) { jaroslav@1258: int bigger[] = new int[result.length + 1]; jaroslav@1258: System.arraycopy(result, 0, bigger, 1, result.length); jaroslav@1258: bigger[0] = 0x01; jaroslav@1258: return bigger; jaroslav@1258: } jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this - val)}. jaroslav@1258: * jaroslav@1258: * @param val value to be subtracted from this BigInteger. jaroslav@1258: * @return {@code this - val} jaroslav@1258: */ jaroslav@1258: public BigInteger subtract(BigInteger val) { jaroslav@1258: if (val.signum == 0) jaroslav@1258: return this; jaroslav@1258: if (signum == 0) jaroslav@1258: return val.negate(); jaroslav@1258: if (val.signum != signum) jaroslav@1258: return new BigInteger(add(mag, val.mag), signum); jaroslav@1258: jaroslav@1258: int cmp = compareMagnitude(val); jaroslav@1258: if (cmp == 0) jaroslav@1258: return ZERO; jaroslav@1258: int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) jaroslav@1258: : subtract(val.mag, mag)); jaroslav@1258: resultMag = trustedStripLeadingZeroInts(resultMag); jaroslav@1258: return new BigInteger(resultMag, cmp == signum ? 1 : -1); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Subtracts the contents of the second int arrays (little) from the jaroslav@1258: * first (big). The first int array (big) must represent a larger number jaroslav@1258: * than the second. This method allocates the space necessary to hold the jaroslav@1258: * answer. jaroslav@1258: */ jaroslav@1258: private static int[] subtract(int[] big, int[] little) { jaroslav@1258: int bigIndex = big.length; jaroslav@1258: int result[] = new int[bigIndex]; jaroslav@1258: int littleIndex = little.length; jaroslav@1258: long difference = 0; jaroslav@1258: jaroslav@1258: // Subtract common parts of both numbers jaroslav@1258: while(littleIndex > 0) { jaroslav@1258: difference = (big[--bigIndex] & LONG_MASK) - jaroslav@1258: (little[--littleIndex] & LONG_MASK) + jaroslav@1258: (difference >> 32); jaroslav@1258: result[bigIndex] = (int)difference; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Subtract remainder of longer number while borrow propagates jaroslav@1258: boolean borrow = (difference >> 32 != 0); jaroslav@1258: while (bigIndex > 0 && borrow) jaroslav@1258: borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); jaroslav@1258: jaroslav@1258: // Copy remainder of longer number jaroslav@1258: while (bigIndex > 0) jaroslav@1258: result[--bigIndex] = big[bigIndex]; jaroslav@1258: jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this * val)}. jaroslav@1258: * jaroslav@1258: * @param val value to be multiplied by this BigInteger. jaroslav@1258: * @return {@code this * val} jaroslav@1258: */ jaroslav@1258: public BigInteger multiply(BigInteger val) { jaroslav@1258: if (val.signum == 0 || signum == 0) jaroslav@1258: return ZERO; jaroslav@1258: jaroslav@1258: int[] result = multiplyToLen(mag, mag.length, jaroslav@1258: val.mag, val.mag.length, null); jaroslav@1258: result = trustedStripLeadingZeroInts(result); jaroslav@1258: return new BigInteger(result, signum == val.signum ? 1 : -1); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Package private methods used by BigDecimal code to multiply a BigInteger jaroslav@1258: * with a long. Assumes v is not equal to INFLATED. jaroslav@1258: */ jaroslav@1258: BigInteger multiply(long v) { jaroslav@1258: if (v == 0 || signum == 0) jaroslav@1258: return ZERO; jaroslav@1258: if (v == BigDecimal.INFLATED) jaroslav@1258: return multiply(BigInteger.valueOf(v)); jaroslav@1258: int rsign = (v > 0 ? signum : -signum); jaroslav@1258: if (v < 0) jaroslav@1258: v = -v; jaroslav@1258: long dh = v >>> 32; // higher order bits jaroslav@1258: long dl = v & LONG_MASK; // lower order bits jaroslav@1258: jaroslav@1258: int xlen = mag.length; jaroslav@1258: int[] value = mag; jaroslav@1258: int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]); jaroslav@1258: long carry = 0; jaroslav@1258: int rstart = rmag.length - 1; jaroslav@1258: for (int i = xlen - 1; i >= 0; i--) { jaroslav@1258: long product = (value[i] & LONG_MASK) * dl + carry; jaroslav@1258: rmag[rstart--] = (int)product; jaroslav@1258: carry = product >>> 32; jaroslav@1258: } jaroslav@1258: rmag[rstart] = (int)carry; jaroslav@1258: if (dh != 0L) { jaroslav@1258: carry = 0; jaroslav@1258: rstart = rmag.length - 2; jaroslav@1258: for (int i = xlen - 1; i >= 0; i--) { jaroslav@1258: long product = (value[i] & LONG_MASK) * dh + jaroslav@1258: (rmag[rstart] & LONG_MASK) + carry; jaroslav@1258: rmag[rstart--] = (int)product; jaroslav@1258: carry = product >>> 32; jaroslav@1258: } jaroslav@1258: rmag[0] = (int)carry; jaroslav@1258: } jaroslav@1258: if (carry == 0L) jaroslav@1258: rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length); jaroslav@1258: return new BigInteger(rmag, rsign); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Multiplies int arrays x and y to the specified lengths and places jaroslav@1258: * the result into z. There will be no leading zeros in the resultant array. jaroslav@1258: */ jaroslav@1258: private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) { jaroslav@1258: int xstart = xlen - 1; jaroslav@1258: int ystart = ylen - 1; jaroslav@1258: jaroslav@1258: if (z == null || z.length < (xlen+ ylen)) jaroslav@1258: z = new int[xlen+ylen]; jaroslav@1258: jaroslav@1258: long carry = 0; jaroslav@1258: for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) { jaroslav@1258: long product = (y[j] & LONG_MASK) * jaroslav@1258: (x[xstart] & LONG_MASK) + carry; jaroslav@1258: z[k] = (int)product; jaroslav@1258: carry = product >>> 32; jaroslav@1258: } jaroslav@1258: z[xstart] = (int)carry; jaroslav@1258: jaroslav@1258: for (int i = xstart-1; i >= 0; i--) { jaroslav@1258: carry = 0; jaroslav@1258: for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) { jaroslav@1258: long product = (y[j] & LONG_MASK) * jaroslav@1258: (x[i] & LONG_MASK) + jaroslav@1258: (z[k] & LONG_MASK) + carry; jaroslav@1258: z[k] = (int)product; jaroslav@1258: carry = product >>> 32; jaroslav@1258: } jaroslav@1258: z[i] = (int)carry; jaroslav@1258: } jaroslav@1258: return z; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this2)}. jaroslav@1258: * jaroslav@1258: * @return {@code this2} jaroslav@1258: */ jaroslav@1258: private BigInteger square() { jaroslav@1258: if (signum == 0) jaroslav@1258: return ZERO; jaroslav@1258: int[] z = squareToLen(mag, mag.length, null); jaroslav@1258: return new BigInteger(trustedStripLeadingZeroInts(z), 1); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Squares the contents of the int array x. The result is placed into the jaroslav@1258: * int array z. The contents of x are not changed. jaroslav@1258: */ jaroslav@1258: private static final int[] squareToLen(int[] x, int len, int[] z) { jaroslav@1258: /* jaroslav@1258: * The algorithm used here is adapted from Colin Plumb's C library. jaroslav@1258: * Technique: Consider the partial products in the multiplication jaroslav@1258: * of "abcde" by itself: jaroslav@1258: * jaroslav@1258: * a b c d e jaroslav@1258: * * a b c d e jaroslav@1258: * ================== jaroslav@1258: * ae be ce de ee jaroslav@1258: * ad bd cd dd de jaroslav@1258: * ac bc cc cd ce jaroslav@1258: * ab bb bc bd be jaroslav@1258: * aa ab ac ad ae jaroslav@1258: * jaroslav@1258: * Note that everything above the main diagonal: jaroslav@1258: * ae be ce de = (abcd) * e jaroslav@1258: * ad bd cd = (abc) * d jaroslav@1258: * ac bc = (ab) * c jaroslav@1258: * ab = (a) * b jaroslav@1258: * jaroslav@1258: * is a copy of everything below the main diagonal: jaroslav@1258: * de jaroslav@1258: * cd ce jaroslav@1258: * bc bd be jaroslav@1258: * ab ac ad ae jaroslav@1258: * jaroslav@1258: * Thus, the sum is 2 * (off the diagonal) + diagonal. jaroslav@1258: * jaroslav@1258: * This is accumulated beginning with the diagonal (which jaroslav@1258: * consist of the squares of the digits of the input), which is then jaroslav@1258: * divided by two, the off-diagonal added, and multiplied by two jaroslav@1258: * again. The low bit is simply a copy of the low bit of the jaroslav@1258: * input, so it doesn't need special care. jaroslav@1258: */ jaroslav@1258: int zlen = len << 1; jaroslav@1258: if (z == null || z.length < zlen) jaroslav@1258: z = new int[zlen]; jaroslav@1258: jaroslav@1258: // Store the squares, right shifted one bit (i.e., divided by 2) jaroslav@1258: int lastProductLowWord = 0; jaroslav@1258: for (int j=0, i=0; j>> 33); jaroslav@1258: z[i++] = (int)(product >>> 1); jaroslav@1258: lastProductLowWord = (int)product; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Add in off-diagonal sums jaroslav@1258: for (int i=len, offset=1; i>0; i--, offset+=2) { jaroslav@1258: int t = x[i-1]; jaroslav@1258: t = mulAdd(z, x, offset, i-1, t); jaroslav@1258: addOne(z, offset-1, i, t); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Shift back up and set low bit jaroslav@1258: primitiveLeftShift(z, zlen, 1); jaroslav@1258: z[zlen-1] |= x[len-1] & 1; jaroslav@1258: jaroslav@1258: return z; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this / val)}. jaroslav@1258: * jaroslav@1258: * @param val value by which this BigInteger is to be divided. jaroslav@1258: * @return {@code this / val} jaroslav@1258: * @throws ArithmeticException if {@code val} is zero. jaroslav@1258: */ jaroslav@1258: public BigInteger divide(BigInteger val) { jaroslav@1258: MutableBigInteger q = new MutableBigInteger(), jaroslav@1258: a = new MutableBigInteger(this.mag), jaroslav@1258: b = new MutableBigInteger(val.mag); jaroslav@1258: jaroslav@1258: a.divide(b, q); jaroslav@1258: return q.toBigInteger(this.signum == val.signum ? 1 : -1); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns an array of two BigIntegers containing {@code (this / val)} jaroslav@1258: * followed by {@code (this % val)}. jaroslav@1258: * jaroslav@1258: * @param val value by which this BigInteger is to be divided, and the jaroslav@1258: * remainder computed. jaroslav@1258: * @return an array of two BigIntegers: the quotient {@code (this / val)} jaroslav@1258: * is the initial element, and the remainder {@code (this % val)} jaroslav@1258: * is the final element. jaroslav@1258: * @throws ArithmeticException if {@code val} is zero. jaroslav@1258: */ jaroslav@1258: public BigInteger[] divideAndRemainder(BigInteger val) { jaroslav@1258: BigInteger[] result = new BigInteger[2]; jaroslav@1258: MutableBigInteger q = new MutableBigInteger(), jaroslav@1258: a = new MutableBigInteger(this.mag), jaroslav@1258: b = new MutableBigInteger(val.mag); jaroslav@1258: MutableBigInteger r = a.divide(b, q); jaroslav@1258: result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1); jaroslav@1258: result[1] = r.toBigInteger(this.signum); jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this % val)}. jaroslav@1258: * jaroslav@1258: * @param val value by which this BigInteger is to be divided, and the jaroslav@1258: * remainder computed. jaroslav@1258: * @return {@code this % val} jaroslav@1258: * @throws ArithmeticException if {@code val} is zero. jaroslav@1258: */ jaroslav@1258: public BigInteger remainder(BigInteger val) { jaroslav@1258: MutableBigInteger q = new MutableBigInteger(), jaroslav@1258: a = new MutableBigInteger(this.mag), jaroslav@1258: b = new MutableBigInteger(val.mag); jaroslav@1258: jaroslav@1258: return a.divide(b, q).toBigInteger(this.signum); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is (thisexponent). jaroslav@1258: * Note that {@code exponent} is an integer rather than a BigInteger. jaroslav@1258: * jaroslav@1258: * @param exponent exponent to which this BigInteger is to be raised. jaroslav@1258: * @return thisexponent jaroslav@1258: * @throws ArithmeticException {@code exponent} is negative. (This would jaroslav@1258: * cause the operation to yield a non-integer value.) jaroslav@1258: */ jaroslav@1258: public BigInteger pow(int exponent) { jaroslav@1258: if (exponent < 0) jaroslav@1258: throw new ArithmeticException("Negative exponent"); jaroslav@1258: if (signum==0) jaroslav@1258: return (exponent==0 ? ONE : this); jaroslav@1258: jaroslav@1258: // Perform exponentiation using repeated squaring trick jaroslav@1258: int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1); jaroslav@1258: int[] baseToPow2 = this.mag; jaroslav@1258: int[] result = {1}; jaroslav@1258: jaroslav@1258: while (exponent != 0) { jaroslav@1258: if ((exponent & 1)==1) { jaroslav@1258: result = multiplyToLen(result, result.length, jaroslav@1258: baseToPow2, baseToPow2.length, null); jaroslav@1258: result = trustedStripLeadingZeroInts(result); jaroslav@1258: } jaroslav@1258: if ((exponent >>>= 1) != 0) { jaroslav@1258: baseToPow2 = squareToLen(baseToPow2, baseToPow2.length, null); jaroslav@1258: baseToPow2 = trustedStripLeadingZeroInts(baseToPow2); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: return new BigInteger(result, newSign); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is the greatest common divisor of jaroslav@1258: * {@code abs(this)} and {@code abs(val)}. Returns 0 if jaroslav@1258: * {@code this==0 && val==0}. jaroslav@1258: * jaroslav@1258: * @param val value with which the GCD is to be computed. jaroslav@1258: * @return {@code GCD(abs(this), abs(val))} jaroslav@1258: */ jaroslav@1258: public BigInteger gcd(BigInteger val) { jaroslav@1258: if (val.signum == 0) jaroslav@1258: return this.abs(); jaroslav@1258: else if (this.signum == 0) jaroslav@1258: return val.abs(); jaroslav@1258: jaroslav@1258: MutableBigInteger a = new MutableBigInteger(this); jaroslav@1258: MutableBigInteger b = new MutableBigInteger(val); jaroslav@1258: jaroslav@1258: MutableBigInteger result = a.hybridGCD(b); jaroslav@1258: jaroslav@1258: return result.toBigInteger(1); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Package private method to return bit length for an integer. jaroslav@1258: */ jaroslav@1258: static int bitLengthForInt(int n) { jaroslav@1258: return 32 - Integer.numberOfLeadingZeros(n); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Left shift int array a up to len by n bits. Returns the array that jaroslav@1258: * results from the shift since space may have to be reallocated. jaroslav@1258: */ jaroslav@1258: private static int[] leftShift(int[] a, int len, int n) { jaroslav@1258: int nInts = n >>> 5; jaroslav@1258: int nBits = n&0x1F; jaroslav@1258: int bitsInHighWord = bitLengthForInt(a[0]); jaroslav@1258: jaroslav@1258: // If shift can be done without recopy, do so jaroslav@1258: if (n <= (32-bitsInHighWord)) { jaroslav@1258: primitiveLeftShift(a, len, nBits); jaroslav@1258: return a; jaroslav@1258: } else { // Array must be resized jaroslav@1258: if (nBits <= (32-bitsInHighWord)) { jaroslav@1258: int result[] = new int[nInts+len]; jaroslav@1258: for (int i=0; i0; i--) { jaroslav@1258: int b = c; jaroslav@1258: c = a[i-1]; jaroslav@1258: a[i] = (c << n2) | (b >>> n); jaroslav@1258: } jaroslav@1258: a[0] >>>= n; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // shifts a up to len left n bits assumes no leading zeros, 0<=n<32 jaroslav@1258: static void primitiveLeftShift(int[] a, int len, int n) { jaroslav@1258: if (len == 0 || n == 0) jaroslav@1258: return; jaroslav@1258: jaroslav@1258: int n2 = 32 - n; jaroslav@1258: for (int i=0, c=a[i], m=i+len-1; i>> n2); jaroslav@1258: } jaroslav@1258: a[len-1] <<= n; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Calculate bitlength of contents of the first len elements an int array, jaroslav@1258: * assuming there are no leading zero ints. jaroslav@1258: */ jaroslav@1258: private static int bitLength(int[] val, int len) { jaroslav@1258: if (len == 0) jaroslav@1258: return 0; jaroslav@1258: return ((len - 1) << 5) + bitLengthForInt(val[0]); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is the absolute value of this jaroslav@1258: * BigInteger. jaroslav@1258: * jaroslav@1258: * @return {@code abs(this)} jaroslav@1258: */ jaroslav@1258: public BigInteger abs() { jaroslav@1258: return (signum >= 0 ? this : this.negate()); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (-this)}. jaroslav@1258: * jaroslav@1258: * @return {@code -this} jaroslav@1258: */ jaroslav@1258: public BigInteger negate() { jaroslav@1258: return new BigInteger(this.mag, -this.signum); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the signum function of this BigInteger. jaroslav@1258: * jaroslav@1258: * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or jaroslav@1258: * positive. jaroslav@1258: */ jaroslav@1258: public int signum() { jaroslav@1258: return this.signum; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Modular Arithmetic Operations jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this mod m}). This method jaroslav@1258: * differs from {@code remainder} in that it always returns a jaroslav@1258: * non-negative BigInteger. jaroslav@1258: * jaroslav@1258: * @param m the modulus. jaroslav@1258: * @return {@code this mod m} jaroslav@1258: * @throws ArithmeticException {@code m} ≤ 0 jaroslav@1258: * @see #remainder jaroslav@1258: */ jaroslav@1258: public BigInteger mod(BigInteger m) { jaroslav@1258: if (m.signum <= 0) jaroslav@1258: throw new ArithmeticException("BigInteger: modulus not positive"); jaroslav@1258: jaroslav@1258: BigInteger result = this.remainder(m); jaroslav@1258: return (result.signum >= 0 ? result : result.add(m)); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is jaroslav@1258: * (thisexponent mod m). (Unlike {@code pow}, this jaroslav@1258: * method permits negative exponents.) jaroslav@1258: * jaroslav@1258: * @param exponent the exponent. jaroslav@1258: * @param m the modulus. jaroslav@1258: * @return thisexponent mod m jaroslav@1258: * @throws ArithmeticException {@code m} ≤ 0 or the exponent is jaroslav@1258: * negative and this BigInteger is not relatively jaroslav@1258: * prime to {@code m}. jaroslav@1258: * @see #modInverse jaroslav@1258: */ jaroslav@1258: public BigInteger modPow(BigInteger exponent, BigInteger m) { jaroslav@1258: if (m.signum <= 0) jaroslav@1258: throw new ArithmeticException("BigInteger: modulus not positive"); jaroslav@1258: jaroslav@1258: // Trivial cases jaroslav@1258: if (exponent.signum == 0) jaroslav@1258: return (m.equals(ONE) ? ZERO : ONE); jaroslav@1258: jaroslav@1258: if (this.equals(ONE)) jaroslav@1258: return (m.equals(ONE) ? ZERO : ONE); jaroslav@1258: jaroslav@1258: if (this.equals(ZERO) && exponent.signum >= 0) jaroslav@1258: return ZERO; jaroslav@1258: jaroslav@1258: if (this.equals(negConst[1]) && (!exponent.testBit(0))) jaroslav@1258: return (m.equals(ONE) ? ZERO : ONE); jaroslav@1258: jaroslav@1258: boolean invertResult; jaroslav@1258: if ((invertResult = (exponent.signum < 0))) jaroslav@1258: exponent = exponent.negate(); jaroslav@1258: jaroslav@1258: BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0 jaroslav@1258: ? this.mod(m) : this); jaroslav@1258: BigInteger result; jaroslav@1258: if (m.testBit(0)) { // odd modulus jaroslav@1258: result = base.oddModPow(exponent, m); jaroslav@1258: } else { jaroslav@1258: /* jaroslav@1258: * Even modulus. Tear it into an "odd part" (m1) and power of two jaroslav@1258: * (m2), exponentiate mod m1, manually exponentiate mod m2, and jaroslav@1258: * use Chinese Remainder Theorem to combine results. jaroslav@1258: */ jaroslav@1258: jaroslav@1258: // Tear m apart into odd part (m1) and power of 2 (m2) jaroslav@1258: int p = m.getLowestSetBit(); // Max pow of 2 that divides m jaroslav@1258: jaroslav@1258: BigInteger m1 = m.shiftRight(p); // m/2**p jaroslav@1258: BigInteger m2 = ONE.shiftLeft(p); // 2**p jaroslav@1258: jaroslav@1258: // Calculate new base from m1 jaroslav@1258: BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0 jaroslav@1258: ? this.mod(m1) : this); jaroslav@1258: jaroslav@1258: // Caculate (base ** exponent) mod m1. jaroslav@1258: BigInteger a1 = (m1.equals(ONE) ? ZERO : jaroslav@1258: base2.oddModPow(exponent, m1)); jaroslav@1258: jaroslav@1258: // Calculate (this ** exponent) mod m2 jaroslav@1258: BigInteger a2 = base.modPow2(exponent, p); jaroslav@1258: jaroslav@1258: // Combine results using Chinese Remainder Theorem jaroslav@1258: BigInteger y1 = m2.modInverse(m1); jaroslav@1258: BigInteger y2 = m1.modInverse(m2); jaroslav@1258: jaroslav@1258: result = a1.multiply(m2).multiply(y1).add jaroslav@1258: (a2.multiply(m1).multiply(y2)).mod(m); jaroslav@1258: } jaroslav@1258: jaroslav@1258: return (invertResult ? result.modInverse(m) : result); jaroslav@1258: } jaroslav@1258: jaroslav@1258: static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793, jaroslav@1258: Integer.MAX_VALUE}; // Sentinel jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is x to the power of y mod z. jaroslav@1258: * Assumes: z is odd && x < z. jaroslav@1258: */ jaroslav@1258: private BigInteger oddModPow(BigInteger y, BigInteger z) { jaroslav@1258: /* jaroslav@1258: * The algorithm is adapted from Colin Plumb's C library. jaroslav@1258: * jaroslav@1258: * The window algorithm: jaroslav@1258: * The idea is to keep a running product of b1 = n^(high-order bits of exp) jaroslav@1258: * and then keep appending exponent bits to it. The following patterns jaroslav@1258: * apply to a 3-bit window (k = 3): jaroslav@1258: * To append 0: square jaroslav@1258: * To append 1: square, multiply by n^1 jaroslav@1258: * To append 10: square, multiply by n^1, square jaroslav@1258: * To append 11: square, square, multiply by n^3 jaroslav@1258: * To append 100: square, multiply by n^1, square, square jaroslav@1258: * To append 101: square, square, square, multiply by n^5 jaroslav@1258: * To append 110: square, square, multiply by n^3, square jaroslav@1258: * To append 111: square, square, square, multiply by n^7 jaroslav@1258: * jaroslav@1258: * Since each pattern involves only one multiply, the longer the pattern jaroslav@1258: * the better, except that a 0 (no multiplies) can be appended directly. jaroslav@1258: * We precompute a table of odd powers of n, up to 2^k, and can then jaroslav@1258: * multiply k bits of exponent at a time. Actually, assuming random jaroslav@1258: * exponents, there is on average one zero bit between needs to jaroslav@1258: * multiply (1/2 of the time there's none, 1/4 of the time there's 1, jaroslav@1258: * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so jaroslav@1258: * you have to do one multiply per k+1 bits of exponent. jaroslav@1258: * jaroslav@1258: * The loop walks down the exponent, squaring the result buffer as jaroslav@1258: * it goes. There is a wbits+1 bit lookahead buffer, buf, that is jaroslav@1258: * filled with the upcoming exponent bits. (What is read after the jaroslav@1258: * end of the exponent is unimportant, but it is filled with zero here.) jaroslav@1258: * When the most-significant bit of this buffer becomes set, i.e. jaroslav@1258: * (buf & tblmask) != 0, we have to decide what pattern to multiply jaroslav@1258: * by, and when to do it. We decide, remember to do it in future jaroslav@1258: * after a suitable number of squarings have passed (e.g. a pattern jaroslav@1258: * of "100" in the buffer requires that we multiply by n^1 immediately; jaroslav@1258: * a pattern of "110" calls for multiplying by n^3 after one more jaroslav@1258: * squaring), clear the buffer, and continue. jaroslav@1258: * jaroslav@1258: * When we start, there is one more optimization: the result buffer jaroslav@1258: * is implcitly one, so squaring it or multiplying by it can be jaroslav@1258: * optimized away. Further, if we start with a pattern like "100" jaroslav@1258: * in the lookahead window, rather than placing n into the buffer jaroslav@1258: * and then starting to square it, we have already computed n^2 jaroslav@1258: * to compute the odd-powers table, so we can place that into jaroslav@1258: * the buffer and save a squaring. jaroslav@1258: * jaroslav@1258: * This means that if you have a k-bit window, to compute n^z, jaroslav@1258: * where z is the high k bits of the exponent, 1/2 of the time jaroslav@1258: * it requires no squarings. 1/4 of the time, it requires 1 jaroslav@1258: * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings. jaroslav@1258: * And the remaining 1/2^(k-1) of the time, the top k bits are a jaroslav@1258: * 1 followed by k-1 0 bits, so it again only requires k-2 jaroslav@1258: * squarings, not k-1. The average of these is 1. Add that jaroslav@1258: * to the one squaring we have to do to compute the table, jaroslav@1258: * and you'll see that a k-bit window saves k-2 squarings jaroslav@1258: * as well as reducing the multiplies. (It actually doesn't jaroslav@1258: * hurt in the case k = 1, either.) jaroslav@1258: */ jaroslav@1258: // Special case for exponent of one jaroslav@1258: if (y.equals(ONE)) jaroslav@1258: return this; jaroslav@1258: jaroslav@1258: // Special case for base of zero jaroslav@1258: if (signum==0) jaroslav@1258: return ZERO; jaroslav@1258: jaroslav@1258: int[] base = mag.clone(); jaroslav@1258: int[] exp = y.mag; jaroslav@1258: int[] mod = z.mag; jaroslav@1258: int modLen = mod.length; jaroslav@1258: jaroslav@1258: // Select an appropriate window size jaroslav@1258: int wbits = 0; jaroslav@1258: int ebits = bitLength(exp, exp.length); jaroslav@1258: // if exponent is 65537 (0x10001), use minimum window size jaroslav@1258: if ((ebits != 17) || (exp[0] != 65537)) { jaroslav@1258: while (ebits > bnExpModThreshTable[wbits]) { jaroslav@1258: wbits++; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Calculate appropriate table size jaroslav@1258: int tblmask = 1 << wbits; jaroslav@1258: jaroslav@1258: // Allocate table for precomputed odd powers of base in Montgomery form jaroslav@1258: int[][] table = new int[tblmask][]; jaroslav@1258: for (int i=0; i>>= 1; jaroslav@1258: if (bitpos == 0) { jaroslav@1258: eIndex++; jaroslav@1258: bitpos = 1 << (32-1); jaroslav@1258: elen--; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: int multpos = ebits; jaroslav@1258: jaroslav@1258: // The first iteration, which is hoisted out of the main loop jaroslav@1258: ebits--; jaroslav@1258: boolean isone = true; jaroslav@1258: jaroslav@1258: multpos = ebits - wbits; jaroslav@1258: while ((buf & 1) == 0) { jaroslav@1258: buf >>>= 1; jaroslav@1258: multpos++; jaroslav@1258: } jaroslav@1258: jaroslav@1258: int[] mult = table[buf >>> 1]; jaroslav@1258: jaroslav@1258: buf = 0; jaroslav@1258: if (multpos == ebits) jaroslav@1258: isone = false; jaroslav@1258: jaroslav@1258: // The main loop jaroslav@1258: while(true) { jaroslav@1258: ebits--; jaroslav@1258: // Advance the window jaroslav@1258: buf <<= 1; jaroslav@1258: jaroslav@1258: if (elen != 0) { jaroslav@1258: buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0; jaroslav@1258: bitpos >>>= 1; jaroslav@1258: if (bitpos == 0) { jaroslav@1258: eIndex++; jaroslav@1258: bitpos = 1 << (32-1); jaroslav@1258: elen--; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Examine the window for pending multiplies jaroslav@1258: if ((buf & tblmask) != 0) { jaroslav@1258: multpos = ebits - wbits; jaroslav@1258: while ((buf & 1) == 0) { jaroslav@1258: buf >>>= 1; jaroslav@1258: multpos++; jaroslav@1258: } jaroslav@1258: mult = table[buf >>> 1]; jaroslav@1258: buf = 0; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Perform multiply jaroslav@1258: if (ebits == multpos) { jaroslav@1258: if (isone) { jaroslav@1258: b = mult.clone(); jaroslav@1258: isone = false; jaroslav@1258: } else { jaroslav@1258: t = b; jaroslav@1258: a = multiplyToLen(t, modLen, mult, modLen, a); jaroslav@1258: a = montReduce(a, mod, modLen, inv); jaroslav@1258: t = a; a = b; b = t; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Check if done jaroslav@1258: if (ebits == 0) jaroslav@1258: break; jaroslav@1258: jaroslav@1258: // Square the input jaroslav@1258: if (!isone) { jaroslav@1258: t = b; jaroslav@1258: a = squareToLen(t, modLen, a); jaroslav@1258: a = montReduce(a, mod, modLen, inv); jaroslav@1258: t = a; a = b; b = t; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Convert result out of Montgomery form and return jaroslav@1258: int[] t2 = new int[2*modLen]; jaroslav@1258: for(int i=0; i 0); jaroslav@1258: jaroslav@1258: while(c>0) jaroslav@1258: c += subN(n, mod, mlen); jaroslav@1258: jaroslav@1258: while (intArrayCmpToLen(n, mod, mlen) >= 0) jaroslav@1258: subN(n, mod, mlen); jaroslav@1258: jaroslav@1258: return n; jaroslav@1258: } jaroslav@1258: jaroslav@1258: jaroslav@1258: /* jaroslav@1258: * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than, jaroslav@1258: * equal to, or greater than arg2 up to length len. jaroslav@1258: */ jaroslav@1258: private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) { jaroslav@1258: for (int i=0; i b2) jaroslav@1258: return 1; jaroslav@1258: } jaroslav@1258: return 0; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Subtracts two numbers of same length, returning borrow. jaroslav@1258: */ jaroslav@1258: private static int subN(int[] a, int[] b, int len) { jaroslav@1258: long sum = 0; jaroslav@1258: jaroslav@1258: while(--len >= 0) { jaroslav@1258: sum = (a[len] & LONG_MASK) - jaroslav@1258: (b[len] & LONG_MASK) + (sum >> 32); jaroslav@1258: a[len] = (int)sum; jaroslav@1258: } jaroslav@1258: jaroslav@1258: return (int)(sum >> 32); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Multiply an array by one word k and add to result, return the carry jaroslav@1258: */ jaroslav@1258: static int mulAdd(int[] out, int[] in, int offset, int len, int k) { jaroslav@1258: long kLong = k & LONG_MASK; jaroslav@1258: long carry = 0; jaroslav@1258: jaroslav@1258: offset = out.length-offset - 1; jaroslav@1258: for (int j=len-1; j >= 0; j--) { jaroslav@1258: long product = (in[j] & LONG_MASK) * kLong + jaroslav@1258: (out[offset] & LONG_MASK) + carry; jaroslav@1258: out[offset--] = (int)product; jaroslav@1258: carry = product >>> 32; jaroslav@1258: } jaroslav@1258: return (int)carry; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Add one word to the number a mlen words into a. Return the resulting jaroslav@1258: * carry. jaroslav@1258: */ jaroslav@1258: static int addOne(int[] a, int offset, int mlen, int carry) { jaroslav@1258: offset = a.length-1-mlen-offset; jaroslav@1258: long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK); jaroslav@1258: jaroslav@1258: a[offset] = (int)t; jaroslav@1258: if ((t >>> 32) == 0) jaroslav@1258: return 0; jaroslav@1258: while (--mlen >= 0) { jaroslav@1258: if (--offset < 0) { // Carry out of number jaroslav@1258: return 1; jaroslav@1258: } else { jaroslav@1258: a[offset]++; jaroslav@1258: if (a[offset] != 0) jaroslav@1258: return 0; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: return 1; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is (this ** exponent) mod (2**p) jaroslav@1258: */ jaroslav@1258: private BigInteger modPow2(BigInteger exponent, int p) { jaroslav@1258: /* jaroslav@1258: * Perform exponentiation using repeated squaring trick, chopping off jaroslav@1258: * high order bits as indicated by modulus. jaroslav@1258: */ jaroslav@1258: BigInteger result = valueOf(1); jaroslav@1258: BigInteger baseToPow2 = this.mod2(p); jaroslav@1258: int expOffset = 0; jaroslav@1258: jaroslav@1258: int limit = exponent.bitLength(); jaroslav@1258: jaroslav@1258: if (this.testBit(0)) jaroslav@1258: limit = (p-1) < limit ? (p-1) : limit; jaroslav@1258: jaroslav@1258: while (expOffset < limit) { jaroslav@1258: if (exponent.testBit(expOffset)) jaroslav@1258: result = result.multiply(baseToPow2).mod2(p); jaroslav@1258: expOffset++; jaroslav@1258: if (expOffset < limit) jaroslav@1258: baseToPow2 = baseToPow2.square().mod2(p); jaroslav@1258: } jaroslav@1258: jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is this mod(2**p). jaroslav@1258: * Assumes that this {@code BigInteger >= 0} and {@code p > 0}. jaroslav@1258: */ jaroslav@1258: private BigInteger mod2(int p) { jaroslav@1258: if (bitLength() <= p) jaroslav@1258: return this; jaroslav@1258: jaroslav@1258: // Copy remaining ints of mag jaroslav@1258: int numInts = (p + 31) >>> 5; jaroslav@1258: int[] mag = new int[numInts]; jaroslav@1258: for (int i=0; i-1 {@code mod m)}. jaroslav@1258: * jaroslav@1258: * @param m the modulus. jaroslav@1258: * @return {@code this}-1 {@code mod m}. jaroslav@1258: * @throws ArithmeticException {@code m} ≤ 0, or this BigInteger jaroslav@1258: * has no multiplicative inverse mod m (that is, this BigInteger jaroslav@1258: * is not relatively prime to m). jaroslav@1258: */ jaroslav@1258: public BigInteger modInverse(BigInteger m) { jaroslav@1258: if (m.signum != 1) jaroslav@1258: throw new ArithmeticException("BigInteger: modulus not positive"); jaroslav@1258: jaroslav@1258: if (m.equals(ONE)) jaroslav@1258: return ZERO; jaroslav@1258: jaroslav@1258: // Calculate (this mod m) jaroslav@1258: BigInteger modVal = this; jaroslav@1258: if (signum < 0 || (this.compareMagnitude(m) >= 0)) jaroslav@1258: modVal = this.mod(m); jaroslav@1258: jaroslav@1258: if (modVal.equals(ONE)) jaroslav@1258: return ONE; jaroslav@1258: jaroslav@1258: MutableBigInteger a = new MutableBigInteger(modVal); jaroslav@1258: MutableBigInteger b = new MutableBigInteger(m); jaroslav@1258: jaroslav@1258: MutableBigInteger result = a.mutableModInverse(b); jaroslav@1258: return result.toBigInteger(1); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Shift Operations jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this << n)}. jaroslav@1258: * The shift distance, {@code n}, may be negative, in which case jaroslav@1258: * this method performs a right shift. jaroslav@1258: * (Computes floor(this * 2n).) jaroslav@1258: * jaroslav@1258: * @param n shift distance, in bits. jaroslav@1258: * @return {@code this << n} jaroslav@1258: * @throws ArithmeticException if the shift distance is {@code jaroslav@1258: * Integer.MIN_VALUE}. jaroslav@1258: * @see #shiftRight jaroslav@1258: */ jaroslav@1258: public BigInteger shiftLeft(int n) { jaroslav@1258: if (signum == 0) jaroslav@1258: return ZERO; jaroslav@1258: if (n==0) jaroslav@1258: return this; jaroslav@1258: if (n<0) { jaroslav@1258: if (n == Integer.MIN_VALUE) { jaroslav@1258: throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported."); jaroslav@1258: } else { jaroslav@1258: return shiftRight(-n); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: int nInts = n >>> 5; jaroslav@1258: int nBits = n & 0x1f; jaroslav@1258: int magLen = mag.length; jaroslav@1258: int newMag[] = null; jaroslav@1258: jaroslav@1258: if (nBits == 0) { jaroslav@1258: newMag = new int[magLen + nInts]; jaroslav@1258: for (int i=0; i>> nBits2; jaroslav@1258: if (highBits != 0) { jaroslav@1258: newMag = new int[magLen + nInts + 1]; jaroslav@1258: newMag[i++] = highBits; jaroslav@1258: } else { jaroslav@1258: newMag = new int[magLen + nInts]; jaroslav@1258: } jaroslav@1258: int j=0; jaroslav@1258: while (j < magLen-1) jaroslav@1258: newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2; jaroslav@1258: newMag[i] = mag[j] << nBits; jaroslav@1258: } jaroslav@1258: jaroslav@1258: return new BigInteger(newMag, signum); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this >> n)}. Sign jaroslav@1258: * extension is performed. The shift distance, {@code n}, may be jaroslav@1258: * negative, in which case this method performs a left shift. jaroslav@1258: * (Computes floor(this / 2n).) jaroslav@1258: * jaroslav@1258: * @param n shift distance, in bits. jaroslav@1258: * @return {@code this >> n} jaroslav@1258: * @throws ArithmeticException if the shift distance is {@code jaroslav@1258: * Integer.MIN_VALUE}. jaroslav@1258: * @see #shiftLeft jaroslav@1258: */ jaroslav@1258: public BigInteger shiftRight(int n) { jaroslav@1258: if (n==0) jaroslav@1258: return this; jaroslav@1258: if (n<0) { jaroslav@1258: if (n == Integer.MIN_VALUE) { jaroslav@1258: throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported."); jaroslav@1258: } else { jaroslav@1258: return shiftLeft(-n); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: int nInts = n >>> 5; jaroslav@1258: int nBits = n & 0x1f; jaroslav@1258: int magLen = mag.length; jaroslav@1258: int newMag[] = null; jaroslav@1258: jaroslav@1258: // Special case: entire contents shifted off the end jaroslav@1258: if (nInts >= magLen) jaroslav@1258: return (signum >= 0 ? ZERO : negConst[1]); jaroslav@1258: jaroslav@1258: if (nBits == 0) { jaroslav@1258: int newMagLen = magLen - nInts; jaroslav@1258: newMag = new int[newMagLen]; jaroslav@1258: for (int i=0; i>> nBits; jaroslav@1258: if (highBits != 0) { jaroslav@1258: newMag = new int[magLen - nInts]; jaroslav@1258: newMag[i++] = highBits; jaroslav@1258: } else { jaroslav@1258: newMag = new int[magLen - nInts -1]; jaroslav@1258: } jaroslav@1258: jaroslav@1258: int nBits2 = 32 - nBits; jaroslav@1258: int j=0; jaroslav@1258: while (j < magLen - nInts - 1) jaroslav@1258: newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits); jaroslav@1258: } jaroslav@1258: jaroslav@1258: if (signum < 0) { jaroslav@1258: // Find out whether any one-bits were shifted off the end. jaroslav@1258: boolean onesLost = false; jaroslav@1258: for (int i=magLen-1, j=magLen-nInts; i>=j && !onesLost; i--) jaroslav@1258: onesLost = (mag[i] != 0); jaroslav@1258: if (!onesLost && nBits != 0) jaroslav@1258: onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0); jaroslav@1258: jaroslav@1258: if (onesLost) jaroslav@1258: newMag = javaIncrement(newMag); jaroslav@1258: } jaroslav@1258: jaroslav@1258: return new BigInteger(newMag, signum); jaroslav@1258: } jaroslav@1258: jaroslav@1258: int[] javaIncrement(int[] val) { jaroslav@1258: int lastSum = 0; jaroslav@1258: for (int i=val.length-1; i >= 0 && lastSum == 0; i--) jaroslav@1258: lastSum = (val[i] += 1); jaroslav@1258: if (lastSum == 0) { jaroslav@1258: val = new int[val.length+1]; jaroslav@1258: val[0] = 1; jaroslav@1258: } jaroslav@1258: return val; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Bitwise Operations jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is {@code (this & val)}. (This jaroslav@1258: * method returns a negative BigInteger if and only if this and val are jaroslav@1258: * both negative.) jaroslav@1258: * jaroslav@1258: * @param val value to be AND'ed with this BigInteger. jaroslav@1258: * @return {@code this & val} jaroslav@1258: */ jaroslav@1258: public BigInteger and(BigInteger val) { jaroslav@1258: int[] result = new int[Math.max(intLength(), val.intLength())]; jaroslav@1258: for (int i=0; i>> 5) & (1 << (n & 31))) != 0; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a BigInteger whose value is equivalent to this BigInteger jaroslav@1258: * with the designated bit set. (Computes {@code (this | (1<>> 5; jaroslav@1258: int[] result = new int[Math.max(intLength(), intNum+2)]; jaroslav@1258: jaroslav@1258: for (int i=0; i>> 5; jaroslav@1258: int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)]; jaroslav@1258: jaroslav@1258: for (int i=0; i>> 5; jaroslav@1258: int[] result = new int[Math.max(intLength(), intNum+2)]; jaroslav@1258: jaroslav@1258: for (int i=0; iexcluding a sign bit. jaroslav@1258: * For positive BigIntegers, this is equivalent to the number of bits in jaroslav@1258: * the ordinary binary representation. (Computes jaroslav@1258: * {@code (ceil(log2(this < 0 ? -this : this+1)))}.) jaroslav@1258: * jaroslav@1258: * @return number of bits in the minimal two's-complement jaroslav@1258: * representation of this BigInteger, excluding a sign bit. jaroslav@1258: */ jaroslav@1258: public int bitLength() { jaroslav@1258: @SuppressWarnings("deprecation") int n = bitLength - 1; jaroslav@1258: if (n == -1) { // bitLength not initialized yet jaroslav@1258: int[] m = mag; jaroslav@1258: int len = m.length; jaroslav@1258: if (len == 0) { jaroslav@1258: n = 0; // offset by one to initialize jaroslav@1258: } else { jaroslav@1258: // Calculate the bit length of the magnitude jaroslav@1258: int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]); jaroslav@1258: if (signum < 0) { jaroslav@1258: // Check if magnitude is a power of two jaroslav@1258: boolean pow2 = (Integer.bitCount(mag[0]) == 1); jaroslav@1258: for(int i=1; i< len && pow2; i++) jaroslav@1258: pow2 = (mag[i] == 0); jaroslav@1258: jaroslav@1258: n = (pow2 ? magBitLength -1 : magBitLength); jaroslav@1258: } else { jaroslav@1258: n = magBitLength; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: bitLength = n + 1; jaroslav@1258: } jaroslav@1258: return n; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the number of bits in the two's complement representation jaroslav@1258: * of this BigInteger that differ from its sign bit. This method is jaroslav@1258: * useful when implementing bit-vector style sets atop BigIntegers. jaroslav@1258: * jaroslav@1258: * @return number of bits in the two's complement representation jaroslav@1258: * of this BigInteger that differ from its sign bit. jaroslav@1258: */ jaroslav@1258: public int bitCount() { jaroslav@1258: @SuppressWarnings("deprecation") int bc = bitCount - 1; jaroslav@1258: if (bc == -1) { // bitCount not initialized yet jaroslav@1258: bc = 0; // offset by one to initialize jaroslav@1258: // Count the bits in the magnitude jaroslav@1258: for (int i=0; i{@code certainty}). The execution time of jaroslav@1258: * this method is proportional to the value of this parameter. jaroslav@1258: * @return {@code true} if this BigInteger is probably prime, jaroslav@1258: * {@code false} if it's definitely composite. jaroslav@1258: */ jaroslav@1258: public boolean isProbablePrime(int certainty) { jaroslav@1258: if (certainty <= 0) jaroslav@1258: return true; jaroslav@1258: BigInteger w = this.abs(); jaroslav@1258: if (w.equals(TWO)) jaroslav@1258: return true; jaroslav@1258: if (!w.testBit(0) || w.equals(ONE)) jaroslav@1258: return false; jaroslav@1258: jaroslav@1258: return w.primeToCertainty(certainty, null); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Comparison Operations jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Compares this BigInteger with the specified BigInteger. This jaroslav@1258: * method is provided in preference to individual methods for each jaroslav@1258: * of the six boolean comparison operators ({@literal <}, ==, jaroslav@1258: * {@literal >}, {@literal >=}, !=, {@literal <=}). The suggested jaroslav@1258: * idiom for performing these comparisons is: {@code jaroslav@1258: * (x.compareTo(y)} <op> {@code 0)}, where jaroslav@1258: * <op> is one of the six comparison operators. jaroslav@1258: * jaroslav@1258: * @param val BigInteger to which this BigInteger is to be compared. jaroslav@1258: * @return -1, 0 or 1 as this BigInteger is numerically less than, equal jaroslav@1258: * to, or greater than {@code val}. jaroslav@1258: */ jaroslav@1258: public int compareTo(BigInteger val) { jaroslav@1258: if (signum == val.signum) { jaroslav@1258: switch (signum) { jaroslav@1258: case 1: jaroslav@1258: return compareMagnitude(val); jaroslav@1258: case -1: jaroslav@1258: return val.compareMagnitude(this); jaroslav@1258: default: jaroslav@1258: return 0; jaroslav@1258: } jaroslav@1258: } jaroslav@1258: return signum > val.signum ? 1 : -1; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Compares the magnitude array of this BigInteger with the specified jaroslav@1258: * BigInteger's. This is the version of compareTo ignoring sign. jaroslav@1258: * jaroslav@1258: * @param val BigInteger whose magnitude array to be compared. jaroslav@1258: * @return -1, 0 or 1 as this magnitude array is less than, equal to or jaroslav@1258: * greater than the magnitude aray for the specified BigInteger's. jaroslav@1258: */ jaroslav@1258: final int compareMagnitude(BigInteger val) { jaroslav@1258: int[] m1 = mag; jaroslav@1258: int len1 = m1.length; jaroslav@1258: int[] m2 = val.mag; jaroslav@1258: int len2 = m2.length; jaroslav@1258: if (len1 < len2) jaroslav@1258: return -1; jaroslav@1258: if (len1 > len2) jaroslav@1258: return 1; jaroslav@1258: for (int i = 0; i < len1; i++) { jaroslav@1258: int a = m1[i]; jaroslav@1258: int b = m2[i]; jaroslav@1258: if (a != b) jaroslav@1258: return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1; jaroslav@1258: } jaroslav@1258: return 0; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Compares this BigInteger with the specified Object for equality. jaroslav@1258: * jaroslav@1258: * @param x Object to which this BigInteger is to be compared. jaroslav@1258: * @return {@code true} if and only if the specified Object is a jaroslav@1258: * BigInteger whose value is numerically equal to this BigInteger. jaroslav@1258: */ jaroslav@1258: public boolean equals(Object x) { jaroslav@1258: // This test is just an optimization, which may or may not help jaroslav@1258: if (x == this) jaroslav@1258: return true; jaroslav@1258: jaroslav@1258: if (!(x instanceof BigInteger)) jaroslav@1258: return false; jaroslav@1258: jaroslav@1258: BigInteger xInt = (BigInteger) x; jaroslav@1258: if (xInt.signum != signum) jaroslav@1258: return false; jaroslav@1258: jaroslav@1258: int[] m = mag; jaroslav@1258: int len = m.length; jaroslav@1258: int[] xm = xInt.mag; jaroslav@1258: if (len != xm.length) jaroslav@1258: return false; jaroslav@1258: jaroslav@1258: for (int i = 0; i < len; i++) jaroslav@1258: if (xm[i] != m[i]) jaroslav@1258: return false; jaroslav@1258: jaroslav@1258: return true; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the minimum of this BigInteger and {@code val}. jaroslav@1258: * jaroslav@1258: * @param val value with which the minimum is to be computed. jaroslav@1258: * @return the BigInteger whose value is the lesser of this BigInteger and jaroslav@1258: * {@code val}. If they are equal, either may be returned. jaroslav@1258: */ jaroslav@1258: public BigInteger min(BigInteger val) { jaroslav@1258: return (compareTo(val)<0 ? this : val); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the maximum of this BigInteger and {@code val}. jaroslav@1258: * jaroslav@1258: * @param val value with which the maximum is to be computed. jaroslav@1258: * @return the BigInteger whose value is the greater of this and jaroslav@1258: * {@code val}. If they are equal, either may be returned. jaroslav@1258: */ jaroslav@1258: public BigInteger max(BigInteger val) { jaroslav@1258: return (compareTo(val)>0 ? this : val); jaroslav@1258: } jaroslav@1258: jaroslav@1258: jaroslav@1258: // Hash Function jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the hash code for this BigInteger. jaroslav@1258: * jaroslav@1258: * @return hash code for this BigInteger. jaroslav@1258: */ jaroslav@1258: public int hashCode() { jaroslav@1258: int hashCode = 0; jaroslav@1258: jaroslav@1258: for (int i=0; i Character.MAX_RADIX) jaroslav@1258: radix = 10; jaroslav@1258: jaroslav@1258: // Compute upper bound on number of digit groups and allocate space jaroslav@1258: int maxNumDigitGroups = (4*mag.length + 6)/7; jaroslav@1258: String digitGroup[] = new String[maxNumDigitGroups]; jaroslav@1258: jaroslav@1258: // Translate number to string, a digit group at a time jaroslav@1258: BigInteger tmp = this.abs(); jaroslav@1258: int numGroups = 0; jaroslav@1258: while (tmp.signum != 0) { jaroslav@1258: BigInteger d = longRadix[radix]; jaroslav@1258: jaroslav@1258: MutableBigInteger q = new MutableBigInteger(), jaroslav@1258: a = new MutableBigInteger(tmp.mag), jaroslav@1258: b = new MutableBigInteger(d.mag); jaroslav@1258: MutableBigInteger r = a.divide(b, q); jaroslav@1258: BigInteger q2 = q.toBigInteger(tmp.signum * d.signum); jaroslav@1258: BigInteger r2 = r.toBigInteger(tmp.signum * d.signum); jaroslav@1258: jaroslav@1258: digitGroup[numGroups++] = Long.toString(r2.longValue(), radix); jaroslav@1258: tmp = q2; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Put sign (if any) and first digit group into result buffer jaroslav@1258: StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1); jaroslav@1258: if (signum<0) jaroslav@1258: buf.append('-'); jaroslav@1258: buf.append(digitGroup[numGroups-1]); jaroslav@1258: jaroslav@1258: // Append remaining digit groups padded with leading zeros jaroslav@1258: for (int i=numGroups-2; i>=0; i--) { jaroslav@1258: // Prepend (any) leading zeros for this digit group jaroslav@1258: int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length(); jaroslav@1258: if (numLeadingZeros != 0) jaroslav@1258: buf.append(zeros[numLeadingZeros]); jaroslav@1258: buf.append(digitGroup[i]); jaroslav@1258: } jaroslav@1258: return buf.toString(); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /* zero[i] is a string of i consecutive zeros. */ jaroslav@1258: private static String zeros[] = new String[64]; jaroslav@1258: static { jaroslav@1258: zeros[63] = jaroslav@1258: "000000000000000000000000000000000000000000000000000000000000000"; jaroslav@1258: for (int i=0; i<63; i++) jaroslav@1258: zeros[i] = zeros[63].substring(0, i); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the decimal String representation of this BigInteger. jaroslav@1258: * The digit-to-character mapping provided by jaroslav@1258: * {@code Character.forDigit} is used, and a minus sign is jaroslav@1258: * prepended if appropriate. (This representation is compatible jaroslav@1258: * with the {@link #BigInteger(String) (String)} constructor, and jaroslav@1258: * allows for String concatenation with Java's + operator.) jaroslav@1258: * jaroslav@1258: * @return decimal String representation of this BigInteger. jaroslav@1258: * @see Character#forDigit jaroslav@1258: * @see #BigInteger(java.lang.String) jaroslav@1258: */ jaroslav@1258: public String toString() { jaroslav@1258: return toString(10); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a byte array containing the two's-complement jaroslav@1258: * representation of this BigInteger. The byte array will be in jaroslav@1258: * big-endian byte-order: the most significant byte is in jaroslav@1258: * the zeroth element. The array will contain the minimum number jaroslav@1258: * of bytes required to represent this BigInteger, including at jaroslav@1258: * least one sign bit, which is {@code (ceil((this.bitLength() + jaroslav@1258: * 1)/8))}. (This representation is compatible with the jaroslav@1258: * {@link #BigInteger(byte[]) (byte[])} constructor.) jaroslav@1258: * jaroslav@1258: * @return a byte array containing the two's-complement representation of jaroslav@1258: * this BigInteger. jaroslav@1258: * @see #BigInteger(byte[]) jaroslav@1258: */ jaroslav@1258: public byte[] toByteArray() { jaroslav@1258: int byteLen = bitLength()/8 + 1; jaroslav@1258: byte[] byteArray = new byte[byteLen]; jaroslav@1258: jaroslav@1258: for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i>=0; i--) { jaroslav@1258: if (bytesCopied == 4) { jaroslav@1258: nextInt = getInt(intIndex++); jaroslav@1258: bytesCopied = 1; jaroslav@1258: } else { jaroslav@1258: nextInt >>>= 8; jaroslav@1258: bytesCopied++; jaroslav@1258: } jaroslav@1258: byteArray[i] = (byte)nextInt; jaroslav@1258: } jaroslav@1258: return byteArray; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Converts this BigInteger to an {@code int}. This jaroslav@1258: * conversion is analogous to a jaroslav@1258: * narrowing primitive conversion from {@code long} to jaroslav@1258: * {@code int} as defined in section 5.1.3 of jaroslav@1258: * The Java™ Language Specification: jaroslav@1258: * if this BigInteger is too big to fit in an jaroslav@1258: * {@code int}, only the low-order 32 bits are returned. jaroslav@1258: * Note that this conversion can lose information about the jaroslav@1258: * overall magnitude of the BigInteger value as well as return a jaroslav@1258: * result with the opposite sign. jaroslav@1258: * jaroslav@1258: * @return this BigInteger converted to an {@code int}. jaroslav@1258: */ jaroslav@1258: public int intValue() { jaroslav@1258: int result = 0; jaroslav@1258: result = getInt(0); jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Converts this BigInteger to a {@code long}. This jaroslav@1258: * conversion is analogous to a jaroslav@1258: * narrowing primitive conversion from {@code long} to jaroslav@1258: * {@code int} as defined in section 5.1.3 of jaroslav@1258: * The Java™ Language Specification: jaroslav@1258: * if this BigInteger is too big to fit in a jaroslav@1258: * {@code long}, only the low-order 64 bits are returned. jaroslav@1258: * Note that this conversion can lose information about the jaroslav@1258: * overall magnitude of the BigInteger value as well as return a jaroslav@1258: * result with the opposite sign. jaroslav@1258: * jaroslav@1258: * @return this BigInteger converted to a {@code long}. jaroslav@1258: */ jaroslav@1258: public long longValue() { jaroslav@1258: long result = 0; jaroslav@1258: jaroslav@1258: for (int i=1; i>=0; i--) jaroslav@1258: result = (result << 32) + (getInt(i) & LONG_MASK); jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Converts this BigInteger to a {@code float}. This jaroslav@1258: * conversion is similar to the jaroslav@1258: * narrowing primitive conversion from {@code double} to jaroslav@1258: * {@code float} as defined in section 5.1.3 of jaroslav@1258: * The Java™ Language Specification: jaroslav@1258: * if this BigInteger has too great a magnitude jaroslav@1258: * to represent as a {@code float}, it will be converted to jaroslav@1258: * {@link Float#NEGATIVE_INFINITY} or {@link jaroslav@1258: * Float#POSITIVE_INFINITY} as appropriate. Note that even when jaroslav@1258: * the return value is finite, this conversion can lose jaroslav@1258: * information about the precision of the BigInteger value. jaroslav@1258: * jaroslav@1258: * @return this BigInteger converted to a {@code float}. jaroslav@1258: */ jaroslav@1258: public float floatValue() { jaroslav@1258: // Somewhat inefficient, but guaranteed to work. jaroslav@1258: return Float.parseFloat(this.toString()); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Converts this BigInteger to a {@code double}. This jaroslav@1258: * conversion is similar to the jaroslav@1258: * narrowing primitive conversion from {@code double} to jaroslav@1258: * {@code float} as defined in section 5.1.3 of jaroslav@1258: * The Java™ Language Specification: jaroslav@1258: * if this BigInteger has too great a magnitude jaroslav@1258: * to represent as a {@code double}, it will be converted to jaroslav@1258: * {@link Double#NEGATIVE_INFINITY} or {@link jaroslav@1258: * Double#POSITIVE_INFINITY} as appropriate. Note that even when jaroslav@1258: * the return value is finite, this conversion can lose jaroslav@1258: * information about the precision of the BigInteger value. jaroslav@1258: * jaroslav@1258: * @return this BigInteger converted to a {@code double}. jaroslav@1258: */ jaroslav@1258: public double doubleValue() { jaroslav@1258: // Somewhat inefficient, but guaranteed to work. jaroslav@1258: return Double.parseDouble(this.toString()); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a copy of the input array stripped of any leading zero bytes. jaroslav@1258: */ jaroslav@1258: private static int[] stripLeadingZeroInts(int val[]) { jaroslav@1258: int vlen = val.length; jaroslav@1258: int keep; jaroslav@1258: jaroslav@1258: // Find first nonzero byte jaroslav@1258: for (keep = 0; keep < vlen && val[keep] == 0; keep++) jaroslav@1258: ; jaroslav@1258: return java.util.Arrays.copyOfRange(val, keep, vlen); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the input array stripped of any leading zero bytes. jaroslav@1258: * Since the source is trusted the copying may be skipped. jaroslav@1258: */ jaroslav@1258: private static int[] trustedStripLeadingZeroInts(int val[]) { jaroslav@1258: int vlen = val.length; jaroslav@1258: int keep; jaroslav@1258: jaroslav@1258: // Find first nonzero byte jaroslav@1258: for (keep = 0; keep < vlen && val[keep] == 0; keep++) jaroslav@1258: ; jaroslav@1258: return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns a copy of the input array stripped of any leading zero bytes. jaroslav@1258: */ jaroslav@1258: private static int[] stripLeadingZeroBytes(byte a[]) { jaroslav@1258: int byteLength = a.length; jaroslav@1258: int keep; jaroslav@1258: jaroslav@1258: // Find first nonzero byte jaroslav@1258: for (keep = 0; keep < byteLength && a[keep]==0; keep++) jaroslav@1258: ; jaroslav@1258: jaroslav@1258: // Allocate new array and copy relevant part of input array jaroslav@1258: int intLength = ((byteLength - keep) + 3) >>> 2; jaroslav@1258: int[] result = new int[intLength]; jaroslav@1258: int b = byteLength - 1; jaroslav@1258: for (int i = intLength-1; i >= 0; i--) { jaroslav@1258: result[i] = a[b--] & 0xff; jaroslav@1258: int bytesRemaining = b - keep + 1; jaroslav@1258: int bytesToTransfer = Math.min(3, bytesRemaining); jaroslav@1258: for (int j=8; j <= (bytesToTransfer << 3); j += 8) jaroslav@1258: result[i] |= ((a[b--] & 0xff) << j); jaroslav@1258: } jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Takes an array a representing a negative 2's-complement number and jaroslav@1258: * returns the minimal (no leading zero bytes) unsigned whose value is -a. jaroslav@1258: */ jaroslav@1258: private static int[] makePositive(byte a[]) { jaroslav@1258: int keep, k; jaroslav@1258: int byteLength = a.length; jaroslav@1258: jaroslav@1258: // Find first non-sign (0xff) byte of input jaroslav@1258: for (keep=0; keep= 0; i--) { jaroslav@1258: result[i] = a[b--] & 0xff; jaroslav@1258: int numBytesToTransfer = Math.min(3, b-keep+1); jaroslav@1258: if (numBytesToTransfer < 0) jaroslav@1258: numBytesToTransfer = 0; jaroslav@1258: for (int j=8; j <= 8*numBytesToTransfer; j += 8) jaroslav@1258: result[i] |= ((a[b--] & 0xff) << j); jaroslav@1258: jaroslav@1258: // Mask indicates which bits must be complemented jaroslav@1258: int mask = -1 >>> (8*(3-numBytesToTransfer)); jaroslav@1258: result[i] = ~result[i] & mask; jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Add one to one's complement to generate two's complement jaroslav@1258: for (int i=result.length-1; i>=0; i--) { jaroslav@1258: result[i] = (int)((result[i] & LONG_MASK) + 1); jaroslav@1258: if (result[i] != 0) jaroslav@1258: break; jaroslav@1258: } jaroslav@1258: jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Takes an array a representing a negative 2's-complement number and jaroslav@1258: * returns the minimal (no leading zero ints) unsigned whose value is -a. jaroslav@1258: */ jaroslav@1258: private static int[] makePositive(int a[]) { jaroslav@1258: int keep, j; jaroslav@1258: jaroslav@1258: // Find first non-sign (0xffffffff) int of input jaroslav@1258: for (keep=0; keep>> 5) + 1; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /* Returns sign bit */ jaroslav@1258: private int signBit() { jaroslav@1258: return signum < 0 ? 1 : 0; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /* Returns an int of sign bits */ jaroslav@1258: private int signInt() { jaroslav@1258: return signum < 0 ? -1 : 0; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the specified int of the little-endian two's complement jaroslav@1258: * representation (int 0 is the least significant). The int number can jaroslav@1258: * be arbitrarily high (values are logically preceded by infinitely many jaroslav@1258: * sign ints). jaroslav@1258: */ jaroslav@1258: private int getInt(int n) { jaroslav@1258: if (n < 0) jaroslav@1258: return 0; jaroslav@1258: if (n >= mag.length) jaroslav@1258: return signInt(); jaroslav@1258: jaroslav@1258: int magInt = mag[mag.length-n-1]; jaroslav@1258: jaroslav@1258: return (signum >= 0 ? magInt : jaroslav@1258: (n <= firstNonzeroIntNum() ? -magInt : ~magInt)); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the index of the int that contains the first nonzero int in the jaroslav@1258: * little-endian binary representation of the magnitude (int 0 is the jaroslav@1258: * least significant). If the magnitude is zero, return value is undefined. jaroslav@1258: */ jaroslav@1258: private int firstNonzeroIntNum() { jaroslav@1258: int fn = firstNonzeroIntNum - 2; jaroslav@1258: if (fn == -2) { // firstNonzeroIntNum not initialized yet jaroslav@1258: fn = 0; jaroslav@1258: jaroslav@1258: // Search for the first nonzero int jaroslav@1258: int i; jaroslav@1258: int mlen = mag.length; jaroslav@1258: for (i = mlen - 1; i >= 0 && mag[i] == 0; i--) jaroslav@1258: ; jaroslav@1258: fn = mlen - i - 1; jaroslav@1258: firstNonzeroIntNum = fn + 2; // offset by two to initialize jaroslav@1258: } jaroslav@1258: return fn; jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** use serialVersionUID from JDK 1.1. for interoperability */ jaroslav@1258: private static final long serialVersionUID = -8287574255936472291L; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Serializable fields for BigInteger. jaroslav@1258: * jaroslav@1258: * @serialField signum int jaroslav@1258: * signum of this BigInteger. jaroslav@1258: * @serialField magnitude int[] jaroslav@1258: * magnitude array of this BigInteger. jaroslav@1258: * @serialField bitCount int jaroslav@1258: * number of bits in this BigInteger jaroslav@1258: * @serialField bitLength int jaroslav@1258: * the number of bits in the minimal two's-complement jaroslav@1258: * representation of this BigInteger jaroslav@1258: * @serialField lowestSetBit int jaroslav@1258: * lowest set bit in the twos complement representation jaroslav@1258: */ jaroslav@1258: private static final ObjectStreamField[] serialPersistentFields = { jaroslav@1258: new ObjectStreamField("signum", Integer.TYPE), jaroslav@1258: new ObjectStreamField("magnitude", byte[].class), jaroslav@1258: new ObjectStreamField("bitCount", Integer.TYPE), jaroslav@1258: new ObjectStreamField("bitLength", Integer.TYPE), jaroslav@1258: new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE), jaroslav@1258: new ObjectStreamField("lowestSetBit", Integer.TYPE) jaroslav@1258: }; jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Reconstitute the {@code BigInteger} instance from a stream (that is, jaroslav@1258: * deserialize it). The magnitude is read in as an array of bytes jaroslav@1258: * for historical reasons, but it is converted to an array of ints jaroslav@1258: * and the byte array is discarded. jaroslav@1258: * Note: jaroslav@1258: * The current convention is to initialize the cache fields, bitCount, jaroslav@1258: * bitLength and lowestSetBit, to 0 rather than some other marker value. jaroslav@1258: * Therefore, no explicit action to set these fields needs to be taken in jaroslav@1258: * readObject because those fields already have a 0 value be default since jaroslav@1258: * defaultReadObject is not being used. jaroslav@1258: */ jaroslav@1258: private void readObject(java.io.ObjectInputStream s) jaroslav@1258: throws java.io.IOException, ClassNotFoundException { jaroslav@1258: /* jaroslav@1258: * In order to maintain compatibility with previous serialized forms, jaroslav@1258: * the magnitude of a BigInteger is serialized as an array of bytes. jaroslav@1258: * The magnitude field is used as a temporary store for the byte array jaroslav@1258: * that is deserialized. The cached computation fields should be jaroslav@1258: * transient but are serialized for compatibility reasons. jaroslav@1258: */ jaroslav@1258: jaroslav@1258: // prepare to read the alternate persistent fields jaroslav@1258: ObjectInputStream.GetField fields = s.readFields(); jaroslav@1258: jaroslav@1258: // Read the alternate persistent fields that we care about jaroslav@1258: int sign = fields.get("signum", -2); jaroslav@1258: byte[] magnitude = (byte[])fields.get("magnitude", null); jaroslav@1258: jaroslav@1258: // Validate signum jaroslav@1258: if (sign < -1 || sign > 1) { jaroslav@1258: String message = "BigInteger: Invalid signum value"; jaroslav@1258: if (fields.defaulted("signum")) jaroslav@1258: message = "BigInteger: Signum not present in stream"; jaroslav@1258: throw new java.io.StreamCorruptedException(message); jaroslav@1258: } jaroslav@1258: if ((magnitude.length == 0) != (sign == 0)) { jaroslav@1258: String message = "BigInteger: signum-magnitude mismatch"; jaroslav@1258: if (fields.defaulted("magnitude")) jaroslav@1258: message = "BigInteger: Magnitude not present in stream"; jaroslav@1258: throw new java.io.StreamCorruptedException(message); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Commit final fields via Unsafe jaroslav@1258: unsafe.putIntVolatile(this, signumOffset, sign); jaroslav@1258: jaroslav@1258: // Calculate mag field from magnitude and discard magnitude jaroslav@1258: unsafe.putObjectVolatile(this, magOffset, jaroslav@1258: stripLeadingZeroBytes(magnitude)); jaroslav@1258: } jaroslav@1258: jaroslav@1258: // Support for resetting final fields while deserializing jaroslav@1258: private static final sun.misc.Unsafe unsafe = sun.misc.Unsafe.getUnsafe(); jaroslav@1258: private static final long signumOffset; jaroslav@1258: private static final long magOffset; jaroslav@1258: static { jaroslav@1258: try { jaroslav@1258: signumOffset = unsafe.objectFieldOffset jaroslav@1258: (BigInteger.class.getDeclaredField("signum")); jaroslav@1258: magOffset = unsafe.objectFieldOffset jaroslav@1258: (BigInteger.class.getDeclaredField("mag")); jaroslav@1258: } catch (Exception ex) { jaroslav@1258: throw new Error(ex); jaroslav@1258: } jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Save the {@code BigInteger} instance to a stream. jaroslav@1258: * The magnitude of a BigInteger is serialized as a byte array for jaroslav@1258: * historical reasons. jaroslav@1258: * jaroslav@1258: * @serialData two necessary fields are written as well as obsolete jaroslav@1258: * fields for compatibility with older versions. jaroslav@1258: */ jaroslav@1258: private void writeObject(ObjectOutputStream s) throws IOException { jaroslav@1258: // set the values of the Serializable fields jaroslav@1258: ObjectOutputStream.PutField fields = s.putFields(); jaroslav@1258: fields.put("signum", signum); jaroslav@1258: fields.put("magnitude", magSerializedForm()); jaroslav@1258: // The values written for cached fields are compatible with older jaroslav@1258: // versions, but are ignored in readObject so don't otherwise matter. jaroslav@1258: fields.put("bitCount", -1); jaroslav@1258: fields.put("bitLength", -1); jaroslav@1258: fields.put("lowestSetBit", -2); jaroslav@1258: fields.put("firstNonzeroByteNum", -2); jaroslav@1258: jaroslav@1258: // save them jaroslav@1258: s.writeFields(); jaroslav@1258: } jaroslav@1258: jaroslav@1258: /** jaroslav@1258: * Returns the mag array as an array of bytes. jaroslav@1258: */ jaroslav@1258: private byte[] magSerializedForm() { jaroslav@1258: int len = mag.length; jaroslav@1258: jaroslav@1258: int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0])); jaroslav@1258: int byteLen = (bitLen + 7) >>> 3; jaroslav@1258: byte[] result = new byte[byteLen]; jaroslav@1258: jaroslav@1258: for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0; jaroslav@1258: i>=0; i--) { jaroslav@1258: if (bytesCopied == 4) { jaroslav@1258: nextInt = mag[intIndex--]; jaroslav@1258: bytesCopied = 1; jaroslav@1258: } else { jaroslav@1258: nextInt >>>= 8; jaroslav@1258: bytesCopied++; jaroslav@1258: } jaroslav@1258: result[i] = (byte)nextInt; jaroslav@1258: } jaroslav@1258: return result; jaroslav@1258: } jaroslav@1258: }