jaroslav@1646: /* jaroslav@1646: * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. jaroslav@1646: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. jaroslav@1646: * jaroslav@1646: * This code is free software; you can redistribute it and/or modify it jaroslav@1646: * under the terms of the GNU General Public License version 2 only, as jaroslav@1646: * published by the Free Software Foundation. Oracle designates this jaroslav@1646: * particular file as subject to the "Classpath" exception as provided jaroslav@1646: * by Oracle in the LICENSE file that accompanied this code. jaroslav@1646: * jaroslav@1646: * This code is distributed in the hope that it will be useful, but WITHOUT jaroslav@1646: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or jaroslav@1646: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License jaroslav@1646: * version 2 for more details (a copy is included in the LICENSE file that jaroslav@1646: * accompanied this code). jaroslav@1646: * jaroslav@1646: * You should have received a copy of the GNU General Public License version jaroslav@1646: * 2 along with this work; if not, write to the Free Software Foundation, jaroslav@1646: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. jaroslav@1646: * jaroslav@1646: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA jaroslav@1646: * or visit www.oracle.com if you need additional information or have any jaroslav@1646: * questions. jaroslav@1646: */ jaroslav@1646: jaroslav@1646: package java.lang.invoke; jaroslav@1646: jaroslav@1646: import java.io.Serializable; jaroslav@1646: import java.util.Arrays; jaroslav@1646: jaroslav@1646: /** jaroslav@1646: *

Methods to facilitate the creation of simple "function objects" that jaroslav@1646: * implement one or more interfaces by delegation to a provided {@link MethodHandle}, jaroslav@1646: * possibly after type adaptation and partial evaluation of arguments. These jaroslav@1646: * methods are typically used as bootstrap methods for {@code invokedynamic} jaroslav@1646: * call sites, to support the lambda expression and method jaroslav@1646: * reference expression features of the Java Programming Language. jaroslav@1646: * jaroslav@1646: *

Indirect access to the behavior specified by the provided {@code MethodHandle} jaroslav@1646: * proceeds in order through three phases: jaroslav@1646: *

jaroslav@1646: * jaroslav@1646: *

It is sometimes useful to restrict the set of inputs or results permitted jaroslav@1646: * at invocation. For example, when the generic interface {@code Predicate} jaroslav@1646: * is parameterized as {@code Predicate}, the input must be a jaroslav@1646: * {@code String}, even though the method to implement allows any {@code Object}. jaroslav@1646: * At linkage time, an additional {@link MethodType} parameter describes the jaroslav@1646: * "instantiated" method type; on invocation, the arguments and eventual result jaroslav@1646: * are checked against this {@code MethodType}. jaroslav@1646: * jaroslav@1646: *

This class provides two forms of linkage methods: a standard version jaroslav@1646: * ({@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)}) jaroslav@1646: * using an optimized protocol, and an alternate version jaroslav@1646: * {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}). jaroslav@1646: * The alternate version is a generalization of the standard version, providing jaroslav@1646: * additional control over the behavior of the generated function objects via jaroslav@1646: * flags and additional arguments. The alternate version adds the ability to jaroslav@1646: * manage the following attributes of function objects: jaroslav@1646: * jaroslav@1646: *

jaroslav@1646: * jaroslav@1646: *

Assume the linkage arguments are as follows: jaroslav@1646: *

jaroslav@1646: * jaroslav@1646: *

Then the following linkage invariants must hold: jaroslav@1646: *

jaroslav@1646: * jaroslav@1646: *

Further, at capture time, if {@code implMethod} corresponds to an instance jaroslav@1646: * method, and there are any capture arguments ({@code K > 0}), then the first jaroslav@1646: * capture argument (corresponding to the receiver) must be non-null. jaroslav@1646: * jaroslav@1646: *

A type Q is considered adaptable to S as follows: jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: *
QSLink-time checksInvocation-time checks
PrimitivePrimitiveQ can be converted to S via a primitive widening conversionNone
PrimitiveReferenceS is a supertype of the Wrapper(Q)Cast from Wrapper(Q) to S
ReferencePrimitivefor parameter types: Q is a primitive wrapper and Primitive(Q) jaroslav@1646: * can be widened to S jaroslav@1646: *
for return types: If Q is a primitive wrapper, check that jaroslav@1646: * Primitive(Q) can be widened to S
If Q is not a primitive wrapper, cast Q to the base Wrapper(S); jaroslav@1646: * for example Number for numeric types
ReferenceReferencefor parameter types: S is a supertype of Q jaroslav@1646: *
for return types: none
Cast from Q to S
jaroslav@1646: * jaroslav@1646: * @apiNote These linkage methods are designed to support the evaluation jaroslav@1646: * of lambda expressions and method references in the Java jaroslav@1646: * Language. For every lambda expressions or method reference in the source code, jaroslav@1646: * there is a target type which is a functional interface. Evaluating a lambda jaroslav@1646: * expression produces an object of its target type. The recommended mechanism jaroslav@1646: * for evaluating lambda expressions is to desugar the lambda body to a method, jaroslav@1646: * invoke an invokedynamic call site whose static argument list describes the jaroslav@1646: * sole method of the functional interface and the desugared implementation jaroslav@1646: * method, and returns an object (the lambda object) that implements the target jaroslav@1646: * type. (For method references, the implementation method is simply the jaroslav@1646: * referenced method; no desugaring is needed.) jaroslav@1646: * jaroslav@1646: *

The argument list of the implementation method and the argument list of jaroslav@1646: * the interface method(s) may differ in several ways. The implementation jaroslav@1646: * methods may have additional arguments to accommodate arguments captured by jaroslav@1646: * the lambda expression; there may also be differences resulting from permitted jaroslav@1646: * adaptations of arguments, such as casting, boxing, unboxing, and primitive jaroslav@1646: * widening. (Varargs adaptations are not handled by the metafactories; these are jaroslav@1646: * expected to be handled by the caller.) jaroslav@1646: * jaroslav@1646: *

Invokedynamic call sites have two argument lists: a static argument list jaroslav@1646: * and a dynamic argument list. The static argument list is stored in the jaroslav@1646: * constant pool; the dynamic argument is pushed on the operand stack at capture jaroslav@1646: * time. The bootstrap method has access to the entire static argument list jaroslav@1646: * (which in this case, includes information describing the implementation method, jaroslav@1646: * the target interface, and the target interface method(s)), as well as a jaroslav@1646: * method signature describing the number and static types (but not the values) jaroslav@1646: * of the dynamic arguments and the static return type of the invokedynamic site. jaroslav@1646: * jaroslav@1646: * @implNote The implementation method is described with a method handle. In jaroslav@1646: * theory, any method handle could be used. Currently supported are direct method jaroslav@1646: * handles representing invocation of virtual, interface, constructor and static jaroslav@1646: * methods. jaroslav@1646: */ jaroslav@1646: public class LambdaMetafactory { jaroslav@1646: jaroslav@1646: /** Flag for alternate metafactories indicating the lambda object jaroslav@1646: * must be serializable */ jaroslav@1646: public static final int FLAG_SERIALIZABLE = 1 << 0; jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Flag for alternate metafactories indicating the lambda object implements jaroslav@1646: * other marker interfaces jaroslav@1646: * besides Serializable jaroslav@1646: */ jaroslav@1646: public static final int FLAG_MARKERS = 1 << 1; jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Flag for alternate metafactories indicating the lambda object requires jaroslav@1646: * additional bridge methods jaroslav@1646: */ jaroslav@1646: public static final int FLAG_BRIDGES = 1 << 2; jaroslav@1646: jaroslav@1646: private static final Class[] EMPTY_CLASS_ARRAY = new Class[0]; jaroslav@1646: private static final MethodType[] EMPTY_MT_ARRAY = new MethodType[0]; jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Facilitates the creation of simple "function objects" that implement one jaroslav@1646: * or more interfaces by delegation to a provided {@link MethodHandle}, jaroslav@1646: * after appropriate type adaptation and partial evaluation of arguments. jaroslav@1646: * Typically used as a bootstrap method for {@code invokedynamic} jaroslav@1646: * call sites, to support the lambda expression and method jaroslav@1646: * reference expression features of the Java Programming Language. jaroslav@1646: * jaroslav@1646: *

This is the standard, streamlined metafactory; additional flexibility jaroslav@1646: * is provided by {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}. jaroslav@1646: * A general description of the behavior of this method is provided jaroslav@1646: * {@link LambdaMetafactory above}. jaroslav@1646: * jaroslav@1646: *

When the target of the {@code CallSite} returned from this method is jaroslav@1646: * invoked, the resulting function objects are instances of a class which jaroslav@1646: * implements the interface named by the return type of {@code invokedType}, jaroslav@1646: * declares a method with the name given by {@code invokedName} and the jaroslav@1646: * signature given by {@code samMethodType}. It may also override additional jaroslav@1646: * methods from {@code Object}. jaroslav@1646: * jaroslav@1646: * @param caller Represents a lookup context with the accessibility jaroslav@1646: * privileges of the caller. When used with {@code invokedynamic}, jaroslav@1646: * this is stacked automatically by the VM. jaroslav@1646: * @param invokedName The name of the method to implement. When used with jaroslav@1646: * {@code invokedynamic}, this is provided by the jaroslav@1646: * {@code NameAndType} of the {@code InvokeDynamic} jaroslav@1646: * structure and is stacked automatically by the VM. jaroslav@1646: * @param invokedType The expected signature of the {@code CallSite}. The jaroslav@1646: * parameter types represent the types of capture variables; jaroslav@1646: * the return type is the interface to implement. When jaroslav@1646: * used with {@code invokedynamic}, this is provided by jaroslav@1646: * the {@code NameAndType} of the {@code InvokeDynamic} jaroslav@1646: * structure and is stacked automatically by the VM. jaroslav@1646: * In the event that the implementation method is an jaroslav@1646: * instance method and this signature has any parameters, jaroslav@1646: * the first parameter in the invocation signature must jaroslav@1646: * correspond to the receiver. jaroslav@1646: * @param samMethodType Signature and return type of method to be implemented jaroslav@1646: * by the function object. jaroslav@1646: * @param implMethod A direct method handle describing the implementation jaroslav@1646: * method which should be called (with suitable adaptation jaroslav@1646: * of argument types, return types, and with captured jaroslav@1646: * arguments prepended to the invocation arguments) at jaroslav@1646: * invocation time. jaroslav@1646: * @param instantiatedMethodType The signature and return type that should jaroslav@1646: * be enforced dynamically at invocation time. jaroslav@1646: * This may be the same as {@code samMethodType}, jaroslav@1646: * or may be a specialization of it. jaroslav@1646: * @return a CallSite whose target can be used to perform capture, generating jaroslav@1646: * instances of the interface named by {@code invokedType} jaroslav@1646: * @throws LambdaConversionException If any of the linkage invariants jaroslav@1646: * described {@link LambdaMetafactory above} jaroslav@1646: * are violated jaroslav@1646: */ jaroslav@1646: public static CallSite metafactory(MethodHandles.Lookup caller, jaroslav@1646: String invokedName, jaroslav@1646: MethodType invokedType, jaroslav@1646: MethodType samMethodType, jaroslav@1646: MethodHandle implMethod, jaroslav@1646: MethodType instantiatedMethodType) jaroslav@1646: throws LambdaConversionException { jaroslav@1646: AbstractValidatingLambdaMetafactory mf; jaroslav@1646: mf = new InnerClassLambdaMetafactory(caller, invokedType, jaroslav@1646: invokedName, samMethodType, jaroslav@1646: implMethod, instantiatedMethodType, jaroslav@1646: false, EMPTY_CLASS_ARRAY, EMPTY_MT_ARRAY); jaroslav@1646: mf.validateMetafactoryArgs(); jaroslav@1646: return mf.buildCallSite(); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Facilitates the creation of simple "function objects" that implement one jaroslav@1646: * or more interfaces by delegation to a provided {@link MethodHandle}, jaroslav@1646: * after appropriate type adaptation and partial evaluation of arguments. jaroslav@1646: * Typically used as a bootstrap method for {@code invokedynamic} jaroslav@1646: * call sites, to support the lambda expression and method jaroslav@1646: * reference expression features of the Java Programming Language. jaroslav@1646: * jaroslav@1646: *

This is the general, more flexible metafactory; a streamlined version jaroslav@1646: * is provided by {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)}. jaroslav@1646: * A general description of the behavior of this method is provided jaroslav@1646: * {@link LambdaMetafactory above}. jaroslav@1646: * jaroslav@1646: *

The argument list for this method includes three fixed parameters, jaroslav@1646: * corresponding to the parameters automatically stacked by the VM for the jaroslav@1646: * bootstrap method in an {@code invokedynamic} invocation, and an {@code Object[]} jaroslav@1646: * parameter that contains additional parameters. The declared argument jaroslav@1646: * list for this method is: jaroslav@1646: * jaroslav@1646: *

{@code
jaroslav@1646:      *  CallSite altMetafactory(MethodHandles.Lookup caller,
jaroslav@1646:      *                          String invokedName,
jaroslav@1646:      *                          MethodType invokedType,
jaroslav@1646:      *                          Object... args)
jaroslav@1646:      * }
jaroslav@1646: * jaroslav@1646: *

but it behaves as if the argument list is as follows: jaroslav@1646: * jaroslav@1646: *

{@code
jaroslav@1646:      *  CallSite altMetafactory(MethodHandles.Lookup caller,
jaroslav@1646:      *                          String invokedName,
jaroslav@1646:      *                          MethodType invokedType,
jaroslav@1646:      *                          MethodType samMethodType,
jaroslav@1646:      *                          MethodHandle implMethod,
jaroslav@1646:      *                          MethodType instantiatedMethodType,
jaroslav@1646:      *                          int flags,
jaroslav@1646:      *                          int markerInterfaceCount,  // IF flags has MARKERS set
jaroslav@1646:      *                          Class... markerInterfaces, // IF flags has MARKERS set
jaroslav@1646:      *                          int bridgeCount,           // IF flags has BRIDGES set
jaroslav@1646:      *                          MethodType... bridges      // IF flags has BRIDGES set
jaroslav@1646:      *                          )
jaroslav@1646:      * }
jaroslav@1646: * jaroslav@1646: *

Arguments that appear in the argument list for jaroslav@1646: * {@link #metafactory(MethodHandles.Lookup, String, MethodType, MethodType, MethodHandle, MethodType)} jaroslav@1646: * have the same specification as in that method. The additional arguments jaroslav@1646: * are interpreted as follows: jaroslav@1646: *

jaroslav@1646: * jaroslav@1646: *

Each class named by {@code markerInterfaces} is subject to the same jaroslav@1646: * restrictions as {@code Rd}, the return type of {@code invokedType}, jaroslav@1646: * as described {@link LambdaMetafactory above}. Each {@code MethodType} jaroslav@1646: * named by {@code bridges} is subject to the same restrictions as jaroslav@1646: * {@code samMethodType}, as described {@link LambdaMetafactory above}. jaroslav@1646: * jaroslav@1646: *

When FLAG_SERIALIZABLE is set in {@code flags}, the function objects jaroslav@1646: * will implement {@code Serializable}, and will have a {@code writeReplace} jaroslav@1646: * method that returns an appropriate {@link SerializedLambda}. The jaroslav@1646: * {@code caller} class must have an appropriate {@code $deserializeLambda$} jaroslav@1646: * method, as described in {@link SerializedLambda}. jaroslav@1646: * jaroslav@1646: *

When the target of the {@code CallSite} returned from this method is jaroslav@1646: * invoked, the resulting function objects are instances of a class with jaroslav@1646: * the following properties: jaroslav@1646: *

jaroslav@1646: * jaroslav@1646: * @param caller Represents a lookup context with the accessibility jaroslav@1646: * privileges of the caller. When used with {@code invokedynamic}, jaroslav@1646: * this is stacked automatically by the VM. jaroslav@1646: * @param invokedName The name of the method to implement. When used with jaroslav@1646: * {@code invokedynamic}, this is provided by the jaroslav@1646: * {@code NameAndType} of the {@code InvokeDynamic} jaroslav@1646: * structure and is stacked automatically by the VM. jaroslav@1646: * @param invokedType The expected signature of the {@code CallSite}. The jaroslav@1646: * parameter types represent the types of capture variables; jaroslav@1646: * the return type is the interface to implement. When jaroslav@1646: * used with {@code invokedynamic}, this is provided by jaroslav@1646: * the {@code NameAndType} of the {@code InvokeDynamic} jaroslav@1646: * structure and is stacked automatically by the VM. jaroslav@1646: * In the event that the implementation method is an jaroslav@1646: * instance method and this signature has any parameters, jaroslav@1646: * the first parameter in the invocation signature must jaroslav@1646: * correspond to the receiver. jaroslav@1646: * @param args An {@code Object[]} array containing the required jaroslav@1646: * arguments {@code samMethodType}, {@code implMethod}, jaroslav@1646: * {@code instantiatedMethodType}, {@code flags}, and any jaroslav@1646: * optional arguments, as described jaroslav@1646: * {@link #altMetafactory(MethodHandles.Lookup, String, MethodType, Object...)} above} jaroslav@1646: * @return a CallSite whose target can be used to perform capture, generating jaroslav@1646: * instances of the interface named by {@code invokedType} jaroslav@1646: * @throws LambdaConversionException If any of the linkage invariants jaroslav@1646: * described {@link LambdaMetafactory above} jaroslav@1646: * are violated jaroslav@1646: */ jaroslav@1646: public static CallSite altMetafactory(MethodHandles.Lookup caller, jaroslav@1646: String invokedName, jaroslav@1646: MethodType invokedType, jaroslav@1646: Object... args) jaroslav@1646: throws LambdaConversionException { jaroslav@1646: MethodType samMethodType = (MethodType)args[0]; jaroslav@1646: MethodHandle implMethod = (MethodHandle)args[1]; jaroslav@1646: MethodType instantiatedMethodType = (MethodType)args[2]; jaroslav@1646: int flags = (Integer) args[3]; jaroslav@1646: Class[] markerInterfaces; jaroslav@1646: MethodType[] bridges; jaroslav@1646: int argIndex = 4; jaroslav@1646: if ((flags & FLAG_MARKERS) != 0) { jaroslav@1646: int markerCount = (Integer) args[argIndex++]; jaroslav@1646: markerInterfaces = new Class[markerCount]; jaroslav@1646: System.arraycopy(args, argIndex, markerInterfaces, 0, markerCount); jaroslav@1646: argIndex += markerCount; jaroslav@1646: } jaroslav@1646: else jaroslav@1646: markerInterfaces = EMPTY_CLASS_ARRAY; jaroslav@1646: if ((flags & FLAG_BRIDGES) != 0) { jaroslav@1646: int bridgeCount = (Integer) args[argIndex++]; jaroslav@1646: bridges = new MethodType[bridgeCount]; jaroslav@1646: System.arraycopy(args, argIndex, bridges, 0, bridgeCount); jaroslav@1646: argIndex += bridgeCount; jaroslav@1646: } jaroslav@1646: else jaroslav@1646: bridges = EMPTY_MT_ARRAY; jaroslav@1646: jaroslav@1646: boolean isSerializable = ((flags & FLAG_SERIALIZABLE) != 0); jaroslav@1646: if (isSerializable) { jaroslav@1646: boolean foundSerializableSupertype = Serializable.class.isAssignableFrom(invokedType.returnType()); jaroslav@1646: for (Class c : markerInterfaces) jaroslav@1646: foundSerializableSupertype |= Serializable.class.isAssignableFrom(c); jaroslav@1646: if (!foundSerializableSupertype) { jaroslav@1646: markerInterfaces = Arrays.copyOf(markerInterfaces, markerInterfaces.length + 1); jaroslav@1646: markerInterfaces[markerInterfaces.length-1] = Serializable.class; jaroslav@1646: } jaroslav@1646: } jaroslav@1646: jaroslav@1646: AbstractValidatingLambdaMetafactory mf jaroslav@1646: = new InnerClassLambdaMetafactory(caller, invokedType, jaroslav@1646: invokedName, samMethodType, jaroslav@1646: implMethod, jaroslav@1646: instantiatedMethodType, jaroslav@1646: isSerializable, jaroslav@1646: markerInterfaces, bridges); jaroslav@1646: mf.validateMetafactoryArgs(); jaroslav@1646: return mf.buildCallSite(); jaroslav@1646: } jaroslav@1646: }