jaroslav@1646: /* jaroslav@1646: * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved. jaroslav@1646: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. jaroslav@1646: * jaroslav@1646: * This code is free software; you can redistribute it and/or modify it jaroslav@1646: * under the terms of the GNU General Public License version 2 only, as jaroslav@1646: * published by the Free Software Foundation. Oracle designates this jaroslav@1646: * particular file as subject to the "Classpath" exception as provided jaroslav@1646: * by Oracle in the LICENSE file that accompanied this code. jaroslav@1646: * jaroslav@1646: * This code is distributed in the hope that it will be useful, but WITHOUT jaroslav@1646: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or jaroslav@1646: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License jaroslav@1646: * version 2 for more details (a copy is included in the LICENSE file that jaroslav@1646: * accompanied this code). jaroslav@1646: * jaroslav@1646: * You should have received a copy of the GNU General Public License version jaroslav@1646: * 2 along with this work; if not, write to the Free Software Foundation, jaroslav@1646: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. jaroslav@1646: * jaroslav@1646: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA jaroslav@1646: * or visit www.oracle.com if you need additional information or have any jaroslav@1646: * questions. jaroslav@1646: */ jaroslav@1646: jaroslav@1646: package java.lang.invoke; jaroslav@1646: jaroslav@1646: import java.lang.reflect.*; jaroslav@1646: import java.util.List; jaroslav@1646: import java.util.ArrayList; jaroslav@1646: import java.util.Arrays; jaroslav@1646: jaroslav@1646: import sun.invoke.util.ValueConversions; jaroslav@1646: import sun.invoke.util.VerifyAccess; jaroslav@1646: import sun.invoke.util.Wrapper; jaroslav@1646: import sun.reflect.CallerSensitive; jaroslav@1646: import sun.reflect.Reflection; jaroslav@1646: import sun.reflect.misc.ReflectUtil; jaroslav@1646: import sun.security.util.SecurityConstants; jaroslav@1646: import static java.lang.invoke.MethodHandleStatics.*; jaroslav@1646: import static java.lang.invoke.MethodHandleNatives.Constants.*; jaroslav@1646: import java.util.concurrent.ConcurrentHashMap; jaroslav@1646: import sun.security.util.SecurityConstants; jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * This class consists exclusively of static methods that operate on or return jaroslav@1646: * method handles. They fall into several categories: jaroslav@1646: * jaroslav@1646: *

jaroslav@1646: * @author John Rose, JSR 292 EG jaroslav@1646: * @since 1.7 jaroslav@1646: */ jaroslav@1646: public class MethodHandles { jaroslav@1646: jaroslav@1646: private MethodHandles() { } // do not instantiate jaroslav@1646: jaroslav@1646: private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); jaroslav@1646: static { MethodHandleImpl.initStatics(); } jaroslav@1646: // See IMPL_LOOKUP below. jaroslav@1646: jaroslav@1646: //// Method handle creation from ordinary methods. jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Returns a {@link Lookup lookup object} with jaroslav@1646: * full capabilities to emulate all supported bytecode behaviors of the caller. jaroslav@1646: * These capabilities include private access to the caller. jaroslav@1646: * Factory methods on the lookup object can create jaroslav@1646: * direct method handles jaroslav@1646: * for any member that the caller has access to via bytecodes, jaroslav@1646: * including protected and private fields and methods. jaroslav@1646: * This lookup object is a capability which may be delegated to trusted agents. jaroslav@1646: * Do not store it in place where untrusted code can access it. jaroslav@1646: *

jaroslav@1646: * This method is caller sensitive, which means that it may return different jaroslav@1646: * values to different callers. jaroslav@1646: *

jaroslav@1646: * For any given caller class {@code C}, the lookup object returned by this call jaroslav@1646: * has equivalent capabilities to any lookup object jaroslav@1646: * supplied by the JVM to the bootstrap method of an jaroslav@1646: * invokedynamic instruction jaroslav@1646: * executing in the same caller class {@code C}. jaroslav@1646: * @return a lookup object for the caller of this method, with private access jaroslav@1646: */ jaroslav@1646: @CallerSensitive jaroslav@1646: public static Lookup lookup() { jaroslav@1646: return new Lookup(Reflection.getCallerClass()); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Returns a {@link Lookup lookup object} which is trusted minimally. jaroslav@1646: * It can only be used to create method handles to jaroslav@1646: * publicly accessible fields and methods. jaroslav@1646: *

jaroslav@1646: * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class} jaroslav@1646: * of this lookup object will be {@link java.lang.Object}. jaroslav@1646: * jaroslav@1646: *

jaroslav@1646: * Discussion: jaroslav@1646: * The lookup class can be changed to any other class {@code C} using an expression of the form jaroslav@1646: * {@link Lookup#in publicLookup().in(C.class)}. jaroslav@1646: * Since all classes have equal access to public names, jaroslav@1646: * such a change would confer no new access rights. jaroslav@1646: * A public lookup object is always subject to jaroslav@1646: * security manager checks. jaroslav@1646: * Also, it cannot access jaroslav@1646: * caller sensitive methods. jaroslav@1646: * @return a lookup object which is trusted minimally jaroslav@1646: */ jaroslav@1646: public static Lookup publicLookup() { jaroslav@1646: return Lookup.PUBLIC_LOOKUP; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Performs an unchecked "crack" of a jaroslav@1646: * direct method handle. jaroslav@1646: * The result is as if the user had obtained a lookup object capable enough jaroslav@1646: * to crack the target method handle, called jaroslav@1646: * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} jaroslav@1646: * on the target to obtain its symbolic reference, and then called jaroslav@1646: * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} jaroslav@1646: * to resolve the symbolic reference to a member. jaroslav@1646: *

jaroslav@1646: * If there is a security manager, its {@code checkPermission} method jaroslav@1646: * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. jaroslav@1646: * @param the desired type of the result, either {@link Member} or a subtype jaroslav@1646: * @param target a direct method handle to crack into symbolic reference components jaroslav@1646: * @param expected a class object representing the desired result type {@code T} jaroslav@1646: * @return a reference to the method, constructor, or field object jaroslav@1646: * @exception SecurityException if the caller is not privileged to call {@code setAccessible} jaroslav@1646: * @exception NullPointerException if either argument is {@code null} jaroslav@1646: * @exception IllegalArgumentException if the target is not a direct method handle jaroslav@1646: * @exception ClassCastException if the member is not of the expected type jaroslav@1646: * @since 1.8 jaroslav@1646: */ jaroslav@1646: public static T jaroslav@1646: reflectAs(Class expected, MethodHandle target) { jaroslav@1646: SecurityManager smgr = System.getSecurityManager(); jaroslav@1646: if (smgr != null) smgr.checkPermission(ACCESS_PERMISSION); jaroslav@1646: Lookup lookup = Lookup.IMPL_LOOKUP; // use maximally privileged lookup jaroslav@1646: return lookup.revealDirect(target).reflectAs(expected, lookup); jaroslav@1646: } jaroslav@1646: // Copied from AccessibleObject, as used by Method.setAccessible, etc.: jaroslav@1646: static final private java.security.Permission ACCESS_PERMISSION = jaroslav@1646: new ReflectPermission("suppressAccessChecks"); jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * A lookup object is a factory for creating method handles, jaroslav@1646: * when the creation requires access checking. jaroslav@1646: * Method handles do not perform jaroslav@1646: * access checks when they are called, but rather when they are created. jaroslav@1646: * Therefore, method handle access jaroslav@1646: * restrictions must be enforced when a method handle is created. jaroslav@1646: * The caller class against which those restrictions are enforced jaroslav@1646: * is known as the {@linkplain #lookupClass lookup class}. jaroslav@1646: *

jaroslav@1646: * A lookup class which needs to create method handles will call jaroslav@1646: * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself. jaroslav@1646: * When the {@code Lookup} factory object is created, the identity of the lookup class is jaroslav@1646: * determined, and securely stored in the {@code Lookup} object. jaroslav@1646: * The lookup class (or its delegates) may then use factory methods jaroslav@1646: * on the {@code Lookup} object to create method handles for access-checked members. jaroslav@1646: * This includes all methods, constructors, and fields which are allowed to the lookup class, jaroslav@1646: * even private ones. jaroslav@1646: * jaroslav@1646: *

Lookup Factory Methods

jaroslav@1646: * The factory methods on a {@code Lookup} object correspond to all major jaroslav@1646: * use cases for methods, constructors, and fields. jaroslav@1646: * Each method handle created by a factory method is the functional jaroslav@1646: * equivalent of a particular bytecode behavior. jaroslav@1646: * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) jaroslav@1646: * Here is a summary of the correspondence between these factory methods and jaroslav@1646: * the behavior the resulting method handles: jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: * jaroslav@1646: *
lookup expressionmemberbytecode behavior
{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}{@code FT f;}{@code (T) this.f;}
{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}{@code static}
{@code FT f;}
{@code (T) C.f;}
{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}{@code FT f;}{@code this.f = x;}
{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}{@code static}
{@code FT f;}
{@code C.f = arg;}
{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}{@code T m(A*);}{@code (T) this.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}{@code static}
{@code T m(A*);}
{@code (T) C.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}{@code T m(A*);}{@code (T) super.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}{@code C(A*);}{@code new C(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}({@code static})?
{@code FT f;}
{@code (FT) aField.get(thisOrNull);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}({@code static})?
{@code FT f;}
{@code aField.set(thisOrNull, arg);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}({@code static})?
{@code T m(A*);}
{@code (T) aMethod.invoke(thisOrNull, arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}{@code C(A*);}{@code (C) aConstructor.newInstance(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}({@code static})?
{@code T m(A*);}
{@code (T) aMethod.invoke(thisOrNull, arg*);}
jaroslav@1646: * jaroslav@1646: * Here, the type {@code C} is the class or interface being searched for a member, jaroslav@1646: * documented as a parameter named {@code refc} in the lookup methods. jaroslav@1646: * The method type {@code MT} is composed from the return type {@code T} jaroslav@1646: * and the sequence of argument types {@code A*}. jaroslav@1646: * The constructor also has a sequence of argument types {@code A*} and jaroslav@1646: * is deemed to return the newly-created object of type {@code C}. jaroslav@1646: * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. jaroslav@1646: * The formal parameter {@code this} stands for the self-reference of type {@code C}; jaroslav@1646: * if it is present, it is always the leading argument to the method handle invocation. jaroslav@1646: * (In the case of some {@code protected} members, {@code this} may be jaroslav@1646: * restricted in type to the lookup class; see below.) jaroslav@1646: * The name {@code arg} stands for all the other method handle arguments. jaroslav@1646: * In the code examples for the Core Reflection API, the name {@code thisOrNull} jaroslav@1646: * stands for a null reference if the accessed method or field is static, jaroslav@1646: * and {@code this} otherwise. jaroslav@1646: * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand jaroslav@1646: * for reflective objects corresponding to the given members. jaroslav@1646: *

jaroslav@1646: * In cases where the given member is of variable arity (i.e., a method or constructor) jaroslav@1646: * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. jaroslav@1646: * In all other cases, the returned method handle will be of fixed arity. jaroslav@1646: *

jaroslav@1646: * Discussion: jaroslav@1646: * The equivalence between looked-up method handles and underlying jaroslav@1646: * class members and bytecode behaviors jaroslav@1646: * can break down in a few ways: jaroslav@1646: *

jaroslav@1646: * jaroslav@1646: *

Access checking

jaroslav@1646: * Access checks are applied in the factory methods of {@code Lookup}, jaroslav@1646: * when a method handle is created. jaroslav@1646: * This is a key difference from the Core Reflection API, since jaroslav@1646: * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} jaroslav@1646: * performs access checking against every caller, on every call. jaroslav@1646: *

jaroslav@1646: * All access checks start from a {@code Lookup} object, which jaroslav@1646: * compares its recorded lookup class against all requests to jaroslav@1646: * create method handles. jaroslav@1646: * A single {@code Lookup} object can be used to create any number jaroslav@1646: * of access-checked method handles, all checked against a single jaroslav@1646: * lookup class. jaroslav@1646: *

jaroslav@1646: * A {@code Lookup} object can be shared with other trusted code, jaroslav@1646: * such as a metaobject protocol. jaroslav@1646: * A shared {@code Lookup} object delegates the capability jaroslav@1646: * to create method handles on private members of the lookup class. jaroslav@1646: * Even if privileged code uses the {@code Lookup} object, jaroslav@1646: * the access checking is confined to the privileges of the jaroslav@1646: * original lookup class. jaroslav@1646: *

jaroslav@1646: * A lookup can fail, because jaroslav@1646: * the containing class is not accessible to the lookup class, or jaroslav@1646: * because the desired class member is missing, or because the jaroslav@1646: * desired class member is not accessible to the lookup class, or jaroslav@1646: * because the lookup object is not trusted enough to access the member. jaroslav@1646: * In any of these cases, a {@code ReflectiveOperationException} will be jaroslav@1646: * thrown from the attempted lookup. The exact class will be one of jaroslav@1646: * the following: jaroslav@1646: *

jaroslav@1646: *

jaroslav@1646: * In general, the conditions under which a method handle may be jaroslav@1646: * looked up for a method {@code M} are no more restrictive than the conditions jaroslav@1646: * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. jaroslav@1646: * Where the JVM would raise exceptions like {@code NoSuchMethodError}, jaroslav@1646: * a method handle lookup will generally raise a corresponding jaroslav@1646: * checked exception, such as {@code NoSuchMethodException}. jaroslav@1646: * And the effect of invoking the method handle resulting from the lookup jaroslav@1646: * is exactly equivalent jaroslav@1646: * to executing the compiled, verified, and resolved call to {@code M}. jaroslav@1646: * The same point is true of fields and constructors. jaroslav@1646: *

jaroslav@1646: * Discussion: jaroslav@1646: * Access checks only apply to named and reflected methods, jaroslav@1646: * constructors, and fields. jaroslav@1646: * Other method handle creation methods, such as jaroslav@1646: * {@link MethodHandle#asType MethodHandle.asType}, jaroslav@1646: * do not require any access checks, and are used jaroslav@1646: * independently of any {@code Lookup} object. jaroslav@1646: *

jaroslav@1646: * If the desired member is {@code protected}, the usual JVM rules apply, jaroslav@1646: * including the requirement that the lookup class must be either be in the jaroslav@1646: * same package as the desired member, or must inherit that member. jaroslav@1646: * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) jaroslav@1646: * In addition, if the desired member is a non-static field or method jaroslav@1646: * in a different package, the resulting method handle may only be applied jaroslav@1646: * to objects of the lookup class or one of its subclasses. jaroslav@1646: * This requirement is enforced by narrowing the type of the leading jaroslav@1646: * {@code this} parameter from {@code C} jaroslav@1646: * (which will necessarily be a superclass of the lookup class) jaroslav@1646: * to the lookup class itself. jaroslav@1646: *

jaroslav@1646: * The JVM imposes a similar requirement on {@code invokespecial} instruction, jaroslav@1646: * that the receiver argument must match both the resolved method and jaroslav@1646: * the current class. Again, this requirement is enforced by narrowing the jaroslav@1646: * type of the leading parameter to the resulting method handle. jaroslav@1646: * (See the Java Virtual Machine Specification, section 4.10.1.9.) jaroslav@1646: *

jaroslav@1646: * The JVM represents constructors and static initializer blocks as internal methods jaroslav@1646: * with special names ({@code ""} and {@code ""}). jaroslav@1646: * The internal syntax of invocation instructions allows them to refer to such internal jaroslav@1646: * methods as if they were normal methods, but the JVM bytecode verifier rejects them. jaroslav@1646: * A lookup of such an internal method will produce a {@code NoSuchMethodException}. jaroslav@1646: *

jaroslav@1646: * In some cases, access between nested classes is obtained by the Java compiler by creating jaroslav@1646: * an wrapper method to access a private method of another class jaroslav@1646: * in the same top-level declaration. jaroslav@1646: * For example, a nested class {@code C.D} jaroslav@1646: * can access private members within other related classes such as jaroslav@1646: * {@code C}, {@code C.D.E}, or {@code C.B}, jaroslav@1646: * but the Java compiler may need to generate wrapper methods in jaroslav@1646: * those related classes. In such cases, a {@code Lookup} object on jaroslav@1646: * {@code C.E} would be unable to those private members. jaroslav@1646: * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, jaroslav@1646: * which can transform a lookup on {@code C.E} into one on any of those other jaroslav@1646: * classes, without special elevation of privilege. jaroslav@1646: *

jaroslav@1646: * The accesses permitted to a given lookup object may be limited, jaroslav@1646: * according to its set of {@link #lookupModes lookupModes}, jaroslav@1646: * to a subset of members normally accessible to the lookup class. jaroslav@1646: * For example, the {@link MethodHandles#publicLookup publicLookup} jaroslav@1646: * method produces a lookup object which is only allowed to access jaroslav@1646: * public members in public classes. jaroslav@1646: * The caller sensitive method {@link MethodHandles#lookup lookup} jaroslav@1646: * produces a lookup object with full capabilities relative to jaroslav@1646: * its caller class, to emulate all supported bytecode behaviors. jaroslav@1646: * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object jaroslav@1646: * with fewer access modes than the original lookup object. jaroslav@1646: * jaroslav@1646: *

jaroslav@1646: * jaroslav@1646: * Discussion of private access: jaroslav@1646: * We say that a lookup has private access jaroslav@1646: * if its {@linkplain #lookupModes lookup modes} jaroslav@1646: * include the possibility of accessing {@code private} members. jaroslav@1646: * As documented in the relevant methods elsewhere, jaroslav@1646: * only lookups with private access possess the following capabilities: jaroslav@1646: *

jaroslav@1646: *

jaroslav@1646: * Each of these permissions is a consequence of the fact that a lookup object jaroslav@1646: * with private access can be securely traced back to an originating class, jaroslav@1646: * whose bytecode behaviors and Java language access permissions jaroslav@1646: * can be reliably determined and emulated by method handles. jaroslav@1646: * jaroslav@1646: *

Security manager interactions

jaroslav@1646: * Although bytecode instructions can only refer to classes in jaroslav@1646: * a related class loader, this API can search for methods in any jaroslav@1646: * class, as long as a reference to its {@code Class} object is jaroslav@1646: * available. Such cross-loader references are also possible with the jaroslav@1646: * Core Reflection API, and are impossible to bytecode instructions jaroslav@1646: * such as {@code invokestatic} or {@code getfield}. jaroslav@1646: * There is a {@linkplain java.lang.SecurityManager security manager API} jaroslav@1646: * to allow applications to check such cross-loader references. jaroslav@1646: * These checks apply to both the {@code MethodHandles.Lookup} API jaroslav@1646: * and the Core Reflection API jaroslav@1646: * (as found on {@link java.lang.Class Class}). jaroslav@1646: *

jaroslav@1646: * If a security manager is present, member lookups are subject to jaroslav@1646: * additional checks. jaroslav@1646: * From one to three calls are made to the security manager. jaroslav@1646: * Any of these calls can refuse access by throwing a jaroslav@1646: * {@link java.lang.SecurityException SecurityException}. jaroslav@1646: * Define {@code smgr} as the security manager, jaroslav@1646: * {@code lookc} as the lookup class of the current lookup object, jaroslav@1646: * {@code refc} as the containing class in which the member jaroslav@1646: * is being sought, and {@code defc} as the class in which the jaroslav@1646: * member is actually defined. jaroslav@1646: * The value {@code lookc} is defined as not present jaroslav@1646: * if the current lookup object does not have jaroslav@1646: * private access. jaroslav@1646: * The calls are made according to the following rules: jaroslav@1646: *

jaroslav@1646: * Security checks are performed after other access checks have passed. jaroslav@1646: * Therefore, the above rules presuppose a member that is public, jaroslav@1646: * or else that is being accessed from a lookup class that has jaroslav@1646: * rights to access the member. jaroslav@1646: * jaroslav@1646: *

Caller sensitive methods

jaroslav@1646: * A small number of Java methods have a special property called caller sensitivity. jaroslav@1646: * A caller-sensitive method can behave differently depending on the jaroslav@1646: * identity of its immediate caller. jaroslav@1646: *

jaroslav@1646: * If a method handle for a caller-sensitive method is requested, jaroslav@1646: * the general rules for bytecode behaviors apply, jaroslav@1646: * but they take account of the lookup class in a special way. jaroslav@1646: * The resulting method handle behaves as if it were called jaroslav@1646: * from an instruction contained in the lookup class, jaroslav@1646: * so that the caller-sensitive method detects the lookup class. jaroslav@1646: * (By contrast, the invoker of the method handle is disregarded.) jaroslav@1646: * Thus, in the case of caller-sensitive methods, jaroslav@1646: * different lookup classes may give rise to jaroslav@1646: * differently behaving method handles. jaroslav@1646: *

jaroslav@1646: * In cases where the lookup object is jaroslav@1646: * {@link MethodHandles#publicLookup() publicLookup()}, jaroslav@1646: * or some other lookup object without jaroslav@1646: * private access, jaroslav@1646: * the lookup class is disregarded. jaroslav@1646: * In such cases, no caller-sensitive method handle can be created, jaroslav@1646: * access is forbidden, and the lookup fails with an jaroslav@1646: * {@code IllegalAccessException}. jaroslav@1646: *

jaroslav@1646: * Discussion: jaroslav@1646: * For example, the caller-sensitive method jaroslav@1646: * {@link java.lang.Class#forName(String) Class.forName(x)} jaroslav@1646: * can return varying classes or throw varying exceptions, jaroslav@1646: * depending on the class loader of the class that calls it. jaroslav@1646: * A public lookup of {@code Class.forName} will fail, because jaroslav@1646: * there is no reasonable way to determine its bytecode behavior. jaroslav@1646: *

jaroslav@1646: * If an application caches method handles for broad sharing, jaroslav@1646: * it should use {@code publicLookup()} to create them. jaroslav@1646: * If there is a lookup of {@code Class.forName}, it will fail, jaroslav@1646: * and the application must take appropriate action in that case. jaroslav@1646: * It may be that a later lookup, perhaps during the invocation of a jaroslav@1646: * bootstrap method, can incorporate the specific identity jaroslav@1646: * of the caller, making the method accessible. jaroslav@1646: *

jaroslav@1646: * The function {@code MethodHandles.lookup} is caller sensitive jaroslav@1646: * so that there can be a secure foundation for lookups. jaroslav@1646: * Nearly all other methods in the JSR 292 API rely on lookup jaroslav@1646: * objects to check access requests. jaroslav@1646: */ jaroslav@1646: public static final jaroslav@1646: class Lookup { jaroslav@1646: /** The class on behalf of whom the lookup is being performed. */ jaroslav@1646: private final Class lookupClass; jaroslav@1646: jaroslav@1646: /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ jaroslav@1646: private final int allowedModes; jaroslav@1646: jaroslav@1646: /** A single-bit mask representing {@code public} access, jaroslav@1646: * which may contribute to the result of {@link #lookupModes lookupModes}. jaroslav@1646: * The value, {@code 0x01}, happens to be the same as the value of the jaroslav@1646: * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. jaroslav@1646: */ jaroslav@1646: public static final int PUBLIC = Modifier.PUBLIC; jaroslav@1646: jaroslav@1646: /** A single-bit mask representing {@code private} access, jaroslav@1646: * which may contribute to the result of {@link #lookupModes lookupModes}. jaroslav@1646: * The value, {@code 0x02}, happens to be the same as the value of the jaroslav@1646: * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. jaroslav@1646: */ jaroslav@1646: public static final int PRIVATE = Modifier.PRIVATE; jaroslav@1646: jaroslav@1646: /** A single-bit mask representing {@code protected} access, jaroslav@1646: * which may contribute to the result of {@link #lookupModes lookupModes}. jaroslav@1646: * The value, {@code 0x04}, happens to be the same as the value of the jaroslav@1646: * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. jaroslav@1646: */ jaroslav@1646: public static final int PROTECTED = Modifier.PROTECTED; jaroslav@1646: jaroslav@1646: /** A single-bit mask representing {@code package} access (default access), jaroslav@1646: * which may contribute to the result of {@link #lookupModes lookupModes}. jaroslav@1646: * The value is {@code 0x08}, which does not correspond meaningfully to jaroslav@1646: * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. jaroslav@1646: */ jaroslav@1646: public static final int PACKAGE = Modifier.STATIC; jaroslav@1646: jaroslav@1646: private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE); jaroslav@1646: private static final int TRUSTED = -1; jaroslav@1646: jaroslav@1646: private static int fixmods(int mods) { jaroslav@1646: mods &= (ALL_MODES - PACKAGE); jaroslav@1646: return (mods != 0) ? mods : PACKAGE; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** Tells which class is performing the lookup. It is this class against jaroslav@1646: * which checks are performed for visibility and access permissions. jaroslav@1646: *

jaroslav@1646: * The class implies a maximum level of access permission, jaroslav@1646: * but the permissions may be additionally limited by the bitmask jaroslav@1646: * {@link #lookupModes lookupModes}, which controls whether non-public members jaroslav@1646: * can be accessed. jaroslav@1646: * @return the lookup class, on behalf of which this lookup object finds members jaroslav@1646: */ jaroslav@1646: public Class lookupClass() { jaroslav@1646: return lookupClass; jaroslav@1646: } jaroslav@1646: jaroslav@1646: // This is just for calling out to MethodHandleImpl. jaroslav@1646: private Class lookupClassOrNull() { jaroslav@1646: return (allowedModes == TRUSTED) ? null : lookupClass; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** Tells which access-protection classes of members this lookup object can produce. jaroslav@1646: * The result is a bit-mask of the bits jaroslav@1646: * {@linkplain #PUBLIC PUBLIC (0x01)}, jaroslav@1646: * {@linkplain #PRIVATE PRIVATE (0x02)}, jaroslav@1646: * {@linkplain #PROTECTED PROTECTED (0x04)}, jaroslav@1646: * and {@linkplain #PACKAGE PACKAGE (0x08)}. jaroslav@1646: *

jaroslav@1646: * A freshly-created lookup object jaroslav@1646: * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} jaroslav@1646: * has all possible bits set, since the caller class can access all its own members. jaroslav@1646: * A lookup object on a new lookup class jaroslav@1646: * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} jaroslav@1646: * may have some mode bits set to zero. jaroslav@1646: * The purpose of this is to restrict access via the new lookup object, jaroslav@1646: * so that it can access only names which can be reached by the original jaroslav@1646: * lookup object, and also by the new lookup class. jaroslav@1646: * @return the lookup modes, which limit the kinds of access performed by this lookup object jaroslav@1646: */ jaroslav@1646: public int lookupModes() { jaroslav@1646: return allowedModes & ALL_MODES; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** Embody the current class (the lookupClass) as a lookup class jaroslav@1646: * for method handle creation. jaroslav@1646: * Must be called by from a method in this package, jaroslav@1646: * which in turn is called by a method not in this package. jaroslav@1646: */ jaroslav@1646: Lookup(Class lookupClass) { jaroslav@1646: this(lookupClass, ALL_MODES); jaroslav@1646: // make sure we haven't accidentally picked up a privileged class: jaroslav@1646: checkUnprivilegedlookupClass(lookupClass, ALL_MODES); jaroslav@1646: } jaroslav@1646: jaroslav@1646: private Lookup(Class lookupClass, int allowedModes) { jaroslav@1646: this.lookupClass = lookupClass; jaroslav@1646: this.allowedModes = allowedModes; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Creates a lookup on the specified new lookup class. jaroslav@1646: * The resulting object will report the specified jaroslav@1646: * class as its own {@link #lookupClass lookupClass}. jaroslav@1646: *

jaroslav@1646: * However, the resulting {@code Lookup} object is guaranteed jaroslav@1646: * to have no more access capabilities than the original. jaroslav@1646: * In particular, access capabilities can be lost as follows:

jaroslav@1646: * jaroslav@1646: * @param requestedLookupClass the desired lookup class for the new lookup object jaroslav@1646: * @return a lookup object which reports the desired lookup class jaroslav@1646: * @throws NullPointerException if the argument is null jaroslav@1646: */ jaroslav@1646: public Lookup in(Class requestedLookupClass) { jaroslav@1646: requestedLookupClass.getClass(); // null check jaroslav@1646: if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all jaroslav@1646: return new Lookup(requestedLookupClass, ALL_MODES); jaroslav@1646: if (requestedLookupClass == this.lookupClass) jaroslav@1646: return this; // keep same capabilities jaroslav@1646: int newModes = (allowedModes & (ALL_MODES & ~PROTECTED)); jaroslav@1646: if ((newModes & PACKAGE) != 0 jaroslav@1646: && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { jaroslav@1646: newModes &= ~(PACKAGE|PRIVATE); jaroslav@1646: } jaroslav@1646: // Allow nestmate lookups to be created without special privilege: jaroslav@1646: if ((newModes & PRIVATE) != 0 jaroslav@1646: && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { jaroslav@1646: newModes &= ~PRIVATE; jaroslav@1646: } jaroslav@1646: if ((newModes & PUBLIC) != 0 jaroslav@1646: && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { jaroslav@1646: // The requested class it not accessible from the lookup class. jaroslav@1646: // No permissions. jaroslav@1646: newModes = 0; jaroslav@1646: } jaroslav@1646: checkUnprivilegedlookupClass(requestedLookupClass, newModes); jaroslav@1646: return new Lookup(requestedLookupClass, newModes); jaroslav@1646: } jaroslav@1646: jaroslav@1646: // Make sure outer class is initialized first. jaroslav@1646: static { IMPL_NAMES.getClass(); } jaroslav@1646: jaroslav@1646: /** Version of lookup which is trusted minimally. jaroslav@1646: * It can only be used to create method handles to jaroslav@1646: * publicly accessible members. jaroslav@1646: */ jaroslav@1646: static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC); jaroslav@1646: jaroslav@1646: /** Package-private version of lookup which is trusted. */ jaroslav@1646: static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED); jaroslav@1646: jaroslav@1646: private static void checkUnprivilegedlookupClass(Class lookupClass, int allowedModes) { jaroslav@1646: String name = lookupClass.getName(); jaroslav@1646: if (name.startsWith("java.lang.invoke.")) jaroslav@1646: throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); jaroslav@1646: jaroslav@1646: // For caller-sensitive MethodHandles.lookup() jaroslav@1646: // disallow lookup more restricted packages jaroslav@1646: if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) { jaroslav@1646: if (name.startsWith("java.") || jaroslav@1646: (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) { jaroslav@1646: throw newIllegalArgumentException("illegal lookupClass: " + lookupClass); jaroslav@1646: } jaroslav@1646: } jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Displays the name of the class from which lookups are to be made. jaroslav@1646: * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) jaroslav@1646: * If there are restrictions on the access permitted to this lookup, jaroslav@1646: * this is indicated by adding a suffix to the class name, consisting jaroslav@1646: * of a slash and a keyword. The keyword represents the strongest jaroslav@1646: * allowed access, and is chosen as follows: jaroslav@1646: * jaroslav@1646: * If none of the above cases apply, it is the case that full jaroslav@1646: * access (public, package, private, and protected) is allowed. jaroslav@1646: * In this case, no suffix is added. jaroslav@1646: * This is true only of an object obtained originally from jaroslav@1646: * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. jaroslav@1646: * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} jaroslav@1646: * always have restricted access, and will display a suffix. jaroslav@1646: *

jaroslav@1646: * (It may seem strange that protected access should be jaroslav@1646: * stronger than private access. Viewed independently from jaroslav@1646: * package access, protected access is the first to be lost, jaroslav@1646: * because it requires a direct subclass relationship between jaroslav@1646: * caller and callee.) jaroslav@1646: * @see #in jaroslav@1646: */ jaroslav@1646: @Override jaroslav@1646: public String toString() { jaroslav@1646: String cname = lookupClass.getName(); jaroslav@1646: switch (allowedModes) { jaroslav@1646: case 0: // no privileges jaroslav@1646: return cname + "/noaccess"; jaroslav@1646: case PUBLIC: jaroslav@1646: return cname + "/public"; jaroslav@1646: case PUBLIC|PACKAGE: jaroslav@1646: return cname + "/package"; jaroslav@1646: case ALL_MODES & ~PROTECTED: jaroslav@1646: return cname + "/private"; jaroslav@1646: case ALL_MODES: jaroslav@1646: return cname; jaroslav@1646: case TRUSTED: jaroslav@1646: return "/trusted"; // internal only; not exported jaroslav@1646: default: // Should not happen, but it's a bitfield... jaroslav@1646: cname = cname + "/" + Integer.toHexString(allowedModes); jaroslav@1646: assert(false) : cname; jaroslav@1646: return cname; jaroslav@1646: } jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle for a static method. jaroslav@1646: * The type of the method handle will be that of the method. jaroslav@1646: * (Since static methods do not take receivers, there is no jaroslav@1646: * additional receiver argument inserted into the method handle type, jaroslav@1646: * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) jaroslav@1646: * The method and all its argument types must be accessible to the lookup object. jaroslav@1646: *

jaroslav@1646: * The returned method handle will have jaroslav@1646: * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if jaroslav@1646: * the method's variable arity modifier bit ({@code 0x0080}) is set. jaroslav@1646: *

jaroslav@1646: * If the returned method handle is invoked, the method's class will jaroslav@1646: * be initialized, if it has not already been initialized. jaroslav@1646: *

Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
jaroslav@1646:   "asList", methodType(List.class, Object[].class));
jaroslav@1646: assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
jaroslav@1646:          * }
jaroslav@1646: * @param refc the class from which the method is accessed jaroslav@1646: * @param name the name of the method jaroslav@1646: * @param type the type of the method jaroslav@1646: * @return the desired method handle jaroslav@1646: * @throws NoSuchMethodException if the method does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails, jaroslav@1646: * or if the method is not {@code static}, jaroslav@1646: * or if the method's variable arity modifier bit jaroslav@1646: * is set and {@code asVarargsCollector} fails jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public jaroslav@1646: MethodHandle findStatic(Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { jaroslav@1646: MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type); jaroslav@1646: return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method)); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle for a virtual method. jaroslav@1646: * The type of the method handle will be that of the method, jaroslav@1646: * with the receiver type (usually {@code refc}) prepended. jaroslav@1646: * The method and all its argument types must be accessible to the lookup object. jaroslav@1646: *

jaroslav@1646: * When called, the handle will treat the first argument as a receiver jaroslav@1646: * and dispatch on the receiver's type to determine which method jaroslav@1646: * implementation to enter. jaroslav@1646: * (The dispatching action is identical with that performed by an jaroslav@1646: * {@code invokevirtual} or {@code invokeinterface} instruction.) jaroslav@1646: *

jaroslav@1646: * The first argument will be of type {@code refc} if the lookup jaroslav@1646: * class has full privileges to access the member. Otherwise jaroslav@1646: * the member must be {@code protected} and the first argument jaroslav@1646: * will be restricted in type to the lookup class. jaroslav@1646: *

jaroslav@1646: * The returned method handle will have jaroslav@1646: * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if jaroslav@1646: * the method's variable arity modifier bit ({@code 0x0080}) is set. jaroslav@1646: *

jaroslav@1646: * Because of the general equivalence between {@code invokevirtual} jaroslav@1646: * instructions and method handles produced by {@code findVirtual}, jaroslav@1646: * if the class is {@code MethodHandle} and the name string is jaroslav@1646: * {@code invokeExact} or {@code invoke}, the resulting jaroslav@1646: * method handle is equivalent to one produced by jaroslav@1646: * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or jaroslav@1646: * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} jaroslav@1646: * with the same {@code type} argument. jaroslav@1646: * jaroslav@1646: * Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle MH_concat = publicLookup().findVirtual(String.class,
jaroslav@1646:   "concat", methodType(String.class, String.class));
jaroslav@1646: MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
jaroslav@1646:   "hashCode", methodType(int.class));
jaroslav@1646: MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
jaroslav@1646:   "hashCode", methodType(int.class));
jaroslav@1646: assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
jaroslav@1646: assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
jaroslav@1646: assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
jaroslav@1646: // interface method:
jaroslav@1646: MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
jaroslav@1646:   "subSequence", methodType(CharSequence.class, int.class, int.class));
jaroslav@1646: assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
jaroslav@1646: // constructor "internal method" must be accessed differently:
jaroslav@1646: MethodType MT_newString = methodType(void.class); //()V for new String()
jaroslav@1646: try { assertEquals("impossible", lookup()
jaroslav@1646:         .findVirtual(String.class, "", MT_newString));
jaroslav@1646:  } catch (NoSuchMethodException ex) { } // OK
jaroslav@1646: MethodHandle MH_newString = publicLookup()
jaroslav@1646:   .findConstructor(String.class, MT_newString);
jaroslav@1646: assertEquals("", (String) MH_newString.invokeExact());
jaroslav@1646:          * }
jaroslav@1646: * jaroslav@1646: * @param refc the class or interface from which the method is accessed jaroslav@1646: * @param name the name of the method jaroslav@1646: * @param type the type of the method, with the receiver argument omitted jaroslav@1646: * @return the desired method handle jaroslav@1646: * @throws NoSuchMethodException if the method does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails, jaroslav@1646: * or if the method is {@code static} jaroslav@1646: * or if the method's variable arity modifier bit jaroslav@1646: * is set and {@code asVarargsCollector} fails jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle findVirtual(Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { jaroslav@1646: if (refc == MethodHandle.class) { jaroslav@1646: MethodHandle mh = findVirtualForMH(name, type); jaroslav@1646: if (mh != null) return mh; jaroslav@1646: } jaroslav@1646: byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual); jaroslav@1646: MemberName method = resolveOrFail(refKind, refc, name, type); jaroslav@1646: return getDirectMethod(refKind, refc, method, findBoundCallerClass(method)); jaroslav@1646: } jaroslav@1646: private MethodHandle findVirtualForMH(String name, MethodType type) { jaroslav@1646: // these names require special lookups because of the implicit MethodType argument jaroslav@1646: if ("invoke".equals(name)) jaroslav@1646: return invoker(type); jaroslav@1646: if ("invokeExact".equals(name)) jaroslav@1646: return exactInvoker(type); jaroslav@1646: assert(!MemberName.isMethodHandleInvokeName(name)); jaroslav@1646: return null; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle which creates an object and initializes it, using jaroslav@1646: * the constructor of the specified type. jaroslav@1646: * The parameter types of the method handle will be those of the constructor, jaroslav@1646: * while the return type will be a reference to the constructor's class. jaroslav@1646: * The constructor and all its argument types must be accessible to the lookup object. jaroslav@1646: *

jaroslav@1646: * The requested type must have a return type of {@code void}. jaroslav@1646: * (This is consistent with the JVM's treatment of constructor type descriptors.) jaroslav@1646: *

jaroslav@1646: * The returned method handle will have jaroslav@1646: * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if jaroslav@1646: * the constructor's variable arity modifier bit ({@code 0x0080}) is set. jaroslav@1646: *

jaroslav@1646: * If the returned method handle is invoked, the constructor's class will jaroslav@1646: * be initialized, if it has not already been initialized. jaroslav@1646: *

Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle MH_newArrayList = publicLookup().findConstructor(
jaroslav@1646:   ArrayList.class, methodType(void.class, Collection.class));
jaroslav@1646: Collection orig = Arrays.asList("x", "y");
jaroslav@1646: Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
jaroslav@1646: assert(orig != copy);
jaroslav@1646: assertEquals(orig, copy);
jaroslav@1646: // a variable-arity constructor:
jaroslav@1646: MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
jaroslav@1646:   ProcessBuilder.class, methodType(void.class, String[].class));
jaroslav@1646: ProcessBuilder pb = (ProcessBuilder)
jaroslav@1646:   MH_newProcessBuilder.invoke("x", "y", "z");
jaroslav@1646: assertEquals("[x, y, z]", pb.command().toString());
jaroslav@1646:          * }
jaroslav@1646: * @param refc the class or interface from which the method is accessed jaroslav@1646: * @param type the type of the method, with the receiver argument omitted, and a void return type jaroslav@1646: * @return the desired method handle jaroslav@1646: * @throws NoSuchMethodException if the constructor does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails jaroslav@1646: * or if the method's variable arity modifier bit jaroslav@1646: * is set and {@code asVarargsCollector} fails jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle findConstructor(Class refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { jaroslav@1646: String name = ""; jaroslav@1646: MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type); jaroslav@1646: return getDirectConstructor(refc, ctor); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces an early-bound method handle for a virtual method. jaroslav@1646: * It will bypass checks for overriding methods on the receiver, jaroslav@1646: * as if called from an {@code invokespecial} jaroslav@1646: * instruction from within the explicitly specified {@code specialCaller}. jaroslav@1646: * The type of the method handle will be that of the method, jaroslav@1646: * with a suitably restricted receiver type prepended. jaroslav@1646: * (The receiver type will be {@code specialCaller} or a subtype.) jaroslav@1646: * The method and all its argument types must be accessible jaroslav@1646: * to the lookup object. jaroslav@1646: *

jaroslav@1646: * Before method resolution, jaroslav@1646: * if the explicitly specified caller class is not identical with the jaroslav@1646: * lookup class, or if this lookup object does not have jaroslav@1646: * private access jaroslav@1646: * privileges, the access fails. jaroslav@1646: *

jaroslav@1646: * The returned method handle will have jaroslav@1646: * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if jaroslav@1646: * the method's variable arity modifier bit ({@code 0x0080}) is set. jaroslav@1646: *

jaroslav@1646: * (Note: JVM internal methods named {@code ""} are not visible to this API, jaroslav@1646: * even though the {@code invokespecial} instruction can refer to them jaroslav@1646: * in special circumstances. Use {@link #findConstructor findConstructor} jaroslav@1646: * to access instance initialization methods in a safe manner.) jaroslav@1646: *

Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: static class Listie extends ArrayList {
jaroslav@1646:   public String toString() { return "[wee Listie]"; }
jaroslav@1646:   static Lookup lookup() { return MethodHandles.lookup(); }
jaroslav@1646: }
jaroslav@1646: ...
jaroslav@1646: // no access to constructor via invokeSpecial:
jaroslav@1646: MethodHandle MH_newListie = Listie.lookup()
jaroslav@1646:   .findConstructor(Listie.class, methodType(void.class));
jaroslav@1646: Listie l = (Listie) MH_newListie.invokeExact();
jaroslav@1646: try { assertEquals("impossible", Listie.lookup().findSpecial(
jaroslav@1646:         Listie.class, "", methodType(void.class), Listie.class));
jaroslav@1646:  } catch (NoSuchMethodException ex) { } // OK
jaroslav@1646: // access to super and self methods via invokeSpecial:
jaroslav@1646: MethodHandle MH_super = Listie.lookup().findSpecial(
jaroslav@1646:   ArrayList.class, "toString" , methodType(String.class), Listie.class);
jaroslav@1646: MethodHandle MH_this = Listie.lookup().findSpecial(
jaroslav@1646:   Listie.class, "toString" , methodType(String.class), Listie.class);
jaroslav@1646: MethodHandle MH_duper = Listie.lookup().findSpecial(
jaroslav@1646:   Object.class, "toString" , methodType(String.class), Listie.class);
jaroslav@1646: assertEquals("[]", (String) MH_super.invokeExact(l));
jaroslav@1646: assertEquals(""+l, (String) MH_this.invokeExact(l));
jaroslav@1646: assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
jaroslav@1646: try { assertEquals("inaccessible", Listie.lookup().findSpecial(
jaroslav@1646:         String.class, "toString", methodType(String.class), Listie.class));
jaroslav@1646:  } catch (IllegalAccessException ex) { } // OK
jaroslav@1646: Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
jaroslav@1646: assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
jaroslav@1646:          * }
jaroslav@1646: * jaroslav@1646: * @param refc the class or interface from which the method is accessed jaroslav@1646: * @param name the name of the method (which must not be "<init>") jaroslav@1646: * @param type the type of the method, with the receiver argument omitted jaroslav@1646: * @param specialCaller the proposed calling class to perform the {@code invokespecial} jaroslav@1646: * @return the desired method handle jaroslav@1646: * @throws NoSuchMethodException if the method does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails jaroslav@1646: * or if the method's variable arity modifier bit jaroslav@1646: * is set and {@code asVarargsCollector} fails jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle findSpecial(Class refc, String name, MethodType type, jaroslav@1646: Class specialCaller) throws NoSuchMethodException, IllegalAccessException { jaroslav@1646: checkSpecialCaller(specialCaller); jaroslav@1646: Lookup specialLookup = this.in(specialCaller); jaroslav@1646: MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type); jaroslav@1646: return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method)); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle giving read access to a non-static field. jaroslav@1646: * The type of the method handle will have a return type of the field's jaroslav@1646: * value type. jaroslav@1646: * The method handle's single argument will be the instance containing jaroslav@1646: * the field. jaroslav@1646: * Access checking is performed immediately on behalf of the lookup class. jaroslav@1646: * @param refc the class or interface from which the method is accessed jaroslav@1646: * @param name the field's name jaroslav@1646: * @param type the field's type jaroslav@1646: * @return a method handle which can load values from the field jaroslav@1646: * @throws NoSuchFieldException if the field does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails, or if the field is {@code static} jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle findGetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { jaroslav@1646: MemberName field = resolveOrFail(REF_getField, refc, name, type); jaroslav@1646: return getDirectField(REF_getField, refc, field); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle giving write access to a non-static field. jaroslav@1646: * The type of the method handle will have a void return type. jaroslav@1646: * The method handle will take two arguments, the instance containing jaroslav@1646: * the field, and the value to be stored. jaroslav@1646: * The second argument will be of the field's value type. jaroslav@1646: * Access checking is performed immediately on behalf of the lookup class. jaroslav@1646: * @param refc the class or interface from which the method is accessed jaroslav@1646: * @param name the field's name jaroslav@1646: * @param type the field's type jaroslav@1646: * @return a method handle which can store values into the field jaroslav@1646: * @throws NoSuchFieldException if the field does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails, or if the field is {@code static} jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle findSetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { jaroslav@1646: MemberName field = resolveOrFail(REF_putField, refc, name, type); jaroslav@1646: return getDirectField(REF_putField, refc, field); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle giving read access to a static field. jaroslav@1646: * The type of the method handle will have a return type of the field's jaroslav@1646: * value type. jaroslav@1646: * The method handle will take no arguments. jaroslav@1646: * Access checking is performed immediately on behalf of the lookup class. jaroslav@1646: *

jaroslav@1646: * If the returned method handle is invoked, the field's class will jaroslav@1646: * be initialized, if it has not already been initialized. jaroslav@1646: * @param refc the class or interface from which the method is accessed jaroslav@1646: * @param name the field's name jaroslav@1646: * @param type the field's type jaroslav@1646: * @return a method handle which can load values from the field jaroslav@1646: * @throws NoSuchFieldException if the field does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle findStaticGetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { jaroslav@1646: MemberName field = resolveOrFail(REF_getStatic, refc, name, type); jaroslav@1646: return getDirectField(REF_getStatic, refc, field); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle giving write access to a static field. jaroslav@1646: * The type of the method handle will have a void return type. jaroslav@1646: * The method handle will take a single jaroslav@1646: * argument, of the field's value type, the value to be stored. jaroslav@1646: * Access checking is performed immediately on behalf of the lookup class. jaroslav@1646: *

jaroslav@1646: * If the returned method handle is invoked, the field's class will jaroslav@1646: * be initialized, if it has not already been initialized. jaroslav@1646: * @param refc the class or interface from which the method is accessed jaroslav@1646: * @param name the field's name jaroslav@1646: * @param type the field's type jaroslav@1646: * @return a method handle which can store values into the field jaroslav@1646: * @throws NoSuchFieldException if the field does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle findStaticSetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { jaroslav@1646: MemberName field = resolveOrFail(REF_putStatic, refc, name, type); jaroslav@1646: return getDirectField(REF_putStatic, refc, field); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces an early-bound method handle for a non-static method. jaroslav@1646: * The receiver must have a supertype {@code defc} in which a method jaroslav@1646: * of the given name and type is accessible to the lookup class. jaroslav@1646: * The method and all its argument types must be accessible to the lookup object. jaroslav@1646: * The type of the method handle will be that of the method, jaroslav@1646: * without any insertion of an additional receiver parameter. jaroslav@1646: * The given receiver will be bound into the method handle, jaroslav@1646: * so that every call to the method handle will invoke the jaroslav@1646: * requested method on the given receiver. jaroslav@1646: *

jaroslav@1646: * The returned method handle will have jaroslav@1646: * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if jaroslav@1646: * the method's variable arity modifier bit ({@code 0x0080}) is set jaroslav@1646: * and the trailing array argument is not the only argument. jaroslav@1646: * (If the trailing array argument is the only argument, jaroslav@1646: * the given receiver value will be bound to it.) jaroslav@1646: *

jaroslav@1646: * This is equivalent to the following code: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle mh0 = lookup().findVirtual(defc, name, type);
jaroslav@1646: MethodHandle mh1 = mh0.bindTo(receiver);
jaroslav@1646: MethodType mt1 = mh1.type();
jaroslav@1646: if (mh0.isVarargsCollector())
jaroslav@1646:   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
jaroslav@1646: return mh1;
jaroslav@1646:          * }
jaroslav@1646: * where {@code defc} is either {@code receiver.getClass()} or a super jaroslav@1646: * type of that class, in which the requested method is accessible jaroslav@1646: * to the lookup class. jaroslav@1646: * (Note that {@code bindTo} does not preserve variable arity.) jaroslav@1646: * @param receiver the object from which the method is accessed jaroslav@1646: * @param name the name of the method jaroslav@1646: * @param type the type of the method, with the receiver argument omitted jaroslav@1646: * @return the desired method handle jaroslav@1646: * @throws NoSuchMethodException if the method does not exist jaroslav@1646: * @throws IllegalAccessException if access checking fails jaroslav@1646: * or if the method's variable arity modifier bit jaroslav@1646: * is set and {@code asVarargsCollector} fails jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: * @see MethodHandle#bindTo jaroslav@1646: * @see #findVirtual jaroslav@1646: */ jaroslav@1646: public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { jaroslav@1646: Class refc = receiver.getClass(); // may get NPE jaroslav@1646: MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type); jaroslav@1646: MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method)); jaroslav@1646: return mh.bindReceiver(receiver).setVarargs(method); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Makes a direct method handle jaroslav@1646: * to m, if the lookup class has permission. jaroslav@1646: * If m is non-static, the receiver argument is treated as an initial argument. jaroslav@1646: * If m is virtual, overriding is respected on every call. jaroslav@1646: * Unlike the Core Reflection API, exceptions are not wrapped. jaroslav@1646: * The type of the method handle will be that of the method, jaroslav@1646: * with the receiver type prepended (but only if it is non-static). jaroslav@1646: * If the method's {@code accessible} flag is not set, jaroslav@1646: * access checking is performed immediately on behalf of the lookup class. jaroslav@1646: * If m is not public, do not share the resulting handle with untrusted parties. jaroslav@1646: *

jaroslav@1646: * The returned method handle will have jaroslav@1646: * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if jaroslav@1646: * the method's variable arity modifier bit ({@code 0x0080}) is set. jaroslav@1646: *

jaroslav@1646: * If m is static, and jaroslav@1646: * if the returned method handle is invoked, the method's class will jaroslav@1646: * be initialized, if it has not already been initialized. jaroslav@1646: * @param m the reflected method jaroslav@1646: * @return a method handle which can invoke the reflected method jaroslav@1646: * @throws IllegalAccessException if access checking fails jaroslav@1646: * or if the method's variable arity modifier bit jaroslav@1646: * is set and {@code asVarargsCollector} fails jaroslav@1646: * @throws NullPointerException if the argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle unreflect(Method m) throws IllegalAccessException { jaroslav@1646: if (m.getDeclaringClass() == MethodHandle.class) { jaroslav@1646: MethodHandle mh = unreflectForMH(m); jaroslav@1646: if (mh != null) return mh; jaroslav@1646: } jaroslav@1646: MemberName method = new MemberName(m); jaroslav@1646: byte refKind = method.getReferenceKind(); jaroslav@1646: if (refKind == REF_invokeSpecial) jaroslav@1646: refKind = REF_invokeVirtual; jaroslav@1646: assert(method.isMethod()); jaroslav@1646: Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this; jaroslav@1646: return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method)); jaroslav@1646: } jaroslav@1646: private MethodHandle unreflectForMH(Method m) { jaroslav@1646: // these names require special lookups because they throw UnsupportedOperationException jaroslav@1646: if (MemberName.isMethodHandleInvokeName(m.getName())) jaroslav@1646: return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m)); jaroslav@1646: return null; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle for a reflected method. jaroslav@1646: * It will bypass checks for overriding methods on the receiver, jaroslav@1646: * as if called from an {@code invokespecial} jaroslav@1646: * instruction from within the explicitly specified {@code specialCaller}. jaroslav@1646: * The type of the method handle will be that of the method, jaroslav@1646: * with a suitably restricted receiver type prepended. jaroslav@1646: * (The receiver type will be {@code specialCaller} or a subtype.) jaroslav@1646: * If the method's {@code accessible} flag is not set, jaroslav@1646: * access checking is performed immediately on behalf of the lookup class, jaroslav@1646: * as if {@code invokespecial} instruction were being linked. jaroslav@1646: *

jaroslav@1646: * Before method resolution, jaroslav@1646: * if the explicitly specified caller class is not identical with the jaroslav@1646: * lookup class, or if this lookup object does not have jaroslav@1646: * private access jaroslav@1646: * privileges, the access fails. jaroslav@1646: *

jaroslav@1646: * The returned method handle will have jaroslav@1646: * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if jaroslav@1646: * the method's variable arity modifier bit ({@code 0x0080}) is set. jaroslav@1646: * @param m the reflected method jaroslav@1646: * @param specialCaller the class nominally calling the method jaroslav@1646: * @return a method handle which can invoke the reflected method jaroslav@1646: * @throws IllegalAccessException if access checking fails jaroslav@1646: * or if the method's variable arity modifier bit jaroslav@1646: * is set and {@code asVarargsCollector} fails jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle unreflectSpecial(Method m, Class specialCaller) throws IllegalAccessException { jaroslav@1646: checkSpecialCaller(specialCaller); jaroslav@1646: Lookup specialLookup = this.in(specialCaller); jaroslav@1646: MemberName method = new MemberName(m, true); jaroslav@1646: assert(method.isMethod()); jaroslav@1646: // ignore m.isAccessible: this is a new kind of access jaroslav@1646: return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method)); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle for a reflected constructor. jaroslav@1646: * The type of the method handle will be that of the constructor, jaroslav@1646: * with the return type changed to the declaring class. jaroslav@1646: * The method handle will perform a {@code newInstance} operation, jaroslav@1646: * creating a new instance of the constructor's class on the jaroslav@1646: * arguments passed to the method handle. jaroslav@1646: *

jaroslav@1646: * If the constructor's {@code accessible} flag is not set, jaroslav@1646: * access checking is performed immediately on behalf of the lookup class. jaroslav@1646: *

jaroslav@1646: * The returned method handle will have jaroslav@1646: * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if jaroslav@1646: * the constructor's variable arity modifier bit ({@code 0x0080}) is set. jaroslav@1646: *

jaroslav@1646: * If the returned method handle is invoked, the constructor's class will jaroslav@1646: * be initialized, if it has not already been initialized. jaroslav@1646: * @param c the reflected constructor jaroslav@1646: * @return a method handle which can invoke the reflected constructor jaroslav@1646: * @throws IllegalAccessException if access checking fails jaroslav@1646: * or if the method's variable arity modifier bit jaroslav@1646: * is set and {@code asVarargsCollector} fails jaroslav@1646: * @throws NullPointerException if the argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException { jaroslav@1646: MemberName ctor = new MemberName(c); jaroslav@1646: assert(ctor.isConstructor()); jaroslav@1646: Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this; jaroslav@1646: return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle giving read access to a reflected field. jaroslav@1646: * The type of the method handle will have a return type of the field's jaroslav@1646: * value type. jaroslav@1646: * If the field is static, the method handle will take no arguments. jaroslav@1646: * Otherwise, its single argument will be the instance containing jaroslav@1646: * the field. jaroslav@1646: * If the field's {@code accessible} flag is not set, jaroslav@1646: * access checking is performed immediately on behalf of the lookup class. jaroslav@1646: *

jaroslav@1646: * If the field is static, and jaroslav@1646: * if the returned method handle is invoked, the field's class will jaroslav@1646: * be initialized, if it has not already been initialized. jaroslav@1646: * @param f the reflected field jaroslav@1646: * @return a method handle which can load values from the reflected field jaroslav@1646: * @throws IllegalAccessException if access checking fails jaroslav@1646: * @throws NullPointerException if the argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { jaroslav@1646: return unreflectField(f, false); jaroslav@1646: } jaroslav@1646: private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException { jaroslav@1646: MemberName field = new MemberName(f, isSetter); jaroslav@1646: assert(isSetter jaroslav@1646: ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind()) jaroslav@1646: : MethodHandleNatives.refKindIsGetter(field.getReferenceKind())); jaroslav@1646: Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this; jaroslav@1646: return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle giving write access to a reflected field. jaroslav@1646: * The type of the method handle will have a void return type. jaroslav@1646: * If the field is static, the method handle will take a single jaroslav@1646: * argument, of the field's value type, the value to be stored. jaroslav@1646: * Otherwise, the two arguments will be the instance containing jaroslav@1646: * the field, and the value to be stored. jaroslav@1646: * If the field's {@code accessible} flag is not set, jaroslav@1646: * access checking is performed immediately on behalf of the lookup class. jaroslav@1646: *

jaroslav@1646: * If the field is static, and jaroslav@1646: * if the returned method handle is invoked, the field's class will jaroslav@1646: * be initialized, if it has not already been initialized. jaroslav@1646: * @param f the reflected field jaroslav@1646: * @return a method handle which can store values into the reflected field jaroslav@1646: * @throws IllegalAccessException if access checking fails jaroslav@1646: * @throws NullPointerException if the argument is null jaroslav@1646: */ jaroslav@1646: public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { jaroslav@1646: return unreflectField(f, true); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Cracks a direct method handle jaroslav@1646: * created by this lookup object or a similar one. jaroslav@1646: * Security and access checks are performed to ensure that this lookup object jaroslav@1646: * is capable of reproducing the target method handle. jaroslav@1646: * This means that the cracking may fail if target is a direct method handle jaroslav@1646: * but was created by an unrelated lookup object. jaroslav@1646: * This can happen if the method handle is caller sensitive jaroslav@1646: * and was created by a lookup object for a different class. jaroslav@1646: * @param target a direct method handle to crack into symbolic reference components jaroslav@1646: * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object jaroslav@1646: * @exception SecurityException if a security manager is present and it jaroslav@1646: * refuses access jaroslav@1646: * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails jaroslav@1646: * @exception NullPointerException if the target is {@code null} jaroslav@1646: * @see MethodHandleInfo jaroslav@1646: * @since 1.8 jaroslav@1646: */ jaroslav@1646: public MethodHandleInfo revealDirect(MethodHandle target) { jaroslav@1646: MemberName member = target.internalMemberName(); jaroslav@1646: if (member == null || (!member.isResolved() && !member.isMethodHandleInvoke())) jaroslav@1646: throw newIllegalArgumentException("not a direct method handle"); jaroslav@1646: Class defc = member.getDeclaringClass(); jaroslav@1646: byte refKind = member.getReferenceKind(); jaroslav@1646: assert(MethodHandleNatives.refKindIsValid(refKind)); jaroslav@1646: if (refKind == REF_invokeSpecial && !target.isInvokeSpecial()) jaroslav@1646: // Devirtualized method invocation is usually formally virtual. jaroslav@1646: // To avoid creating extra MemberName objects for this common case, jaroslav@1646: // we encode this extra degree of freedom using MH.isInvokeSpecial. jaroslav@1646: refKind = REF_invokeVirtual; jaroslav@1646: if (refKind == REF_invokeVirtual && defc.isInterface()) jaroslav@1646: // Symbolic reference is through interface but resolves to Object method (toString, etc.) jaroslav@1646: refKind = REF_invokeInterface; jaroslav@1646: // Check SM permissions and member access before cracking. jaroslav@1646: try { jaroslav@1646: checkAccess(refKind, defc, member); jaroslav@1646: checkSecurityManager(defc, member); jaroslav@1646: } catch (IllegalAccessException ex) { jaroslav@1646: throw new IllegalArgumentException(ex); jaroslav@1646: } jaroslav@1646: if (allowedModes != TRUSTED && member.isCallerSensitive()) { jaroslav@1646: Class callerClass = target.internalCallerClass(); jaroslav@1646: if (!hasPrivateAccess() || callerClass != lookupClass()) jaroslav@1646: throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass); jaroslav@1646: } jaroslav@1646: // Produce the handle to the results. jaroslav@1646: return new InfoFromMemberName(this, member, refKind); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /// Helper methods, all package-private. jaroslav@1646: jaroslav@1646: MemberName resolveOrFail(byte refKind, Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { jaroslav@1646: checkSymbolicClass(refc); // do this before attempting to resolve jaroslav@1646: name.getClass(); // NPE jaroslav@1646: type.getClass(); // NPE jaroslav@1646: return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), jaroslav@1646: NoSuchFieldException.class); jaroslav@1646: } jaroslav@1646: jaroslav@1646: MemberName resolveOrFail(byte refKind, Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { jaroslav@1646: checkSymbolicClass(refc); // do this before attempting to resolve jaroslav@1646: name.getClass(); // NPE jaroslav@1646: type.getClass(); // NPE jaroslav@1646: checkMethodName(refKind, name); // NPE check on name jaroslav@1646: return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), jaroslav@1646: NoSuchMethodException.class); jaroslav@1646: } jaroslav@1646: jaroslav@1646: MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException { jaroslav@1646: checkSymbolicClass(member.getDeclaringClass()); // do this before attempting to resolve jaroslav@1646: member.getName().getClass(); // NPE jaroslav@1646: member.getType().getClass(); // NPE jaroslav@1646: return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), jaroslav@1646: ReflectiveOperationException.class); jaroslav@1646: } jaroslav@1646: jaroslav@1646: void checkSymbolicClass(Class refc) throws IllegalAccessException { jaroslav@1646: refc.getClass(); // NPE jaroslav@1646: Class caller = lookupClassOrNull(); jaroslav@1646: if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes)) jaroslav@1646: throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** Check name for an illegal leading "<" character. */ jaroslav@1646: void checkMethodName(byte refKind, String name) throws NoSuchMethodException { jaroslav@1646: if (name.startsWith("<") && refKind != REF_newInvokeSpecial) jaroslav@1646: throw new NoSuchMethodException("illegal method name: "+name); jaroslav@1646: } jaroslav@1646: jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Find my trustable caller class if m is a caller sensitive method. jaroslav@1646: * If this lookup object has private access, then the caller class is the lookupClass. jaroslav@1646: * Otherwise, if m is caller-sensitive, throw IllegalAccessException. jaroslav@1646: */ jaroslav@1646: Class findBoundCallerClass(MemberName m) throws IllegalAccessException { jaroslav@1646: Class callerClass = null; jaroslav@1646: if (MethodHandleNatives.isCallerSensitive(m)) { jaroslav@1646: // Only lookups with private access are allowed to resolve caller-sensitive methods jaroslav@1646: if (hasPrivateAccess()) { jaroslav@1646: callerClass = lookupClass; jaroslav@1646: } else { jaroslav@1646: throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object"); jaroslav@1646: } jaroslav@1646: } jaroslav@1646: return callerClass; jaroslav@1646: } jaroslav@1646: jaroslav@1646: private boolean hasPrivateAccess() { jaroslav@1646: return (allowedModes & PRIVATE) != 0; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Perform necessary access checks. jaroslav@1646: * Determines a trustable caller class to compare with refc, the symbolic reference class. jaroslav@1646: * If this lookup object has private access, then the caller class is the lookupClass. jaroslav@1646: */ jaroslav@1646: void checkSecurityManager(Class refc, MemberName m) { jaroslav@1646: SecurityManager smgr = System.getSecurityManager(); jaroslav@1646: if (smgr == null) return; jaroslav@1646: if (allowedModes == TRUSTED) return; jaroslav@1646: jaroslav@1646: // Step 1: jaroslav@1646: boolean fullPowerLookup = hasPrivateAccess(); jaroslav@1646: if (!fullPowerLookup || jaroslav@1646: !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) { jaroslav@1646: ReflectUtil.checkPackageAccess(refc); jaroslav@1646: } jaroslav@1646: jaroslav@1646: // Step 2: jaroslav@1646: if (m.isPublic()) return; jaroslav@1646: if (!fullPowerLookup) { jaroslav@1646: smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION); jaroslav@1646: } jaroslav@1646: jaroslav@1646: // Step 3: jaroslav@1646: Class defc = m.getDeclaringClass(); jaroslav@1646: if (!fullPowerLookup && defc != refc) { jaroslav@1646: ReflectUtil.checkPackageAccess(defc); jaroslav@1646: } jaroslav@1646: } jaroslav@1646: jaroslav@1646: void checkMethod(byte refKind, Class refc, MemberName m) throws IllegalAccessException { jaroslav@1646: boolean wantStatic = (refKind == REF_invokeStatic); jaroslav@1646: String message; jaroslav@1646: if (m.isConstructor()) jaroslav@1646: message = "expected a method, not a constructor"; jaroslav@1646: else if (!m.isMethod()) jaroslav@1646: message = "expected a method"; jaroslav@1646: else if (wantStatic != m.isStatic()) jaroslav@1646: message = wantStatic ? "expected a static method" : "expected a non-static method"; jaroslav@1646: else jaroslav@1646: { checkAccess(refKind, refc, m); return; } jaroslav@1646: throw m.makeAccessException(message, this); jaroslav@1646: } jaroslav@1646: jaroslav@1646: void checkField(byte refKind, Class refc, MemberName m) throws IllegalAccessException { jaroslav@1646: boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind); jaroslav@1646: String message; jaroslav@1646: if (wantStatic != m.isStatic()) jaroslav@1646: message = wantStatic ? "expected a static field" : "expected a non-static field"; jaroslav@1646: else jaroslav@1646: { checkAccess(refKind, refc, m); return; } jaroslav@1646: throw m.makeAccessException(message, this); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** Check public/protected/private bits on the symbolic reference class and its member. */ jaroslav@1646: void checkAccess(byte refKind, Class refc, MemberName m) throws IllegalAccessException { jaroslav@1646: assert(m.referenceKindIsConsistentWith(refKind) && jaroslav@1646: MethodHandleNatives.refKindIsValid(refKind) && jaroslav@1646: (MethodHandleNatives.refKindIsField(refKind) == m.isField())); jaroslav@1646: int allowedModes = this.allowedModes; jaroslav@1646: if (allowedModes == TRUSTED) return; jaroslav@1646: int mods = m.getModifiers(); jaroslav@1646: if (Modifier.isProtected(mods) && jaroslav@1646: refKind == REF_invokeVirtual && jaroslav@1646: m.getDeclaringClass() == Object.class && jaroslav@1646: m.getName().equals("clone") && jaroslav@1646: refc.isArray()) { jaroslav@1646: // The JVM does this hack also. jaroslav@1646: // (See ClassVerifier::verify_invoke_instructions jaroslav@1646: // and LinkResolver::check_method_accessability.) jaroslav@1646: // Because the JVM does not allow separate methods on array types, jaroslav@1646: // there is no separate method for int[].clone. jaroslav@1646: // All arrays simply inherit Object.clone. jaroslav@1646: // But for access checking logic, we make Object.clone jaroslav@1646: // (normally protected) appear to be public. jaroslav@1646: // Later on, when the DirectMethodHandle is created, jaroslav@1646: // its leading argument will be restricted to the jaroslav@1646: // requested array type. jaroslav@1646: // N.B. The return type is not adjusted, because jaroslav@1646: // that is *not* the bytecode behavior. jaroslav@1646: mods ^= Modifier.PROTECTED | Modifier.PUBLIC; jaroslav@1646: } jaroslav@1646: if (Modifier.isFinal(mods) && jaroslav@1646: MethodHandleNatives.refKindIsSetter(refKind)) jaroslav@1646: throw m.makeAccessException("unexpected set of a final field", this); jaroslav@1646: if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0) jaroslav@1646: return; // common case jaroslav@1646: int requestedModes = fixmods(mods); // adjust 0 => PACKAGE jaroslav@1646: if ((requestedModes & allowedModes) != 0) { jaroslav@1646: if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(), jaroslav@1646: mods, lookupClass(), allowedModes)) jaroslav@1646: return; jaroslav@1646: } else { jaroslav@1646: // Protected members can also be checked as if they were package-private. jaroslav@1646: if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 jaroslav@1646: && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass())) jaroslav@1646: return; jaroslav@1646: } jaroslav@1646: throw m.makeAccessException(accessFailedMessage(refc, m), this); jaroslav@1646: } jaroslav@1646: jaroslav@1646: String accessFailedMessage(Class refc, MemberName m) { jaroslav@1646: Class defc = m.getDeclaringClass(); jaroslav@1646: int mods = m.getModifiers(); jaroslav@1646: // check the class first: jaroslav@1646: boolean classOK = (Modifier.isPublic(defc.getModifiers()) && jaroslav@1646: (defc == refc || jaroslav@1646: Modifier.isPublic(refc.getModifiers()))); jaroslav@1646: if (!classOK && (allowedModes & PACKAGE) != 0) { jaroslav@1646: classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) && jaroslav@1646: (defc == refc || jaroslav@1646: VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES))); jaroslav@1646: } jaroslav@1646: if (!classOK) jaroslav@1646: return "class is not public"; jaroslav@1646: if (Modifier.isPublic(mods)) jaroslav@1646: return "access to public member failed"; // (how?) jaroslav@1646: if (Modifier.isPrivate(mods)) jaroslav@1646: return "member is private"; jaroslav@1646: if (Modifier.isProtected(mods)) jaroslav@1646: return "member is protected"; jaroslav@1646: return "member is private to package"; jaroslav@1646: } jaroslav@1646: jaroslav@1646: private static final boolean ALLOW_NESTMATE_ACCESS = false; jaroslav@1646: jaroslav@1646: private void checkSpecialCaller(Class specialCaller) throws IllegalAccessException { jaroslav@1646: int allowedModes = this.allowedModes; jaroslav@1646: if (allowedModes == TRUSTED) return; jaroslav@1646: if (!hasPrivateAccess() jaroslav@1646: || (specialCaller != lookupClass() jaroslav@1646: && !(ALLOW_NESTMATE_ACCESS && jaroslav@1646: VerifyAccess.isSamePackageMember(specialCaller, lookupClass())))) jaroslav@1646: throw new MemberName(specialCaller). jaroslav@1646: makeAccessException("no private access for invokespecial", this); jaroslav@1646: } jaroslav@1646: jaroslav@1646: private boolean restrictProtectedReceiver(MemberName method) { jaroslav@1646: // The accessing class only has the right to use a protected member jaroslav@1646: // on itself or a subclass. Enforce that restriction, from JVMS 5.4.4, etc. jaroslav@1646: if (!method.isProtected() || method.isStatic() jaroslav@1646: || allowedModes == TRUSTED jaroslav@1646: || method.getDeclaringClass() == lookupClass() jaroslav@1646: || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()) jaroslav@1646: || (ALLOW_NESTMATE_ACCESS && jaroslav@1646: VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass()))) jaroslav@1646: return false; jaroslav@1646: return true; jaroslav@1646: } jaroslav@1646: private MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class caller) throws IllegalAccessException { jaroslav@1646: assert(!method.isStatic()); jaroslav@1646: // receiver type of mh is too wide; narrow to caller jaroslav@1646: if (!method.getDeclaringClass().isAssignableFrom(caller)) { jaroslav@1646: throw method.makeAccessException("caller class must be a subclass below the method", caller); jaroslav@1646: } jaroslav@1646: MethodType rawType = mh.type(); jaroslav@1646: if (rawType.parameterType(0) == caller) return mh; jaroslav@1646: MethodType narrowType = rawType.changeParameterType(0, caller); jaroslav@1646: return mh.viewAsType(narrowType); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** Check access and get the requested method. */ jaroslav@1646: private MethodHandle getDirectMethod(byte refKind, Class refc, MemberName method, Class callerClass) throws IllegalAccessException { jaroslav@1646: final boolean doRestrict = true; jaroslav@1646: final boolean checkSecurity = true; jaroslav@1646: return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass); jaroslav@1646: } jaroslav@1646: /** Check access and get the requested method, eliding receiver narrowing rules. */ jaroslav@1646: private MethodHandle getDirectMethodNoRestrict(byte refKind, Class refc, MemberName method, Class callerClass) throws IllegalAccessException { jaroslav@1646: final boolean doRestrict = false; jaroslav@1646: final boolean checkSecurity = true; jaroslav@1646: return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass); jaroslav@1646: } jaroslav@1646: /** Check access and get the requested method, eliding security manager checks. */ jaroslav@1646: private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class refc, MemberName method, Class callerClass) throws IllegalAccessException { jaroslav@1646: final boolean doRestrict = true; jaroslav@1646: final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants jaroslav@1646: return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass); jaroslav@1646: } jaroslav@1646: /** Common code for all methods; do not call directly except from immediately above. */ jaroslav@1646: private MethodHandle getDirectMethodCommon(byte refKind, Class refc, MemberName method, jaroslav@1646: boolean checkSecurity, jaroslav@1646: boolean doRestrict, Class callerClass) throws IllegalAccessException { jaroslav@1646: checkMethod(refKind, refc, method); jaroslav@1646: // Optionally check with the security manager; this isn't needed for unreflect* calls. jaroslav@1646: if (checkSecurity) jaroslav@1646: checkSecurityManager(refc, method); jaroslav@1646: assert(!method.isMethodHandleInvoke()); jaroslav@1646: jaroslav@1646: Class refcAsSuper; jaroslav@1646: if (refKind == REF_invokeSpecial && jaroslav@1646: refc != lookupClass() && jaroslav@1646: !refc.isInterface() && jaroslav@1646: refc != (refcAsSuper = lookupClass().getSuperclass()) && jaroslav@1646: refc.isAssignableFrom(lookupClass())) { jaroslav@1646: assert(!method.getName().equals("")); // not this code path jaroslav@1646: // Per JVMS 6.5, desc. of invokespecial instruction: jaroslav@1646: // If the method is in a superclass of the LC, jaroslav@1646: // and if our original search was above LC.super, jaroslav@1646: // repeat the search (symbolic lookup) from LC.super. jaroslav@1646: // FIXME: MemberName.resolve should handle this instead. jaroslav@1646: MemberName m2 = new MemberName(refcAsSuper, jaroslav@1646: method.getName(), jaroslav@1646: method.getMethodType(), jaroslav@1646: REF_invokeSpecial); jaroslav@1646: m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull()); jaroslav@1646: if (m2 == null) throw new InternalError(method.toString()); jaroslav@1646: method = m2; jaroslav@1646: refc = refcAsSuper; jaroslav@1646: // redo basic checks jaroslav@1646: checkMethod(refKind, refc, method); jaroslav@1646: } jaroslav@1646: jaroslav@1646: MethodHandle mh = DirectMethodHandle.make(refKind, refc, method); jaroslav@1646: mh = maybeBindCaller(method, mh, callerClass); jaroslav@1646: mh = mh.setVarargs(method); jaroslav@1646: // Optionally narrow the receiver argument to refc using restrictReceiver. jaroslav@1646: if (doRestrict && jaroslav@1646: (refKind == REF_invokeSpecial || jaroslav@1646: (MethodHandleNatives.refKindHasReceiver(refKind) && jaroslav@1646: restrictProtectedReceiver(method)))) jaroslav@1646: mh = restrictReceiver(method, mh, lookupClass()); jaroslav@1646: return mh; jaroslav@1646: } jaroslav@1646: private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, jaroslav@1646: Class callerClass) jaroslav@1646: throws IllegalAccessException { jaroslav@1646: if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method)) jaroslav@1646: return mh; jaroslav@1646: Class hostClass = lookupClass; jaroslav@1646: if (!hasPrivateAccess()) // caller must have private access jaroslav@1646: hostClass = callerClass; // callerClass came from a security manager style stack walk jaroslav@1646: MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass); jaroslav@1646: // Note: caller will apply varargs after this step happens. jaroslav@1646: return cbmh; jaroslav@1646: } jaroslav@1646: /** Check access and get the requested field. */ jaroslav@1646: private MethodHandle getDirectField(byte refKind, Class refc, MemberName field) throws IllegalAccessException { jaroslav@1646: final boolean checkSecurity = true; jaroslav@1646: return getDirectFieldCommon(refKind, refc, field, checkSecurity); jaroslav@1646: } jaroslav@1646: /** Check access and get the requested field, eliding security manager checks. */ jaroslav@1646: private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class refc, MemberName field) throws IllegalAccessException { jaroslav@1646: final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants jaroslav@1646: return getDirectFieldCommon(refKind, refc, field, checkSecurity); jaroslav@1646: } jaroslav@1646: /** Common code for all fields; do not call directly except from immediately above. */ jaroslav@1646: private MethodHandle getDirectFieldCommon(byte refKind, Class refc, MemberName field, jaroslav@1646: boolean checkSecurity) throws IllegalAccessException { jaroslav@1646: checkField(refKind, refc, field); jaroslav@1646: // Optionally check with the security manager; this isn't needed for unreflect* calls. jaroslav@1646: if (checkSecurity) jaroslav@1646: checkSecurityManager(refc, field); jaroslav@1646: MethodHandle mh = DirectMethodHandle.make(refc, field); jaroslav@1646: boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) && jaroslav@1646: restrictProtectedReceiver(field)); jaroslav@1646: if (doRestrict) jaroslav@1646: mh = restrictReceiver(field, mh, lookupClass()); jaroslav@1646: return mh; jaroslav@1646: } jaroslav@1646: /** Check access and get the requested constructor. */ jaroslav@1646: private MethodHandle getDirectConstructor(Class refc, MemberName ctor) throws IllegalAccessException { jaroslav@1646: final boolean checkSecurity = true; jaroslav@1646: return getDirectConstructorCommon(refc, ctor, checkSecurity); jaroslav@1646: } jaroslav@1646: /** Check access and get the requested constructor, eliding security manager checks. */ jaroslav@1646: private MethodHandle getDirectConstructorNoSecurityManager(Class refc, MemberName ctor) throws IllegalAccessException { jaroslav@1646: final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants jaroslav@1646: return getDirectConstructorCommon(refc, ctor, checkSecurity); jaroslav@1646: } jaroslav@1646: /** Common code for all constructors; do not call directly except from immediately above. */ jaroslav@1646: private MethodHandle getDirectConstructorCommon(Class refc, MemberName ctor, jaroslav@1646: boolean checkSecurity) throws IllegalAccessException { jaroslav@1646: assert(ctor.isConstructor()); jaroslav@1646: checkAccess(REF_newInvokeSpecial, refc, ctor); jaroslav@1646: // Optionally check with the security manager; this isn't needed for unreflect* calls. jaroslav@1646: if (checkSecurity) jaroslav@1646: checkSecurityManager(refc, ctor); jaroslav@1646: assert(!MethodHandleNatives.isCallerSensitive(ctor)); // maybeBindCaller not relevant here jaroslav@1646: return DirectMethodHandle.make(ctor).setVarargs(ctor); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** Hook called from the JVM (via MethodHandleNatives) to link MH constants: jaroslav@1646: */ jaroslav@1646: /*non-public*/ jaroslav@1646: MethodHandle linkMethodHandleConstant(byte refKind, Class defc, String name, Object type) throws ReflectiveOperationException { jaroslav@1646: if (!(type instanceof Class || type instanceof MethodType)) jaroslav@1646: throw new InternalError("unresolved MemberName"); jaroslav@1646: MemberName member = new MemberName(refKind, defc, name, type); jaroslav@1646: MethodHandle mh = LOOKASIDE_TABLE.get(member); jaroslav@1646: if (mh != null) { jaroslav@1646: checkSymbolicClass(defc); jaroslav@1646: return mh; jaroslav@1646: } jaroslav@1646: // Treat MethodHandle.invoke and invokeExact specially. jaroslav@1646: if (defc == MethodHandle.class && refKind == REF_invokeVirtual) { jaroslav@1646: mh = findVirtualForMH(member.getName(), member.getMethodType()); jaroslav@1646: if (mh != null) { jaroslav@1646: return mh; jaroslav@1646: } jaroslav@1646: } jaroslav@1646: MemberName resolved = resolveOrFail(refKind, member); jaroslav@1646: mh = getDirectMethodForConstant(refKind, defc, resolved); jaroslav@1646: if (mh instanceof DirectMethodHandle jaroslav@1646: && canBeCached(refKind, defc, resolved)) { jaroslav@1646: MemberName key = mh.internalMemberName(); jaroslav@1646: if (key != null) { jaroslav@1646: key = key.asNormalOriginal(); jaroslav@1646: } jaroslav@1646: if (member.equals(key)) { // better safe than sorry jaroslav@1646: LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh); jaroslav@1646: } jaroslav@1646: } jaroslav@1646: return mh; jaroslav@1646: } jaroslav@1646: private jaroslav@1646: boolean canBeCached(byte refKind, Class defc, MemberName member) { jaroslav@1646: if (refKind == REF_invokeSpecial) { jaroslav@1646: return false; jaroslav@1646: } jaroslav@1646: if (!Modifier.isPublic(defc.getModifiers()) || jaroslav@1646: !Modifier.isPublic(member.getDeclaringClass().getModifiers()) || jaroslav@1646: !member.isPublic() || jaroslav@1646: member.isCallerSensitive()) { jaroslav@1646: return false; jaroslav@1646: } jaroslav@1646: ClassLoader loader = defc.getClassLoader(); jaroslav@1646: if (!sun.misc.VM.isSystemDomainLoader(loader)) { jaroslav@1646: ClassLoader sysl = ClassLoader.getSystemClassLoader(); jaroslav@1646: boolean found = false; jaroslav@1646: while (sysl != null) { jaroslav@1646: if (loader == sysl) { found = true; break; } jaroslav@1646: sysl = sysl.getParent(); jaroslav@1646: } jaroslav@1646: if (!found) { jaroslav@1646: return false; jaroslav@1646: } jaroslav@1646: } jaroslav@1646: try { jaroslav@1646: MemberName resolved2 = publicLookup().resolveOrFail(refKind, jaroslav@1646: new MemberName(refKind, defc, member.getName(), member.getType())); jaroslav@1646: checkSecurityManager(defc, resolved2); jaroslav@1646: } catch (ReflectiveOperationException | SecurityException ex) { jaroslav@1646: return false; jaroslav@1646: } jaroslav@1646: return true; jaroslav@1646: } jaroslav@1646: private jaroslav@1646: MethodHandle getDirectMethodForConstant(byte refKind, Class defc, MemberName member) jaroslav@1646: throws ReflectiveOperationException { jaroslav@1646: if (MethodHandleNatives.refKindIsField(refKind)) { jaroslav@1646: return getDirectFieldNoSecurityManager(refKind, defc, member); jaroslav@1646: } else if (MethodHandleNatives.refKindIsMethod(refKind)) { jaroslav@1646: return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass); jaroslav@1646: } else if (refKind == REF_newInvokeSpecial) { jaroslav@1646: return getDirectConstructorNoSecurityManager(defc, member); jaroslav@1646: } jaroslav@1646: // oops jaroslav@1646: throw newIllegalArgumentException("bad MethodHandle constant #"+member); jaroslav@1646: } jaroslav@1646: jaroslav@1646: static ConcurrentHashMap LOOKASIDE_TABLE = new ConcurrentHashMap<>(); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle giving read access to elements of an array. jaroslav@1646: * The type of the method handle will have a return type of the array's jaroslav@1646: * element type. Its first argument will be the array type, jaroslav@1646: * and the second will be {@code int}. jaroslav@1646: * @param arrayClass an array type jaroslav@1646: * @return a method handle which can load values from the given array type jaroslav@1646: * @throws NullPointerException if the argument is null jaroslav@1646: * @throws IllegalArgumentException if arrayClass is not an array type jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle arrayElementGetter(Class arrayClass) throws IllegalArgumentException { jaroslav@1646: return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle giving write access to elements of an array. jaroslav@1646: * The type of the method handle will have a void return type. jaroslav@1646: * Its last argument will be the array's element type. jaroslav@1646: * The first and second arguments will be the array type and int. jaroslav@1646: * @param arrayClass the class of an array jaroslav@1646: * @return a method handle which can store values into the array type jaroslav@1646: * @throws NullPointerException if the argument is null jaroslav@1646: * @throws IllegalArgumentException if arrayClass is not an array type jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle arrayElementSetter(Class arrayClass) throws IllegalArgumentException { jaroslav@1646: return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /// method handle invocation (reflective style) jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle which will invoke any method handle of the jaroslav@1646: * given {@code type}, with a given number of trailing arguments replaced by jaroslav@1646: * a single trailing {@code Object[]} array. jaroslav@1646: * The resulting invoker will be a method handle with the following jaroslav@1646: * arguments: jaroslav@1646: *

jaroslav@1646: *

jaroslav@1646: * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with jaroslav@1646: * the indicated {@code type}. jaroslav@1646: * That is, if the target is exactly of the given {@code type}, it will behave jaroslav@1646: * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} jaroslav@1646: * is used to convert the target to the required {@code type}. jaroslav@1646: *

jaroslav@1646: * The type of the returned invoker will not be the given {@code type}, but rather jaroslav@1646: * will have all parameters except the first {@code leadingArgCount} jaroslav@1646: * replaced by a single array of type {@code Object[]}, which will be jaroslav@1646: * the final parameter. jaroslav@1646: *

jaroslav@1646: * Before invoking its target, the invoker will spread the final array, apply jaroslav@1646: * reference casts as necessary, and unbox and widen primitive arguments. jaroslav@1646: * If, when the invoker is called, the supplied array argument does jaroslav@1646: * not have the correct number of elements, the invoker will throw jaroslav@1646: * an {@link IllegalArgumentException} instead of invoking the target. jaroslav@1646: *

jaroslav@1646: * This method is equivalent to the following code (though it may be more efficient): jaroslav@1646: *

{@code
jaroslav@1646: MethodHandle invoker = MethodHandles.invoker(type);
jaroslav@1646: int spreadArgCount = type.parameterCount() - leadingArgCount;
jaroslav@1646: invoker = invoker.asSpreader(Object[].class, spreadArgCount);
jaroslav@1646: return invoker;
jaroslav@1646:      * }
jaroslav@1646: * This method throws no reflective or security exceptions. jaroslav@1646: * @param type the desired target type jaroslav@1646: * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target jaroslav@1646: * @return a method handle suitable for invoking any method handle of the given type jaroslav@1646: * @throws NullPointerException if {@code type} is null jaroslav@1646: * @throws IllegalArgumentException if {@code leadingArgCount} is not in jaroslav@1646: * the range from 0 to {@code type.parameterCount()} inclusive, jaroslav@1646: * or if the resulting method handle's type would have jaroslav@1646: * too many parameters jaroslav@1646: */ jaroslav@1646: static public jaroslav@1646: MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { jaroslav@1646: if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) jaroslav@1646: throw new IllegalArgumentException("bad argument count "+leadingArgCount); jaroslav@1646: return type.invokers().spreadInvoker(leadingArgCount); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a special invoker method handle which can be used to jaroslav@1646: * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. jaroslav@1646: * The resulting invoker will have a type which is jaroslav@1646: * exactly equal to the desired type, except that it will accept jaroslav@1646: * an additional leading argument of type {@code MethodHandle}. jaroslav@1646: *

jaroslav@1646: * This method is equivalent to the following code (though it may be more efficient): jaroslav@1646: * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} jaroslav@1646: * jaroslav@1646: *

jaroslav@1646: * Discussion: jaroslav@1646: * Invoker method handles can be useful when working with variable method handles jaroslav@1646: * of unknown types. jaroslav@1646: * For example, to emulate an {@code invokeExact} call to a variable method jaroslav@1646: * handle {@code M}, extract its type {@code T}, jaroslav@1646: * look up the invoker method {@code X} for {@code T}, jaroslav@1646: * and call the invoker method, as {@code X.invoke(T, A...)}. jaroslav@1646: * (It would not work to call {@code X.invokeExact}, since the type {@code T} jaroslav@1646: * is unknown.) jaroslav@1646: * If spreading, collecting, or other argument transformations are required, jaroslav@1646: * they can be applied once to the invoker {@code X} and reused on many {@code M} jaroslav@1646: * method handle values, as long as they are compatible with the type of {@code X}. jaroslav@1646: *

jaroslav@1646: * (Note: The invoker method is not available via the Core Reflection API. jaroslav@1646: * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} jaroslav@1646: * on the declared {@code invokeExact} or {@code invoke} method will raise an jaroslav@1646: * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.) jaroslav@1646: *

jaroslav@1646: * This method throws no reflective or security exceptions. jaroslav@1646: * @param type the desired target type jaroslav@1646: * @return a method handle suitable for invoking any method handle of the given type jaroslav@1646: * @throws IllegalArgumentException if the resulting method handle's type would have jaroslav@1646: * too many parameters jaroslav@1646: */ jaroslav@1646: static public jaroslav@1646: MethodHandle exactInvoker(MethodType type) { jaroslav@1646: return type.invokers().exactInvoker(); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a special invoker method handle which can be used to jaroslav@1646: * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. jaroslav@1646: * The resulting invoker will have a type which is jaroslav@1646: * exactly equal to the desired type, except that it will accept jaroslav@1646: * an additional leading argument of type {@code MethodHandle}. jaroslav@1646: *

jaroslav@1646: * Before invoking its target, if the target differs from the expected type, jaroslav@1646: * the invoker will apply reference casts as jaroslav@1646: * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. jaroslav@1646: * Similarly, the return value will be converted as necessary. jaroslav@1646: * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, jaroslav@1646: * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. jaroslav@1646: *

jaroslav@1646: * This method is equivalent to the following code (though it may be more efficient): jaroslav@1646: * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} jaroslav@1646: *

jaroslav@1646: * Discussion: jaroslav@1646: * A {@linkplain MethodType#genericMethodType general method type} is one which jaroslav@1646: * mentions only {@code Object} arguments and return values. jaroslav@1646: * An invoker for such a type is capable of calling any method handle jaroslav@1646: * of the same arity as the general type. jaroslav@1646: *

jaroslav@1646: * (Note: The invoker method is not available via the Core Reflection API. jaroslav@1646: * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} jaroslav@1646: * on the declared {@code invokeExact} or {@code invoke} method will raise an jaroslav@1646: * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.) jaroslav@1646: *

jaroslav@1646: * This method throws no reflective or security exceptions. jaroslav@1646: * @param type the desired target type jaroslav@1646: * @return a method handle suitable for invoking any method handle convertible to the given type jaroslav@1646: * @throws IllegalArgumentException if the resulting method handle's type would have jaroslav@1646: * too many parameters jaroslav@1646: */ jaroslav@1646: static public jaroslav@1646: MethodHandle invoker(MethodType type) { jaroslav@1646: return type.invokers().generalInvoker(); jaroslav@1646: } jaroslav@1646: jaroslav@1646: static /*non-public*/ jaroslav@1646: MethodHandle basicInvoker(MethodType type) { jaroslav@1646: return type.form().basicInvoker(); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /// method handle modification (creation from other method handles) jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle which adapts the type of the jaroslav@1646: * given method handle to a new type by pairwise argument and return type conversion. jaroslav@1646: * The original type and new type must have the same number of arguments. jaroslav@1646: * The resulting method handle is guaranteed to report a type jaroslav@1646: * which is equal to the desired new type. jaroslav@1646: *

jaroslav@1646: * If the original type and new type are equal, returns target. jaroslav@1646: *

jaroslav@1646: * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, jaroslav@1646: * and some additional conversions are also applied if those conversions fail. jaroslav@1646: * Given types T0, T1, one of the following conversions is applied jaroslav@1646: * if possible, before or instead of any conversions done by {@code asType}: jaroslav@1646: *

jaroslav@1646: * @param target the method handle to invoke after arguments are retyped jaroslav@1646: * @param newType the expected type of the new method handle jaroslav@1646: * @return a method handle which delegates to the target after performing jaroslav@1646: * any necessary argument conversions, and arranges for any jaroslav@1646: * necessary return value conversions jaroslav@1646: * @throws NullPointerException if either argument is null jaroslav@1646: * @throws WrongMethodTypeException if the conversion cannot be made jaroslav@1646: * @see MethodHandle#asType jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { jaroslav@1646: if (!target.type().isCastableTo(newType)) { jaroslav@1646: throw new WrongMethodTypeException("cannot explicitly cast "+target+" to "+newType); jaroslav@1646: } jaroslav@1646: return MethodHandleImpl.makePairwiseConvert(target, newType, 2); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle which adapts the calling sequence of the jaroslav@1646: * given method handle to a new type, by reordering the arguments. jaroslav@1646: * The resulting method handle is guaranteed to report a type jaroslav@1646: * which is equal to the desired new type. jaroslav@1646: *

jaroslav@1646: * The given array controls the reordering. jaroslav@1646: * Call {@code #I} the number of incoming parameters (the value jaroslav@1646: * {@code newType.parameterCount()}, and call {@code #O} the number jaroslav@1646: * of outgoing parameters (the value {@code target.type().parameterCount()}). jaroslav@1646: * Then the length of the reordering array must be {@code #O}, jaroslav@1646: * and each element must be a non-negative number less than {@code #I}. jaroslav@1646: * For every {@code N} less than {@code #O}, the {@code N}-th jaroslav@1646: * outgoing argument will be taken from the {@code I}-th incoming jaroslav@1646: * argument, where {@code I} is {@code reorder[N]}. jaroslav@1646: *

jaroslav@1646: * No argument or return value conversions are applied. jaroslav@1646: * The type of each incoming argument, as determined by {@code newType}, jaroslav@1646: * must be identical to the type of the corresponding outgoing parameter jaroslav@1646: * or parameters in the target method handle. jaroslav@1646: * The return type of {@code newType} must be identical to the return jaroslav@1646: * type of the original target. jaroslav@1646: *

jaroslav@1646: * The reordering array need not specify an actual permutation. jaroslav@1646: * An incoming argument will be duplicated if its index appears jaroslav@1646: * more than once in the array, and an incoming argument will be dropped jaroslav@1646: * if its index does not appear in the array. jaroslav@1646: * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, jaroslav@1646: * incoming arguments which are not mentioned in the reordering array jaroslav@1646: * are may be any type, as determined only by {@code newType}. jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodType intfn1 = methodType(int.class, int.class);
jaroslav@1646: MethodType intfn2 = methodType(int.class, int.class, int.class);
jaroslav@1646: MethodHandle sub = ... (int x, int y) -> (x-y) ...;
jaroslav@1646: assert(sub.type().equals(intfn2));
jaroslav@1646: MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
jaroslav@1646: MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
jaroslav@1646: assert((int)rsub.invokeExact(1, 100) == 99);
jaroslav@1646: MethodHandle add = ... (int x, int y) -> (x+y) ...;
jaroslav@1646: assert(add.type().equals(intfn2));
jaroslav@1646: MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
jaroslav@1646: assert(twice.type().equals(intfn1));
jaroslav@1646: assert((int)twice.invokeExact(21) == 42);
jaroslav@1646:      * }
jaroslav@1646: * @param target the method handle to invoke after arguments are reordered jaroslav@1646: * @param newType the expected type of the new method handle jaroslav@1646: * @param reorder an index array which controls the reordering jaroslav@1646: * @return a method handle which delegates to the target after it jaroslav@1646: * drops unused arguments and moves and/or duplicates the other arguments jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: * @throws IllegalArgumentException if the index array length is not equal to jaroslav@1646: * the arity of the target, or if any index array element jaroslav@1646: * not a valid index for a parameter of {@code newType}, jaroslav@1646: * or if two corresponding parameter types in jaroslav@1646: * {@code target.type()} and {@code newType} are not identical, jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { jaroslav@1646: checkReorder(reorder, newType, target.type()); jaroslav@1646: return target.permuteArguments(newType, reorder); jaroslav@1646: } jaroslav@1646: jaroslav@1646: private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) { jaroslav@1646: if (newType.returnType() != oldType.returnType()) jaroslav@1646: throw newIllegalArgumentException("return types do not match", jaroslav@1646: oldType, newType); jaroslav@1646: if (reorder.length == oldType.parameterCount()) { jaroslav@1646: int limit = newType.parameterCount(); jaroslav@1646: boolean bad = false; jaroslav@1646: for (int j = 0; j < reorder.length; j++) { jaroslav@1646: int i = reorder[j]; jaroslav@1646: if (i < 0 || i >= limit) { jaroslav@1646: bad = true; break; jaroslav@1646: } jaroslav@1646: Class src = newType.parameterType(i); jaroslav@1646: Class dst = oldType.parameterType(j); jaroslav@1646: if (src != dst) jaroslav@1646: throw newIllegalArgumentException("parameter types do not match after reorder", jaroslav@1646: oldType, newType); jaroslav@1646: } jaroslav@1646: if (!bad) return; jaroslav@1646: } jaroslav@1646: throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle of the requested return type which returns the given jaroslav@1646: * constant value every time it is invoked. jaroslav@1646: *

jaroslav@1646: * Before the method handle is returned, the passed-in value is converted to the requested type. jaroslav@1646: * If the requested type is primitive, widening primitive conversions are attempted, jaroslav@1646: * else reference conversions are attempted. jaroslav@1646: *

The returned method handle is equivalent to {@code identity(type).bindTo(value)}. jaroslav@1646: * @param type the return type of the desired method handle jaroslav@1646: * @param value the value to return jaroslav@1646: * @return a method handle of the given return type and no arguments, which always returns the given value jaroslav@1646: * @throws NullPointerException if the {@code type} argument is null jaroslav@1646: * @throws ClassCastException if the value cannot be converted to the required return type jaroslav@1646: * @throws IllegalArgumentException if the given type is {@code void.class} jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle constant(Class type, Object value) { jaroslav@1646: if (type.isPrimitive()) { jaroslav@1646: if (type == void.class) jaroslav@1646: throw newIllegalArgumentException("void type"); jaroslav@1646: Wrapper w = Wrapper.forPrimitiveType(type); jaroslav@1646: return insertArguments(identity(type), 0, w.convert(value, type)); jaroslav@1646: } else { jaroslav@1646: return identity(type).bindTo(type.cast(value)); jaroslav@1646: } jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle which returns its sole argument when invoked. jaroslav@1646: * @param type the type of the sole parameter and return value of the desired method handle jaroslav@1646: * @return a unary method handle which accepts and returns the given type jaroslav@1646: * @throws NullPointerException if the argument is null jaroslav@1646: * @throws IllegalArgumentException if the given type is {@code void.class} jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle identity(Class type) { jaroslav@1646: if (type == void.class) jaroslav@1646: throw newIllegalArgumentException("void type"); jaroslav@1646: else if (type == Object.class) jaroslav@1646: return ValueConversions.identity(); jaroslav@1646: else if (type.isPrimitive()) jaroslav@1646: return ValueConversions.identity(Wrapper.forPrimitiveType(type)); jaroslav@1646: else jaroslav@1646: return MethodHandleImpl.makeReferenceIdentity(type); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Provides a target method handle with one or more bound arguments jaroslav@1646: * in advance of the method handle's invocation. jaroslav@1646: * The formal parameters to the target corresponding to the bound jaroslav@1646: * arguments are called bound parameters. jaroslav@1646: * Returns a new method handle which saves away the bound arguments. jaroslav@1646: * When it is invoked, it receives arguments for any non-bound parameters, jaroslav@1646: * binds the saved arguments to their corresponding parameters, jaroslav@1646: * and calls the original target. jaroslav@1646: *

jaroslav@1646: * The type of the new method handle will drop the types for the bound jaroslav@1646: * parameters from the original target type, since the new method handle jaroslav@1646: * will no longer require those arguments to be supplied by its callers. jaroslav@1646: *

jaroslav@1646: * Each given argument object must match the corresponding bound parameter type. jaroslav@1646: * If a bound parameter type is a primitive, the argument object jaroslav@1646: * must be a wrapper, and will be unboxed to produce the primitive value. jaroslav@1646: *

jaroslav@1646: * The {@code pos} argument selects which parameters are to be bound. jaroslav@1646: * It may range between zero and N-L (inclusively), jaroslav@1646: * where N is the arity of the target method handle jaroslav@1646: * and L is the length of the values array. jaroslav@1646: * @param target the method handle to invoke after the argument is inserted jaroslav@1646: * @param pos where to insert the argument (zero for the first) jaroslav@1646: * @param values the series of arguments to insert jaroslav@1646: * @return a method handle which inserts an additional argument, jaroslav@1646: * before calling the original method handle jaroslav@1646: * @throws NullPointerException if the target or the {@code values} array is null jaroslav@1646: * @see MethodHandle#bindTo jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { jaroslav@1646: int insCount = values.length; jaroslav@1646: MethodType oldType = target.type(); jaroslav@1646: int outargs = oldType.parameterCount(); jaroslav@1646: int inargs = outargs - insCount; jaroslav@1646: if (inargs < 0) jaroslav@1646: throw newIllegalArgumentException("too many values to insert"); jaroslav@1646: if (pos < 0 || pos > inargs) jaroslav@1646: throw newIllegalArgumentException("no argument type to append"); jaroslav@1646: MethodHandle result = target; jaroslav@1646: for (int i = 0; i < insCount; i++) { jaroslav@1646: Object value = values[i]; jaroslav@1646: Class ptype = oldType.parameterType(pos+i); jaroslav@1646: if (ptype.isPrimitive()) { jaroslav@1646: char btype = 'I'; jaroslav@1646: Wrapper w = Wrapper.forPrimitiveType(ptype); jaroslav@1646: switch (w) { jaroslav@1646: case LONG: btype = 'J'; break; jaroslav@1646: case FLOAT: btype = 'F'; break; jaroslav@1646: case DOUBLE: btype = 'D'; break; jaroslav@1646: } jaroslav@1646: // perform unboxing and/or primitive conversion jaroslav@1646: value = w.convert(value, ptype); jaroslav@1646: result = result.bindArgument(pos, btype, value); jaroslav@1646: continue; jaroslav@1646: } jaroslav@1646: value = ptype.cast(value); // throw CCE if needed jaroslav@1646: if (pos == 0) { jaroslav@1646: result = result.bindReceiver(value); jaroslav@1646: } else { jaroslav@1646: result = result.bindArgument(pos, 'L', value); jaroslav@1646: } jaroslav@1646: } jaroslav@1646: return result; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle which will discard some dummy arguments jaroslav@1646: * before calling some other specified target method handle. jaroslav@1646: * The type of the new method handle will be the same as the target's type, jaroslav@1646: * except it will also include the dummy argument types, jaroslav@1646: * at some given position. jaroslav@1646: *

jaroslav@1646: * The {@code pos} argument may range between zero and N, jaroslav@1646: * where N is the arity of the target. jaroslav@1646: * If {@code pos} is zero, the dummy arguments will precede jaroslav@1646: * the target's real arguments; if {@code pos} is N jaroslav@1646: * they will come after. jaroslav@1646: *

jaroslav@1646: * Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle cat = lookup().findVirtual(String.class,
jaroslav@1646:   "concat", methodType(String.class, String.class));
jaroslav@1646: assertEquals("xy", (String) cat.invokeExact("x", "y"));
jaroslav@1646: MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
jaroslav@1646: MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
jaroslav@1646: assertEquals(bigType, d0.type());
jaroslav@1646: assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
jaroslav@1646:      * }
jaroslav@1646: *

jaroslav@1646: * This method is also equivalent to the following code: jaroslav@1646: *

jaroslav@1646:      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
jaroslav@1646:      * 
jaroslav@1646: * @param target the method handle to invoke after the arguments are dropped jaroslav@1646: * @param valueTypes the type(s) of the argument(s) to drop jaroslav@1646: * @param pos position of first argument to drop (zero for the leftmost) jaroslav@1646: * @return a method handle which drops arguments of the given types, jaroslav@1646: * before calling the original method handle jaroslav@1646: * @throws NullPointerException if the target is null, jaroslav@1646: * or if the {@code valueTypes} list or any of its elements is null jaroslav@1646: * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, jaroslav@1646: * or if {@code pos} is negative or greater than the arity of the target, jaroslav@1646: * or if the new method handle's type would have too many parameters jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle dropArguments(MethodHandle target, int pos, List> valueTypes) { jaroslav@1646: MethodType oldType = target.type(); // get NPE jaroslav@1646: int dropped = valueTypes.size(); jaroslav@1646: MethodType.checkSlotCount(dropped); jaroslav@1646: if (dropped == 0) return target; jaroslav@1646: int outargs = oldType.parameterCount(); jaroslav@1646: int inargs = outargs + dropped; jaroslav@1646: if (pos < 0 || pos >= inargs) jaroslav@1646: throw newIllegalArgumentException("no argument type to remove"); jaroslav@1646: ArrayList> ptypes = new ArrayList<>(oldType.parameterList()); jaroslav@1646: ptypes.addAll(pos, valueTypes); jaroslav@1646: MethodType newType = MethodType.methodType(oldType.returnType(), ptypes); jaroslav@1646: return target.dropArguments(newType, pos, dropped); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle which will discard some dummy arguments jaroslav@1646: * before calling some other specified target method handle. jaroslav@1646: * The type of the new method handle will be the same as the target's type, jaroslav@1646: * except it will also include the dummy argument types, jaroslav@1646: * at some given position. jaroslav@1646: *

jaroslav@1646: * The {@code pos} argument may range between zero and N, jaroslav@1646: * where N is the arity of the target. jaroslav@1646: * If {@code pos} is zero, the dummy arguments will precede jaroslav@1646: * the target's real arguments; if {@code pos} is N jaroslav@1646: * they will come after. jaroslav@1646: *

jaroslav@1646: * Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle cat = lookup().findVirtual(String.class,
jaroslav@1646:   "concat", methodType(String.class, String.class));
jaroslav@1646: assertEquals("xy", (String) cat.invokeExact("x", "y"));
jaroslav@1646: MethodHandle d0 = dropArguments(cat, 0, String.class);
jaroslav@1646: assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
jaroslav@1646: MethodHandle d1 = dropArguments(cat, 1, String.class);
jaroslav@1646: assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
jaroslav@1646: MethodHandle d2 = dropArguments(cat, 2, String.class);
jaroslav@1646: assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
jaroslav@1646: MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
jaroslav@1646: assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
jaroslav@1646:      * }
jaroslav@1646: *

jaroslav@1646: * This method is also equivalent to the following code: jaroslav@1646: *

jaroslav@1646:      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
jaroslav@1646:      * 
jaroslav@1646: * @param target the method handle to invoke after the arguments are dropped jaroslav@1646: * @param valueTypes the type(s) of the argument(s) to drop jaroslav@1646: * @param pos position of first argument to drop (zero for the leftmost) jaroslav@1646: * @return a method handle which drops arguments of the given types, jaroslav@1646: * before calling the original method handle jaroslav@1646: * @throws NullPointerException if the target is null, jaroslav@1646: * or if the {@code valueTypes} array or any of its elements is null jaroslav@1646: * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, jaroslav@1646: * or if {@code pos} is negative or greater than the arity of the target, jaroslav@1646: * or if the new method handle's type would have jaroslav@1646: * too many parameters jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle dropArguments(MethodHandle target, int pos, Class... valueTypes) { jaroslav@1646: return dropArguments(target, pos, Arrays.asList(valueTypes)); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Adapts a target method handle by pre-processing jaroslav@1646: * one or more of its arguments, each with its own unary filter function, jaroslav@1646: * and then calling the target with each pre-processed argument jaroslav@1646: * replaced by the result of its corresponding filter function. jaroslav@1646: *

jaroslav@1646: * The pre-processing is performed by one or more method handles, jaroslav@1646: * specified in the elements of the {@code filters} array. jaroslav@1646: * The first element of the filter array corresponds to the {@code pos} jaroslav@1646: * argument of the target, and so on in sequence. jaroslav@1646: *

jaroslav@1646: * Null arguments in the array are treated as identity functions, jaroslav@1646: * and the corresponding arguments left unchanged. jaroslav@1646: * (If there are no non-null elements in the array, the original target is returned.) jaroslav@1646: * Each filter is applied to the corresponding argument of the adapter. jaroslav@1646: *

jaroslav@1646: * If a filter {@code F} applies to the {@code N}th argument of jaroslav@1646: * the target, then {@code F} must be a method handle which jaroslav@1646: * takes exactly one argument. The type of {@code F}'s sole argument jaroslav@1646: * replaces the corresponding argument type of the target jaroslav@1646: * in the resulting adapted method handle. jaroslav@1646: * The return type of {@code F} must be identical to the corresponding jaroslav@1646: * parameter type of the target. jaroslav@1646: *

jaroslav@1646: * It is an error if there are elements of {@code filters} jaroslav@1646: * (null or not) jaroslav@1646: * which do not correspond to argument positions in the target. jaroslav@1646: *

Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle cat = lookup().findVirtual(String.class,
jaroslav@1646:   "concat", methodType(String.class, String.class));
jaroslav@1646: MethodHandle upcase = lookup().findVirtual(String.class,
jaroslav@1646:   "toUpperCase", methodType(String.class));
jaroslav@1646: assertEquals("xy", (String) cat.invokeExact("x", "y"));
jaroslav@1646: MethodHandle f0 = filterArguments(cat, 0, upcase);
jaroslav@1646: assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
jaroslav@1646: MethodHandle f1 = filterArguments(cat, 1, upcase);
jaroslav@1646: assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
jaroslav@1646: MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
jaroslav@1646: assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
jaroslav@1646:      * }
jaroslav@1646: *

Here is pseudocode for the resulting adapter: jaroslav@1646: *

{@code
jaroslav@1646:      * V target(P... p, A[i]... a[i], B... b);
jaroslav@1646:      * A[i] filter[i](V[i]);
jaroslav@1646:      * T adapter(P... p, V[i]... v[i], B... b) {
jaroslav@1646:      *   return target(p..., f[i](v[i])..., b...);
jaroslav@1646:      * }
jaroslav@1646:      * }
jaroslav@1646: * jaroslav@1646: * @param target the method handle to invoke after arguments are filtered jaroslav@1646: * @param pos the position of the first argument to filter jaroslav@1646: * @param filters method handles to call initially on filtered arguments jaroslav@1646: * @return method handle which incorporates the specified argument filtering logic jaroslav@1646: * @throws NullPointerException if the target is null jaroslav@1646: * or if the {@code filters} array is null jaroslav@1646: * @throws IllegalArgumentException if a non-null element of {@code filters} jaroslav@1646: * does not match a corresponding argument type of target as described above, jaroslav@1646: * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, jaroslav@1646: * or if the resulting method handle's type would have jaroslav@1646: * too many parameters jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { jaroslav@1646: MethodType targetType = target.type(); jaroslav@1646: MethodHandle adapter = target; jaroslav@1646: MethodType adapterType = null; jaroslav@1646: assert((adapterType = targetType) != null); jaroslav@1646: int maxPos = targetType.parameterCount(); jaroslav@1646: if (pos + filters.length > maxPos) jaroslav@1646: throw newIllegalArgumentException("too many filters"); jaroslav@1646: int curPos = pos-1; // pre-incremented jaroslav@1646: for (MethodHandle filter : filters) { jaroslav@1646: curPos += 1; jaroslav@1646: if (filter == null) continue; // ignore null elements of filters jaroslav@1646: adapter = filterArgument(adapter, curPos, filter); jaroslav@1646: assert((adapterType = adapterType.changeParameterType(curPos, filter.type().parameterType(0))) != null); jaroslav@1646: } jaroslav@1646: assert(adapterType.equals(adapter.type())); jaroslav@1646: return adapter; jaroslav@1646: } jaroslav@1646: jaroslav@1646: /*non-public*/ static jaroslav@1646: MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { jaroslav@1646: MethodType targetType = target.type(); jaroslav@1646: MethodType filterType = filter.type(); jaroslav@1646: if (filterType.parameterCount() != 1 jaroslav@1646: || filterType.returnType() != targetType.parameterType(pos)) jaroslav@1646: throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); jaroslav@1646: return MethodHandleImpl.makeCollectArguments(target, filter, pos, false); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Adapts a target method handle by pre-processing jaroslav@1646: * a sub-sequence of its arguments with a filter (another method handle). jaroslav@1646: * The pre-processed arguments are replaced by the result (if any) of the jaroslav@1646: * filter function. jaroslav@1646: * The target is then called on the modified (usually shortened) argument list. jaroslav@1646: *

jaroslav@1646: * If the filter returns a value, the target must accept that value as jaroslav@1646: * its argument in position {@code pos}, preceded and/or followed by jaroslav@1646: * any arguments not passed to the filter. jaroslav@1646: * If the filter returns void, the target must accept all arguments jaroslav@1646: * not passed to the filter. jaroslav@1646: * No arguments are reordered, and a result returned from the filter jaroslav@1646: * replaces (in order) the whole subsequence of arguments originally jaroslav@1646: * passed to the adapter. jaroslav@1646: *

jaroslav@1646: * The argument types (if any) of the filter jaroslav@1646: * replace zero or one argument types of the target, at position {@code pos}, jaroslav@1646: * in the resulting adapted method handle. jaroslav@1646: * The return type of the filter (if any) must be identical to the jaroslav@1646: * argument type of the target at position {@code pos}, and that target argument jaroslav@1646: * is supplied by the return value of the filter. jaroslav@1646: *

jaroslav@1646: * In all cases, {@code pos} must be greater than or equal to zero, and jaroslav@1646: * {@code pos} must also be less than or equal to the target's arity. jaroslav@1646: *

Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle deepToString = publicLookup()
jaroslav@1646:   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
jaroslav@1646: 
jaroslav@1646: MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
jaroslav@1646: assertEquals("[strange]", (String) ts1.invokeExact("strange"));
jaroslav@1646: 
jaroslav@1646: MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
jaroslav@1646: assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
jaroslav@1646: 
jaroslav@1646: MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
jaroslav@1646: MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
jaroslav@1646: assertEquals("[top, [up, down], strange]",
jaroslav@1646:              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
jaroslav@1646: 
jaroslav@1646: MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
jaroslav@1646: assertEquals("[top, [up, down], [strange]]",
jaroslav@1646:              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
jaroslav@1646: 
jaroslav@1646: MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
jaroslav@1646: assertEquals("[top, [[up, down, strange], charm], bottom]",
jaroslav@1646:              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
jaroslav@1646:      * }
jaroslav@1646: *

Here is pseudocode for the resulting adapter: jaroslav@1646: *

{@code
jaroslav@1646:      * T target(A...,V,C...);
jaroslav@1646:      * V filter(B...);
jaroslav@1646:      * T adapter(A... a,B... b,C... c) {
jaroslav@1646:      *   V v = filter(b...);
jaroslav@1646:      *   return target(a...,v,c...);
jaroslav@1646:      * }
jaroslav@1646:      * // and if the filter has no arguments:
jaroslav@1646:      * T target2(A...,V,C...);
jaroslav@1646:      * V filter2();
jaroslav@1646:      * T adapter2(A... a,C... c) {
jaroslav@1646:      *   V v = filter2();
jaroslav@1646:      *   return target2(a...,v,c...);
jaroslav@1646:      * }
jaroslav@1646:      * // and if the filter has a void return:
jaroslav@1646:      * T target3(A...,C...);
jaroslav@1646:      * void filter3(B...);
jaroslav@1646:      * void adapter3(A... a,B... b,C... c) {
jaroslav@1646:      *   filter3(b...);
jaroslav@1646:      *   return target3(a...,c...);
jaroslav@1646:      * }
jaroslav@1646:      * }
jaroslav@1646: *

jaroslav@1646: * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to jaroslav@1646: * one which first "folds" the affected arguments, and then drops them, in separate jaroslav@1646: * steps as follows: jaroslav@1646: *

{@code
jaroslav@1646:      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
jaroslav@1646:      * mh = MethodHandles.foldArguments(mh, coll); //step 1
jaroslav@1646:      * }
jaroslav@1646: * If the target method handle consumes no arguments besides than the result jaroslav@1646: * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} jaroslav@1646: * is equivalent to {@code filterReturnValue(coll, mh)}. jaroslav@1646: * If the filter method handle {@code coll} consumes one argument and produces jaroslav@1646: * a non-void result, then {@code collectArguments(mh, N, coll)} jaroslav@1646: * is equivalent to {@code filterArguments(mh, N, coll)}. jaroslav@1646: * Other equivalences are possible but would require argument permutation. jaroslav@1646: * jaroslav@1646: * @param target the method handle to invoke after filtering the subsequence of arguments jaroslav@1646: * @param pos the position of the first adapter argument to pass to the filter, jaroslav@1646: * and/or the target argument which receives the result of the filter jaroslav@1646: * @param filter method handle to call on the subsequence of arguments jaroslav@1646: * @return method handle which incorporates the specified argument subsequence filtering logic jaroslav@1646: * @throws NullPointerException if either argument is null jaroslav@1646: * @throws IllegalArgumentException if the return type of {@code filter} jaroslav@1646: * is non-void and is not the same as the {@code pos} argument of the target, jaroslav@1646: * or if {@code pos} is not between 0 and the target's arity, inclusive, jaroslav@1646: * or if the resulting method handle's type would have jaroslav@1646: * too many parameters jaroslav@1646: * @see MethodHandles#foldArguments jaroslav@1646: * @see MethodHandles#filterArguments jaroslav@1646: * @see MethodHandles#filterReturnValue jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { jaroslav@1646: MethodType targetType = target.type(); jaroslav@1646: MethodType filterType = filter.type(); jaroslav@1646: if (filterType.returnType() != void.class && jaroslav@1646: filterType.returnType() != targetType.parameterType(pos)) jaroslav@1646: throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); jaroslav@1646: return MethodHandleImpl.makeCollectArguments(target, filter, pos, false); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Adapts a target method handle by post-processing jaroslav@1646: * its return value (if any) with a filter (another method handle). jaroslav@1646: * The result of the filter is returned from the adapter. jaroslav@1646: *

jaroslav@1646: * If the target returns a value, the filter must accept that value as jaroslav@1646: * its only argument. jaroslav@1646: * If the target returns void, the filter must accept no arguments. jaroslav@1646: *

jaroslav@1646: * The return type of the filter jaroslav@1646: * replaces the return type of the target jaroslav@1646: * in the resulting adapted method handle. jaroslav@1646: * The argument type of the filter (if any) must be identical to the jaroslav@1646: * return type of the target. jaroslav@1646: *

Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle cat = lookup().findVirtual(String.class,
jaroslav@1646:   "concat", methodType(String.class, String.class));
jaroslav@1646: MethodHandle length = lookup().findVirtual(String.class,
jaroslav@1646:   "length", methodType(int.class));
jaroslav@1646: System.out.println((String) cat.invokeExact("x", "y")); // xy
jaroslav@1646: MethodHandle f0 = filterReturnValue(cat, length);
jaroslav@1646: System.out.println((int) f0.invokeExact("x", "y")); // 2
jaroslav@1646:      * }
jaroslav@1646: *

Here is pseudocode for the resulting adapter: jaroslav@1646: *

{@code
jaroslav@1646:      * V target(A...);
jaroslav@1646:      * T filter(V);
jaroslav@1646:      * T adapter(A... a) {
jaroslav@1646:      *   V v = target(a...);
jaroslav@1646:      *   return filter(v);
jaroslav@1646:      * }
jaroslav@1646:      * // and if the target has a void return:
jaroslav@1646:      * void target2(A...);
jaroslav@1646:      * T filter2();
jaroslav@1646:      * T adapter2(A... a) {
jaroslav@1646:      *   target2(a...);
jaroslav@1646:      *   return filter2();
jaroslav@1646:      * }
jaroslav@1646:      * // and if the filter has a void return:
jaroslav@1646:      * V target3(A...);
jaroslav@1646:      * void filter3(V);
jaroslav@1646:      * void adapter3(A... a) {
jaroslav@1646:      *   V v = target3(a...);
jaroslav@1646:      *   filter3(v);
jaroslav@1646:      * }
jaroslav@1646:      * }
jaroslav@1646: * @param target the method handle to invoke before filtering the return value jaroslav@1646: * @param filter method handle to call on the return value jaroslav@1646: * @return method handle which incorporates the specified return value filtering logic jaroslav@1646: * @throws NullPointerException if either argument is null jaroslav@1646: * @throws IllegalArgumentException if the argument list of {@code filter} jaroslav@1646: * does not match the return type of target as described above jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { jaroslav@1646: MethodType targetType = target.type(); jaroslav@1646: MethodType filterType = filter.type(); jaroslav@1646: Class rtype = targetType.returnType(); jaroslav@1646: int filterValues = filterType.parameterCount(); jaroslav@1646: if (filterValues == 0 jaroslav@1646: ? (rtype != void.class) jaroslav@1646: : (rtype != filterType.parameterType(0))) jaroslav@1646: throw newIllegalArgumentException("target and filter types do not match", target, filter); jaroslav@1646: // result = fold( lambda(retval, arg...) { filter(retval) }, jaroslav@1646: // lambda( arg...) { target(arg...) } ) jaroslav@1646: return MethodHandleImpl.makeCollectArguments(filter, target, 0, false); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Adapts a target method handle by pre-processing jaroslav@1646: * some of its arguments, and then calling the target with jaroslav@1646: * the result of the pre-processing, inserted into the original jaroslav@1646: * sequence of arguments. jaroslav@1646: *

jaroslav@1646: * The pre-processing is performed by {@code combiner}, a second method handle. jaroslav@1646: * Of the arguments passed to the adapter, the first {@code N} arguments jaroslav@1646: * are copied to the combiner, which is then called. jaroslav@1646: * (Here, {@code N} is defined as the parameter count of the combiner.) jaroslav@1646: * After this, control passes to the target, with any result jaroslav@1646: * from the combiner inserted before the original {@code N} incoming jaroslav@1646: * arguments. jaroslav@1646: *

jaroslav@1646: * If the combiner returns a value, the first parameter type of the target jaroslav@1646: * must be identical with the return type of the combiner, and the next jaroslav@1646: * {@code N} parameter types of the target must exactly match the parameters jaroslav@1646: * of the combiner. jaroslav@1646: *

jaroslav@1646: * If the combiner has a void return, no result will be inserted, jaroslav@1646: * and the first {@code N} parameter types of the target jaroslav@1646: * must exactly match the parameters of the combiner. jaroslav@1646: *

jaroslav@1646: * The resulting adapter is the same type as the target, except that the jaroslav@1646: * first parameter type is dropped, jaroslav@1646: * if it corresponds to the result of the combiner. jaroslav@1646: *

jaroslav@1646: * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments jaroslav@1646: * that either the combiner or the target does not wish to receive. jaroslav@1646: * If some of the incoming arguments are destined only for the combiner, jaroslav@1646: * consider using {@link MethodHandle#asCollector asCollector} instead, since those jaroslav@1646: * arguments will not need to be live on the stack on entry to the jaroslav@1646: * target.) jaroslav@1646: *

Example: jaroslav@1646: *

{@code
jaroslav@1646: import static java.lang.invoke.MethodHandles.*;
jaroslav@1646: import static java.lang.invoke.MethodType.*;
jaroslav@1646: ...
jaroslav@1646: MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
jaroslav@1646:   "println", methodType(void.class, String.class))
jaroslav@1646:     .bindTo(System.out);
jaroslav@1646: MethodHandle cat = lookup().findVirtual(String.class,
jaroslav@1646:   "concat", methodType(String.class, String.class));
jaroslav@1646: assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
jaroslav@1646: MethodHandle catTrace = foldArguments(cat, trace);
jaroslav@1646: // also prints "boo":
jaroslav@1646: assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
jaroslav@1646:      * }
jaroslav@1646: *

Here is pseudocode for the resulting adapter: jaroslav@1646: *

{@code
jaroslav@1646:      * // there are N arguments in A...
jaroslav@1646:      * T target(V, A[N]..., B...);
jaroslav@1646:      * V combiner(A...);
jaroslav@1646:      * T adapter(A... a, B... b) {
jaroslav@1646:      *   V v = combiner(a...);
jaroslav@1646:      *   return target(v, a..., b...);
jaroslav@1646:      * }
jaroslav@1646:      * // and if the combiner has a void return:
jaroslav@1646:      * T target2(A[N]..., B...);
jaroslav@1646:      * void combiner2(A...);
jaroslav@1646:      * T adapter2(A... a, B... b) {
jaroslav@1646:      *   combiner2(a...);
jaroslav@1646:      *   return target2(a..., b...);
jaroslav@1646:      * }
jaroslav@1646:      * }
jaroslav@1646: * @param target the method handle to invoke after arguments are combined jaroslav@1646: * @param combiner method handle to call initially on the incoming arguments jaroslav@1646: * @return method handle which incorporates the specified argument folding logic jaroslav@1646: * @throws NullPointerException if either argument is null jaroslav@1646: * @throws IllegalArgumentException if {@code combiner}'s return type jaroslav@1646: * is non-void and not the same as the first argument type of jaroslav@1646: * the target, or if the initial {@code N} argument types jaroslav@1646: * of the target jaroslav@1646: * (skipping one matching the {@code combiner}'s return type) jaroslav@1646: * are not identical with the argument types of {@code combiner} jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { jaroslav@1646: int pos = 0; jaroslav@1646: MethodType targetType = target.type(); jaroslav@1646: MethodType combinerType = combiner.type(); jaroslav@1646: int foldPos = pos; jaroslav@1646: int foldArgs = combinerType.parameterCount(); jaroslav@1646: int foldVals = combinerType.returnType() == void.class ? 0 : 1; jaroslav@1646: int afterInsertPos = foldPos + foldVals; jaroslav@1646: boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); jaroslav@1646: if (ok && !(combinerType.parameterList() jaroslav@1646: .equals(targetType.parameterList().subList(afterInsertPos, jaroslav@1646: afterInsertPos + foldArgs)))) jaroslav@1646: ok = false; jaroslav@1646: if (ok && foldVals != 0 && !combinerType.returnType().equals(targetType.parameterType(0))) jaroslav@1646: ok = false; jaroslav@1646: if (!ok) jaroslav@1646: throw misMatchedTypes("target and combiner types", targetType, combinerType); jaroslav@1646: MethodType newType = targetType.dropParameterTypes(foldPos, afterInsertPos); jaroslav@1646: return MethodHandleImpl.makeCollectArguments(target, combiner, foldPos, true); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Makes a method handle which adapts a target method handle, jaroslav@1646: * by guarding it with a test, a boolean-valued method handle. jaroslav@1646: * If the guard fails, a fallback handle is called instead. jaroslav@1646: * All three method handles must have the same corresponding jaroslav@1646: * argument and return types, except that the return type jaroslav@1646: * of the test must be boolean, and the test is allowed jaroslav@1646: * to have fewer arguments than the other two method handles. jaroslav@1646: *

Here is pseudocode for the resulting adapter: jaroslav@1646: *

{@code
jaroslav@1646:      * boolean test(A...);
jaroslav@1646:      * T target(A...,B...);
jaroslav@1646:      * T fallback(A...,B...);
jaroslav@1646:      * T adapter(A... a,B... b) {
jaroslav@1646:      *   if (test(a...))
jaroslav@1646:      *     return target(a..., b...);
jaroslav@1646:      *   else
jaroslav@1646:      *     return fallback(a..., b...);
jaroslav@1646:      * }
jaroslav@1646:      * }
jaroslav@1646: * Note that the test arguments ({@code a...} in the pseudocode) cannot jaroslav@1646: * be modified by execution of the test, and so are passed unchanged jaroslav@1646: * from the caller to the target or fallback as appropriate. jaroslav@1646: * @param test method handle used for test, must return boolean jaroslav@1646: * @param target method handle to call if test passes jaroslav@1646: * @param fallback method handle to call if test fails jaroslav@1646: * @return method handle which incorporates the specified if/then/else logic jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: * @throws IllegalArgumentException if {@code test} does not return boolean, jaroslav@1646: * or if all three method types do not match (with the return jaroslav@1646: * type of {@code test} changed to match that of the target). jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle guardWithTest(MethodHandle test, jaroslav@1646: MethodHandle target, jaroslav@1646: MethodHandle fallback) { jaroslav@1646: MethodType gtype = test.type(); jaroslav@1646: MethodType ttype = target.type(); jaroslav@1646: MethodType ftype = fallback.type(); jaroslav@1646: if (!ttype.equals(ftype)) jaroslav@1646: throw misMatchedTypes("target and fallback types", ttype, ftype); jaroslav@1646: if (gtype.returnType() != boolean.class) jaroslav@1646: throw newIllegalArgumentException("guard type is not a predicate "+gtype); jaroslav@1646: List> targs = ttype.parameterList(); jaroslav@1646: List> gargs = gtype.parameterList(); jaroslav@1646: if (!targs.equals(gargs)) { jaroslav@1646: int gpc = gargs.size(), tpc = targs.size(); jaroslav@1646: if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs)) jaroslav@1646: throw misMatchedTypes("target and test types", ttype, gtype); jaroslav@1646: test = dropArguments(test, gpc, targs.subList(gpc, tpc)); jaroslav@1646: gtype = test.type(); jaroslav@1646: } jaroslav@1646: return MethodHandleImpl.makeGuardWithTest(test, target, fallback); jaroslav@1646: } jaroslav@1646: jaroslav@1646: static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) { jaroslav@1646: return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Makes a method handle which adapts a target method handle, jaroslav@1646: * by running it inside an exception handler. jaroslav@1646: * If the target returns normally, the adapter returns that value. jaroslav@1646: * If an exception matching the specified type is thrown, the fallback jaroslav@1646: * handle is called instead on the exception, plus the original arguments. jaroslav@1646: *

jaroslav@1646: * The target and handler must have the same corresponding jaroslav@1646: * argument and return types, except that handler may omit trailing arguments jaroslav@1646: * (similarly to the predicate in {@link #guardWithTest guardWithTest}). jaroslav@1646: * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. jaroslav@1646: *

Here is pseudocode for the resulting adapter: jaroslav@1646: *

{@code
jaroslav@1646:      * T target(A..., B...);
jaroslav@1646:      * T handler(ExType, A...);
jaroslav@1646:      * T adapter(A... a, B... b) {
jaroslav@1646:      *   try {
jaroslav@1646:      *     return target(a..., b...);
jaroslav@1646:      *   } catch (ExType ex) {
jaroslav@1646:      *     return handler(ex, a...);
jaroslav@1646:      *   }
jaroslav@1646:      * }
jaroslav@1646:      * }
jaroslav@1646: * Note that the saved arguments ({@code a...} in the pseudocode) cannot jaroslav@1646: * be modified by execution of the target, and so are passed unchanged jaroslav@1646: * from the caller to the handler, if the handler is invoked. jaroslav@1646: *

jaroslav@1646: * The target and handler must return the same type, even if the handler jaroslav@1646: * always throws. (This might happen, for instance, because the handler jaroslav@1646: * is simulating a {@code finally} clause). jaroslav@1646: * To create such a throwing handler, compose the handler creation logic jaroslav@1646: * with {@link #throwException throwException}, jaroslav@1646: * in order to create a method handle of the correct return type. jaroslav@1646: * @param target method handle to call jaroslav@1646: * @param exType the type of exception which the handler will catch jaroslav@1646: * @param handler method handle to call if a matching exception is thrown jaroslav@1646: * @return method handle which incorporates the specified try/catch logic jaroslav@1646: * @throws NullPointerException if any argument is null jaroslav@1646: * @throws IllegalArgumentException if {@code handler} does not accept jaroslav@1646: * the given exception type, or if the method handle types do jaroslav@1646: * not match in their return types and their jaroslav@1646: * corresponding parameters jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle catchException(MethodHandle target, jaroslav@1646: Class exType, jaroslav@1646: MethodHandle handler) { jaroslav@1646: MethodType ttype = target.type(); jaroslav@1646: MethodType htype = handler.type(); jaroslav@1646: if (htype.parameterCount() < 1 || jaroslav@1646: !htype.parameterType(0).isAssignableFrom(exType)) jaroslav@1646: throw newIllegalArgumentException("handler does not accept exception type "+exType); jaroslav@1646: if (htype.returnType() != ttype.returnType()) jaroslav@1646: throw misMatchedTypes("target and handler return types", ttype, htype); jaroslav@1646: List> targs = ttype.parameterList(); jaroslav@1646: List> hargs = htype.parameterList(); jaroslav@1646: hargs = hargs.subList(1, hargs.size()); // omit leading parameter from handler jaroslav@1646: if (!targs.equals(hargs)) { jaroslav@1646: int hpc = hargs.size(), tpc = targs.size(); jaroslav@1646: if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs)) jaroslav@1646: throw misMatchedTypes("target and handler types", ttype, htype); jaroslav@1646: handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc)); jaroslav@1646: htype = handler.type(); jaroslav@1646: } jaroslav@1646: return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); jaroslav@1646: } jaroslav@1646: jaroslav@1646: /** jaroslav@1646: * Produces a method handle which will throw exceptions of the given {@code exType}. jaroslav@1646: * The method handle will accept a single argument of {@code exType}, jaroslav@1646: * and immediately throw it as an exception. jaroslav@1646: * The method type will nominally specify a return of {@code returnType}. jaroslav@1646: * The return type may be anything convenient: It doesn't matter to the jaroslav@1646: * method handle's behavior, since it will never return normally. jaroslav@1646: * @param returnType the return type of the desired method handle jaroslav@1646: * @param exType the parameter type of the desired method handle jaroslav@1646: * @return method handle which can throw the given exceptions jaroslav@1646: * @throws NullPointerException if either argument is null jaroslav@1646: */ jaroslav@1646: public static jaroslav@1646: MethodHandle throwException(Class returnType, Class exType) { jaroslav@1646: if (!Throwable.class.isAssignableFrom(exType)) jaroslav@1646: throw new ClassCastException(exType.getName()); jaroslav@1646: return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType)); jaroslav@1646: } jaroslav@1646: }