jaroslav@67: /* jaroslav@67: * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved. jaroslav@67: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. jaroslav@67: * jaroslav@67: * This code is free software; you can redistribute it and/or modify it jaroslav@67: * under the terms of the GNU General Public License version 2 only, as jaroslav@67: * published by the Free Software Foundation. Oracle designates this jaroslav@67: * particular file as subject to the "Classpath" exception as provided jaroslav@67: * by Oracle in the LICENSE file that accompanied this code. jaroslav@67: * jaroslav@67: * This code is distributed in the hope that it will be useful, but WITHOUT jaroslav@67: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or jaroslav@67: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License jaroslav@67: * version 2 for more details (a copy is included in the LICENSE file that jaroslav@67: * accompanied this code). jaroslav@67: * jaroslav@67: * You should have received a copy of the GNU General Public License version jaroslav@67: * 2 along with this work; if not, write to the Free Software Foundation, jaroslav@67: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. jaroslav@67: * jaroslav@67: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA jaroslav@67: * or visit www.oracle.com if you need additional information or have any jaroslav@67: * questions. jaroslav@67: */ jaroslav@67: jaroslav@67: package java.lang; jaroslav@67: jaroslav@104: import org.apidesign.bck2brwsr.core.JavaScriptBody; jaroslav@104: jaroslav@67: jaroslav@67: /** jaroslav@67: * The class {@code Math} contains methods for performing basic jaroslav@67: * numeric operations such as the elementary exponential, logarithm, jaroslav@67: * square root, and trigonometric functions. jaroslav@67: * jaroslav@67: *

Unlike some of the numeric methods of class jaroslav@67: * {@code StrictMath}, all implementations of the equivalent jaroslav@67: * functions of class {@code Math} are not defined to return the jaroslav@67: * bit-for-bit same results. This relaxation permits jaroslav@67: * better-performing implementations where strict reproducibility is jaroslav@67: * not required. jaroslav@67: * jaroslav@67: *

By default many of the {@code Math} methods simply call jaroslav@67: * the equivalent method in {@code StrictMath} for their jaroslav@67: * implementation. Code generators are encouraged to use jaroslav@67: * platform-specific native libraries or microprocessor instructions, jaroslav@67: * where available, to provide higher-performance implementations of jaroslav@67: * {@code Math} methods. Such higher-performance jaroslav@67: * implementations still must conform to the specification for jaroslav@67: * {@code Math}. jaroslav@67: * jaroslav@67: *

The quality of implementation specifications concern two jaroslav@67: * properties, accuracy of the returned result and monotonicity of the jaroslav@67: * method. Accuracy of the floating-point {@code Math} methods jaroslav@67: * is measured in terms of ulps, units in the last place. For jaroslav@67: * a given floating-point format, an ulp of a specific real number jaroslav@67: * value is the distance between the two floating-point values jaroslav@67: * bracketing that numerical value. When discussing the accuracy of a jaroslav@67: * method as a whole rather than at a specific argument, the number of jaroslav@67: * ulps cited is for the worst-case error at any argument. If a jaroslav@67: * method always has an error less than 0.5 ulps, the method always jaroslav@67: * returns the floating-point number nearest the exact result; such a jaroslav@67: * method is correctly rounded. A correctly rounded method is jaroslav@67: * generally the best a floating-point approximation can be; however, jaroslav@67: * it is impractical for many floating-point methods to be correctly jaroslav@67: * rounded. Instead, for the {@code Math} class, a larger error jaroslav@67: * bound of 1 or 2 ulps is allowed for certain methods. Informally, jaroslav@67: * with a 1 ulp error bound, when the exact result is a representable jaroslav@67: * number, the exact result should be returned as the computed result; jaroslav@67: * otherwise, either of the two floating-point values which bracket jaroslav@67: * the exact result may be returned. For exact results large in jaroslav@67: * magnitude, one of the endpoints of the bracket may be infinite. jaroslav@67: * Besides accuracy at individual arguments, maintaining proper jaroslav@67: * relations between the method at different arguments is also jaroslav@67: * important. Therefore, most methods with more than 0.5 ulp errors jaroslav@67: * are required to be semi-monotonic: whenever the mathematical jaroslav@67: * function is non-decreasing, so is the floating-point approximation, jaroslav@67: * likewise, whenever the mathematical function is non-increasing, so jaroslav@67: * is the floating-point approximation. Not all approximations that jaroslav@67: * have 1 ulp accuracy will automatically meet the monotonicity jaroslav@67: * requirements. jaroslav@67: * jaroslav@67: * @author unascribed jaroslav@67: * @author Joseph D. Darcy jaroslav@67: * @since JDK1.0 jaroslav@67: */ jaroslav@67: jaroslav@67: public final class Math { jaroslav@67: jaroslav@67: /** jaroslav@67: * Don't let anyone instantiate this class. jaroslav@67: */ jaroslav@67: private Math() {} jaroslav@67: jaroslav@67: /** jaroslav@67: * The {@code double} value that is closer than any other to jaroslav@67: * e, the base of the natural logarithms. jaroslav@67: */ jaroslav@67: public static final double E = 2.7182818284590452354; jaroslav@67: jaroslav@67: /** jaroslav@67: * The {@code double} value that is closer than any other to jaroslav@67: * pi, the ratio of the circumference of a circle to its jaroslav@67: * diameter. jaroslav@67: */ jaroslav@67: public static final double PI = 3.14159265358979323846; jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the trigonometric sine of an angle. Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a an angle, in radians. jaroslav@67: * @return the sine of the argument. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.sin(a);") jaroslav@67: public static double sin(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the trigonometric cosine of an angle. Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a an angle, in radians. jaroslav@67: * @return the cosine of the argument. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.cos(a);") jaroslav@67: public static double cos(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the trigonometric tangent of an angle. Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a an angle, in radians. jaroslav@67: * @return the tangent of the argument. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.tan(a);") jaroslav@67: public static double tan(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the arc sine of a value; the returned angle is in the jaroslav@67: * range -pi/2 through pi/2. Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a the value whose arc sine is to be returned. jaroslav@67: * @return the arc sine of the argument. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.asin(a);") jaroslav@67: public static double asin(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the arc cosine of a value; the returned angle is in the jaroslav@67: * range 0.0 through pi. Special case: jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a the value whose arc cosine is to be returned. jaroslav@67: * @return the arc cosine of the argument. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.acos(a);") jaroslav@67: public static double acos(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the arc tangent of a value; the returned angle is in the jaroslav@67: * range -pi/2 through pi/2. Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a the value whose arc tangent is to be returned. jaroslav@67: * @return the arc tangent of the argument. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.atan(a);") jaroslav@67: public static double atan(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Converts an angle measured in degrees to an approximately jaroslav@67: * equivalent angle measured in radians. The conversion from jaroslav@67: * degrees to radians is generally inexact. jaroslav@67: * jaroslav@67: * @param angdeg an angle, in degrees jaroslav@67: * @return the measurement of the angle {@code angdeg} jaroslav@67: * in radians. jaroslav@67: * @since 1.2 jaroslav@67: */ jaroslav@67: public static double toRadians(double angdeg) { jaroslav@67: return angdeg / 180.0 * PI; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Converts an angle measured in radians to an approximately jaroslav@67: * equivalent angle measured in degrees. The conversion from jaroslav@67: * radians to degrees is generally inexact; users should jaroslav@67: * not expect {@code cos(toRadians(90.0))} to exactly jaroslav@67: * equal {@code 0.0}. jaroslav@67: * jaroslav@67: * @param angrad an angle, in radians jaroslav@67: * @return the measurement of the angle {@code angrad} jaroslav@67: * in degrees. jaroslav@67: * @since 1.2 jaroslav@67: */ jaroslav@67: public static double toDegrees(double angrad) { jaroslav@67: return angrad * 180.0 / PI; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns Euler's number e raised to the power of a jaroslav@67: * {@code double} value. Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a the exponent to raise e to. jaroslav@67: * @return the value e{@code a}, jaroslav@67: * where e is the base of the natural logarithms. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.exp(a);") jaroslav@67: public static double exp(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the natural logarithm (base e) of a {@code double} jaroslav@67: * value. Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a a value jaroslav@67: * @return the value ln {@code a}, the natural logarithm of jaroslav@67: * {@code a}. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.log(a);") jaroslav@67: public static double log(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the base 10 logarithm of a {@code double} value. jaroslav@67: * Special cases: jaroslav@67: * jaroslav@67: *

jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a a value jaroslav@67: * @return the base 10 logarithm of {@code a}. jaroslav@67: * @since 1.5 jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.log(a) / Math.LN10;") jaroslav@67: public static double log10(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the correctly rounded positive square root of a jaroslav@67: * {@code double} value. jaroslav@67: * Special cases: jaroslav@67: *

jaroslav@67: * Otherwise, the result is the {@code double} value closest to jaroslav@67: * the true mathematical square root of the argument value. jaroslav@67: * jaroslav@67: * @param a a value. jaroslav@67: * @return the positive square root of {@code a}. jaroslav@67: * If the argument is NaN or less than zero, the result is NaN. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.sqrt(a);") jaroslav@67: public static double sqrt(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the smallest (closest to negative infinity) jaroslav@67: * {@code double} value that is greater than or equal to the jaroslav@67: * argument and is equal to a mathematical integer. Special cases: jaroslav@67: * Note jaroslav@67: * that the value of {@code Math.ceil(x)} is exactly the jaroslav@67: * value of {@code -Math.floor(-x)}. jaroslav@67: * jaroslav@67: * jaroslav@67: * @param a a value. jaroslav@67: * @return the smallest (closest to negative infinity) jaroslav@67: * floating-point value that is greater than or equal to jaroslav@67: * the argument and is equal to a mathematical integer. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.ceil(a);") jaroslav@67: public static double ceil(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the largest (closest to positive infinity) jaroslav@67: * {@code double} value that is less than or equal to the jaroslav@67: * argument and is equal to a mathematical integer. Special cases: jaroslav@67: * jaroslav@67: * jaroslav@67: * @param a a value. jaroslav@67: * @return the largest (closest to positive infinity) jaroslav@67: * floating-point value that less than or equal to the argument jaroslav@67: * and is equal to a mathematical integer. jaroslav@67: */ jtulach@132: @JavaScriptBody(args="a", body="return Math.floor(a);") jaroslav@67: public static double floor(double a) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@600: /** jaroslav@600: * Computes the remainder operation on two arguments as prescribed jaroslav@600: * by the IEEE 754 standard. jaroslav@600: * The remainder value is mathematically equal to jaroslav@600: * f1 - f2 × n, jaroslav@600: * where n is the mathematical integer closest to the exact jaroslav@600: * mathematical value of the quotient {@code f1/f2}, and if two jaroslav@600: * mathematical integers are equally close to {@code f1/f2}, jaroslav@600: * then n is the integer that is even. If the remainder is jaroslav@600: * zero, its sign is the same as the sign of the first argument. jaroslav@600: * Special cases: jaroslav@600: * jaroslav@600: * jaroslav@600: * @param f1 the dividend. jaroslav@600: * @param f2 the divisor. jaroslav@600: * @return the remainder when {@code f1} is divided by jaroslav@600: * {@code f2}. jaroslav@600: */ jaroslav@605: public static double IEEEremainder(double f1, double f2) { jaroslav@605: return f1 - (f2 * Math.round(f1 / f2)); jaroslav@605: } jaroslav@600: jaroslav@600: /** jaroslav@600: * Returns the {@code double} value that is closest in value jaroslav@600: * to the argument and is equal to a mathematical integer. If two jaroslav@600: * {@code double} values that are mathematical integers are jaroslav@600: * equally close, the result is the integer value that is jaroslav@600: * even. Special cases: jaroslav@600: * jaroslav@600: * jaroslav@600: * @param a a {@code double} value. jaroslav@600: * @return the closest floating-point value to {@code a} that is jaroslav@600: * equal to a mathematical integer. jaroslav@600: */ jaroslav@600: public static double rint(double a) { jaroslav@600: double ceil = ceil(a); jaroslav@600: double floor = floor(a); jaroslav@600: jaroslav@600: double dc = ceil - a; jaroslav@600: double df = a - floor; jaroslav@600: jaroslav@600: if (dc < df) { jaroslav@600: return ceil; jaroslav@600: } else if (dc > df) { jaroslav@600: return floor; jaroslav@600: } jaroslav@600: jaroslav@600: int tenC = (int) (ceil % 10.0); jaroslav@600: jaroslav@600: if (tenC % 2 == 0) { jaroslav@600: return ceil; jaroslav@600: } else { jaroslav@600: return floor; jaroslav@600: } jaroslav@600: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the angle theta from the conversion of rectangular jaroslav@67: * coordinates ({@code x}, {@code y}) to polar jaroslav@67: * coordinates (r, theta). jaroslav@67: * This method computes the phase theta by computing an arc tangent jaroslav@67: * of {@code y/x} in the range of -pi to pi. Special jaroslav@67: * cases: jaroslav@67: * jaroslav@67: * jaroslav@67: *

The computed result must be within 2 ulps of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param y the ordinate coordinate jaroslav@67: * @param x the abscissa coordinate jaroslav@67: * @return the theta component of the point jaroslav@67: * (rtheta) jaroslav@67: * in polar coordinates that corresponds to the point jaroslav@67: * (xy) in Cartesian coordinates. jaroslav@67: */ jtulach@132: @JavaScriptBody(args={"y", "x"}, body="return Math.atan2(y, x);") jaroslav@67: public static double atan2(double y, double x) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the value of the first argument raised to the power of the jaroslav@67: * second argument. Special cases: jaroslav@67: * jaroslav@67: *

jaroslav@67: * jaroslav@67: *

(In the foregoing descriptions, a floating-point value is jaroslav@67: * considered to be an integer if and only if it is finite and a jaroslav@67: * fixed point of the method {@link #ceil ceil} or, jaroslav@67: * equivalently, a fixed point of the method {@link #floor jaroslav@67: * floor}. A value is a fixed point of a one-argument jaroslav@67: * method if and only if the result of applying the method to the jaroslav@67: * value is equal to the value.) jaroslav@67: * jaroslav@67: *

The computed result must be within 1 ulp of the exact result. jaroslav@67: * Results must be semi-monotonic. jaroslav@67: * jaroslav@67: * @param a the base. jaroslav@67: * @param b the exponent. jaroslav@67: * @return the value {@code a}{@code b}. jaroslav@67: */ jtulach@132: @JavaScriptBody(args={"a", "b"}, body="return Math.pow(a, b);") jaroslav@67: public static double pow(double a, double b) { jtulach@132: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the closest {@code int} to the argument, with ties jaroslav@67: * rounding up. jaroslav@67: * jaroslav@67: *

jaroslav@67: * Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param a a floating-point value to be rounded to an integer. jaroslav@67: * @return the value of the argument rounded to the nearest jaroslav@67: * {@code int} value. jaroslav@67: * @see java.lang.Integer#MAX_VALUE jaroslav@67: * @see java.lang.Integer#MIN_VALUE jaroslav@67: */ jaroslav@67: public static int round(float a) { jaroslav@771: return (int)roundDbl(a); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the closest {@code long} to the argument, with ties jaroslav@67: * rounding up. jaroslav@67: * jaroslav@67: *

Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param a a floating-point value to be rounded to a jaroslav@67: * {@code long}. jaroslav@67: * @return the value of the argument rounded to the nearest jaroslav@67: * {@code long} value. jaroslav@67: * @see java.lang.Long#MAX_VALUE jaroslav@67: * @see java.lang.Long#MIN_VALUE jaroslav@67: */ jaroslav@771: public static long round(double a) { jaroslav@771: return (long)roundDbl(a); jaroslav@771: } jaroslav@771: jtulach@132: @JavaScriptBody(args="a", body="return Math.round(a);") jaroslav@771: private static native double roundDbl(double d); jaroslav@67: jaroslav@84: // private static Random randomNumberGenerator; jaroslav@84: // jaroslav@84: // private static synchronized Random initRNG() { jaroslav@84: // Random rnd = randomNumberGenerator; jaroslav@84: // return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns a {@code double} value with a positive sign, greater jaroslav@67: * than or equal to {@code 0.0} and less than {@code 1.0}. jaroslav@67: * Returned values are chosen pseudorandomly with (approximately) jaroslav@67: * uniform distribution from that range. jaroslav@67: * jaroslav@67: *

When this method is first called, it creates a single new jaroslav@67: * pseudorandom-number generator, exactly as if by the expression jaroslav@67: * jaroslav@67: *

{@code new java.util.Random()}
jaroslav@67: * jaroslav@67: * This new pseudorandom-number generator is used thereafter for jaroslav@67: * all calls to this method and is used nowhere else. jaroslav@67: * jaroslav@67: *

This method is properly synchronized to allow correct use by jaroslav@67: * more than one thread. However, if many threads need to generate jaroslav@67: * pseudorandom numbers at a great rate, it may reduce contention jaroslav@67: * for each thread to have its own pseudorandom-number generator. jaroslav@67: * jaroslav@67: * @return a pseudorandom {@code double} greater than or equal jaroslav@67: * to {@code 0.0} and less than {@code 1.0}. jaroslav@67: * @see Random#nextDouble() jaroslav@67: */ toni@551: @JavaScriptBody(args={}, body="return Math.random();") jaroslav@67: public static double random() { jaroslav@84: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the absolute value of an {@code int} value. jaroslav@67: * If the argument is not negative, the argument is returned. jaroslav@67: * If the argument is negative, the negation of the argument is returned. jaroslav@67: * jaroslav@67: *

Note that if the argument is equal to the value of jaroslav@67: * {@link Integer#MIN_VALUE}, the most negative representable jaroslav@67: * {@code int} value, the result is that same value, which is jaroslav@67: * negative. jaroslav@67: * jaroslav@67: * @param a the argument whose absolute value is to be determined jaroslav@67: * @return the absolute value of the argument. jaroslav@67: */ jaroslav@67: public static int abs(int a) { jaroslav@67: return (a < 0) ? -a : a; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the absolute value of a {@code long} value. jaroslav@67: * If the argument is not negative, the argument is returned. jaroslav@67: * If the argument is negative, the negation of the argument is returned. jaroslav@67: * jaroslav@67: *

Note that if the argument is equal to the value of jaroslav@67: * {@link Long#MIN_VALUE}, the most negative representable jaroslav@67: * {@code long} value, the result is that same value, which jaroslav@67: * is negative. jaroslav@67: * jaroslav@67: * @param a the argument whose absolute value is to be determined jaroslav@67: * @return the absolute value of the argument. jaroslav@67: */ jaroslav@67: public static long abs(long a) { jaroslav@67: return (a < 0) ? -a : a; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the absolute value of a {@code float} value. jaroslav@67: * If the argument is not negative, the argument is returned. jaroslav@67: * If the argument is negative, the negation of the argument is returned. jaroslav@67: * Special cases: jaroslav@67: *

jaroslav@67: * In other words, the result is the same as the value of the expression: jaroslav@67: *

{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} jaroslav@67: * jaroslav@67: * @param a the argument whose absolute value is to be determined jaroslav@67: * @return the absolute value of the argument. jaroslav@67: */ jaroslav@67: public static float abs(float a) { jaroslav@67: return (a <= 0.0F) ? 0.0F - a : a; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the absolute value of a {@code double} value. jaroslav@67: * If the argument is not negative, the argument is returned. jaroslav@67: * If the argument is negative, the negation of the argument is returned. jaroslav@67: * Special cases: jaroslav@67: *

jaroslav@67: * In other words, the result is the same as the value of the expression: jaroslav@67: *

{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} jaroslav@67: * jaroslav@67: * @param a the argument whose absolute value is to be determined jaroslav@67: * @return the absolute value of the argument. jaroslav@67: */ jaroslav@67: public static double abs(double a) { jaroslav@67: return (a <= 0.0D) ? 0.0D - a : a; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the greater of two {@code int} values. That is, the jaroslav@67: * result is the argument closer to the value of jaroslav@67: * {@link Integer#MAX_VALUE}. If the arguments have the same value, jaroslav@67: * the result is that same value. jaroslav@67: * jaroslav@67: * @param a an argument. jaroslav@67: * @param b another argument. jaroslav@67: * @return the larger of {@code a} and {@code b}. jaroslav@67: */ jaroslav@67: public static int max(int a, int b) { jaroslav@67: return (a >= b) ? a : b; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the greater of two {@code long} values. That is, the jaroslav@67: * result is the argument closer to the value of jaroslav@67: * {@link Long#MAX_VALUE}. If the arguments have the same value, jaroslav@67: * the result is that same value. jaroslav@67: * jaroslav@67: * @param a an argument. jaroslav@67: * @param b another argument. jaroslav@67: * @return the larger of {@code a} and {@code b}. jaroslav@67: */ jaroslav@67: public static long max(long a, long b) { jaroslav@67: return (a >= b) ? a : b; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the greater of two {@code float} values. That is, jaroslav@67: * the result is the argument closer to positive infinity. If the jaroslav@67: * arguments have the same value, the result is that same jaroslav@67: * value. If either value is NaN, then the result is NaN. Unlike jaroslav@67: * the numerical comparison operators, this method considers jaroslav@67: * negative zero to be strictly smaller than positive zero. If one jaroslav@67: * argument is positive zero and the other negative zero, the jaroslav@67: * result is positive zero. jaroslav@67: * jaroslav@67: * @param a an argument. jaroslav@67: * @param b another argument. jaroslav@67: * @return the larger of {@code a} and {@code b}. jaroslav@67: */ jaroslav@104: @JavaScriptBody(args={"a", "b"}, jaroslav@104: body="return Math.max(a,b);" jaroslav@104: ) jaroslav@67: public static float max(float a, float b) { jaroslav@104: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the greater of two {@code double} values. That jaroslav@67: * is, the result is the argument closer to positive infinity. If jaroslav@67: * the arguments have the same value, the result is that same jaroslav@67: * value. If either value is NaN, then the result is NaN. Unlike jaroslav@67: * the numerical comparison operators, this method considers jaroslav@67: * negative zero to be strictly smaller than positive zero. If one jaroslav@67: * argument is positive zero and the other negative zero, the jaroslav@67: * result is positive zero. jaroslav@67: * jaroslav@67: * @param a an argument. jaroslav@67: * @param b another argument. jaroslav@67: * @return the larger of {@code a} and {@code b}. jaroslav@67: */ jaroslav@104: @JavaScriptBody(args={"a", "b"}, jaroslav@104: body="return Math.max(a,b);" jaroslav@104: ) jaroslav@67: public static double max(double a, double b) { jaroslav@104: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the smaller of two {@code int} values. That is, jaroslav@67: * the result the argument closer to the value of jaroslav@67: * {@link Integer#MIN_VALUE}. If the arguments have the same jaroslav@67: * value, the result is that same value. jaroslav@67: * jaroslav@67: * @param a an argument. jaroslav@67: * @param b another argument. jaroslav@67: * @return the smaller of {@code a} and {@code b}. jaroslav@67: */ jaroslav@67: public static int min(int a, int b) { jaroslav@67: return (a <= b) ? a : b; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the smaller of two {@code long} values. That is, jaroslav@67: * the result is the argument closer to the value of jaroslav@67: * {@link Long#MIN_VALUE}. If the arguments have the same jaroslav@67: * value, the result is that same value. jaroslav@67: * jaroslav@67: * @param a an argument. jaroslav@67: * @param b another argument. jaroslav@67: * @return the smaller of {@code a} and {@code b}. jaroslav@67: */ jaroslav@67: public static long min(long a, long b) { jaroslav@67: return (a <= b) ? a : b; jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the smaller of two {@code float} values. That is, jaroslav@67: * the result is the value closer to negative infinity. If the jaroslav@67: * arguments have the same value, the result is that same jaroslav@67: * value. If either value is NaN, then the result is NaN. Unlike jaroslav@67: * the numerical comparison operators, this method considers jaroslav@67: * negative zero to be strictly smaller than positive zero. If jaroslav@67: * one argument is positive zero and the other is negative zero, jaroslav@67: * the result is negative zero. jaroslav@67: * jaroslav@67: * @param a an argument. jaroslav@67: * @param b another argument. jaroslav@67: * @return the smaller of {@code a} and {@code b}. jaroslav@67: */ jaroslav@104: @JavaScriptBody(args={"a", "b"}, jaroslav@104: body="return Math.min(a,b);" jaroslav@104: ) jaroslav@67: public static float min(float a, float b) { jaroslav@104: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the smaller of two {@code double} values. That jaroslav@67: * is, the result is the value closer to negative infinity. If the jaroslav@67: * arguments have the same value, the result is that same jaroslav@67: * value. If either value is NaN, then the result is NaN. Unlike jaroslav@67: * the numerical comparison operators, this method considers jaroslav@67: * negative zero to be strictly smaller than positive zero. If one jaroslav@67: * argument is positive zero and the other is negative zero, the jaroslav@67: * result is negative zero. jaroslav@67: * jaroslav@67: * @param a an argument. jaroslav@67: * @param b another argument. jaroslav@67: * @return the smaller of {@code a} and {@code b}. jaroslav@67: */ jaroslav@104: @JavaScriptBody(args={"a", "b"}, jaroslav@104: body="return Math.min(a,b);" jaroslav@104: ) jaroslav@67: public static double min(double a, double b) { jaroslav@104: throw new UnsupportedOperationException(); jaroslav@67: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the size of an ulp of the argument. An ulp of a jaroslav@67: * {@code double} value is the positive distance between this jaroslav@67: * floating-point value and the {@code double} value next jaroslav@67: * larger in magnitude. Note that for non-NaN x, jaroslav@67: * ulp(-x) == ulp(x). jaroslav@67: * jaroslav@67: *

Special Cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param d the floating-point value whose ulp is to be returned jaroslav@67: * @return the size of an ulp of the argument jaroslav@67: * @author Joseph D. Darcy jaroslav@67: * @since 1.5 jaroslav@67: */ jaroslav@84: // public static double ulp(double d) { jaroslav@84: // return sun.misc.FpUtils.ulp(d); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the size of an ulp of the argument. An ulp of a jaroslav@67: * {@code float} value is the positive distance between this jaroslav@67: * floating-point value and the {@code float} value next jaroslav@67: * larger in magnitude. Note that for non-NaN x, jaroslav@67: * ulp(-x) == ulp(x). jaroslav@67: * jaroslav@67: *

Special Cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param f the floating-point value whose ulp is to be returned jaroslav@67: * @return the size of an ulp of the argument jaroslav@67: * @author Joseph D. Darcy jaroslav@67: * @since 1.5 jaroslav@67: */ jaroslav@84: // public static float ulp(float f) { jaroslav@84: // return sun.misc.FpUtils.ulp(f); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the signum function of the argument; zero if the argument jaroslav@67: * is zero, 1.0 if the argument is greater than zero, -1.0 if the jaroslav@67: * argument is less than zero. jaroslav@67: * jaroslav@67: *

Special Cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param d the floating-point value whose signum is to be returned jaroslav@67: * @return the signum function of the argument jaroslav@67: * @author Joseph D. Darcy jaroslav@67: * @since 1.5 jaroslav@67: */ jaroslav@632: public static double signum(double d) { jaroslav@632: if (d < 0.0) { return -1.0; } jaroslav@632: if (d > 0.0) { return 1.0; } jaroslav@632: return d; jaroslav@632: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the signum function of the argument; zero if the argument jaroslav@67: * is zero, 1.0f if the argument is greater than zero, -1.0f if the jaroslav@67: * argument is less than zero. jaroslav@67: * jaroslav@67: *

Special Cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param f the floating-point value whose signum is to be returned jaroslav@67: * @return the signum function of the argument jaroslav@67: * @author Joseph D. Darcy jaroslav@67: * @since 1.5 jaroslav@67: */ jaroslav@632: public static float signum(float f) { jaroslav@632: if (f < 0.0f) { return -1.0f; } jaroslav@632: if (f > 0.0f) { return 1.0f; } jaroslav@632: return f; jaroslav@632: } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the first floating-point argument with the sign of the jaroslav@67: * second floating-point argument. Note that unlike the {@link jaroslav@67: * StrictMath#copySign(double, double) StrictMath.copySign} jaroslav@67: * method, this method does not require NaN {@code sign} jaroslav@67: * arguments to be treated as positive values; implementations are jaroslav@67: * permitted to treat some NaN arguments as positive and other NaN jaroslav@67: * arguments as negative to allow greater performance. jaroslav@67: * jaroslav@67: * @param magnitude the parameter providing the magnitude of the result jaroslav@67: * @param sign the parameter providing the sign of the result jaroslav@67: * @return a value with the magnitude of {@code magnitude} jaroslav@67: * and the sign of {@code sign}. jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static double copySign(double magnitude, double sign) { jaroslav@84: // return sun.misc.FpUtils.rawCopySign(magnitude, sign); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the first floating-point argument with the sign of the jaroslav@67: * second floating-point argument. Note that unlike the {@link jaroslav@67: * StrictMath#copySign(float, float) StrictMath.copySign} jaroslav@67: * method, this method does not require NaN {@code sign} jaroslav@67: * arguments to be treated as positive values; implementations are jaroslav@67: * permitted to treat some NaN arguments as positive and other NaN jaroslav@67: * arguments as negative to allow greater performance. jaroslav@67: * jaroslav@67: * @param magnitude the parameter providing the magnitude of the result jaroslav@67: * @param sign the parameter providing the sign of the result jaroslav@67: * @return a value with the magnitude of {@code magnitude} jaroslav@67: * and the sign of {@code sign}. jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static float copySign(float magnitude, float sign) { jaroslav@84: // return sun.misc.FpUtils.rawCopySign(magnitude, sign); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the unbiased exponent used in the representation of a jaroslav@67: * {@code float}. Special cases: jaroslav@67: * jaroslav@67: * jaroslav@67: * @param f a {@code float} value jaroslav@67: * @return the unbiased exponent of the argument jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static int getExponent(float f) { jaroslav@84: // return sun.misc.FpUtils.getExponent(f); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the unbiased exponent used in the representation of a jaroslav@67: * {@code double}. Special cases: jaroslav@67: * jaroslav@67: * jaroslav@67: * @param d a {@code double} value jaroslav@67: * @return the unbiased exponent of the argument jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static int getExponent(double d) { jaroslav@84: // return sun.misc.FpUtils.getExponent(d); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the floating-point number adjacent to the first jaroslav@67: * argument in the direction of the second argument. If both jaroslav@67: * arguments compare as equal the second argument is returned. jaroslav@67: * jaroslav@67: *

jaroslav@67: * Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param start starting floating-point value jaroslav@67: * @param direction value indicating which of jaroslav@67: * {@code start}'s neighbors or {@code start} should jaroslav@67: * be returned jaroslav@67: * @return The floating-point number adjacent to {@code start} in the jaroslav@67: * direction of {@code direction}. jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static double nextAfter(double start, double direction) { jaroslav@84: // return sun.misc.FpUtils.nextAfter(start, direction); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the floating-point number adjacent to the first jaroslav@67: * argument in the direction of the second argument. If both jaroslav@67: * arguments compare as equal a value equivalent to the second argument jaroslav@67: * is returned. jaroslav@67: * jaroslav@67: *

jaroslav@67: * Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param start starting floating-point value jaroslav@67: * @param direction value indicating which of jaroslav@67: * {@code start}'s neighbors or {@code start} should jaroslav@67: * be returned jaroslav@67: * @return The floating-point number adjacent to {@code start} in the jaroslav@67: * direction of {@code direction}. jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static float nextAfter(float start, double direction) { jaroslav@84: // return sun.misc.FpUtils.nextAfter(start, direction); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the floating-point value adjacent to {@code d} in jaroslav@67: * the direction of positive infinity. This method is jaroslav@67: * semantically equivalent to {@code nextAfter(d, jaroslav@67: * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} jaroslav@67: * implementation may run faster than its equivalent jaroslav@67: * {@code nextAfter} call. jaroslav@67: * jaroslav@67: *

Special Cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param d starting floating-point value jaroslav@67: * @return The adjacent floating-point value closer to positive jaroslav@67: * infinity. jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static double nextUp(double d) { jaroslav@84: // return sun.misc.FpUtils.nextUp(d); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Returns the floating-point value adjacent to {@code f} in jaroslav@67: * the direction of positive infinity. This method is jaroslav@67: * semantically equivalent to {@code nextAfter(f, jaroslav@67: * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} jaroslav@67: * implementation may run faster than its equivalent jaroslav@67: * {@code nextAfter} call. jaroslav@67: * jaroslav@67: *

Special Cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param f starting floating-point value jaroslav@67: * @return The adjacent floating-point value closer to positive jaroslav@67: * infinity. jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static float nextUp(float f) { jaroslav@84: // return sun.misc.FpUtils.nextUp(f); jaroslav@84: // } jaroslav@67: jaroslav@67: jaroslav@67: /** jaroslav@67: * Return {@code d} × jaroslav@67: * 2{@code scaleFactor} rounded as if performed jaroslav@67: * by a single correctly rounded floating-point multiply to a jaroslav@67: * member of the double value set. See the Java jaroslav@67: * Language Specification for a discussion of floating-point jaroslav@67: * value sets. If the exponent of the result is between {@link jaroslav@67: * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the jaroslav@67: * answer is calculated exactly. If the exponent of the result jaroslav@67: * would be larger than {@code Double.MAX_EXPONENT}, an jaroslav@67: * infinity is returned. Note that if the result is subnormal, jaroslav@67: * precision may be lost; that is, when {@code scalb(x, n)} jaroslav@67: * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal jaroslav@67: * x. When the result is non-NaN, the result has the same jaroslav@67: * sign as {@code d}. jaroslav@67: * jaroslav@67: *

Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param d number to be scaled by a power of two. jaroslav@67: * @param scaleFactor power of 2 used to scale {@code d} jaroslav@67: * @return {@code d} × 2{@code scaleFactor} jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static double scalb(double d, int scaleFactor) { jaroslav@84: // return sun.misc.FpUtils.scalb(d, scaleFactor); jaroslav@84: // } jaroslav@67: jaroslav@67: /** jaroslav@67: * Return {@code f} × jaroslav@67: * 2{@code scaleFactor} rounded as if performed jaroslav@67: * by a single correctly rounded floating-point multiply to a jaroslav@67: * member of the float value set. See the Java jaroslav@67: * Language Specification for a discussion of floating-point jaroslav@67: * value sets. If the exponent of the result is between {@link jaroslav@67: * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the jaroslav@67: * answer is calculated exactly. If the exponent of the result jaroslav@67: * would be larger than {@code Float.MAX_EXPONENT}, an jaroslav@67: * infinity is returned. Note that if the result is subnormal, jaroslav@67: * precision may be lost; that is, when {@code scalb(x, n)} jaroslav@67: * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal jaroslav@67: * x. When the result is non-NaN, the result has the same jaroslav@67: * sign as {@code f}. jaroslav@67: * jaroslav@67: *

Special cases: jaroslav@67: *

jaroslav@67: * jaroslav@67: * @param f number to be scaled by a power of two. jaroslav@67: * @param scaleFactor power of 2 used to scale {@code f} jaroslav@67: * @return {@code f} × 2{@code scaleFactor} jaroslav@67: * @since 1.6 jaroslav@67: */ jaroslav@84: // public static float scalb(float f, int scaleFactor) { jaroslav@84: // return sun.misc.FpUtils.scalb(f, scaleFactor); jaroslav@84: // } jaroslav@67: }