diff -r 391a5d25c0e1 -r 05224402145d emul/mini/src/main/java/java/lang/Float.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/mini/src/main/java/java/lang/Float.java Wed Jan 23 20:39:23 2013 +0100 @@ -0,0 +1,905 @@ +/* + * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; + +import org.apidesign.bck2brwsr.core.JavaScriptBody; + +/** + * The {@code Float} class wraps a value of primitive type + * {@code float} in an object. An object of type + * {@code Float} contains a single field whose type is + * {@code float}. + * + *

In addition, this class provides several methods for converting a + * {@code float} to a {@code String} and a + * {@code String} to a {@code float}, as well as other + * constants and methods useful when dealing with a + * {@code float}. + * + * @author Lee Boynton + * @author Arthur van Hoff + * @author Joseph D. Darcy + * @since JDK1.0 + */ +public final class Float extends Number implements Comparable { + /** + * A constant holding the positive infinity of type + * {@code float}. It is equal to the value returned by + * {@code Float.intBitsToFloat(0x7f800000)}. + */ + public static final float POSITIVE_INFINITY = 1.0f / 0.0f; + + /** + * A constant holding the negative infinity of type + * {@code float}. It is equal to the value returned by + * {@code Float.intBitsToFloat(0xff800000)}. + */ + public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; + + /** + * A constant holding a Not-a-Number (NaN) value of type + * {@code float}. It is equivalent to the value returned by + * {@code Float.intBitsToFloat(0x7fc00000)}. + */ + public static final float NaN = 0.0f / 0.0f; + + /** + * A constant holding the largest positive finite value of type + * {@code float}, (2-2-23)·2127. + * It is equal to the hexadecimal floating-point literal + * {@code 0x1.fffffeP+127f} and also equal to + * {@code Float.intBitsToFloat(0x7f7fffff)}. + */ + public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f + + /** + * A constant holding the smallest positive normal value of type + * {@code float}, 2-126. It is equal to the + * hexadecimal floating-point literal {@code 0x1.0p-126f} and also + * equal to {@code Float.intBitsToFloat(0x00800000)}. + * + * @since 1.6 + */ + public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f + + /** + * A constant holding the smallest positive nonzero value of type + * {@code float}, 2-149. It is equal to the + * hexadecimal floating-point literal {@code 0x0.000002P-126f} + * and also equal to {@code Float.intBitsToFloat(0x1)}. + */ + public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f + + /** + * Maximum exponent a finite {@code float} variable may have. It + * is equal to the value returned by {@code + * Math.getExponent(Float.MAX_VALUE)}. + * + * @since 1.6 + */ + public static final int MAX_EXPONENT = 127; + + /** + * Minimum exponent a normalized {@code float} variable may have. + * It is equal to the value returned by {@code + * Math.getExponent(Float.MIN_NORMAL)}. + * + * @since 1.6 + */ + public static final int MIN_EXPONENT = -126; + + /** + * The number of bits used to represent a {@code float} value. + * + * @since 1.5 + */ + public static final int SIZE = 32; + + /** + * The {@code Class} instance representing the primitive type + * {@code float}. + * + * @since JDK1.1 + */ + public static final Class TYPE = Class.getPrimitiveClass("float"); + + /** + * Returns a string representation of the {@code float} + * argument. All characters mentioned below are ASCII characters. + *

+ * How many digits must be printed for the fractional part of + * m or a? There must be at least one digit + * to represent the fractional part, and beyond that as many, but + * only as many, more digits as are needed to uniquely distinguish + * the argument value from adjacent values of type + * {@code float}. That is, suppose that x is the + * exact mathematical value represented by the decimal + * representation produced by this method for a finite nonzero + * argument f. Then f must be the {@code float} + * value nearest to x; or, if two {@code float} values are + * equally close to x, then f must be one of + * them and the least significant bit of the significand of + * f must be {@code 0}. + * + *

To create localized string representations of a floating-point + * value, use subclasses of {@link java.text.NumberFormat}. + * + * @param f the float to be converted. + * @return a string representation of the argument. + */ + public static String toString(float f) { + return Double.toString(f); + } + + /** + * Returns a hexadecimal string representation of the + * {@code float} argument. All characters mentioned below are + * ASCII characters. + * + *

+ * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + *

Examples

Floating-point ValueHexadecimal String
{@code 1.0} {@code 0x1.0p0}
{@code -1.0} {@code -0x1.0p0}
{@code 2.0} {@code 0x1.0p1}
{@code 3.0} {@code 0x1.8p1}
{@code 0.5} {@code 0x1.0p-1}
{@code 0.25} {@code 0x1.0p-2}
{@code Float.MAX_VALUE}{@code 0x1.fffffep127}
{@code Minimum Normal Value}{@code 0x1.0p-126}
{@code Maximum Subnormal Value}{@code 0x0.fffffep-126}
{@code Float.MIN_VALUE}{@code 0x0.000002p-126}
+ * @param f the {@code float} to be converted. + * @return a hex string representation of the argument. + * @since 1.5 + * @author Joseph D. Darcy + */ + public static String toHexString(float f) { + throw new UnsupportedOperationException(); +// if (Math.abs(f) < FloatConsts.MIN_NORMAL +// && f != 0.0f ) {// float subnormal +// // Adjust exponent to create subnormal double, then +// // replace subnormal double exponent with subnormal float +// // exponent +// String s = Double.toHexString(FpUtils.scalb((double)f, +// /* -1022+126 */ +// DoubleConsts.MIN_EXPONENT- +// FloatConsts.MIN_EXPONENT)); +// return s.replaceFirst("p-1022$", "p-126"); +// } +// else // double string will be the same as float string +// return Double.toHexString(f); + } + + /** + * Returns a {@code Float} object holding the + * {@code float} value represented by the argument string + * {@code s}. + * + *

If {@code s} is {@code null}, then a + * {@code NullPointerException} is thrown. + * + *

Leading and trailing whitespace characters in {@code s} + * are ignored. Whitespace is removed as if by the {@link + * String#trim} method; that is, both ASCII space and control + * characters are removed. The rest of {@code s} should + * constitute a FloatValue as described by the lexical + * syntax rules: + * + *

+ *
+ *
FloatValue: + *
Signopt {@code NaN} + *
Signopt {@code Infinity} + *
Signopt FloatingPointLiteral + *
Signopt HexFloatingPointLiteral + *
SignedInteger + *
+ * + *

+ * + *

+ *
HexFloatingPointLiteral: + *
HexSignificand BinaryExponent FloatTypeSuffixopt + *
+ * + *

+ * + *

+ *
HexSignificand: + *
HexNumeral + *
HexNumeral {@code .} + *
{@code 0x} HexDigitsopt + * {@code .} HexDigits + *
{@code 0X} HexDigitsopt + * {@code .} HexDigits + *
+ * + *

+ * + *

+ *
BinaryExponent: + *
BinaryExponentIndicator SignedInteger + *
+ * + *

+ * + *

+ *
BinaryExponentIndicator: + *
{@code p} + *
{@code P} + *
+ * + *
+ * + * where Sign, FloatingPointLiteral, + * HexNumeral, HexDigits, SignedInteger and + * FloatTypeSuffix are as defined in the lexical structure + * sections of + * The Java™ Language Specification, + * except that underscores are not accepted between digits. + * If {@code s} does not have the form of + * a FloatValue, then a {@code NumberFormatException} + * is thrown. Otherwise, {@code s} is regarded as + * representing an exact decimal value in the usual + * "computerized scientific notation" or as an exact + * hexadecimal value; this exact numerical value is then + * conceptually converted to an "infinitely precise" + * binary value that is then rounded to type {@code float} + * by the usual round-to-nearest rule of IEEE 754 floating-point + * arithmetic, which includes preserving the sign of a zero + * value. + * + * Note that the round-to-nearest rule also implies overflow and + * underflow behaviour; if the exact value of {@code s} is large + * enough in magnitude (greater than or equal to ({@link + * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2), + * rounding to {@code float} will result in an infinity and if the + * exact value of {@code s} is small enough in magnitude (less + * than or equal to {@link #MIN_VALUE}/2), rounding to float will + * result in a zero. + * + * Finally, after rounding a {@code Float} object representing + * this {@code float} value is returned. + * + *

To interpret localized string representations of a + * floating-point value, use subclasses of {@link + * java.text.NumberFormat}. + * + *

Note that trailing format specifiers, specifiers that + * determine the type of a floating-point literal + * ({@code 1.0f} is a {@code float} value; + * {@code 1.0d} is a {@code double} value), do + * not influence the results of this method. In other + * words, the numerical value of the input string is converted + * directly to the target floating-point type. In general, the + * two-step sequence of conversions, string to {@code double} + * followed by {@code double} to {@code float}, is + * not equivalent to converting a string directly to + * {@code float}. For example, if first converted to an + * intermediate {@code double} and then to + * {@code float}, the string
+ * {@code "1.00000017881393421514957253748434595763683319091796875001d"}
+ * results in the {@code float} value + * {@code 1.0000002f}; if the string is converted directly to + * {@code float}, 1.0000001f results. + * + *

To avoid calling this method on an invalid string and having + * a {@code NumberFormatException} be thrown, the documentation + * for {@link Double#valueOf Double.valueOf} lists a regular + * expression which can be used to screen the input. + * + * @param s the string to be parsed. + * @return a {@code Float} object holding the value + * represented by the {@code String} argument. + * @throws NumberFormatException if the string does not contain a + * parsable number. + */ + public static Float valueOf(String s) throws NumberFormatException { + throw new UnsupportedOperationException(); +// return new Float(FloatingDecimal.readJavaFormatString(s).floatValue()); + } + + /** + * Returns a {@code Float} instance representing the specified + * {@code float} value. + * If a new {@code Float} instance is not required, this method + * should generally be used in preference to the constructor + * {@link #Float(float)}, as this method is likely to yield + * significantly better space and time performance by caching + * frequently requested values. + * + * @param f a float value. + * @return a {@code Float} instance representing {@code f}. + * @since 1.5 + */ + public static Float valueOf(float f) { + return new Float(f); + } + + /** + * Returns a new {@code float} initialized to the value + * represented by the specified {@code String}, as performed + * by the {@code valueOf} method of class {@code Float}. + * + * @param s the string to be parsed. + * @return the {@code float} value represented by the string + * argument. + * @throws NullPointerException if the string is null + * @throws NumberFormatException if the string does not contain a + * parsable {@code float}. + * @see java.lang.Float#valueOf(String) + * @since 1.2 + */ + public static float parseFloat(String s) throws NumberFormatException { + throw new UnsupportedOperationException(); +// return FloatingDecimal.readJavaFormatString(s).floatValue(); + } + + /** + * Returns {@code true} if the specified number is a + * Not-a-Number (NaN) value, {@code false} otherwise. + * + * @param v the value to be tested. + * @return {@code true} if the argument is NaN; + * {@code false} otherwise. + */ + static public boolean isNaN(float v) { + return (v != v); + } + + /** + * Returns {@code true} if the specified number is infinitely + * large in magnitude, {@code false} otherwise. + * + * @param v the value to be tested. + * @return {@code true} if the argument is positive infinity or + * negative infinity; {@code false} otherwise. + */ + static public boolean isInfinite(float v) { + return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY); + } + + /** + * The value of the Float. + * + * @serial + */ + private final float value; + + /** + * Constructs a newly allocated {@code Float} object that + * represents the primitive {@code float} argument. + * + * @param value the value to be represented by the {@code Float}. + */ + public Float(float value) { + this.value = value; + } + + /** + * Constructs a newly allocated {@code Float} object that + * represents the argument converted to type {@code float}. + * + * @param value the value to be represented by the {@code Float}. + */ + public Float(double value) { + this.value = (float)value; + } + + /** + * Constructs a newly allocated {@code Float} object that + * represents the floating-point value of type {@code float} + * represented by the string. The string is converted to a + * {@code float} value as if by the {@code valueOf} method. + * + * @param s a string to be converted to a {@code Float}. + * @throws NumberFormatException if the string does not contain a + * parsable number. + * @see java.lang.Float#valueOf(java.lang.String) + */ + public Float(String s) throws NumberFormatException { + // REMIND: this is inefficient + this(valueOf(s).floatValue()); + } + + /** + * Returns {@code true} if this {@code Float} value is a + * Not-a-Number (NaN), {@code false} otherwise. + * + * @return {@code true} if the value represented by this object is + * NaN; {@code false} otherwise. + */ + public boolean isNaN() { + return isNaN(value); + } + + /** + * Returns {@code true} if this {@code Float} value is + * infinitely large in magnitude, {@code false} otherwise. + * + * @return {@code true} if the value represented by this object is + * positive infinity or negative infinity; + * {@code false} otherwise. + */ + public boolean isInfinite() { + return isInfinite(value); + } + + /** + * Returns a string representation of this {@code Float} object. + * The primitive {@code float} value represented by this object + * is converted to a {@code String} exactly as if by the method + * {@code toString} of one argument. + * + * @return a {@code String} representation of this object. + * @see java.lang.Float#toString(float) + */ + public String toString() { + return Float.toString(value); + } + + /** + * Returns the value of this {@code Float} as a {@code byte} (by + * casting to a {@code byte}). + * + * @return the {@code float} value represented by this object + * converted to type {@code byte} + */ + public byte byteValue() { + return (byte)value; + } + + /** + * Returns the value of this {@code Float} as a {@code short} (by + * casting to a {@code short}). + * + * @return the {@code float} value represented by this object + * converted to type {@code short} + * @since JDK1.1 + */ + public short shortValue() { + return (short)value; + } + + /** + * Returns the value of this {@code Float} as an {@code int} (by + * casting to type {@code int}). + * + * @return the {@code float} value represented by this object + * converted to type {@code int} + */ + public int intValue() { + return (int)value; + } + + /** + * Returns value of this {@code Float} as a {@code long} (by + * casting to type {@code long}). + * + * @return the {@code float} value represented by this object + * converted to type {@code long} + */ + public long longValue() { + return (long)value; + } + + /** + * Returns the {@code float} value of this {@code Float} object. + * + * @return the {@code float} value represented by this object + */ + public float floatValue() { + return value; + } + + /** + * Returns the {@code double} value of this {@code Float} object. + * + * @return the {@code float} value represented by this + * object is converted to type {@code double} and the + * result of the conversion is returned. + */ + public double doubleValue() { + return (double)value; + } + + /** + * Returns a hash code for this {@code Float} object. The + * result is the integer bit representation, exactly as produced + * by the method {@link #floatToIntBits(float)}, of the primitive + * {@code float} value represented by this {@code Float} + * object. + * + * @return a hash code value for this object. + */ + public int hashCode() { + return floatToIntBits(value); + } + + /** + + * Compares this object against the specified object. The result + * is {@code true} if and only if the argument is not + * {@code null} and is a {@code Float} object that + * represents a {@code float} with the same value as the + * {@code float} represented by this object. For this + * purpose, two {@code float} values are considered to be the + * same if and only if the method {@link #floatToIntBits(float)} + * returns the identical {@code int} value when applied to + * each. + * + *

Note that in most cases, for two instances of class + * {@code Float}, {@code f1} and {@code f2}, the value + * of {@code f1.equals(f2)} is {@code true} if and only if + * + *

+     *   f1.floatValue() == f2.floatValue()
+     * 
+ * + *

also has the value {@code true}. However, there are two exceptions: + *

+ * + * This definition allows hash tables to operate properly. + * + * @param obj the object to be compared + * @return {@code true} if the objects are the same; + * {@code false} otherwise. + * @see java.lang.Float#floatToIntBits(float) + */ + public boolean equals(Object obj) { + return (obj instanceof Float) + && (floatToIntBits(((Float)obj).value) == floatToIntBits(value)); + } + + /** + * Returns a representation of the specified floating-point value + * according to the IEEE 754 floating-point "single format" bit + * layout. + * + *

Bit 31 (the bit that is selected by the mask + * {@code 0x80000000}) represents the sign of the floating-point + * number. + * Bits 30-23 (the bits that are selected by the mask + * {@code 0x7f800000}) represent the exponent. + * Bits 22-0 (the bits that are selected by the mask + * {@code 0x007fffff}) represent the significand (sometimes called + * the mantissa) of the floating-point number. + * + *

If the argument is positive infinity, the result is + * {@code 0x7f800000}. + * + *

If the argument is negative infinity, the result is + * {@code 0xff800000}. + * + *

If the argument is NaN, the result is {@code 0x7fc00000}. + * + *

In all cases, the result is an integer that, when given to the + * {@link #intBitsToFloat(int)} method, will produce a floating-point + * value the same as the argument to {@code floatToIntBits} + * (except all NaN values are collapsed to a single + * "canonical" NaN value). + * + * @param value a floating-point number. + * @return the bits that represent the floating-point number. + */ + public static int floatToIntBits(float value) { + throw new UnsupportedOperationException(); +// int result = floatToRawIntBits(value); +// // Check for NaN based on values of bit fields, maximum +// // exponent and nonzero significand. +// if ( ((result & FloatConsts.EXP_BIT_MASK) == +// FloatConsts.EXP_BIT_MASK) && +// (result & FloatConsts.SIGNIF_BIT_MASK) != 0) +// result = 0x7fc00000; +// return result; + } + + /** + * Returns a representation of the specified floating-point value + * according to the IEEE 754 floating-point "single format" bit + * layout, preserving Not-a-Number (NaN) values. + * + *

Bit 31 (the bit that is selected by the mask + * {@code 0x80000000}) represents the sign of the floating-point + * number. + * Bits 30-23 (the bits that are selected by the mask + * {@code 0x7f800000}) represent the exponent. + * Bits 22-0 (the bits that are selected by the mask + * {@code 0x007fffff}) represent the significand (sometimes called + * the mantissa) of the floating-point number. + * + *

If the argument is positive infinity, the result is + * {@code 0x7f800000}. + * + *

If the argument is negative infinity, the result is + * {@code 0xff800000}. + * + *

If the argument is NaN, the result is the integer representing + * the actual NaN value. Unlike the {@code floatToIntBits} + * method, {@code floatToRawIntBits} does not collapse all the + * bit patterns encoding a NaN to a single "canonical" + * NaN value. + * + *

In all cases, the result is an integer that, when given to the + * {@link #intBitsToFloat(int)} method, will produce a + * floating-point value the same as the argument to + * {@code floatToRawIntBits}. + * + * @param value a floating-point number. + * @return the bits that represent the floating-point number. + * @since 1.3 + */ + public static native int floatToRawIntBits(float value); + + /** + * Returns the {@code float} value corresponding to a given + * bit representation. + * The argument is considered to be a representation of a + * floating-point value according to the IEEE 754 floating-point + * "single format" bit layout. + * + *

If the argument is {@code 0x7f800000}, the result is positive + * infinity. + * + *

If the argument is {@code 0xff800000}, the result is negative + * infinity. + * + *

If the argument is any value in the range + * {@code 0x7f800001} through {@code 0x7fffffff} or in + * the range {@code 0xff800001} through + * {@code 0xffffffff}, the result is a NaN. No IEEE 754 + * floating-point operation provided by Java can distinguish + * between two NaN values of the same type with different bit + * patterns. Distinct values of NaN are only distinguishable by + * use of the {@code Float.floatToRawIntBits} method. + * + *

In all other cases, let s, e, and m be three + * values that can be computed from the argument: + * + *

+     * int s = ((bits >> 31) == 0) ? 1 : -1;
+     * int e = ((bits >> 23) & 0xff);
+     * int m = (e == 0) ?
+     *                 (bits & 0x7fffff) << 1 :
+     *                 (bits & 0x7fffff) | 0x800000;
+     * 
+ * + * Then the floating-point result equals the value of the mathematical + * expression s·m·2e-150. + * + *

Note that this method may not be able to return a + * {@code float} NaN with exactly same bit pattern as the + * {@code int} argument. IEEE 754 distinguishes between two + * kinds of NaNs, quiet NaNs and signaling NaNs. The + * differences between the two kinds of NaN are generally not + * visible in Java. Arithmetic operations on signaling NaNs turn + * them into quiet NaNs with a different, but often similar, bit + * pattern. However, on some processors merely copying a + * signaling NaN also performs that conversion. In particular, + * copying a signaling NaN to return it to the calling method may + * perform this conversion. So {@code intBitsToFloat} may + * not be able to return a {@code float} with a signaling NaN + * bit pattern. Consequently, for some {@code int} values, + * {@code floatToRawIntBits(intBitsToFloat(start))} may + * not equal {@code start}. Moreover, which + * particular bit patterns represent signaling NaNs is platform + * dependent; although all NaN bit patterns, quiet or signaling, + * must be in the NaN range identified above. + * + * @param bits an integer. + * @return the {@code float} floating-point value with the same bit + * pattern. + */ + @JavaScriptBody(args = "bits", + body = + "if (bits === 0x7f800000) return Number.POSITIVE_INFINITY;\n" + + "if (bits === 0xff800000) return Number.NEGATIVE_INFINITY;\n" + + "if (bits >= 0x7f800001 && bits <= 0xffffffff) return Number.NaN;\n" + + "var s = ((bits >> 31) == 0) ? 1 : -1;\n" + + "var e = ((bits >> 23) & 0xff);\n" + + "var m = (e == 0) ?\n" + + " (bits & 0x7fffff) << 1 :\n" + + " (bits & 0x7fffff) | 0x800000;\n" + + "return s * m * Math.pow(2.0, e - 150);\n" + ) + public static native float intBitsToFloat(int bits); + + /** + * Compares two {@code Float} objects numerically. There are + * two ways in which comparisons performed by this method differ + * from those performed by the Java language numerical comparison + * operators ({@code <, <=, ==, >=, >}) when + * applied to primitive {@code float} values: + * + *

+ * + * This ensures that the natural ordering of {@code Float} + * objects imposed by this method is consistent with equals. + * + * @param anotherFloat the {@code Float} to be compared. + * @return the value {@code 0} if {@code anotherFloat} is + * numerically equal to this {@code Float}; a value + * less than {@code 0} if this {@code Float} + * is numerically less than {@code anotherFloat}; + * and a value greater than {@code 0} if this + * {@code Float} is numerically greater than + * {@code anotherFloat}. + * + * @since 1.2 + * @see Comparable#compareTo(Object) + */ + public int compareTo(Float anotherFloat) { + return Float.compare(value, anotherFloat.value); + } + + /** + * Compares the two specified {@code float} values. The sign + * of the integer value returned is the same as that of the + * integer that would be returned by the call: + *
+     *    new Float(f1).compareTo(new Float(f2))
+     * 
+ * + * @param f1 the first {@code float} to compare. + * @param f2 the second {@code float} to compare. + * @return the value {@code 0} if {@code f1} is + * numerically equal to {@code f2}; a value less than + * {@code 0} if {@code f1} is numerically less than + * {@code f2}; and a value greater than {@code 0} + * if {@code f1} is numerically greater than + * {@code f2}. + * @since 1.4 + */ + public static int compare(float f1, float f2) { + if (f1 < f2) + return -1; // Neither val is NaN, thisVal is smaller + if (f1 > f2) + return 1; // Neither val is NaN, thisVal is larger + + // Cannot use floatToRawIntBits because of possibility of NaNs. + int thisBits = Float.floatToIntBits(f1); + int anotherBits = Float.floatToIntBits(f2); + + return (thisBits == anotherBits ? 0 : // Values are equal + (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) + 1)); // (0.0, -0.0) or (NaN, !NaN) + } + + /** use serialVersionUID from JDK 1.0.2 for interoperability */ + private static final long serialVersionUID = -2671257302660747028L; +}