diff -r ca781bc82662 -r 05224402145d emul/mini/src/main/java/java/lang/Math.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/emul/mini/src/main/java/java/lang/Math.java Wed Jan 23 20:39:23 2013 +0100 @@ -0,0 +1,1244 @@ +/* + * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; + +import org.apidesign.bck2brwsr.core.JavaScriptBody; + + +/** + * The class {@code Math} contains methods for performing basic + * numeric operations such as the elementary exponential, logarithm, + * square root, and trigonometric functions. + * + *

Unlike some of the numeric methods of class + * {@code StrictMath}, all implementations of the equivalent + * functions of class {@code Math} are not defined to return the + * bit-for-bit same results. This relaxation permits + * better-performing implementations where strict reproducibility is + * not required. + * + *

By default many of the {@code Math} methods simply call + * the equivalent method in {@code StrictMath} for their + * implementation. Code generators are encouraged to use + * platform-specific native libraries or microprocessor instructions, + * where available, to provide higher-performance implementations of + * {@code Math} methods. Such higher-performance + * implementations still must conform to the specification for + * {@code Math}. + * + *

The quality of implementation specifications concern two + * properties, accuracy of the returned result and monotonicity of the + * method. Accuracy of the floating-point {@code Math} methods + * is measured in terms of ulps, units in the last place. For + * a given floating-point format, an ulp of a specific real number + * value is the distance between the two floating-point values + * bracketing that numerical value. When discussing the accuracy of a + * method as a whole rather than at a specific argument, the number of + * ulps cited is for the worst-case error at any argument. If a + * method always has an error less than 0.5 ulps, the method always + * returns the floating-point number nearest the exact result; such a + * method is correctly rounded. A correctly rounded method is + * generally the best a floating-point approximation can be; however, + * it is impractical for many floating-point methods to be correctly + * rounded. Instead, for the {@code Math} class, a larger error + * bound of 1 or 2 ulps is allowed for certain methods. Informally, + * with a 1 ulp error bound, when the exact result is a representable + * number, the exact result should be returned as the computed result; + * otherwise, either of the two floating-point values which bracket + * the exact result may be returned. For exact results large in + * magnitude, one of the endpoints of the bracket may be infinite. + * Besides accuracy at individual arguments, maintaining proper + * relations between the method at different arguments is also + * important. Therefore, most methods with more than 0.5 ulp errors + * are required to be semi-monotonic: whenever the mathematical + * function is non-decreasing, so is the floating-point approximation, + * likewise, whenever the mathematical function is non-increasing, so + * is the floating-point approximation. Not all approximations that + * have 1 ulp accuracy will automatically meet the monotonicity + * requirements. + * + * @author unascribed + * @author Joseph D. Darcy + * @since JDK1.0 + */ + +public final class Math { + + /** + * Don't let anyone instantiate this class. + */ + private Math() {} + + /** + * The {@code double} value that is closer than any other to + * e, the base of the natural logarithms. + */ + public static final double E = 2.7182818284590452354; + + /** + * The {@code double} value that is closer than any other to + * pi, the ratio of the circumference of a circle to its + * diameter. + */ + public static final double PI = 3.14159265358979323846; + + /** + * Returns the trigonometric sine of an angle. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a an angle, in radians. + * @return the sine of the argument. + */ + @JavaScriptBody(args="a", body="return Math.sin(a);") + public static double sin(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the trigonometric cosine of an angle. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a an angle, in radians. + * @return the cosine of the argument. + */ + @JavaScriptBody(args="a", body="return Math.cos(a);") + public static double cos(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the trigonometric tangent of an angle. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a an angle, in radians. + * @return the tangent of the argument. + */ + @JavaScriptBody(args="a", body="return Math.tan(a);") + public static double tan(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the arc sine of a value; the returned angle is in the + * range -pi/2 through pi/2. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the value whose arc sine is to be returned. + * @return the arc sine of the argument. + */ + @JavaScriptBody(args="a", body="return Math.asin(a);") + public static double asin(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the arc cosine of a value; the returned angle is in the + * range 0.0 through pi. Special case: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the value whose arc cosine is to be returned. + * @return the arc cosine of the argument. + */ + @JavaScriptBody(args="a", body="return Math.acos(a);") + public static double acos(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the arc tangent of a value; the returned angle is in the + * range -pi/2 through pi/2. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the value whose arc tangent is to be returned. + * @return the arc tangent of the argument. + */ + @JavaScriptBody(args="a", body="return Math.atan(a);") + public static double atan(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Converts an angle measured in degrees to an approximately + * equivalent angle measured in radians. The conversion from + * degrees to radians is generally inexact. + * + * @param angdeg an angle, in degrees + * @return the measurement of the angle {@code angdeg} + * in radians. + * @since 1.2 + */ + public static double toRadians(double angdeg) { + return angdeg / 180.0 * PI; + } + + /** + * Converts an angle measured in radians to an approximately + * equivalent angle measured in degrees. The conversion from + * radians to degrees is generally inexact; users should + * not expect {@code cos(toRadians(90.0))} to exactly + * equal {@code 0.0}. + * + * @param angrad an angle, in radians + * @return the measurement of the angle {@code angrad} + * in degrees. + * @since 1.2 + */ + public static double toDegrees(double angrad) { + return angrad * 180.0 / PI; + } + + /** + * Returns Euler's number e raised to the power of a + * {@code double} value. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the exponent to raise e to. + * @return the value e{@code a}, + * where e is the base of the natural logarithms. + */ + @JavaScriptBody(args="a", body="return Math.exp(a);") + public static double exp(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the natural logarithm (base e) of a {@code double} + * value. Special cases: + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a a value + * @return the value ln {@code a}, the natural logarithm of + * {@code a}. + */ + @JavaScriptBody(args="a", body="return Math.log(a);") + public static double log(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the base 10 logarithm of a {@code double} value. + * Special cases: + * + *

+ * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a a value + * @return the base 10 logarithm of {@code a}. + * @since 1.5 + */ + @JavaScriptBody(args="a", body="return Math.log(a) / Math.LN10;") + public static double log10(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the correctly rounded positive square root of a + * {@code double} value. + * Special cases: + *

+ * Otherwise, the result is the {@code double} value closest to + * the true mathematical square root of the argument value. + * + * @param a a value. + * @return the positive square root of {@code a}. + * If the argument is NaN or less than zero, the result is NaN. + */ + @JavaScriptBody(args="a", body="return Math.sqrt(a);") + public static double sqrt(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the smallest (closest to negative infinity) + * {@code double} value that is greater than or equal to the + * argument and is equal to a mathematical integer. Special cases: + * Note + * that the value of {@code Math.ceil(x)} is exactly the + * value of {@code -Math.floor(-x)}. + * + * + * @param a a value. + * @return the smallest (closest to negative infinity) + * floating-point value that is greater than or equal to + * the argument and is equal to a mathematical integer. + */ + @JavaScriptBody(args="a", body="return Math.ceil(a);") + public static double ceil(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the largest (closest to positive infinity) + * {@code double} value that is less than or equal to the + * argument and is equal to a mathematical integer. Special cases: + * + * + * @param a a value. + * @return the largest (closest to positive infinity) + * floating-point value that less than or equal to the argument + * and is equal to a mathematical integer. + */ + @JavaScriptBody(args="a", body="return Math.floor(a);") + public static double floor(double a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the angle theta from the conversion of rectangular + * coordinates ({@code x}, {@code y}) to polar + * coordinates (r, theta). + * This method computes the phase theta by computing an arc tangent + * of {@code y/x} in the range of -pi to pi. Special + * cases: + * + * + *

The computed result must be within 2 ulps of the exact result. + * Results must be semi-monotonic. + * + * @param y the ordinate coordinate + * @param x the abscissa coordinate + * @return the theta component of the point + * (rtheta) + * in polar coordinates that corresponds to the point + * (xy) in Cartesian coordinates. + */ + @JavaScriptBody(args={"y", "x"}, body="return Math.atan2(y, x);") + public static double atan2(double y, double x) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the value of the first argument raised to the power of the + * second argument. Special cases: + * + *

+ * + *

(In the foregoing descriptions, a floating-point value is + * considered to be an integer if and only if it is finite and a + * fixed point of the method {@link #ceil ceil} or, + * equivalently, a fixed point of the method {@link #floor + * floor}. A value is a fixed point of a one-argument + * method if and only if the result of applying the method to the + * value is equal to the value.) + * + *

The computed result must be within 1 ulp of the exact result. + * Results must be semi-monotonic. + * + * @param a the base. + * @param b the exponent. + * @return the value {@code a}{@code b}. + */ + @JavaScriptBody(args={"a", "b"}, body="return Math.pow(a, b);") + public static double pow(double a, double b) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the closest {@code int} to the argument, with ties + * rounding up. + * + *

+ * Special cases: + *

+ * + * @param a a floating-point value to be rounded to an integer. + * @return the value of the argument rounded to the nearest + * {@code int} value. + * @see java.lang.Integer#MAX_VALUE + * @see java.lang.Integer#MIN_VALUE + */ + @JavaScriptBody(args="a", body="return Math.round(a);") + public static int round(float a) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the closest {@code long} to the argument, with ties + * rounding up. + * + *

Special cases: + *

+ * + * @param a a floating-point value to be rounded to a + * {@code long}. + * @return the value of the argument rounded to the nearest + * {@code long} value. + * @see java.lang.Long#MAX_VALUE + * @see java.lang.Long#MIN_VALUE + */ + @JavaScriptBody(args="a", body="return Math.round(a);") + public static long round(double a) { + throw new UnsupportedOperationException(); + } + +// private static Random randomNumberGenerator; +// +// private static synchronized Random initRNG() { +// Random rnd = randomNumberGenerator; +// return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; +// } + + /** + * Returns a {@code double} value with a positive sign, greater + * than or equal to {@code 0.0} and less than {@code 1.0}. + * Returned values are chosen pseudorandomly with (approximately) + * uniform distribution from that range. + * + *

When this method is first called, it creates a single new + * pseudorandom-number generator, exactly as if by the expression + * + *

{@code new java.util.Random()}
+ * + * This new pseudorandom-number generator is used thereafter for + * all calls to this method and is used nowhere else. + * + *

This method is properly synchronized to allow correct use by + * more than one thread. However, if many threads need to generate + * pseudorandom numbers at a great rate, it may reduce contention + * for each thread to have its own pseudorandom-number generator. + * + * @return a pseudorandom {@code double} greater than or equal + * to {@code 0.0} and less than {@code 1.0}. + * @see Random#nextDouble() + */ + @JavaScriptBody(args={}, body="return Math.random();") + public static double random() { + throw new UnsupportedOperationException(); + } + + /** + * Returns the absolute value of an {@code int} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * + *

Note that if the argument is equal to the value of + * {@link Integer#MIN_VALUE}, the most negative representable + * {@code int} value, the result is that same value, which is + * negative. + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static int abs(int a) { + return (a < 0) ? -a : a; + } + + /** + * Returns the absolute value of a {@code long} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * + *

Note that if the argument is equal to the value of + * {@link Long#MIN_VALUE}, the most negative representable + * {@code long} value, the result is that same value, which + * is negative. + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static long abs(long a) { + return (a < 0) ? -a : a; + } + + /** + * Returns the absolute value of a {@code float} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * Special cases: + *

+ * In other words, the result is the same as the value of the expression: + *

{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static float abs(float a) { + return (a <= 0.0F) ? 0.0F - a : a; + } + + /** + * Returns the absolute value of a {@code double} value. + * If the argument is not negative, the argument is returned. + * If the argument is negative, the negation of the argument is returned. + * Special cases: + *

+ * In other words, the result is the same as the value of the expression: + *

{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} + * + * @param a the argument whose absolute value is to be determined + * @return the absolute value of the argument. + */ + public static double abs(double a) { + return (a <= 0.0D) ? 0.0D - a : a; + } + + /** + * Returns the greater of two {@code int} values. That is, the + * result is the argument closer to the value of + * {@link Integer#MAX_VALUE}. If the arguments have the same value, + * the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static int max(int a, int b) { + return (a >= b) ? a : b; + } + + /** + * Returns the greater of two {@code long} values. That is, the + * result is the argument closer to the value of + * {@link Long#MAX_VALUE}. If the arguments have the same value, + * the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + public static long max(long a, long b) { + return (a >= b) ? a : b; + } + + /** + * Returns the greater of two {@code float} values. That is, + * the result is the argument closer to positive infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other negative zero, the + * result is positive zero. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + @JavaScriptBody(args={"a", "b"}, + body="return Math.max(a,b);" + ) + public static float max(float a, float b) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the greater of two {@code double} values. That + * is, the result is the argument closer to positive infinity. If + * the arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other negative zero, the + * result is positive zero. + * + * @param a an argument. + * @param b another argument. + * @return the larger of {@code a} and {@code b}. + */ + @JavaScriptBody(args={"a", "b"}, + body="return Math.max(a,b);" + ) + public static double max(double a, double b) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the smaller of two {@code int} values. That is, + * the result the argument closer to the value of + * {@link Integer#MIN_VALUE}. If the arguments have the same + * value, the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static int min(int a, int b) { + return (a <= b) ? a : b; + } + + /** + * Returns the smaller of two {@code long} values. That is, + * the result is the argument closer to the value of + * {@link Long#MIN_VALUE}. If the arguments have the same + * value, the result is that same value. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + public static long min(long a, long b) { + return (a <= b) ? a : b; + } + + /** + * Returns the smaller of two {@code float} values. That is, + * the result is the value closer to negative infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If + * one argument is positive zero and the other is negative zero, + * the result is negative zero. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + @JavaScriptBody(args={"a", "b"}, + body="return Math.min(a,b);" + ) + public static float min(float a, float b) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the smaller of two {@code double} values. That + * is, the result is the value closer to negative infinity. If the + * arguments have the same value, the result is that same + * value. If either value is NaN, then the result is NaN. Unlike + * the numerical comparison operators, this method considers + * negative zero to be strictly smaller than positive zero. If one + * argument is positive zero and the other is negative zero, the + * result is negative zero. + * + * @param a an argument. + * @param b another argument. + * @return the smaller of {@code a} and {@code b}. + */ + @JavaScriptBody(args={"a", "b"}, + body="return Math.min(a,b);" + ) + public static double min(double a, double b) { + throw new UnsupportedOperationException(); + } + + /** + * Returns the size of an ulp of the argument. An ulp of a + * {@code double} value is the positive distance between this + * floating-point value and the {@code double} value next + * larger in magnitude. Note that for non-NaN x, + * ulp(-x) == ulp(x). + * + *

Special Cases: + *

+ * + * @param d the floating-point value whose ulp is to be returned + * @return the size of an ulp of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ +// public static double ulp(double d) { +// return sun.misc.FpUtils.ulp(d); +// } + + /** + * Returns the size of an ulp of the argument. An ulp of a + * {@code float} value is the positive distance between this + * floating-point value and the {@code float} value next + * larger in magnitude. Note that for non-NaN x, + * ulp(-x) == ulp(x). + * + *

Special Cases: + *

+ * + * @param f the floating-point value whose ulp is to be returned + * @return the size of an ulp of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ +// public static float ulp(float f) { +// return sun.misc.FpUtils.ulp(f); +// } + + /** + * Returns the signum function of the argument; zero if the argument + * is zero, 1.0 if the argument is greater than zero, -1.0 if the + * argument is less than zero. + * + *

Special Cases: + *

+ * + * @param d the floating-point value whose signum is to be returned + * @return the signum function of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ +// public static double signum(double d) { +// return sun.misc.FpUtils.signum(d); +// } + + /** + * Returns the signum function of the argument; zero if the argument + * is zero, 1.0f if the argument is greater than zero, -1.0f if the + * argument is less than zero. + * + *

Special Cases: + *

+ * + * @param f the floating-point value whose signum is to be returned + * @return the signum function of the argument + * @author Joseph D. Darcy + * @since 1.5 + */ +// public static float signum(float f) { +// return sun.misc.FpUtils.signum(f); +// } + + /** + * Returns the first floating-point argument with the sign of the + * second floating-point argument. Note that unlike the {@link + * StrictMath#copySign(double, double) StrictMath.copySign} + * method, this method does not require NaN {@code sign} + * arguments to be treated as positive values; implementations are + * permitted to treat some NaN arguments as positive and other NaN + * arguments as negative to allow greater performance. + * + * @param magnitude the parameter providing the magnitude of the result + * @param sign the parameter providing the sign of the result + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. + * @since 1.6 + */ +// public static double copySign(double magnitude, double sign) { +// return sun.misc.FpUtils.rawCopySign(magnitude, sign); +// } + + /** + * Returns the first floating-point argument with the sign of the + * second floating-point argument. Note that unlike the {@link + * StrictMath#copySign(float, float) StrictMath.copySign} + * method, this method does not require NaN {@code sign} + * arguments to be treated as positive values; implementations are + * permitted to treat some NaN arguments as positive and other NaN + * arguments as negative to allow greater performance. + * + * @param magnitude the parameter providing the magnitude of the result + * @param sign the parameter providing the sign of the result + * @return a value with the magnitude of {@code magnitude} + * and the sign of {@code sign}. + * @since 1.6 + */ +// public static float copySign(float magnitude, float sign) { +// return sun.misc.FpUtils.rawCopySign(magnitude, sign); +// } + + /** + * Returns the unbiased exponent used in the representation of a + * {@code float}. Special cases: + * + * + * @param f a {@code float} value + * @return the unbiased exponent of the argument + * @since 1.6 + */ +// public static int getExponent(float f) { +// return sun.misc.FpUtils.getExponent(f); +// } + + /** + * Returns the unbiased exponent used in the representation of a + * {@code double}. Special cases: + * + * + * @param d a {@code double} value + * @return the unbiased exponent of the argument + * @since 1.6 + */ +// public static int getExponent(double d) { +// return sun.misc.FpUtils.getExponent(d); +// } + + /** + * Returns the floating-point number adjacent to the first + * argument in the direction of the second argument. If both + * arguments compare as equal the second argument is returned. + * + *

+ * Special cases: + *

+ * + * @param start starting floating-point value + * @param direction value indicating which of + * {@code start}'s neighbors or {@code start} should + * be returned + * @return The floating-point number adjacent to {@code start} in the + * direction of {@code direction}. + * @since 1.6 + */ +// public static double nextAfter(double start, double direction) { +// return sun.misc.FpUtils.nextAfter(start, direction); +// } + + /** + * Returns the floating-point number adjacent to the first + * argument in the direction of the second argument. If both + * arguments compare as equal a value equivalent to the second argument + * is returned. + * + *

+ * Special cases: + *

+ * + * @param start starting floating-point value + * @param direction value indicating which of + * {@code start}'s neighbors or {@code start} should + * be returned + * @return The floating-point number adjacent to {@code start} in the + * direction of {@code direction}. + * @since 1.6 + */ +// public static float nextAfter(float start, double direction) { +// return sun.misc.FpUtils.nextAfter(start, direction); +// } + + /** + * Returns the floating-point value adjacent to {@code d} in + * the direction of positive infinity. This method is + * semantically equivalent to {@code nextAfter(d, + * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} + * implementation may run faster than its equivalent + * {@code nextAfter} call. + * + *

Special Cases: + *

+ * + * @param d starting floating-point value + * @return The adjacent floating-point value closer to positive + * infinity. + * @since 1.6 + */ +// public static double nextUp(double d) { +// return sun.misc.FpUtils.nextUp(d); +// } + + /** + * Returns the floating-point value adjacent to {@code f} in + * the direction of positive infinity. This method is + * semantically equivalent to {@code nextAfter(f, + * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} + * implementation may run faster than its equivalent + * {@code nextAfter} call. + * + *

Special Cases: + *

+ * + * @param f starting floating-point value + * @return The adjacent floating-point value closer to positive + * infinity. + * @since 1.6 + */ +// public static float nextUp(float f) { +// return sun.misc.FpUtils.nextUp(f); +// } + + + /** + * Return {@code d} × + * 2{@code scaleFactor} rounded as if performed + * by a single correctly rounded floating-point multiply to a + * member of the double value set. See the Java + * Language Specification for a discussion of floating-point + * value sets. If the exponent of the result is between {@link + * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the + * answer is calculated exactly. If the exponent of the result + * would be larger than {@code Double.MAX_EXPONENT}, an + * infinity is returned. Note that if the result is subnormal, + * precision may be lost; that is, when {@code scalb(x, n)} + * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal + * x. When the result is non-NaN, the result has the same + * sign as {@code d}. + * + *

Special cases: + *

+ * + * @param d number to be scaled by a power of two. + * @param scaleFactor power of 2 used to scale {@code d} + * @return {@code d} × 2{@code scaleFactor} + * @since 1.6 + */ +// public static double scalb(double d, int scaleFactor) { +// return sun.misc.FpUtils.scalb(d, scaleFactor); +// } + + /** + * Return {@code f} × + * 2{@code scaleFactor} rounded as if performed + * by a single correctly rounded floating-point multiply to a + * member of the float value set. See the Java + * Language Specification for a discussion of floating-point + * value sets. If the exponent of the result is between {@link + * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the + * answer is calculated exactly. If the exponent of the result + * would be larger than {@code Float.MAX_EXPONENT}, an + * infinity is returned. Note that if the result is subnormal, + * precision may be lost; that is, when {@code scalb(x, n)} + * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal + * x. When the result is non-NaN, the result has the same + * sign as {@code f}. + * + *

Special cases: + *

+ * + * @param f number to be scaled by a power of two. + * @param scaleFactor power of 2 used to scale {@code f} + * @return {@code f} × 2{@code scaleFactor} + * @since 1.6 + */ +// public static float scalb(float f, int scaleFactor) { +// return sun.misc.FpUtils.scalb(f, scaleFactor); +// } +}