diff -r 388e48c0a37a -r 05224402145d emul/src/main/java/java/lang/Float.java --- a/emul/src/main/java/java/lang/Float.java Wed Jan 23 20:16:48 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,905 +0,0 @@ -/* - * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. Oracle designates this - * particular file as subject to the "Classpath" exception as provided - * by Oracle in the LICENSE file that accompanied this code. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - */ - -package java.lang; - -import org.apidesign.bck2brwsr.core.JavaScriptBody; - -/** - * The {@code Float} class wraps a value of primitive type - * {@code float} in an object. An object of type - * {@code Float} contains a single field whose type is - * {@code float}. - * - *

In addition, this class provides several methods for converting a - * {@code float} to a {@code String} and a - * {@code String} to a {@code float}, as well as other - * constants and methods useful when dealing with a - * {@code float}. - * - * @author Lee Boynton - * @author Arthur van Hoff - * @author Joseph D. Darcy - * @since JDK1.0 - */ -public final class Float extends Number implements Comparable { - /** - * A constant holding the positive infinity of type - * {@code float}. It is equal to the value returned by - * {@code Float.intBitsToFloat(0x7f800000)}. - */ - public static final float POSITIVE_INFINITY = 1.0f / 0.0f; - - /** - * A constant holding the negative infinity of type - * {@code float}. It is equal to the value returned by - * {@code Float.intBitsToFloat(0xff800000)}. - */ - public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; - - /** - * A constant holding a Not-a-Number (NaN) value of type - * {@code float}. It is equivalent to the value returned by - * {@code Float.intBitsToFloat(0x7fc00000)}. - */ - public static final float NaN = 0.0f / 0.0f; - - /** - * A constant holding the largest positive finite value of type - * {@code float}, (2-2-23)·2127. - * It is equal to the hexadecimal floating-point literal - * {@code 0x1.fffffeP+127f} and also equal to - * {@code Float.intBitsToFloat(0x7f7fffff)}. - */ - public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f - - /** - * A constant holding the smallest positive normal value of type - * {@code float}, 2-126. It is equal to the - * hexadecimal floating-point literal {@code 0x1.0p-126f} and also - * equal to {@code Float.intBitsToFloat(0x00800000)}. - * - * @since 1.6 - */ - public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f - - /** - * A constant holding the smallest positive nonzero value of type - * {@code float}, 2-149. It is equal to the - * hexadecimal floating-point literal {@code 0x0.000002P-126f} - * and also equal to {@code Float.intBitsToFloat(0x1)}. - */ - public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f - - /** - * Maximum exponent a finite {@code float} variable may have. It - * is equal to the value returned by {@code - * Math.getExponent(Float.MAX_VALUE)}. - * - * @since 1.6 - */ - public static final int MAX_EXPONENT = 127; - - /** - * Minimum exponent a normalized {@code float} variable may have. - * It is equal to the value returned by {@code - * Math.getExponent(Float.MIN_NORMAL)}. - * - * @since 1.6 - */ - public static final int MIN_EXPONENT = -126; - - /** - * The number of bits used to represent a {@code float} value. - * - * @since 1.5 - */ - public static final int SIZE = 32; - - /** - * The {@code Class} instance representing the primitive type - * {@code float}. - * - * @since JDK1.1 - */ - public static final Class TYPE = Class.getPrimitiveClass("float"); - - /** - * Returns a string representation of the {@code float} - * argument. All characters mentioned below are ASCII characters. - *

- * How many digits must be printed for the fractional part of - * m or a? There must be at least one digit - * to represent the fractional part, and beyond that as many, but - * only as many, more digits as are needed to uniquely distinguish - * the argument value from adjacent values of type - * {@code float}. That is, suppose that x is the - * exact mathematical value represented by the decimal - * representation produced by this method for a finite nonzero - * argument f. Then f must be the {@code float} - * value nearest to x; or, if two {@code float} values are - * equally close to x, then f must be one of - * them and the least significant bit of the significand of - * f must be {@code 0}. - * - *

To create localized string representations of a floating-point - * value, use subclasses of {@link java.text.NumberFormat}. - * - * @param f the float to be converted. - * @return a string representation of the argument. - */ - public static String toString(float f) { - return Double.toString(f); - } - - /** - * Returns a hexadecimal string representation of the - * {@code float} argument. All characters mentioned below are - * ASCII characters. - * - *

- * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - * - *

Examples

Floating-point ValueHexadecimal String
{@code 1.0} {@code 0x1.0p0}
{@code -1.0} {@code -0x1.0p0}
{@code 2.0} {@code 0x1.0p1}
{@code 3.0} {@code 0x1.8p1}
{@code 0.5} {@code 0x1.0p-1}
{@code 0.25} {@code 0x1.0p-2}
{@code Float.MAX_VALUE}{@code 0x1.fffffep127}
{@code Minimum Normal Value}{@code 0x1.0p-126}
{@code Maximum Subnormal Value}{@code 0x0.fffffep-126}
{@code Float.MIN_VALUE}{@code 0x0.000002p-126}
- * @param f the {@code float} to be converted. - * @return a hex string representation of the argument. - * @since 1.5 - * @author Joseph D. Darcy - */ - public static String toHexString(float f) { - throw new UnsupportedOperationException(); -// if (Math.abs(f) < FloatConsts.MIN_NORMAL -// && f != 0.0f ) {// float subnormal -// // Adjust exponent to create subnormal double, then -// // replace subnormal double exponent with subnormal float -// // exponent -// String s = Double.toHexString(FpUtils.scalb((double)f, -// /* -1022+126 */ -// DoubleConsts.MIN_EXPONENT- -// FloatConsts.MIN_EXPONENT)); -// return s.replaceFirst("p-1022$", "p-126"); -// } -// else // double string will be the same as float string -// return Double.toHexString(f); - } - - /** - * Returns a {@code Float} object holding the - * {@code float} value represented by the argument string - * {@code s}. - * - *

If {@code s} is {@code null}, then a - * {@code NullPointerException} is thrown. - * - *

Leading and trailing whitespace characters in {@code s} - * are ignored. Whitespace is removed as if by the {@link - * String#trim} method; that is, both ASCII space and control - * characters are removed. The rest of {@code s} should - * constitute a FloatValue as described by the lexical - * syntax rules: - * - *

- *
- *
FloatValue: - *
Signopt {@code NaN} - *
Signopt {@code Infinity} - *
Signopt FloatingPointLiteral - *
Signopt HexFloatingPointLiteral - *
SignedInteger - *
- * - *

- * - *

- *
HexFloatingPointLiteral: - *
HexSignificand BinaryExponent FloatTypeSuffixopt - *
- * - *

- * - *

- *
HexSignificand: - *
HexNumeral - *
HexNumeral {@code .} - *
{@code 0x} HexDigitsopt - * {@code .} HexDigits - *
{@code 0X} HexDigitsopt - * {@code .} HexDigits - *
- * - *

- * - *

- *
BinaryExponent: - *
BinaryExponentIndicator SignedInteger - *
- * - *

- * - *

- *
BinaryExponentIndicator: - *
{@code p} - *
{@code P} - *
- * - *
- * - * where Sign, FloatingPointLiteral, - * HexNumeral, HexDigits, SignedInteger and - * FloatTypeSuffix are as defined in the lexical structure - * sections of - * The Java™ Language Specification, - * except that underscores are not accepted between digits. - * If {@code s} does not have the form of - * a FloatValue, then a {@code NumberFormatException} - * is thrown. Otherwise, {@code s} is regarded as - * representing an exact decimal value in the usual - * "computerized scientific notation" or as an exact - * hexadecimal value; this exact numerical value is then - * conceptually converted to an "infinitely precise" - * binary value that is then rounded to type {@code float} - * by the usual round-to-nearest rule of IEEE 754 floating-point - * arithmetic, which includes preserving the sign of a zero - * value. - * - * Note that the round-to-nearest rule also implies overflow and - * underflow behaviour; if the exact value of {@code s} is large - * enough in magnitude (greater than or equal to ({@link - * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2), - * rounding to {@code float} will result in an infinity and if the - * exact value of {@code s} is small enough in magnitude (less - * than or equal to {@link #MIN_VALUE}/2), rounding to float will - * result in a zero. - * - * Finally, after rounding a {@code Float} object representing - * this {@code float} value is returned. - * - *

To interpret localized string representations of a - * floating-point value, use subclasses of {@link - * java.text.NumberFormat}. - * - *

Note that trailing format specifiers, specifiers that - * determine the type of a floating-point literal - * ({@code 1.0f} is a {@code float} value; - * {@code 1.0d} is a {@code double} value), do - * not influence the results of this method. In other - * words, the numerical value of the input string is converted - * directly to the target floating-point type. In general, the - * two-step sequence of conversions, string to {@code double} - * followed by {@code double} to {@code float}, is - * not equivalent to converting a string directly to - * {@code float}. For example, if first converted to an - * intermediate {@code double} and then to - * {@code float}, the string
- * {@code "1.00000017881393421514957253748434595763683319091796875001d"}
- * results in the {@code float} value - * {@code 1.0000002f}; if the string is converted directly to - * {@code float}, 1.0000001f results. - * - *

To avoid calling this method on an invalid string and having - * a {@code NumberFormatException} be thrown, the documentation - * for {@link Double#valueOf Double.valueOf} lists a regular - * expression which can be used to screen the input. - * - * @param s the string to be parsed. - * @return a {@code Float} object holding the value - * represented by the {@code String} argument. - * @throws NumberFormatException if the string does not contain a - * parsable number. - */ - public static Float valueOf(String s) throws NumberFormatException { - throw new UnsupportedOperationException(); -// return new Float(FloatingDecimal.readJavaFormatString(s).floatValue()); - } - - /** - * Returns a {@code Float} instance representing the specified - * {@code float} value. - * If a new {@code Float} instance is not required, this method - * should generally be used in preference to the constructor - * {@link #Float(float)}, as this method is likely to yield - * significantly better space and time performance by caching - * frequently requested values. - * - * @param f a float value. - * @return a {@code Float} instance representing {@code f}. - * @since 1.5 - */ - public static Float valueOf(float f) { - return new Float(f); - } - - /** - * Returns a new {@code float} initialized to the value - * represented by the specified {@code String}, as performed - * by the {@code valueOf} method of class {@code Float}. - * - * @param s the string to be parsed. - * @return the {@code float} value represented by the string - * argument. - * @throws NullPointerException if the string is null - * @throws NumberFormatException if the string does not contain a - * parsable {@code float}. - * @see java.lang.Float#valueOf(String) - * @since 1.2 - */ - public static float parseFloat(String s) throws NumberFormatException { - throw new UnsupportedOperationException(); -// return FloatingDecimal.readJavaFormatString(s).floatValue(); - } - - /** - * Returns {@code true} if the specified number is a - * Not-a-Number (NaN) value, {@code false} otherwise. - * - * @param v the value to be tested. - * @return {@code true} if the argument is NaN; - * {@code false} otherwise. - */ - static public boolean isNaN(float v) { - return (v != v); - } - - /** - * Returns {@code true} if the specified number is infinitely - * large in magnitude, {@code false} otherwise. - * - * @param v the value to be tested. - * @return {@code true} if the argument is positive infinity or - * negative infinity; {@code false} otherwise. - */ - static public boolean isInfinite(float v) { - return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY); - } - - /** - * The value of the Float. - * - * @serial - */ - private final float value; - - /** - * Constructs a newly allocated {@code Float} object that - * represents the primitive {@code float} argument. - * - * @param value the value to be represented by the {@code Float}. - */ - public Float(float value) { - this.value = value; - } - - /** - * Constructs a newly allocated {@code Float} object that - * represents the argument converted to type {@code float}. - * - * @param value the value to be represented by the {@code Float}. - */ - public Float(double value) { - this.value = (float)value; - } - - /** - * Constructs a newly allocated {@code Float} object that - * represents the floating-point value of type {@code float} - * represented by the string. The string is converted to a - * {@code float} value as if by the {@code valueOf} method. - * - * @param s a string to be converted to a {@code Float}. - * @throws NumberFormatException if the string does not contain a - * parsable number. - * @see java.lang.Float#valueOf(java.lang.String) - */ - public Float(String s) throws NumberFormatException { - // REMIND: this is inefficient - this(valueOf(s).floatValue()); - } - - /** - * Returns {@code true} if this {@code Float} value is a - * Not-a-Number (NaN), {@code false} otherwise. - * - * @return {@code true} if the value represented by this object is - * NaN; {@code false} otherwise. - */ - public boolean isNaN() { - return isNaN(value); - } - - /** - * Returns {@code true} if this {@code Float} value is - * infinitely large in magnitude, {@code false} otherwise. - * - * @return {@code true} if the value represented by this object is - * positive infinity or negative infinity; - * {@code false} otherwise. - */ - public boolean isInfinite() { - return isInfinite(value); - } - - /** - * Returns a string representation of this {@code Float} object. - * The primitive {@code float} value represented by this object - * is converted to a {@code String} exactly as if by the method - * {@code toString} of one argument. - * - * @return a {@code String} representation of this object. - * @see java.lang.Float#toString(float) - */ - public String toString() { - return Float.toString(value); - } - - /** - * Returns the value of this {@code Float} as a {@code byte} (by - * casting to a {@code byte}). - * - * @return the {@code float} value represented by this object - * converted to type {@code byte} - */ - public byte byteValue() { - return (byte)value; - } - - /** - * Returns the value of this {@code Float} as a {@code short} (by - * casting to a {@code short}). - * - * @return the {@code float} value represented by this object - * converted to type {@code short} - * @since JDK1.1 - */ - public short shortValue() { - return (short)value; - } - - /** - * Returns the value of this {@code Float} as an {@code int} (by - * casting to type {@code int}). - * - * @return the {@code float} value represented by this object - * converted to type {@code int} - */ - public int intValue() { - return (int)value; - } - - /** - * Returns value of this {@code Float} as a {@code long} (by - * casting to type {@code long}). - * - * @return the {@code float} value represented by this object - * converted to type {@code long} - */ - public long longValue() { - return (long)value; - } - - /** - * Returns the {@code float} value of this {@code Float} object. - * - * @return the {@code float} value represented by this object - */ - public float floatValue() { - return value; - } - - /** - * Returns the {@code double} value of this {@code Float} object. - * - * @return the {@code float} value represented by this - * object is converted to type {@code double} and the - * result of the conversion is returned. - */ - public double doubleValue() { - return (double)value; - } - - /** - * Returns a hash code for this {@code Float} object. The - * result is the integer bit representation, exactly as produced - * by the method {@link #floatToIntBits(float)}, of the primitive - * {@code float} value represented by this {@code Float} - * object. - * - * @return a hash code value for this object. - */ - public int hashCode() { - return floatToIntBits(value); - } - - /** - - * Compares this object against the specified object. The result - * is {@code true} if and only if the argument is not - * {@code null} and is a {@code Float} object that - * represents a {@code float} with the same value as the - * {@code float} represented by this object. For this - * purpose, two {@code float} values are considered to be the - * same if and only if the method {@link #floatToIntBits(float)} - * returns the identical {@code int} value when applied to - * each. - * - *

Note that in most cases, for two instances of class - * {@code Float}, {@code f1} and {@code f2}, the value - * of {@code f1.equals(f2)} is {@code true} if and only if - * - *

-     *   f1.floatValue() == f2.floatValue()
-     * 
- * - *

also has the value {@code true}. However, there are two exceptions: - *

- * - * This definition allows hash tables to operate properly. - * - * @param obj the object to be compared - * @return {@code true} if the objects are the same; - * {@code false} otherwise. - * @see java.lang.Float#floatToIntBits(float) - */ - public boolean equals(Object obj) { - return (obj instanceof Float) - && (floatToIntBits(((Float)obj).value) == floatToIntBits(value)); - } - - /** - * Returns a representation of the specified floating-point value - * according to the IEEE 754 floating-point "single format" bit - * layout. - * - *

Bit 31 (the bit that is selected by the mask - * {@code 0x80000000}) represents the sign of the floating-point - * number. - * Bits 30-23 (the bits that are selected by the mask - * {@code 0x7f800000}) represent the exponent. - * Bits 22-0 (the bits that are selected by the mask - * {@code 0x007fffff}) represent the significand (sometimes called - * the mantissa) of the floating-point number. - * - *

If the argument is positive infinity, the result is - * {@code 0x7f800000}. - * - *

If the argument is negative infinity, the result is - * {@code 0xff800000}. - * - *

If the argument is NaN, the result is {@code 0x7fc00000}. - * - *

In all cases, the result is an integer that, when given to the - * {@link #intBitsToFloat(int)} method, will produce a floating-point - * value the same as the argument to {@code floatToIntBits} - * (except all NaN values are collapsed to a single - * "canonical" NaN value). - * - * @param value a floating-point number. - * @return the bits that represent the floating-point number. - */ - public static int floatToIntBits(float value) { - throw new UnsupportedOperationException(); -// int result = floatToRawIntBits(value); -// // Check for NaN based on values of bit fields, maximum -// // exponent and nonzero significand. -// if ( ((result & FloatConsts.EXP_BIT_MASK) == -// FloatConsts.EXP_BIT_MASK) && -// (result & FloatConsts.SIGNIF_BIT_MASK) != 0) -// result = 0x7fc00000; -// return result; - } - - /** - * Returns a representation of the specified floating-point value - * according to the IEEE 754 floating-point "single format" bit - * layout, preserving Not-a-Number (NaN) values. - * - *

Bit 31 (the bit that is selected by the mask - * {@code 0x80000000}) represents the sign of the floating-point - * number. - * Bits 30-23 (the bits that are selected by the mask - * {@code 0x7f800000}) represent the exponent. - * Bits 22-0 (the bits that are selected by the mask - * {@code 0x007fffff}) represent the significand (sometimes called - * the mantissa) of the floating-point number. - * - *

If the argument is positive infinity, the result is - * {@code 0x7f800000}. - * - *

If the argument is negative infinity, the result is - * {@code 0xff800000}. - * - *

If the argument is NaN, the result is the integer representing - * the actual NaN value. Unlike the {@code floatToIntBits} - * method, {@code floatToRawIntBits} does not collapse all the - * bit patterns encoding a NaN to a single "canonical" - * NaN value. - * - *

In all cases, the result is an integer that, when given to the - * {@link #intBitsToFloat(int)} method, will produce a - * floating-point value the same as the argument to - * {@code floatToRawIntBits}. - * - * @param value a floating-point number. - * @return the bits that represent the floating-point number. - * @since 1.3 - */ - public static native int floatToRawIntBits(float value); - - /** - * Returns the {@code float} value corresponding to a given - * bit representation. - * The argument is considered to be a representation of a - * floating-point value according to the IEEE 754 floating-point - * "single format" bit layout. - * - *

If the argument is {@code 0x7f800000}, the result is positive - * infinity. - * - *

If the argument is {@code 0xff800000}, the result is negative - * infinity. - * - *

If the argument is any value in the range - * {@code 0x7f800001} through {@code 0x7fffffff} or in - * the range {@code 0xff800001} through - * {@code 0xffffffff}, the result is a NaN. No IEEE 754 - * floating-point operation provided by Java can distinguish - * between two NaN values of the same type with different bit - * patterns. Distinct values of NaN are only distinguishable by - * use of the {@code Float.floatToRawIntBits} method. - * - *

In all other cases, let s, e, and m be three - * values that can be computed from the argument: - * - *

-     * int s = ((bits >> 31) == 0) ? 1 : -1;
-     * int e = ((bits >> 23) & 0xff);
-     * int m = (e == 0) ?
-     *                 (bits & 0x7fffff) << 1 :
-     *                 (bits & 0x7fffff) | 0x800000;
-     * 
- * - * Then the floating-point result equals the value of the mathematical - * expression s·m·2e-150. - * - *

Note that this method may not be able to return a - * {@code float} NaN with exactly same bit pattern as the - * {@code int} argument. IEEE 754 distinguishes between two - * kinds of NaNs, quiet NaNs and signaling NaNs. The - * differences between the two kinds of NaN are generally not - * visible in Java. Arithmetic operations on signaling NaNs turn - * them into quiet NaNs with a different, but often similar, bit - * pattern. However, on some processors merely copying a - * signaling NaN also performs that conversion. In particular, - * copying a signaling NaN to return it to the calling method may - * perform this conversion. So {@code intBitsToFloat} may - * not be able to return a {@code float} with a signaling NaN - * bit pattern. Consequently, for some {@code int} values, - * {@code floatToRawIntBits(intBitsToFloat(start))} may - * not equal {@code start}. Moreover, which - * particular bit patterns represent signaling NaNs is platform - * dependent; although all NaN bit patterns, quiet or signaling, - * must be in the NaN range identified above. - * - * @param bits an integer. - * @return the {@code float} floating-point value with the same bit - * pattern. - */ - @JavaScriptBody(args = "bits", - body = - "if (bits === 0x7f800000) return Number.POSITIVE_INFINITY;\n" - + "if (bits === 0xff800000) return Number.NEGATIVE_INFINITY;\n" - + "if (bits >= 0x7f800001 && bits <= 0xffffffff) return Number.NaN;\n" - + "var s = ((bits >> 31) == 0) ? 1 : -1;\n" - + "var e = ((bits >> 23) & 0xff);\n" - + "var m = (e == 0) ?\n" - + " (bits & 0x7fffff) << 1 :\n" - + " (bits & 0x7fffff) | 0x800000;\n" - + "return s * m * Math.pow(2.0, e - 150);\n" - ) - public static native float intBitsToFloat(int bits); - - /** - * Compares two {@code Float} objects numerically. There are - * two ways in which comparisons performed by this method differ - * from those performed by the Java language numerical comparison - * operators ({@code <, <=, ==, >=, >}) when - * applied to primitive {@code float} values: - * - *

- * - * This ensures that the natural ordering of {@code Float} - * objects imposed by this method is consistent with equals. - * - * @param anotherFloat the {@code Float} to be compared. - * @return the value {@code 0} if {@code anotherFloat} is - * numerically equal to this {@code Float}; a value - * less than {@code 0} if this {@code Float} - * is numerically less than {@code anotherFloat}; - * and a value greater than {@code 0} if this - * {@code Float} is numerically greater than - * {@code anotherFloat}. - * - * @since 1.2 - * @see Comparable#compareTo(Object) - */ - public int compareTo(Float anotherFloat) { - return Float.compare(value, anotherFloat.value); - } - - /** - * Compares the two specified {@code float} values. The sign - * of the integer value returned is the same as that of the - * integer that would be returned by the call: - *
-     *    new Float(f1).compareTo(new Float(f2))
-     * 
- * - * @param f1 the first {@code float} to compare. - * @param f2 the second {@code float} to compare. - * @return the value {@code 0} if {@code f1} is - * numerically equal to {@code f2}; a value less than - * {@code 0} if {@code f1} is numerically less than - * {@code f2}; and a value greater than {@code 0} - * if {@code f1} is numerically greater than - * {@code f2}. - * @since 1.4 - */ - public static int compare(float f1, float f2) { - if (f1 < f2) - return -1; // Neither val is NaN, thisVal is smaller - if (f1 > f2) - return 1; // Neither val is NaN, thisVal is larger - - // Cannot use floatToRawIntBits because of possibility of NaNs. - int thisBits = Float.floatToIntBits(f1); - int anotherBits = Float.floatToIntBits(f2); - - return (thisBits == anotherBits ? 0 : // Values are equal - (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) - 1)); // (0.0, -0.0) or (NaN, !NaN) - } - - /** use serialVersionUID from JDK 1.0.2 for interoperability */ - private static final long serialVersionUID = -2671257302660747028L; -}