diff -r 000000000000 -r 212417b74b72 rt/emul/compact/src/main/java/java/util/concurrent/DelayQueue.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/rt/emul/compact/src/main/java/java/util/concurrent/DelayQueue.java Sat Mar 19 10:46:31 2016 +0100 @@ -0,0 +1,546 @@ +/* + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +/* + * This file is available under and governed by the GNU General Public + * License version 2 only, as published by the Free Software Foundation. + * However, the following notice accompanied the original version of this + * file: + * + * Written by Doug Lea with assistance from members of JCP JSR-166 + * Expert Group and released to the public domain, as explained at + * http://creativecommons.org/publicdomain/zero/1.0/ + */ + + +package java.util.concurrent; +import java.util.concurrent.locks.*; +import java.util.*; + +/** + * An unbounded {@linkplain BlockingQueue blocking queue} of + * Delayed elements, in which an element can only be taken + * when its delay has expired. The head of the queue is that + * Delayed element whose delay expired furthest in the + * past. If no delay has expired there is no head and poll + * will return null. Expiration occurs when an element's + * getDelay(TimeUnit.NANOSECONDS) method returns a value less + * than or equal to zero. Even though unexpired elements cannot be + * removed using take or poll, they are otherwise + * treated as normal elements. For example, the size method + * returns the count of both expired and unexpired elements. + * This queue does not permit null elements. + * + *

This class and its iterator implement all of the + * optional methods of the {@link Collection} and {@link + * Iterator} interfaces. + * + *

This class is a member of the + * + * Java Collections Framework. + * + * @since 1.5 + * @author Doug Lea + * @param the type of elements held in this collection + */ + +public class DelayQueue extends AbstractQueue + implements BlockingQueue { + + private transient final ReentrantLock lock = new ReentrantLock(); + private final PriorityQueue q = new PriorityQueue(); + + /** + * Thread designated to wait for the element at the head of + * the queue. This variant of the Leader-Follower pattern + * (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to + * minimize unnecessary timed waiting. When a thread becomes + * the leader, it waits only for the next delay to elapse, but + * other threads await indefinitely. The leader thread must + * signal some other thread before returning from take() or + * poll(...), unless some other thread becomes leader in the + * interim. Whenever the head of the queue is replaced with + * an element with an earlier expiration time, the leader + * field is invalidated by being reset to null, and some + * waiting thread, but not necessarily the current leader, is + * signalled. So waiting threads must be prepared to acquire + * and lose leadership while waiting. + */ + private Thread leader = null; + + /** + * Condition signalled when a newer element becomes available + * at the head of the queue or a new thread may need to + * become leader. + */ + private final Condition available = lock.newCondition(); + + /** + * Creates a new DelayQueue that is initially empty. + */ + public DelayQueue() {} + + /** + * Creates a DelayQueue initially containing the elements of the + * given collection of {@link Delayed} instances. + * + * @param c the collection of elements to initially contain + * @throws NullPointerException if the specified collection or any + * of its elements are null + */ + public DelayQueue(Collection c) { + this.addAll(c); + } + + /** + * Inserts the specified element into this delay queue. + * + * @param e the element to add + * @return true (as specified by {@link Collection#add}) + * @throws NullPointerException if the specified element is null + */ + public boolean add(E e) { + return offer(e); + } + + /** + * Inserts the specified element into this delay queue. + * + * @param e the element to add + * @return true + * @throws NullPointerException if the specified element is null + */ + public boolean offer(E e) { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + q.offer(e); + if (q.peek() == e) { + leader = null; + available.signal(); + } + return true; + } finally { + lock.unlock(); + } + } + + /** + * Inserts the specified element into this delay queue. As the queue is + * unbounded this method will never block. + * + * @param e the element to add + * @throws NullPointerException {@inheritDoc} + */ + public void put(E e) { + offer(e); + } + + /** + * Inserts the specified element into this delay queue. As the queue is + * unbounded this method will never block. + * + * @param e the element to add + * @param timeout This parameter is ignored as the method never blocks + * @param unit This parameter is ignored as the method never blocks + * @return true + * @throws NullPointerException {@inheritDoc} + */ + public boolean offer(E e, long timeout, TimeUnit unit) { + return offer(e); + } + + /** + * Retrieves and removes the head of this queue, or returns null + * if this queue has no elements with an expired delay. + * + * @return the head of this queue, or null if this + * queue has no elements with an expired delay + */ + public E poll() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + E first = q.peek(); + if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0) + return null; + else + return q.poll(); + } finally { + lock.unlock(); + } + } + + /** + * Retrieves and removes the head of this queue, waiting if necessary + * until an element with an expired delay is available on this queue. + * + * @return the head of this queue + * @throws InterruptedException {@inheritDoc} + */ + public E take() throws InterruptedException { + final ReentrantLock lock = this.lock; + lock.lockInterruptibly(); + try { + for (;;) { + E first = q.peek(); + if (first == null) + available.await(); + else { + long delay = first.getDelay(TimeUnit.NANOSECONDS); + if (delay <= 0) + return q.poll(); + else if (leader != null) + available.await(); + else { + Thread thisThread = Thread.currentThread(); + leader = thisThread; + try { + available.awaitNanos(delay); + } finally { + if (leader == thisThread) + leader = null; + } + } + } + } + } finally { + if (leader == null && q.peek() != null) + available.signal(); + lock.unlock(); + } + } + + /** + * Retrieves and removes the head of this queue, waiting if necessary + * until an element with an expired delay is available on this queue, + * or the specified wait time expires. + * + * @return the head of this queue, or null if the + * specified waiting time elapses before an element with + * an expired delay becomes available + * @throws InterruptedException {@inheritDoc} + */ + public E poll(long timeout, TimeUnit unit) throws InterruptedException { + long nanos = unit.toNanos(timeout); + final ReentrantLock lock = this.lock; + lock.lockInterruptibly(); + try { + for (;;) { + E first = q.peek(); + if (first == null) { + if (nanos <= 0) + return null; + else + nanos = available.awaitNanos(nanos); + } else { + long delay = first.getDelay(TimeUnit.NANOSECONDS); + if (delay <= 0) + return q.poll(); + if (nanos <= 0) + return null; + if (nanos < delay || leader != null) + nanos = available.awaitNanos(nanos); + else { + Thread thisThread = Thread.currentThread(); + leader = thisThread; + try { + long timeLeft = available.awaitNanos(delay); + nanos -= delay - timeLeft; + } finally { + if (leader == thisThread) + leader = null; + } + } + } + } + } finally { + if (leader == null && q.peek() != null) + available.signal(); + lock.unlock(); + } + } + + /** + * Retrieves, but does not remove, the head of this queue, or + * returns null if this queue is empty. Unlike + * poll, if no expired elements are available in the queue, + * this method returns the element that will expire next, + * if one exists. + * + * @return the head of this queue, or null if this + * queue is empty. + */ + public E peek() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + return q.peek(); + } finally { + lock.unlock(); + } + } + + public int size() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + return q.size(); + } finally { + lock.unlock(); + } + } + + /** + * @throws UnsupportedOperationException {@inheritDoc} + * @throws ClassCastException {@inheritDoc} + * @throws NullPointerException {@inheritDoc} + * @throws IllegalArgumentException {@inheritDoc} + */ + public int drainTo(Collection c) { + if (c == null) + throw new NullPointerException(); + if (c == this) + throw new IllegalArgumentException(); + final ReentrantLock lock = this.lock; + lock.lock(); + try { + int n = 0; + for (;;) { + E first = q.peek(); + if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0) + break; + c.add(q.poll()); + ++n; + } + return n; + } finally { + lock.unlock(); + } + } + + /** + * @throws UnsupportedOperationException {@inheritDoc} + * @throws ClassCastException {@inheritDoc} + * @throws NullPointerException {@inheritDoc} + * @throws IllegalArgumentException {@inheritDoc} + */ + public int drainTo(Collection c, int maxElements) { + if (c == null) + throw new NullPointerException(); + if (c == this) + throw new IllegalArgumentException(); + if (maxElements <= 0) + return 0; + final ReentrantLock lock = this.lock; + lock.lock(); + try { + int n = 0; + while (n < maxElements) { + E first = q.peek(); + if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0) + break; + c.add(q.poll()); + ++n; + } + return n; + } finally { + lock.unlock(); + } + } + + /** + * Atomically removes all of the elements from this delay queue. + * The queue will be empty after this call returns. + * Elements with an unexpired delay are not waited for; they are + * simply discarded from the queue. + */ + public void clear() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + q.clear(); + } finally { + lock.unlock(); + } + } + + /** + * Always returns Integer.MAX_VALUE because + * a DelayQueue is not capacity constrained. + * + * @return Integer.MAX_VALUE + */ + public int remainingCapacity() { + return Integer.MAX_VALUE; + } + + /** + * Returns an array containing all of the elements in this queue. + * The returned array elements are in no particular order. + * + *

The returned array will be "safe" in that no references to it are + * maintained by this queue. (In other words, this method must allocate + * a new array). The caller is thus free to modify the returned array. + * + *

This method acts as bridge between array-based and collection-based + * APIs. + * + * @return an array containing all of the elements in this queue + */ + public Object[] toArray() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + return q.toArray(); + } finally { + lock.unlock(); + } + } + + /** + * Returns an array containing all of the elements in this queue; the + * runtime type of the returned array is that of the specified array. + * The returned array elements are in no particular order. + * If the queue fits in the specified array, it is returned therein. + * Otherwise, a new array is allocated with the runtime type of the + * specified array and the size of this queue. + * + *

If this queue fits in the specified array with room to spare + * (i.e., the array has more elements than this queue), the element in + * the array immediately following the end of the queue is set to + * null. + * + *

Like the {@link #toArray()} method, this method acts as bridge between + * array-based and collection-based APIs. Further, this method allows + * precise control over the runtime type of the output array, and may, + * under certain circumstances, be used to save allocation costs. + * + *

The following code can be used to dump a delay queue into a newly + * allocated array of Delayed: + * + *

+     *     Delayed[] a = q.toArray(new Delayed[0]);
+ * + * Note that toArray(new Object[0]) is identical in function to + * toArray(). + * + * @param a the array into which the elements of the queue are to + * be stored, if it is big enough; otherwise, a new array of the + * same runtime type is allocated for this purpose + * @return an array containing all of the elements in this queue + * @throws ArrayStoreException if the runtime type of the specified array + * is not a supertype of the runtime type of every element in + * this queue + * @throws NullPointerException if the specified array is null + */ + public T[] toArray(T[] a) { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + return q.toArray(a); + } finally { + lock.unlock(); + } + } + + /** + * Removes a single instance of the specified element from this + * queue, if it is present, whether or not it has expired. + */ + public boolean remove(Object o) { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + return q.remove(o); + } finally { + lock.unlock(); + } + } + + /** + * Returns an iterator over all the elements (both expired and + * unexpired) in this queue. The iterator does not return the + * elements in any particular order. + * + *

The returned iterator is a "weakly consistent" iterator that + * will never throw {@link java.util.ConcurrentModificationException + * ConcurrentModificationException}, and guarantees to traverse + * elements as they existed upon construction of the iterator, and + * may (but is not guaranteed to) reflect any modifications + * subsequent to construction. + * + * @return an iterator over the elements in this queue + */ + public Iterator iterator() { + return new Itr(toArray()); + } + + /** + * Snapshot iterator that works off copy of underlying q array. + */ + private class Itr implements Iterator { + final Object[] array; // Array of all elements + int cursor; // index of next element to return; + int lastRet; // index of last element, or -1 if no such + + Itr(Object[] array) { + lastRet = -1; + this.array = array; + } + + public boolean hasNext() { + return cursor < array.length; + } + + @SuppressWarnings("unchecked") + public E next() { + if (cursor >= array.length) + throw new NoSuchElementException(); + lastRet = cursor; + return (E)array[cursor++]; + } + + public void remove() { + if (lastRet < 0) + throw new IllegalStateException(); + Object x = array[lastRet]; + lastRet = -1; + // Traverse underlying queue to find == element, + // not just a .equals element. + lock.lock(); + try { + for (Iterator it = q.iterator(); it.hasNext(); ) { + if (it.next() == x) { + it.remove(); + return; + } + } + } finally { + lock.unlock(); + } + } + } + +}