diff -r 000000000000 -r 212417b74b72 rt/emul/compact/src/main/java/java/util/concurrent/LinkedTransferQueue.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/rt/emul/compact/src/main/java/java/util/concurrent/LinkedTransferQueue.java Sat Mar 19 10:46:31 2016 +0100 @@ -0,0 +1,1351 @@ +/* + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +/* + * This file is available under and governed by the GNU General Public + * License version 2 only, as published by the Free Software Foundation. + * However, the following notice accompanied the original version of this + * file: + * + * Written by Doug Lea with assistance from members of JCP JSR-166 + * Expert Group and released to the public domain, as explained at + * http://creativecommons.org/publicdomain/zero/1.0/ + */ + +package java.util.concurrent; + +import java.util.AbstractQueue; +import java.util.Collection; +import java.util.Iterator; +import java.util.NoSuchElementException; +import java.util.Queue; +import java.util.concurrent.TimeUnit; +import java.util.concurrent.locks.LockSupport; + +/** + * An unbounded {@link TransferQueue} based on linked nodes. + * This queue orders elements FIFO (first-in-first-out) with respect + * to any given producer. The head of the queue is that + * element that has been on the queue the longest time for some + * producer. The tail of the queue is that element that has + * been on the queue the shortest time for some producer. + * + *

Beware that, unlike in most collections, the {@code size} method + * is NOT a constant-time operation. Because of the + * asynchronous nature of these queues, determining the current number + * of elements requires a traversal of the elements, and so may report + * inaccurate results if this collection is modified during traversal. + * Additionally, the bulk operations {@code addAll}, + * {@code removeAll}, {@code retainAll}, {@code containsAll}, + * {@code equals}, and {@code toArray} are not guaranteed + * to be performed atomically. For example, an iterator operating + * concurrently with an {@code addAll} operation might view only some + * of the added elements. + * + *

This class and its iterator implement all of the + * optional methods of the {@link Collection} and {@link + * Iterator} interfaces. + * + *

Memory consistency effects: As with other concurrent + * collections, actions in a thread prior to placing an object into a + * {@code LinkedTransferQueue} + * happen-before + * actions subsequent to the access or removal of that element from + * the {@code LinkedTransferQueue} in another thread. + * + *

This class is a member of the + * + * Java Collections Framework. + * + * @since 1.7 + * @author Doug Lea + * @param the type of elements held in this collection + */ +public class LinkedTransferQueue extends AbstractQueue + implements TransferQueue, java.io.Serializable { + private static final long serialVersionUID = -3223113410248163686L; + + /* + * *** Overview of Dual Queues with Slack *** + * + * Dual Queues, introduced by Scherer and Scott + * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are + * (linked) queues in which nodes may represent either data or + * requests. When a thread tries to enqueue a data node, but + * encounters a request node, it instead "matches" and removes it; + * and vice versa for enqueuing requests. Blocking Dual Queues + * arrange that threads enqueuing unmatched requests block until + * other threads provide the match. Dual Synchronous Queues (see + * Scherer, Lea, & Scott + * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf) + * additionally arrange that threads enqueuing unmatched data also + * block. Dual Transfer Queues support all of these modes, as + * dictated by callers. + * + * A FIFO dual queue may be implemented using a variation of the + * Michael & Scott (M&S) lock-free queue algorithm + * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf). + * It maintains two pointer fields, "head", pointing to a + * (matched) node that in turn points to the first actual + * (unmatched) queue node (or null if empty); and "tail" that + * points to the last node on the queue (or again null if + * empty). For example, here is a possible queue with four data + * elements: + * + * head tail + * | | + * v v + * M -> U -> U -> U -> U + * + * The M&S queue algorithm is known to be prone to scalability and + * overhead limitations when maintaining (via CAS) these head and + * tail pointers. This has led to the development of + * contention-reducing variants such as elimination arrays (see + * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and + * optimistic back pointers (see Ladan-Mozes & Shavit + * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf). + * However, the nature of dual queues enables a simpler tactic for + * improving M&S-style implementations when dual-ness is needed. + * + * In a dual queue, each node must atomically maintain its match + * status. While there are other possible variants, we implement + * this here as: for a data-mode node, matching entails CASing an + * "item" field from a non-null data value to null upon match, and + * vice-versa for request nodes, CASing from null to a data + * value. (Note that the linearization properties of this style of + * queue are easy to verify -- elements are made available by + * linking, and unavailable by matching.) Compared to plain M&S + * queues, this property of dual queues requires one additional + * successful atomic operation per enq/deq pair. But it also + * enables lower cost variants of queue maintenance mechanics. (A + * variation of this idea applies even for non-dual queues that + * support deletion of interior elements, such as + * j.u.c.ConcurrentLinkedQueue.) + * + * Once a node is matched, its match status can never again + * change. We may thus arrange that the linked list of them + * contain a prefix of zero or more matched nodes, followed by a + * suffix of zero or more unmatched nodes. (Note that we allow + * both the prefix and suffix to be zero length, which in turn + * means that we do not use a dummy header.) If we were not + * concerned with either time or space efficiency, we could + * correctly perform enqueue and dequeue operations by traversing + * from a pointer to the initial node; CASing the item of the + * first unmatched node on match and CASing the next field of the + * trailing node on appends. (Plus some special-casing when + * initially empty). While this would be a terrible idea in + * itself, it does have the benefit of not requiring ANY atomic + * updates on head/tail fields. + * + * We introduce here an approach that lies between the extremes of + * never versus always updating queue (head and tail) pointers. + * This offers a tradeoff between sometimes requiring extra + * traversal steps to locate the first and/or last unmatched + * nodes, versus the reduced overhead and contention of fewer + * updates to queue pointers. For example, a possible snapshot of + * a queue is: + * + * head tail + * | | + * v v + * M -> M -> U -> U -> U -> U + * + * The best value for this "slack" (the targeted maximum distance + * between the value of "head" and the first unmatched node, and + * similarly for "tail") is an empirical matter. We have found + * that using very small constants in the range of 1-3 work best + * over a range of platforms. Larger values introduce increasing + * costs of cache misses and risks of long traversal chains, while + * smaller values increase CAS contention and overhead. + * + * Dual queues with slack differ from plain M&S dual queues by + * virtue of only sometimes updating head or tail pointers when + * matching, appending, or even traversing nodes; in order to + * maintain a targeted slack. The idea of "sometimes" may be + * operationalized in several ways. The simplest is to use a + * per-operation counter incremented on each traversal step, and + * to try (via CAS) to update the associated queue pointer + * whenever the count exceeds a threshold. Another, that requires + * more overhead, is to use random number generators to update + * with a given probability per traversal step. + * + * In any strategy along these lines, because CASes updating + * fields may fail, the actual slack may exceed targeted + * slack. However, they may be retried at any time to maintain + * targets. Even when using very small slack values, this + * approach works well for dual queues because it allows all + * operations up to the point of matching or appending an item + * (hence potentially allowing progress by another thread) to be + * read-only, thus not introducing any further contention. As + * described below, we implement this by performing slack + * maintenance retries only after these points. + * + * As an accompaniment to such techniques, traversal overhead can + * be further reduced without increasing contention of head + * pointer updates: Threads may sometimes shortcut the "next" link + * path from the current "head" node to be closer to the currently + * known first unmatched node, and similarly for tail. Again, this + * may be triggered with using thresholds or randomization. + * + * These ideas must be further extended to avoid unbounded amounts + * of costly-to-reclaim garbage caused by the sequential "next" + * links of nodes starting at old forgotten head nodes: As first + * described in detail by Boehm + * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC + * delays noticing that any arbitrarily old node has become + * garbage, all newer dead nodes will also be unreclaimed. + * (Similar issues arise in non-GC environments.) To cope with + * this in our implementation, upon CASing to advance the head + * pointer, we set the "next" link of the previous head to point + * only to itself; thus limiting the length of connected dead lists. + * (We also take similar care to wipe out possibly garbage + * retaining values held in other Node fields.) However, doing so + * adds some further complexity to traversal: If any "next" + * pointer links to itself, it indicates that the current thread + * has lagged behind a head-update, and so the traversal must + * continue from the "head". Traversals trying to find the + * current tail starting from "tail" may also encounter + * self-links, in which case they also continue at "head". + * + * It is tempting in slack-based scheme to not even use CAS for + * updates (similarly to Ladan-Mozes & Shavit). However, this + * cannot be done for head updates under the above link-forgetting + * mechanics because an update may leave head at a detached node. + * And while direct writes are possible for tail updates, they + * increase the risk of long retraversals, and hence long garbage + * chains, which can be much more costly than is worthwhile + * considering that the cost difference of performing a CAS vs + * write is smaller when they are not triggered on each operation + * (especially considering that writes and CASes equally require + * additional GC bookkeeping ("write barriers") that are sometimes + * more costly than the writes themselves because of contention). + * + * *** Overview of implementation *** + * + * We use a threshold-based approach to updates, with a slack + * threshold of two -- that is, we update head/tail when the + * current pointer appears to be two or more steps away from the + * first/last node. The slack value is hard-wired: a path greater + * than one is naturally implemented by checking equality of + * traversal pointers except when the list has only one element, + * in which case we keep slack threshold at one. Avoiding tracking + * explicit counts across method calls slightly simplifies an + * already-messy implementation. Using randomization would + * probably work better if there were a low-quality dirt-cheap + * per-thread one available, but even ThreadLocalRandom is too + * heavy for these purposes. + * + * With such a small slack threshold value, it is not worthwhile + * to augment this with path short-circuiting (i.e., unsplicing + * interior nodes) except in the case of cancellation/removal (see + * below). + * + * We allow both the head and tail fields to be null before any + * nodes are enqueued; initializing upon first append. This + * simplifies some other logic, as well as providing more + * efficient explicit control paths instead of letting JVMs insert + * implicit NullPointerExceptions when they are null. While not + * currently fully implemented, we also leave open the possibility + * of re-nulling these fields when empty (which is complicated to + * arrange, for little benefit.) + * + * All enqueue/dequeue operations are handled by the single method + * "xfer" with parameters indicating whether to act as some form + * of offer, put, poll, take, or transfer (each possibly with + * timeout). The relative complexity of using one monolithic + * method outweighs the code bulk and maintenance problems of + * using separate methods for each case. + * + * Operation consists of up to three phases. The first is + * implemented within method xfer, the second in tryAppend, and + * the third in method awaitMatch. + * + * 1. Try to match an existing node + * + * Starting at head, skip already-matched nodes until finding + * an unmatched node of opposite mode, if one exists, in which + * case matching it and returning, also if necessary updating + * head to one past the matched node (or the node itself if the + * list has no other unmatched nodes). If the CAS misses, then + * a loop retries advancing head by two steps until either + * success or the slack is at most two. By requiring that each + * attempt advances head by two (if applicable), we ensure that + * the slack does not grow without bound. Traversals also check + * if the initial head is now off-list, in which case they + * start at the new head. + * + * If no candidates are found and the call was untimed + * poll/offer, (argument "how" is NOW) return. + * + * 2. Try to append a new node (method tryAppend) + * + * Starting at current tail pointer, find the actual last node + * and try to append a new node (or if head was null, establish + * the first node). Nodes can be appended only if their + * predecessors are either already matched or are of the same + * mode. If we detect otherwise, then a new node with opposite + * mode must have been appended during traversal, so we must + * restart at phase 1. The traversal and update steps are + * otherwise similar to phase 1: Retrying upon CAS misses and + * checking for staleness. In particular, if a self-link is + * encountered, then we can safely jump to a node on the list + * by continuing the traversal at current head. + * + * On successful append, if the call was ASYNC, return. + * + * 3. Await match or cancellation (method awaitMatch) + * + * Wait for another thread to match node; instead cancelling if + * the current thread was interrupted or the wait timed out. On + * multiprocessors, we use front-of-queue spinning: If a node + * appears to be the first unmatched node in the queue, it + * spins a bit before blocking. In either case, before blocking + * it tries to unsplice any nodes between the current "head" + * and the first unmatched node. + * + * Front-of-queue spinning vastly improves performance of + * heavily contended queues. And so long as it is relatively + * brief and "quiet", spinning does not much impact performance + * of less-contended queues. During spins threads check their + * interrupt status and generate a thread-local random number + * to decide to occasionally perform a Thread.yield. While + * yield has underdefined specs, we assume that might it help, + * and will not hurt in limiting impact of spinning on busy + * systems. We also use smaller (1/2) spins for nodes that are + * not known to be front but whose predecessors have not + * blocked -- these "chained" spins avoid artifacts of + * front-of-queue rules which otherwise lead to alternating + * nodes spinning vs blocking. Further, front threads that + * represent phase changes (from data to request node or vice + * versa) compared to their predecessors receive additional + * chained spins, reflecting longer paths typically required to + * unblock threads during phase changes. + * + * + * ** Unlinking removed interior nodes ** + * + * In addition to minimizing garbage retention via self-linking + * described above, we also unlink removed interior nodes. These + * may arise due to timed out or interrupted waits, or calls to + * remove(x) or Iterator.remove. Normally, given a node that was + * at one time known to be the predecessor of some node s that is + * to be removed, we can unsplice s by CASing the next field of + * its predecessor if it still points to s (otherwise s must + * already have been removed or is now offlist). But there are two + * situations in which we cannot guarantee to make node s + * unreachable in this way: (1) If s is the trailing node of list + * (i.e., with null next), then it is pinned as the target node + * for appends, so can only be removed later after other nodes are + * appended. (2) We cannot necessarily unlink s given a + * predecessor node that is matched (including the case of being + * cancelled): the predecessor may already be unspliced, in which + * case some previous reachable node may still point to s. + * (For further explanation see Herlihy & Shavit "The Art of + * Multiprocessor Programming" chapter 9). Although, in both + * cases, we can rule out the need for further action if either s + * or its predecessor are (or can be made to be) at, or fall off + * from, the head of list. + * + * Without taking these into account, it would be possible for an + * unbounded number of supposedly removed nodes to remain + * reachable. Situations leading to such buildup are uncommon but + * can occur in practice; for example when a series of short timed + * calls to poll repeatedly time out but never otherwise fall off + * the list because of an untimed call to take at the front of the + * queue. + * + * When these cases arise, rather than always retraversing the + * entire list to find an actual predecessor to unlink (which + * won't help for case (1) anyway), we record a conservative + * estimate of possible unsplice failures (in "sweepVotes"). + * We trigger a full sweep when the estimate exceeds a threshold + * ("SWEEP_THRESHOLD") indicating the maximum number of estimated + * removal failures to tolerate before sweeping through, unlinking + * cancelled nodes that were not unlinked upon initial removal. + * We perform sweeps by the thread hitting threshold (rather than + * background threads or by spreading work to other threads) + * because in the main contexts in which removal occurs, the + * caller is already timed-out, cancelled, or performing a + * potentially O(n) operation (e.g. remove(x)), none of which are + * time-critical enough to warrant the overhead that alternatives + * would impose on other threads. + * + * Because the sweepVotes estimate is conservative, and because + * nodes become unlinked "naturally" as they fall off the head of + * the queue, and because we allow votes to accumulate even while + * sweeps are in progress, there are typically significantly fewer + * such nodes than estimated. Choice of a threshold value + * balances the likelihood of wasted effort and contention, versus + * providing a worst-case bound on retention of interior nodes in + * quiescent queues. The value defined below was chosen + * empirically to balance these under various timeout scenarios. + * + * Note that we cannot self-link unlinked interior nodes during + * sweeps. However, the associated garbage chains terminate when + * some successor ultimately falls off the head of the list and is + * self-linked. + */ + + /** True if on multiprocessor */ + private static final boolean MP = + Runtime.getRuntime().availableProcessors() > 1; + + /** + * The number of times to spin (with randomly interspersed calls + * to Thread.yield) on multiprocessor before blocking when a node + * is apparently the first waiter in the queue. See above for + * explanation. Must be a power of two. The value is empirically + * derived -- it works pretty well across a variety of processors, + * numbers of CPUs, and OSes. + */ + private static final int FRONT_SPINS = 1 << 7; + + /** + * The number of times to spin before blocking when a node is + * preceded by another node that is apparently spinning. Also + * serves as an increment to FRONT_SPINS on phase changes, and as + * base average frequency for yielding during spins. Must be a + * power of two. + */ + private static final int CHAINED_SPINS = FRONT_SPINS >>> 1; + + /** + * The maximum number of estimated removal failures (sweepVotes) + * to tolerate before sweeping through the queue unlinking + * cancelled nodes that were not unlinked upon initial + * removal. See above for explanation. The value must be at least + * two to avoid useless sweeps when removing trailing nodes. + */ + static final int SWEEP_THRESHOLD = 32; + + /** + * Queue nodes. Uses Object, not E, for items to allow forgetting + * them after use. Relies heavily on Unsafe mechanics to minimize + * unnecessary ordering constraints: Writes that are intrinsically + * ordered wrt other accesses or CASes use simple relaxed forms. + */ + static final class Node { + final boolean isData; // false if this is a request node + volatile Object item; // initially non-null if isData; CASed to match + volatile Node next; + volatile Thread waiter; // null until waiting + + // CAS methods for fields + final boolean casNext(Node cmp, Node val) { + return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); + } + + final boolean casItem(Object cmp, Object val) { + // assert cmp == null || cmp.getClass() != Node.class; + return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); + } + + /** + * Constructs a new node. Uses relaxed write because item can + * only be seen after publication via casNext. + */ + Node(Object item, boolean isData) { + UNSAFE.putObject(this, itemOffset, item); // relaxed write + this.isData = isData; + } + + /** + * Links node to itself to avoid garbage retention. Called + * only after CASing head field, so uses relaxed write. + */ + final void forgetNext() { + UNSAFE.putObject(this, nextOffset, this); + } + + /** + * Sets item to self and waiter to null, to avoid garbage + * retention after matching or cancelling. Uses relaxed writes + * because order is already constrained in the only calling + * contexts: item is forgotten only after volatile/atomic + * mechanics that extract items. Similarly, clearing waiter + * follows either CAS or return from park (if ever parked; + * else we don't care). + */ + final void forgetContents() { + UNSAFE.putObject(this, itemOffset, this); + UNSAFE.putObject(this, waiterOffset, null); + } + + /** + * Returns true if this node has been matched, including the + * case of artificial matches due to cancellation. + */ + final boolean isMatched() { + Object x = item; + return (x == this) || ((x == null) == isData); + } + + /** + * Returns true if this is an unmatched request node. + */ + final boolean isUnmatchedRequest() { + return !isData && item == null; + } + + /** + * Returns true if a node with the given mode cannot be + * appended to this node because this node is unmatched and + * has opposite data mode. + */ + final boolean cannotPrecede(boolean haveData) { + boolean d = isData; + Object x; + return d != haveData && (x = item) != this && (x != null) == d; + } + + /** + * Tries to artificially match a data node -- used by remove. + */ + final boolean tryMatchData() { + // assert isData; + Object x = item; + if (x != null && x != this && casItem(x, null)) { + LockSupport.unpark(waiter); + return true; + } + return false; + } + + private static final long serialVersionUID = -3375979862319811754L; + + // Unsafe mechanics + private static final sun.misc.Unsafe UNSAFE; + private static final long itemOffset; + private static final long nextOffset; + private static final long waiterOffset; + static { + try { + UNSAFE = sun.misc.Unsafe.getUnsafe(); + Class k = Node.class; + itemOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("item")); + nextOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("next")); + waiterOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("waiter")); + } catch (Exception e) { + throw new Error(e); + } + } + } + + /** head of the queue; null until first enqueue */ + transient volatile Node head; + + /** tail of the queue; null until first append */ + private transient volatile Node tail; + + /** The number of apparent failures to unsplice removed nodes */ + private transient volatile int sweepVotes; + + // CAS methods for fields + private boolean casTail(Node cmp, Node val) { + return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val); + } + + private boolean casHead(Node cmp, Node val) { + return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val); + } + + private boolean casSweepVotes(int cmp, int val) { + return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val); + } + + /* + * Possible values for "how" argument in xfer method. + */ + private static final int NOW = 0; // for untimed poll, tryTransfer + private static final int ASYNC = 1; // for offer, put, add + private static final int SYNC = 2; // for transfer, take + private static final int TIMED = 3; // for timed poll, tryTransfer + + @SuppressWarnings("unchecked") + static E cast(Object item) { + // assert item == null || item.getClass() != Node.class; + return (E) item; + } + + /** + * Implements all queuing methods. See above for explanation. + * + * @param e the item or null for take + * @param haveData true if this is a put, else a take + * @param how NOW, ASYNC, SYNC, or TIMED + * @param nanos timeout in nanosecs, used only if mode is TIMED + * @return an item if matched, else e + * @throws NullPointerException if haveData mode but e is null + */ + private E xfer(E e, boolean haveData, int how, long nanos) { + if (haveData && (e == null)) + throw new NullPointerException(); + Node s = null; // the node to append, if needed + + retry: + for (;;) { // restart on append race + + for (Node h = head, p = h; p != null;) { // find & match first node + boolean isData = p.isData; + Object item = p.item; + if (item != p && (item != null) == isData) { // unmatched + if (isData == haveData) // can't match + break; + if (p.casItem(item, e)) { // match + for (Node q = p; q != h;) { + Node n = q.next; // update by 2 unless singleton + if (head == h && casHead(h, n == null ? q : n)) { + h.forgetNext(); + break; + } // advance and retry + if ((h = head) == null || + (q = h.next) == null || !q.isMatched()) + break; // unless slack < 2 + } + LockSupport.unpark(p.waiter); + return this.cast(item); + } + } + Node n = p.next; + p = (p != n) ? n : (h = head); // Use head if p offlist + } + + if (how != NOW) { // No matches available + if (s == null) + s = new Node(e, haveData); + Node pred = tryAppend(s, haveData); + if (pred == null) + continue retry; // lost race vs opposite mode + if (how != ASYNC) + return awaitMatch(s, pred, e, (how == TIMED), nanos); + } + return e; // not waiting + } + } + + /** + * Tries to append node s as tail. + * + * @param s the node to append + * @param haveData true if appending in data mode + * @return null on failure due to losing race with append in + * different mode, else s's predecessor, or s itself if no + * predecessor + */ + private Node tryAppend(Node s, boolean haveData) { + for (Node t = tail, p = t;;) { // move p to last node and append + Node n, u; // temps for reads of next & tail + if (p == null && (p = head) == null) { + if (casHead(null, s)) + return s; // initialize + } + else if (p.cannotPrecede(haveData)) + return null; // lost race vs opposite mode + else if ((n = p.next) != null) // not last; keep traversing + p = p != t && t != (u = tail) ? (t = u) : // stale tail + (p != n) ? n : null; // restart if off list + else if (!p.casNext(null, s)) + p = p.next; // re-read on CAS failure + else { + if (p != t) { // update if slack now >= 2 + while ((tail != t || !casTail(t, s)) && + (t = tail) != null && + (s = t.next) != null && // advance and retry + (s = s.next) != null && s != t); + } + return p; + } + } + } + + /** + * Spins/yields/blocks until node s is matched or caller gives up. + * + * @param s the waiting node + * @param pred the predecessor of s, or s itself if it has no + * predecessor, or null if unknown (the null case does not occur + * in any current calls but may in possible future extensions) + * @param e the comparison value for checking match + * @param timed if true, wait only until timeout elapses + * @param nanos timeout in nanosecs, used only if timed is true + * @return matched item, or e if unmatched on interrupt or timeout + */ + private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) { + long lastTime = timed ? System.nanoTime() : 0L; + Thread w = Thread.currentThread(); + int spins = -1; // initialized after first item and cancel checks + ThreadLocalRandom randomYields = null; // bound if needed + + for (;;) { + Object item = s.item; + if (item != e) { // matched + // assert item != s; + s.forgetContents(); // avoid garbage + return this.cast(item); + } + if ((w.isInterrupted() || (timed && nanos <= 0)) && + s.casItem(e, s)) { // cancel + unsplice(pred, s); + return e; + } + + if (spins < 0) { // establish spins at/near front + if ((spins = spinsFor(pred, s.isData)) > 0) + randomYields = ThreadLocalRandom.current(); + } + else if (spins > 0) { // spin + --spins; + if (randomYields.nextInt(CHAINED_SPINS) == 0) + Thread.yield(); // occasionally yield + } + else if (s.waiter == null) { + s.waiter = w; // request unpark then recheck + } + else if (timed) { + long now = System.nanoTime(); + if ((nanos -= now - lastTime) > 0) + LockSupport.parkNanos(this, nanos); + lastTime = now; + } + else { + LockSupport.park(this); + } + } + } + + /** + * Returns spin/yield value for a node with given predecessor and + * data mode. See above for explanation. + */ + private static int spinsFor(Node pred, boolean haveData) { + if (MP && pred != null) { + if (pred.isData != haveData) // phase change + return FRONT_SPINS + CHAINED_SPINS; + if (pred.isMatched()) // probably at front + return FRONT_SPINS; + if (pred.waiter == null) // pred apparently spinning + return CHAINED_SPINS; + } + return 0; + } + + /* -------------- Traversal methods -------------- */ + + /** + * Returns the successor of p, or the head node if p.next has been + * linked to self, which will only be true if traversing with a + * stale pointer that is now off the list. + */ + final Node succ(Node p) { + Node next = p.next; + return (p == next) ? head : next; + } + + /** + * Returns the first unmatched node of the given mode, or null if + * none. Used by methods isEmpty, hasWaitingConsumer. + */ + private Node firstOfMode(boolean isData) { + for (Node p = head; p != null; p = succ(p)) { + if (!p.isMatched()) + return (p.isData == isData) ? p : null; + } + return null; + } + + /** + * Returns the item in the first unmatched node with isData; or + * null if none. Used by peek. + */ + private E firstDataItem() { + for (Node p = head; p != null; p = succ(p)) { + Object item = p.item; + if (p.isData) { + if (item != null && item != p) + return this.cast(item); + } + else if (item == null) + return null; + } + return null; + } + + /** + * Traverses and counts unmatched nodes of the given mode. + * Used by methods size and getWaitingConsumerCount. + */ + private int countOfMode(boolean data) { + int count = 0; + for (Node p = head; p != null; ) { + if (!p.isMatched()) { + if (p.isData != data) + return 0; + if (++count == Integer.MAX_VALUE) // saturated + break; + } + Node n = p.next; + if (n != p) + p = n; + else { + count = 0; + p = head; + } + } + return count; + } + + final class Itr implements Iterator { + private Node nextNode; // next node to return item for + private E nextItem; // the corresponding item + private Node lastRet; // last returned node, to support remove + private Node lastPred; // predecessor to unlink lastRet + + /** + * Moves to next node after prev, or first node if prev null. + */ + private void advance(Node prev) { + /* + * To track and avoid buildup of deleted nodes in the face + * of calls to both Queue.remove and Itr.remove, we must + * include variants of unsplice and sweep upon each + * advance: Upon Itr.remove, we may need to catch up links + * from lastPred, and upon other removes, we might need to + * skip ahead from stale nodes and unsplice deleted ones + * found while advancing. + */ + + Node r, b; // reset lastPred upon possible deletion of lastRet + if ((r = lastRet) != null && !r.isMatched()) + lastPred = r; // next lastPred is old lastRet + else if ((b = lastPred) == null || b.isMatched()) + lastPred = null; // at start of list + else { + Node s, n; // help with removal of lastPred.next + while ((s = b.next) != null && + s != b && s.isMatched() && + (n = s.next) != null && n != s) + b.casNext(s, n); + } + + this.lastRet = prev; + + for (Node p = prev, s, n;;) { + s = (p == null) ? head : p.next; + if (s == null) + break; + else if (s == p) { + p = null; + continue; + } + Object item = s.item; + if (s.isData) { + if (item != null && item != s) { + nextItem = LinkedTransferQueue.cast(item); + nextNode = s; + return; + } + } + else if (item == null) + break; + // assert s.isMatched(); + if (p == null) + p = s; + else if ((n = s.next) == null) + break; + else if (s == n) + p = null; + else + p.casNext(s, n); + } + nextNode = null; + nextItem = null; + } + + Itr() { + advance(null); + } + + public final boolean hasNext() { + return nextNode != null; + } + + public final E next() { + Node p = nextNode; + if (p == null) throw new NoSuchElementException(); + E e = nextItem; + advance(p); + return e; + } + + public final void remove() { + final Node lastRet = this.lastRet; + if (lastRet == null) + throw new IllegalStateException(); + this.lastRet = null; + if (lastRet.tryMatchData()) + unsplice(lastPred, lastRet); + } + } + + /* -------------- Removal methods -------------- */ + + /** + * Unsplices (now or later) the given deleted/cancelled node with + * the given predecessor. + * + * @param pred a node that was at one time known to be the + * predecessor of s, or null or s itself if s is/was at head + * @param s the node to be unspliced + */ + final void unsplice(Node pred, Node s) { + s.forgetContents(); // forget unneeded fields + /* + * See above for rationale. Briefly: if pred still points to + * s, try to unlink s. If s cannot be unlinked, because it is + * trailing node or pred might be unlinked, and neither pred + * nor s are head or offlist, add to sweepVotes, and if enough + * votes have accumulated, sweep. + */ + if (pred != null && pred != s && pred.next == s) { + Node n = s.next; + if (n == null || + (n != s && pred.casNext(s, n) && pred.isMatched())) { + for (;;) { // check if at, or could be, head + Node h = head; + if (h == pred || h == s || h == null) + return; // at head or list empty + if (!h.isMatched()) + break; + Node hn = h.next; + if (hn == null) + return; // now empty + if (hn != h && casHead(h, hn)) + h.forgetNext(); // advance head + } + if (pred.next != pred && s.next != s) { // recheck if offlist + for (;;) { // sweep now if enough votes + int v = sweepVotes; + if (v < SWEEP_THRESHOLD) { + if (casSweepVotes(v, v + 1)) + break; + } + else if (casSweepVotes(v, 0)) { + sweep(); + break; + } + } + } + } + } + } + + /** + * Unlinks matched (typically cancelled) nodes encountered in a + * traversal from head. + */ + private void sweep() { + for (Node p = head, s, n; p != null && (s = p.next) != null; ) { + if (!s.isMatched()) + // Unmatched nodes are never self-linked + p = s; + else if ((n = s.next) == null) // trailing node is pinned + break; + else if (s == n) // stale + // No need to also check for p == s, since that implies s == n + p = head; + else + p.casNext(s, n); + } + } + + /** + * Main implementation of remove(Object) + */ + private boolean findAndRemove(Object e) { + if (e != null) { + for (Node pred = null, p = head; p != null; ) { + Object item = p.item; + if (p.isData) { + if (item != null && item != p && e.equals(item) && + p.tryMatchData()) { + unsplice(pred, p); + return true; + } + } + else if (item == null) + break; + pred = p; + if ((p = p.next) == pred) { // stale + pred = null; + p = head; + } + } + } + return false; + } + + + /** + * Creates an initially empty {@code LinkedTransferQueue}. + */ + public LinkedTransferQueue() { + } + + /** + * Creates a {@code LinkedTransferQueue} + * initially containing the elements of the given collection, + * added in traversal order of the collection's iterator. + * + * @param c the collection of elements to initially contain + * @throws NullPointerException if the specified collection or any + * of its elements are null + */ + public LinkedTransferQueue(Collection c) { + this(); + addAll(c); + } + + /** + * Inserts the specified element at the tail of this queue. + * As the queue is unbounded, this method will never block. + * + * @throws NullPointerException if the specified element is null + */ + public void put(E e) { + xfer(e, true, ASYNC, 0); + } + + /** + * Inserts the specified element at the tail of this queue. + * As the queue is unbounded, this method will never block or + * return {@code false}. + * + * @return {@code true} (as specified by + * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer}) + * @throws NullPointerException if the specified element is null + */ + public boolean offer(E e, long timeout, TimeUnit unit) { + xfer(e, true, ASYNC, 0); + return true; + } + + /** + * Inserts the specified element at the tail of this queue. + * As the queue is unbounded, this method will never return {@code false}. + * + * @return {@code true} (as specified by {@link Queue#offer}) + * @throws NullPointerException if the specified element is null + */ + public boolean offer(E e) { + xfer(e, true, ASYNC, 0); + return true; + } + + /** + * Inserts the specified element at the tail of this queue. + * As the queue is unbounded, this method will never throw + * {@link IllegalStateException} or return {@code false}. + * + * @return {@code true} (as specified by {@link Collection#add}) + * @throws NullPointerException if the specified element is null + */ + public boolean add(E e) { + xfer(e, true, ASYNC, 0); + return true; + } + + /** + * Transfers the element to a waiting consumer immediately, if possible. + * + *

More precisely, transfers the specified element immediately + * if there exists a consumer already waiting to receive it (in + * {@link #take} or timed {@link #poll(long,TimeUnit) poll}), + * otherwise returning {@code false} without enqueuing the element. + * + * @throws NullPointerException if the specified element is null + */ + public boolean tryTransfer(E e) { + return xfer(e, true, NOW, 0) == null; + } + + /** + * Transfers the element to a consumer, waiting if necessary to do so. + * + *

More precisely, transfers the specified element immediately + * if there exists a consumer already waiting to receive it (in + * {@link #take} or timed {@link #poll(long,TimeUnit) poll}), + * else inserts the specified element at the tail of this queue + * and waits until the element is received by a consumer. + * + * @throws NullPointerException if the specified element is null + */ + public void transfer(E e) throws InterruptedException { + if (xfer(e, true, SYNC, 0) != null) { + Thread.interrupted(); // failure possible only due to interrupt + throw new InterruptedException(); + } + } + + /** + * Transfers the element to a consumer if it is possible to do so + * before the timeout elapses. + * + *

More precisely, transfers the specified element immediately + * if there exists a consumer already waiting to receive it (in + * {@link #take} or timed {@link #poll(long,TimeUnit) poll}), + * else inserts the specified element at the tail of this queue + * and waits until the element is received by a consumer, + * returning {@code false} if the specified wait time elapses + * before the element can be transferred. + * + * @throws NullPointerException if the specified element is null + */ + public boolean tryTransfer(E e, long timeout, TimeUnit unit) + throws InterruptedException { + if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null) + return true; + if (!Thread.interrupted()) + return false; + throw new InterruptedException(); + } + + public E take() throws InterruptedException { + E e = xfer(null, false, SYNC, 0); + if (e != null) + return e; + Thread.interrupted(); + throw new InterruptedException(); + } + + public E poll(long timeout, TimeUnit unit) throws InterruptedException { + E e = xfer(null, false, TIMED, unit.toNanos(timeout)); + if (e != null || !Thread.interrupted()) + return e; + throw new InterruptedException(); + } + + public E poll() { + return xfer(null, false, NOW, 0); + } + + /** + * @throws NullPointerException {@inheritDoc} + * @throws IllegalArgumentException {@inheritDoc} + */ + public int drainTo(Collection c) { + if (c == null) + throw new NullPointerException(); + if (c == this) + throw new IllegalArgumentException(); + int n = 0; + E e; + while ( (e = poll()) != null) { + c.add(e); + ++n; + } + return n; + } + + /** + * @throws NullPointerException {@inheritDoc} + * @throws IllegalArgumentException {@inheritDoc} + */ + public int drainTo(Collection c, int maxElements) { + if (c == null) + throw new NullPointerException(); + if (c == this) + throw new IllegalArgumentException(); + int n = 0; + E e; + while (n < maxElements && (e = poll()) != null) { + c.add(e); + ++n; + } + return n; + } + + /** + * Returns an iterator over the elements in this queue in proper sequence. + * The elements will be returned in order from first (head) to last (tail). + * + *

The returned iterator is a "weakly consistent" iterator that + * will never throw {@link java.util.ConcurrentModificationException + * ConcurrentModificationException}, and guarantees to traverse + * elements as they existed upon construction of the iterator, and + * may (but is not guaranteed to) reflect any modifications + * subsequent to construction. + * + * @return an iterator over the elements in this queue in proper sequence + */ + public Iterator iterator() { + return new Itr(); + } + + public E peek() { + return firstDataItem(); + } + + /** + * Returns {@code true} if this queue contains no elements. + * + * @return {@code true} if this queue contains no elements + */ + public boolean isEmpty() { + for (Node p = head; p != null; p = succ(p)) { + if (!p.isMatched()) + return !p.isData; + } + return true; + } + + public boolean hasWaitingConsumer() { + return firstOfMode(false) != null; + } + + /** + * Returns the number of elements in this queue. If this queue + * contains more than {@code Integer.MAX_VALUE} elements, returns + * {@code Integer.MAX_VALUE}. + * + *

Beware that, unlike in most collections, this method is + * NOT a constant-time operation. Because of the + * asynchronous nature of these queues, determining the current + * number of elements requires an O(n) traversal. + * + * @return the number of elements in this queue + */ + public int size() { + return countOfMode(true); + } + + public int getWaitingConsumerCount() { + return countOfMode(false); + } + + /** + * Removes a single instance of the specified element from this queue, + * if it is present. More formally, removes an element {@code e} such + * that {@code o.equals(e)}, if this queue contains one or more such + * elements. + * Returns {@code true} if this queue contained the specified element + * (or equivalently, if this queue changed as a result of the call). + * + * @param o element to be removed from this queue, if present + * @return {@code true} if this queue changed as a result of the call + */ + public boolean remove(Object o) { + return findAndRemove(o); + } + + /** + * Returns {@code true} if this queue contains the specified element. + * More formally, returns {@code true} if and only if this queue contains + * at least one element {@code e} such that {@code o.equals(e)}. + * + * @param o object to be checked for containment in this queue + * @return {@code true} if this queue contains the specified element + */ + public boolean contains(Object o) { + if (o == null) return false; + for (Node p = head; p != null; p = succ(p)) { + Object item = p.item; + if (p.isData) { + if (item != null && item != p && o.equals(item)) + return true; + } + else if (item == null) + break; + } + return false; + } + + /** + * Always returns {@code Integer.MAX_VALUE} because a + * {@code LinkedTransferQueue} is not capacity constrained. + * + * @return {@code Integer.MAX_VALUE} (as specified by + * {@link BlockingQueue#remainingCapacity()}) + */ + public int remainingCapacity() { + return Integer.MAX_VALUE; + } + + /** + * Saves the state to a stream (that is, serializes it). + * + * @serialData All of the elements (each an {@code E}) in + * the proper order, followed by a null + * @param s the stream + */ + private void writeObject(java.io.ObjectOutputStream s) + throws java.io.IOException { + s.defaultWriteObject(); + for (E e : this) + s.writeObject(e); + // Use trailing null as sentinel + s.writeObject(null); + } + + /** + * Reconstitutes the Queue instance from a stream (that is, + * deserializes it). + * + * @param s the stream + */ + private void readObject(java.io.ObjectInputStream s) + throws java.io.IOException, ClassNotFoundException { + s.defaultReadObject(); + for (;;) { + @SuppressWarnings("unchecked") E item = (E) s.readObject(); + if (item == null) + break; + else + offer(item); + } + } + + // Unsafe mechanics + + private static final sun.misc.Unsafe UNSAFE; + private static final long headOffset; + private static final long tailOffset; + private static final long sweepVotesOffset; + static { + try { + UNSAFE = sun.misc.Unsafe.getUnsafe(); + Class k = LinkedTransferQueue.class; + headOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("head")); + tailOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("tail")); + sweepVotesOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("sweepVotes")); + } catch (Exception e) { + throw new Error(e); + } + } +}