diff -r 000000000000 -r 212417b74b72 rt/emul/compact/src/main/java/java/util/concurrent/PriorityBlockingQueue.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/rt/emul/compact/src/main/java/java/util/concurrent/PriorityBlockingQueue.java Sat Mar 19 10:46:31 2016 +0100 @@ -0,0 +1,978 @@ +/* + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +/* + * This file is available under and governed by the GNU General Public + * License version 2 only, as published by the Free Software Foundation. + * However, the following notice accompanied the original version of this + * file: + * + * Written by Doug Lea with assistance from members of JCP JSR-166 + * Expert Group and released to the public domain, as explained at + * http://creativecommons.org/publicdomain/zero/1.0/ + */ + +package java.util.concurrent; + +import java.util.concurrent.locks.*; +import java.util.*; + +/** + * An unbounded {@linkplain BlockingQueue blocking queue} that uses + * the same ordering rules as class {@link PriorityQueue} and supplies + * blocking retrieval operations. While this queue is logically + * unbounded, attempted additions may fail due to resource exhaustion + * (causing {@code OutOfMemoryError}). This class does not permit + * {@code null} elements. A priority queue relying on {@linkplain + * Comparable natural ordering} also does not permit insertion of + * non-comparable objects (doing so results in + * {@code ClassCastException}). + * + *

This class and its iterator implement all of the + * optional methods of the {@link Collection} and {@link + * Iterator} interfaces. The Iterator provided in method {@link + * #iterator()} is not guaranteed to traverse the elements of + * the PriorityBlockingQueue in any particular order. If you need + * ordered traversal, consider using + * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} + * can be used to remove some or all elements in priority + * order and place them in another collection. + * + *

Operations on this class make no guarantees about the ordering + * of elements with equal priority. If you need to enforce an + * ordering, you can define custom classes or comparators that use a + * secondary key to break ties in primary priority values. For + * example, here is a class that applies first-in-first-out + * tie-breaking to comparable elements. To use it, you would insert a + * {@code new FIFOEntry(anEntry)} instead of a plain entry object. + * + *

 {@code
+ * class FIFOEntry>
+ *     implements Comparable> {
+ *   static final AtomicLong seq = new AtomicLong(0);
+ *   final long seqNum;
+ *   final E entry;
+ *   public FIFOEntry(E entry) {
+ *     seqNum = seq.getAndIncrement();
+ *     this.entry = entry;
+ *   }
+ *   public E getEntry() { return entry; }
+ *   public int compareTo(FIFOEntry other) {
+ *     int res = entry.compareTo(other.entry);
+ *     if (res == 0 && other.entry != this.entry)
+ *       res = (seqNum < other.seqNum ? -1 : 1);
+ *     return res;
+ *   }
+ * }}
+ * + *

This class is a member of the + * + * Java Collections Framework. + * + * @since 1.5 + * @author Doug Lea + * @param the type of elements held in this collection + */ +public class PriorityBlockingQueue extends AbstractQueue + implements BlockingQueue, java.io.Serializable { + private static final long serialVersionUID = 5595510919245408276L; + + /* + * The implementation uses an array-based binary heap, with public + * operations protected with a single lock. However, allocation + * during resizing uses a simple spinlock (used only while not + * holding main lock) in order to allow takes to operate + * concurrently with allocation. This avoids repeated + * postponement of waiting consumers and consequent element + * build-up. The need to back away from lock during allocation + * makes it impossible to simply wrap delegated + * java.util.PriorityQueue operations within a lock, as was done + * in a previous version of this class. To maintain + * interoperability, a plain PriorityQueue is still used during + * serialization, which maintains compatibility at the espense of + * transiently doubling overhead. + */ + + /** + * Default array capacity. + */ + private static final int DEFAULT_INITIAL_CAPACITY = 11; + + /** + * The maximum size of array to allocate. + * Some VMs reserve some header words in an array. + * Attempts to allocate larger arrays may result in + * OutOfMemoryError: Requested array size exceeds VM limit + */ + private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; + + /** + * Priority queue represented as a balanced binary heap: the two + * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The + * priority queue is ordered by comparator, or by the elements' + * natural ordering, if comparator is null: For each node n in the + * heap and each descendant d of n, n <= d. The element with the + * lowest value is in queue[0], assuming the queue is nonempty. + */ + private transient Object[] queue; + + /** + * The number of elements in the priority queue. + */ + private transient int size; + + /** + * The comparator, or null if priority queue uses elements' + * natural ordering. + */ + private transient Comparator comparator; + + /** + * Lock used for all public operations + */ + private final ReentrantLock lock; + + /** + * Condition for blocking when empty + */ + private final Condition notEmpty; + + /** + * Spinlock for allocation, acquired via CAS. + */ + private transient volatile int allocationSpinLock; + + /** + * A plain PriorityQueue used only for serialization, + * to maintain compatibility with previous versions + * of this class. Non-null only during serialization/deserialization. + */ + private PriorityQueue q; + + /** + * Creates a {@code PriorityBlockingQueue} with the default + * initial capacity (11) that orders its elements according to + * their {@linkplain Comparable natural ordering}. + */ + public PriorityBlockingQueue() { + this(DEFAULT_INITIAL_CAPACITY, null); + } + + /** + * Creates a {@code PriorityBlockingQueue} with the specified + * initial capacity that orders its elements according to their + * {@linkplain Comparable natural ordering}. + * + * @param initialCapacity the initial capacity for this priority queue + * @throws IllegalArgumentException if {@code initialCapacity} is less + * than 1 + */ + public PriorityBlockingQueue(int initialCapacity) { + this(initialCapacity, null); + } + + /** + * Creates a {@code PriorityBlockingQueue} with the specified initial + * capacity that orders its elements according to the specified + * comparator. + * + * @param initialCapacity the initial capacity for this priority queue + * @param comparator the comparator that will be used to order this + * priority queue. If {@code null}, the {@linkplain Comparable + * natural ordering} of the elements will be used. + * @throws IllegalArgumentException if {@code initialCapacity} is less + * than 1 + */ + public PriorityBlockingQueue(int initialCapacity, + Comparator comparator) { + if (initialCapacity < 1) + throw new IllegalArgumentException(); + this.lock = new ReentrantLock(); + this.notEmpty = lock.newCondition(); + this.comparator = comparator; + this.queue = new Object[initialCapacity]; + } + + /** + * Creates a {@code PriorityBlockingQueue} containing the elements + * in the specified collection. If the specified collection is a + * {@link SortedSet} or a {@link PriorityQueue}, this + * priority queue will be ordered according to the same ordering. + * Otherwise, this priority queue will be ordered according to the + * {@linkplain Comparable natural ordering} of its elements. + * + * @param c the collection whose elements are to be placed + * into this priority queue + * @throws ClassCastException if elements of the specified collection + * cannot be compared to one another according to the priority + * queue's ordering + * @throws NullPointerException if the specified collection or any + * of its elements are null + */ + public PriorityBlockingQueue(Collection c) { + this.lock = new ReentrantLock(); + this.notEmpty = lock.newCondition(); + boolean heapify = true; // true if not known to be in heap order + boolean screen = true; // true if must screen for nulls + if (c instanceof SortedSet) { + SortedSet ss = (SortedSet) c; + this.comparator = (Comparator) ss.comparator(); + heapify = false; + } + else if (c instanceof PriorityBlockingQueue) { + PriorityBlockingQueue pq = + (PriorityBlockingQueue) c; + this.comparator = (Comparator) pq.comparator(); + screen = false; + if (pq.getClass() == PriorityBlockingQueue.class) // exact match + heapify = false; + } + Object[] a = c.toArray(); + int n = a.length; + // If c.toArray incorrectly doesn't return Object[], copy it. + if (a.getClass() != Object[].class) + a = Arrays.copyOf(a, n, Object[].class); + if (screen && (n == 1 || this.comparator != null)) { + for (int i = 0; i < n; ++i) + if (a[i] == null) + throw new NullPointerException(); + } + this.queue = a; + this.size = n; + if (heapify) + heapify(); + } + + /** + * Tries to grow array to accommodate at least one more element + * (but normally expand by about 50%), giving up (allowing retry) + * on contention (which we expect to be rare). Call only while + * holding lock. + * + * @param array the heap array + * @param oldCap the length of the array + */ + private void tryGrow(Object[] array, int oldCap) { + lock.unlock(); // must release and then re-acquire main lock + Object[] newArray = null; + if (allocationSpinLock == 0 && + UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset, + 0, 1)) { + try { + int newCap = oldCap + ((oldCap < 64) ? + (oldCap + 2) : // grow faster if small + (oldCap >> 1)); + if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow + int minCap = oldCap + 1; + if (minCap < 0 || minCap > MAX_ARRAY_SIZE) + throw new OutOfMemoryError(); + newCap = MAX_ARRAY_SIZE; + } + if (newCap > oldCap && queue == array) + newArray = new Object[newCap]; + } finally { + allocationSpinLock = 0; + } + } + if (newArray == null) // back off if another thread is allocating + Thread.yield(); + lock.lock(); + if (newArray != null && queue == array) { + queue = newArray; + System.arraycopy(array, 0, newArray, 0, oldCap); + } + } + + /** + * Mechanics for poll(). Call only while holding lock. + */ + private E extract() { + E result; + int n = size - 1; + if (n < 0) + result = null; + else { + Object[] array = queue; + result = (E) array[0]; + E x = (E) array[n]; + array[n] = null; + Comparator cmp = comparator; + if (cmp == null) + siftDownComparable(0, x, array, n); + else + siftDownUsingComparator(0, x, array, n, cmp); + size = n; + } + return result; + } + + /** + * Inserts item x at position k, maintaining heap invariant by + * promoting x up the tree until it is greater than or equal to + * its parent, or is the root. + * + * To simplify and speed up coercions and comparisons. the + * Comparable and Comparator versions are separated into different + * methods that are otherwise identical. (Similarly for siftDown.) + * These methods are static, with heap state as arguments, to + * simplify use in light of possible comparator exceptions. + * + * @param k the position to fill + * @param x the item to insert + * @param array the heap array + * @param n heap size + */ + private static void siftUpComparable(int k, T x, Object[] array) { + Comparable key = (Comparable) x; + while (k > 0) { + int parent = (k - 1) >>> 1; + Object e = array[parent]; + if (key.compareTo((T) e) >= 0) + break; + array[k] = e; + k = parent; + } + array[k] = key; + } + + private static void siftUpUsingComparator(int k, T x, Object[] array, + Comparator cmp) { + while (k > 0) { + int parent = (k - 1) >>> 1; + Object e = array[parent]; + if (cmp.compare(x, (T) e) >= 0) + break; + array[k] = e; + k = parent; + } + array[k] = x; + } + + /** + * Inserts item x at position k, maintaining heap invariant by + * demoting x down the tree repeatedly until it is less than or + * equal to its children or is a leaf. + * + * @param k the position to fill + * @param x the item to insert + * @param array the heap array + * @param n heap size + */ + private static void siftDownComparable(int k, T x, Object[] array, + int n) { + Comparable key = (Comparable)x; + int half = n >>> 1; // loop while a non-leaf + while (k < half) { + int child = (k << 1) + 1; // assume left child is least + Object c = array[child]; + int right = child + 1; + if (right < n && + ((Comparable) c).compareTo((T) array[right]) > 0) + c = array[child = right]; + if (key.compareTo((T) c) <= 0) + break; + array[k] = c; + k = child; + } + array[k] = key; + } + + private static void siftDownUsingComparator(int k, T x, Object[] array, + int n, + Comparator cmp) { + int half = n >>> 1; + while (k < half) { + int child = (k << 1) + 1; + Object c = array[child]; + int right = child + 1; + if (right < n && cmp.compare((T) c, (T) array[right]) > 0) + c = array[child = right]; + if (cmp.compare(x, (T) c) <= 0) + break; + array[k] = c; + k = child; + } + array[k] = x; + } + + /** + * Establishes the heap invariant (described above) in the entire tree, + * assuming nothing about the order of the elements prior to the call. + */ + private void heapify() { + Object[] array = queue; + int n = size; + int half = (n >>> 1) - 1; + Comparator cmp = comparator; + if (cmp == null) { + for (int i = half; i >= 0; i--) + siftDownComparable(i, (E) array[i], array, n); + } + else { + for (int i = half; i >= 0; i--) + siftDownUsingComparator(i, (E) array[i], array, n, cmp); + } + } + + /** + * Inserts the specified element into this priority queue. + * + * @param e the element to add + * @return {@code true} (as specified by {@link Collection#add}) + * @throws ClassCastException if the specified element cannot be compared + * with elements currently in the priority queue according to the + * priority queue's ordering + * @throws NullPointerException if the specified element is null + */ + public boolean add(E e) { + return offer(e); + } + + /** + * Inserts the specified element into this priority queue. + * As the queue is unbounded, this method will never return {@code false}. + * + * @param e the element to add + * @return {@code true} (as specified by {@link Queue#offer}) + * @throws ClassCastException if the specified element cannot be compared + * with elements currently in the priority queue according to the + * priority queue's ordering + * @throws NullPointerException if the specified element is null + */ + public boolean offer(E e) { + if (e == null) + throw new NullPointerException(); + final ReentrantLock lock = this.lock; + lock.lock(); + int n, cap; + Object[] array; + while ((n = size) >= (cap = (array = queue).length)) + tryGrow(array, cap); + try { + Comparator cmp = comparator; + if (cmp == null) + siftUpComparable(n, e, array); + else + siftUpUsingComparator(n, e, array, cmp); + size = n + 1; + notEmpty.signal(); + } finally { + lock.unlock(); + } + return true; + } + + /** + * Inserts the specified element into this priority queue. + * As the queue is unbounded, this method will never block. + * + * @param e the element to add + * @throws ClassCastException if the specified element cannot be compared + * with elements currently in the priority queue according to the + * priority queue's ordering + * @throws NullPointerException if the specified element is null + */ + public void put(E e) { + offer(e); // never need to block + } + + /** + * Inserts the specified element into this priority queue. + * As the queue is unbounded, this method will never block or + * return {@code false}. + * + * @param e the element to add + * @param timeout This parameter is ignored as the method never blocks + * @param unit This parameter is ignored as the method never blocks + * @return {@code true} (as specified by + * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer}) + * @throws ClassCastException if the specified element cannot be compared + * with elements currently in the priority queue according to the + * priority queue's ordering + * @throws NullPointerException if the specified element is null + */ + public boolean offer(E e, long timeout, TimeUnit unit) { + return offer(e); // never need to block + } + + public E poll() { + final ReentrantLock lock = this.lock; + lock.lock(); + E result; + try { + result = extract(); + } finally { + lock.unlock(); + } + return result; + } + + public E take() throws InterruptedException { + final ReentrantLock lock = this.lock; + lock.lockInterruptibly(); + E result; + try { + while ( (result = extract()) == null) + notEmpty.await(); + } finally { + lock.unlock(); + } + return result; + } + + public E poll(long timeout, TimeUnit unit) throws InterruptedException { + long nanos = unit.toNanos(timeout); + final ReentrantLock lock = this.lock; + lock.lockInterruptibly(); + E result; + try { + while ( (result = extract()) == null && nanos > 0) + nanos = notEmpty.awaitNanos(nanos); + } finally { + lock.unlock(); + } + return result; + } + + public E peek() { + final ReentrantLock lock = this.lock; + lock.lock(); + E result; + try { + result = size > 0 ? (E) queue[0] : null; + } finally { + lock.unlock(); + } + return result; + } + + /** + * Returns the comparator used to order the elements in this queue, + * or {@code null} if this queue uses the {@linkplain Comparable + * natural ordering} of its elements. + * + * @return the comparator used to order the elements in this queue, + * or {@code null} if this queue uses the natural + * ordering of its elements + */ + public Comparator comparator() { + return comparator; + } + + public int size() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + return size; + } finally { + lock.unlock(); + } + } + + /** + * Always returns {@code Integer.MAX_VALUE} because + * a {@code PriorityBlockingQueue} is not capacity constrained. + * @return {@code Integer.MAX_VALUE} always + */ + public int remainingCapacity() { + return Integer.MAX_VALUE; + } + + private int indexOf(Object o) { + if (o != null) { + Object[] array = queue; + int n = size; + for (int i = 0; i < n; i++) + if (o.equals(array[i])) + return i; + } + return -1; + } + + /** + * Removes the ith element from queue. + */ + private void removeAt(int i) { + Object[] array = queue; + int n = size - 1; + if (n == i) // removed last element + array[i] = null; + else { + E moved = (E) array[n]; + array[n] = null; + Comparator cmp = comparator; + if (cmp == null) + siftDownComparable(i, moved, array, n); + else + siftDownUsingComparator(i, moved, array, n, cmp); + if (array[i] == moved) { + if (cmp == null) + siftUpComparable(i, moved, array); + else + siftUpUsingComparator(i, moved, array, cmp); + } + } + size = n; + } + + /** + * Removes a single instance of the specified element from this queue, + * if it is present. More formally, removes an element {@code e} such + * that {@code o.equals(e)}, if this queue contains one or more such + * elements. Returns {@code true} if and only if this queue contained + * the specified element (or equivalently, if this queue changed as a + * result of the call). + * + * @param o element to be removed from this queue, if present + * @return {@code true} if this queue changed as a result of the call + */ + public boolean remove(Object o) { + boolean removed = false; + final ReentrantLock lock = this.lock; + lock.lock(); + try { + int i = indexOf(o); + if (i != -1) { + removeAt(i); + removed = true; + } + } finally { + lock.unlock(); + } + return removed; + } + + + /** + * Identity-based version for use in Itr.remove + */ + private void removeEQ(Object o) { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + Object[] array = queue; + int n = size; + for (int i = 0; i < n; i++) { + if (o == array[i]) { + removeAt(i); + break; + } + } + } finally { + lock.unlock(); + } + } + + /** + * Returns {@code true} if this queue contains the specified element. + * More formally, returns {@code true} if and only if this queue contains + * at least one element {@code e} such that {@code o.equals(e)}. + * + * @param o object to be checked for containment in this queue + * @return {@code true} if this queue contains the specified element + */ + public boolean contains(Object o) { + int index; + final ReentrantLock lock = this.lock; + lock.lock(); + try { + index = indexOf(o); + } finally { + lock.unlock(); + } + return index != -1; + } + + /** + * Returns an array containing all of the elements in this queue. + * The returned array elements are in no particular order. + * + *

The returned array will be "safe" in that no references to it are + * maintained by this queue. (In other words, this method must allocate + * a new array). The caller is thus free to modify the returned array. + * + *

This method acts as bridge between array-based and collection-based + * APIs. + * + * @return an array containing all of the elements in this queue + */ + public Object[] toArray() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + return Arrays.copyOf(queue, size); + } finally { + lock.unlock(); + } + } + + + public String toString() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + int n = size; + if (n == 0) + return "[]"; + StringBuilder sb = new StringBuilder(); + sb.append('['); + for (int i = 0; i < n; ++i) { + E e = (E)queue[i]; + sb.append(e == this ? "(this Collection)" : e); + if (i != n - 1) + sb.append(',').append(' '); + } + return sb.append(']').toString(); + } finally { + lock.unlock(); + } + } + + /** + * @throws UnsupportedOperationException {@inheritDoc} + * @throws ClassCastException {@inheritDoc} + * @throws NullPointerException {@inheritDoc} + * @throws IllegalArgumentException {@inheritDoc} + */ + public int drainTo(Collection c) { + if (c == null) + throw new NullPointerException(); + if (c == this) + throw new IllegalArgumentException(); + final ReentrantLock lock = this.lock; + lock.lock(); + try { + int n = 0; + E e; + while ( (e = extract()) != null) { + c.add(e); + ++n; + } + return n; + } finally { + lock.unlock(); + } + } + + /** + * @throws UnsupportedOperationException {@inheritDoc} + * @throws ClassCastException {@inheritDoc} + * @throws NullPointerException {@inheritDoc} + * @throws IllegalArgumentException {@inheritDoc} + */ + public int drainTo(Collection c, int maxElements) { + if (c == null) + throw new NullPointerException(); + if (c == this) + throw new IllegalArgumentException(); + if (maxElements <= 0) + return 0; + final ReentrantLock lock = this.lock; + lock.lock(); + try { + int n = 0; + E e; + while (n < maxElements && (e = extract()) != null) { + c.add(e); + ++n; + } + return n; + } finally { + lock.unlock(); + } + } + + /** + * Atomically removes all of the elements from this queue. + * The queue will be empty after this call returns. + */ + public void clear() { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + Object[] array = queue; + int n = size; + size = 0; + for (int i = 0; i < n; i++) + array[i] = null; + } finally { + lock.unlock(); + } + } + + /** + * Returns an array containing all of the elements in this queue; the + * runtime type of the returned array is that of the specified array. + * The returned array elements are in no particular order. + * If the queue fits in the specified array, it is returned therein. + * Otherwise, a new array is allocated with the runtime type of the + * specified array and the size of this queue. + * + *

If this queue fits in the specified array with room to spare + * (i.e., the array has more elements than this queue), the element in + * the array immediately following the end of the queue is set to + * {@code null}. + * + *

Like the {@link #toArray()} method, this method acts as bridge between + * array-based and collection-based APIs. Further, this method allows + * precise control over the runtime type of the output array, and may, + * under certain circumstances, be used to save allocation costs. + * + *

Suppose {@code x} is a queue known to contain only strings. + * The following code can be used to dump the queue into a newly + * allocated array of {@code String}: + * + *

+     *     String[] y = x.toArray(new String[0]);
+ * + * Note that {@code toArray(new Object[0])} is identical in function to + * {@code toArray()}. + * + * @param a the array into which the elements of the queue are to + * be stored, if it is big enough; otherwise, a new array of the + * same runtime type is allocated for this purpose + * @return an array containing all of the elements in this queue + * @throws ArrayStoreException if the runtime type of the specified array + * is not a supertype of the runtime type of every element in + * this queue + * @throws NullPointerException if the specified array is null + */ + public T[] toArray(T[] a) { + final ReentrantLock lock = this.lock; + lock.lock(); + try { + int n = size; + if (a.length < n) + // Make a new array of a's runtime type, but my contents: + return (T[]) Arrays.copyOf(queue, size, a.getClass()); + System.arraycopy(queue, 0, a, 0, n); + if (a.length > n) + a[n] = null; + return a; + } finally { + lock.unlock(); + } + } + + /** + * Returns an iterator over the elements in this queue. The + * iterator does not return the elements in any particular order. + * + *

The returned iterator is a "weakly consistent" iterator that + * will never throw {@link java.util.ConcurrentModificationException + * ConcurrentModificationException}, and guarantees to traverse + * elements as they existed upon construction of the iterator, and + * may (but is not guaranteed to) reflect any modifications + * subsequent to construction. + * + * @return an iterator over the elements in this queue + */ + public Iterator iterator() { + return new Itr(toArray()); + } + + /** + * Snapshot iterator that works off copy of underlying q array. + */ + final class Itr implements Iterator { + final Object[] array; // Array of all elements + int cursor; // index of next element to return; + int lastRet; // index of last element, or -1 if no such + + Itr(Object[] array) { + lastRet = -1; + this.array = array; + } + + public boolean hasNext() { + return cursor < array.length; + } + + public E next() { + if (cursor >= array.length) + throw new NoSuchElementException(); + lastRet = cursor; + return (E)array[cursor++]; + } + + public void remove() { + if (lastRet < 0) + throw new IllegalStateException(); + removeEQ(array[lastRet]); + lastRet = -1; + } + } + + /** + * Saves the state to a stream (that is, serializes it). For + * compatibility with previous version of this class, + * elements are first copied to a java.util.PriorityQueue, + * which is then serialized. + */ + private void writeObject(java.io.ObjectOutputStream s) + throws java.io.IOException { + lock.lock(); + try { + int n = size; // avoid zero capacity argument + q = new PriorityQueue(n == 0 ? 1 : n, comparator); + q.addAll(this); + s.defaultWriteObject(); + } finally { + q = null; + lock.unlock(); + } + } + + /** + * Reconstitutes the {@code PriorityBlockingQueue} instance from a stream + * (that is, deserializes it). + * + * @param s the stream + */ + private void readObject(java.io.ObjectInputStream s) + throws java.io.IOException, ClassNotFoundException { + try { + s.defaultReadObject(); + this.queue = new Object[q.size()]; + comparator = q.comparator(); + addAll(q); + } finally { + q = null; + } + } + + // Unsafe mechanics + private static final sun.misc.Unsafe UNSAFE; + private static final long allocationSpinLockOffset; + static { + try { + UNSAFE = sun.misc.Unsafe.getUnsafe(); + Class k = PriorityBlockingQueue.class; + allocationSpinLockOffset = UNSAFE.objectFieldOffset + (k.getDeclaredField("allocationSpinLock")); + } catch (Exception e) { + throw new Error(e); + } + } +}